ptrace.c revision 972559a05222c1d7ebd5dcde637542713bb8778d
1/*
2 * Kernel support for the ptrace() and syscall tracing interfaces.
3 *
4 * Copyright (C) 1999-2005 Hewlett-Packard Co
5 *	David Mosberger-Tang <davidm@hpl.hp.com>
6 *
7 * Derived from the x86 and Alpha versions.
8 */
9#include <linux/kernel.h>
10#include <linux/sched.h>
11#include <linux/slab.h>
12#include <linux/mm.h>
13#include <linux/errno.h>
14#include <linux/ptrace.h>
15#include <linux/smp_lock.h>
16#include <linux/user.h>
17#include <linux/security.h>
18#include <linux/audit.h>
19#include <linux/signal.h>
20
21#include <asm/pgtable.h>
22#include <asm/processor.h>
23#include <asm/ptrace_offsets.h>
24#include <asm/rse.h>
25#include <asm/system.h>
26#include <asm/uaccess.h>
27#include <asm/unwind.h>
28#ifdef CONFIG_PERFMON
29#include <asm/perfmon.h>
30#endif
31
32#include "entry.h"
33
34/*
35 * Bