ioremap.c revision 6c5482d53f195d3ca61c9ec1be25b0f4a92575fe
1/*
2 *  linux/arch/arm/mm/ioremap.c
3 *
4 * Re-map IO memory to kernel address space so that we can access it.
5 *
6 * (C) Copyright 1995 1996 Linus Torvalds
7 *
8 * Hacked for ARM by Phil Blundell <philb@gnu.org>
9 * Hacked to allow all architectures to build, and various cleanups
10 * by Russell King
11 *
12 * This allows a driver to remap an arbitrary region of bus memory into
13 * virtual space.  One should *only* use readl, writel, memcpy_toio and
14 * so on with such remapped areas.
15 *
16 * Because the ARM only has a 32-bit address space we can't address the
17 * whole of the (physical) PCI space at once.  PCI huge-mode addressing
18 * allows us to circumvent this restriction by splitting PCI space into
19 * two 2GB chunks and mapping only one at a time into processor memory.
20 * We use MMU protection domains to trap any attempt to access the bank
21 * that is not currently mapped.  (This isn't fully implemented yet.)
22 */
23#include <linux/module.h>
24#include <linux/errno.h>
25#include <linux/mm.h>
26#include <linux/vmalloc.h>
27#include <linux/io.h>
28
29#include <asm/cputype.h>
30#include <asm/cacheflush.h>
31#include <asm/mmu_context.h>
32#include <asm/pgalloc.h>
33#include <asm/tlbflush.h>
34#include <asm/sizes.h>
35
36#include <asm/mach/map.h>
37#include "mm.h"
38
39/*
40 * Used by ioremap() and iounmap() code to mark (super)section-mapped
41 * I/O regions in vm_struct->flags field.
42 */
43#define VM_ARM_SECTION_MAPPING	0x80000000
44
45int ioremap_page(unsigned long virt, unsigned long phys,
46		 const struct mem_type *mtype)
47{
48	return ioremap_page_range(virt, virt + PAGE_SIZE, phys,
49				  __pgprot(mtype->prot_pte));
50}
51EXPORT_SYMBOL(ioremap_page);
52
53void __check_kvm_seq(struct mm_struct *mm)
54{
55	unsigned int seq;
56
57	do {
58		seq = init_mm.context.kvm_seq;
59		memcpy(pgd_offset(mm, VMALLOC_START),
60		       pgd_offset_k(VMALLOC_START),
61		       sizeof(pgd_t) * (pgd_index(VMALLOC_END) -
62					pgd_index(VMALLOC_START)));
63		mm->context.kvm_seq = seq;
64	} while (seq != init_mm.context.kvm_seq);
65}
66
67#ifndef CONFIG_SMP
68/*
69 * Section support is unsafe on SMP - If you iounmap and ioremap a region,
70 * the other CPUs will not see this change until their next context switch.
71 * Meanwhile, (eg) if an interrupt comes in on one of those other CPUs
72 * which requires the new ioremap'd region to be referenced, the CPU will
73 * reference the _old_ region.
74 *
75 * Note that get_vm_area_caller() allocates a guard 4K page, so we need to
76 * mask the size back to 1MB aligned or we will overflow in the loop below.
77 */
78static void unmap_area_sections(unsigned long virt, unsigned long size)
79{
80	unsigned long addr = virt, end = virt + (size & ~(SZ_1M - 1));
81	pgd_t *pgd;
82
83	flush_cache_vunmap(addr, end);
84	pgd = pgd_offset_k(addr);
85	do {
86		pmd_t pmd, *pmdp = pmd_offset(pgd, addr);
87
88		pmd = *pmdp;
89		if (!pmd_none(pmd)) {
90			/*
91			 * Clear the PMD from the page table, and
92			 * increment the kvm sequence so others
93			 * notice this change.
94			 *
95			 * Note: this is still racy on SMP machines.
96			 */
97			pmd_clear(pmdp);
98			init_mm.context.kvm_seq++;
99
100			/*
101			 * Free the page table, if there was one.
102			 */
103			if ((pmd_val(pmd) & PMD_TYPE_MASK) == PMD_TYPE_TABLE)
104				pte_free_kernel(&init_mm, pmd_page_vaddr(pmd));
105		}
106
107		addr += PGDIR_SIZE;
108		pgd++;
109	} while (addr < end);
110
111	/*
112	 * Ensure that the active_mm is up to date - we want to
113	 * catch any use-after-iounmap cases.
114	 */
115	if (current->active_mm->context.kvm_seq != init_mm.context.kvm_seq)
116		__check_kvm_seq(current->active_mm);
117
118	flush_tlb_kernel_range(virt, end);
119}
120
121static int
122remap_area_sections(unsigned long virt, unsigned long pfn,
123		    size_t size, const struct mem_type *type)
124{
125	unsigned long addr = virt, end = virt + size;
126	pgd_t *pgd;
127
128	/*
129	 * Remove and free any PTE-based mapping, and
130	 * sync the current kernel mapping.
131	 */
132	unmap_area_sections(virt, size);
133
134	pgd = pgd_offset_k(addr);
135	do {
136		pmd_t *pmd = pmd_offset(pgd, addr);
137
138		pmd[0] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
139		pfn += SZ_1M >> PAGE_SHIFT;
140		pmd[1] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
141		pfn += SZ_1M >> PAGE_SHIFT;
142		flush_pmd_entry(pmd);
143
144		addr += PGDIR_SIZE;
145		pgd++;
146	} while (addr < end);
147
148	return 0;
149}
150
151static int
152remap_area_supersections(unsigned long virt, unsigned long pfn,
153			 size_t size, const struct mem_type *type)
154{
155	unsigned long addr = virt, end = virt + size;
156	pgd_t *pgd;
157
158	/*
159	 * Remove and free any PTE-based mapping, and
160	 * sync the current kernel mapping.
161	 */
162	unmap_area_sections(virt, size);
163
164	pgd = pgd_offset_k(virt);
165	do {
166		unsigned long super_pmd_val, i;
167
168		super_pmd_val = __pfn_to_phys(pfn) | type->prot_sect |
169				PMD_SECT_SUPER;
170		super_pmd_val |= ((pfn >> (32 - PAGE_SHIFT)) & 0xf) << 20;
171
172		for (i = 0; i < 8; i++) {
173			pmd_t *pmd = pmd_offset(pgd, addr);
174
175			pmd[0] = __pmd(super_pmd_val);
176			pmd[1] = __pmd(super_pmd_val);
177			flush_pmd_entry(pmd);
178
179			addr += PGDIR_SIZE;
180			pgd++;
181		}
182
183		pfn += SUPERSECTION_SIZE >> PAGE_SHIFT;
184	} while (addr < end);
185
186	return 0;
187}
188#endif
189
190void __iomem * __arm_ioremap_pfn_caller(unsigned long pfn,
191	unsigned long offset, size_t size, unsigned int mtype, void *caller)
192{
193	const struct mem_type *type;
194	int err;
195	unsigned long addr;
196 	struct vm_struct * area;
197
198	/*
199	 * High mappings must be supersection aligned
200	 */
201	if (pfn >= 0x100000 && (__pfn_to_phys(pfn) & ~SUPERSECTION_MASK))
202		return NULL;
203
204	/*
205	 * Don't allow RAM to be mapped - this causes problems with ARMv6+
206	 */
207	if (WARN_ON(pfn_valid(pfn)))
208		return NULL;
209
210	type = get_mem_type(mtype);
211	if (!type)
212		return NULL;
213
214	/*
215	 * Page align the mapping size, taking account of any offset.
216	 */
217	size = PAGE_ALIGN(offset + size);
218
219	area = get_vm_area_caller(size, VM_IOREMAP, caller);
220 	if (!area)
221 		return NULL;
222 	addr = (unsigned long)area->addr;
223
224#ifndef CONFIG_SMP
225	if (DOMAIN_IO == 0 &&
226	    (((cpu_architecture() >= CPU_ARCH_ARMv6) && (get_cr() & CR_XP)) ||
227	       cpu_is_xsc3()) && pfn >= 0x100000 &&
228	       !((__pfn_to_phys(pfn) | size | addr) & ~SUPERSECTION_MASK)) {
229		area->flags |= VM_ARM_SECTION_MAPPING;
230		err = remap_area_supersections(addr, pfn, size, type);
231	} else if (!((__pfn_to_phys(pfn) | size | addr) & ~PMD_MASK)) {
232		area->flags |= VM_ARM_SECTION_MAPPING;
233		err = remap_area_sections(addr, pfn, size, type);
234	} else
235#endif
236		err = ioremap_page_range(addr, addr + size, __pfn_to_phys(pfn),
237					 __pgprot(type->prot_pte));
238
239	if (err) {
240 		vunmap((void *)addr);
241 		return NULL;
242 	}
243
244	flush_cache_vmap(addr, addr + size);
245	return (void __iomem *) (offset + addr);
246}
247
248void __iomem *__arm_ioremap_caller(unsigned long phys_addr, size_t size,
249	unsigned int mtype, void *caller)
250{
251	unsigned long last_addr;
252 	unsigned long offset = phys_addr & ~PAGE_MASK;
253 	unsigned long pfn = __phys_to_pfn(phys_addr);
254
255 	/*
256 	 * Don't allow wraparound or zero size
257	 */
258	last_addr = phys_addr + size - 1;
259	if (!size || last_addr < phys_addr)
260		return NULL;
261
262	return __arm_ioremap_pfn_caller(pfn, offset, size, mtype,
263			caller);
264}
265
266/*
267 * Remap an arbitrary physical address space into the kernel virtual
268 * address space. Needed when the kernel wants to access high addresses
269 * directly.
270 *
271 * NOTE! We need to allow non-page-aligned mappings too: we will obviously
272 * have to convert them into an offset in a page-aligned mapping, but the
273 * caller shouldn't need to know that small detail.
274 */
275void __iomem *
276__arm_ioremap_pfn(unsigned long pfn, unsigned long offset, size_t size,
277		  unsigned int mtype)
278{
279	return __arm_ioremap_pfn_caller(pfn, offset, size, mtype,
280			__builtin_return_address(0));
281}
282EXPORT_SYMBOL(__arm_ioremap_pfn);
283
284void __iomem *
285__arm_ioremap(unsigned long phys_addr, size_t size, unsigned int mtype)
286{
287	return __arm_ioremap_caller(phys_addr, size, mtype,
288			__builtin_return_address(0));
289}
290EXPORT_SYMBOL(__arm_ioremap);
291
292/*
293 * Remap an arbitrary physical address space into the kernel virtual
294 * address space as memory. Needed when the kernel wants to execute
295 * code in external memory. This is needed for reprogramming source
296 * clocks that would affect normal memory for example. Please see
297 * CONFIG_GENERIC_ALLOCATOR for allocating external memory.
298 */
299void __iomem *
300__arm_ioremap_exec(unsigned long phys_addr, size_t size, bool cached)
301{
302	unsigned int mtype;
303
304	if (cached)
305		mtype = MT_MEMORY;
306	else
307		mtype = MT_MEMORY_NONCACHED;
308
309	return __arm_ioremap_caller(phys_addr, size, mtype,
310			__builtin_return_address(0));
311}
312
313void __iounmap(volatile void __iomem *io_addr)
314{
315	void *addr = (void *)(PAGE_MASK & (unsigned long)io_addr);
316#ifndef CONFIG_SMP
317	struct vm_struct **p, *tmp;
318
319	/*
320	 * If this is a section based mapping we need to handle it
321	 * specially as the VM subsystem does not know how to handle
322	 * such a beast. We need the lock here b/c we need to clear
323	 * all the mappings before the area can be reclaimed
324	 * by someone else.
325	 */
326	write_lock(&vmlist_lock);
327	for (p = &vmlist ; (tmp = *p) ; p = &tmp->next) {
328		if ((tmp->flags & VM_IOREMAP) && (tmp->addr == addr)) {
329			if (tmp->flags & VM_ARM_SECTION_MAPPING) {
330				unmap_area_sections((unsigned long)tmp->addr,
331						    tmp->size);
332			}
333			break;
334		}
335	}
336	write_unlock(&vmlist_lock);
337#endif
338
339	vunmap(addr);
340}
341EXPORT_SYMBOL(__iounmap);
342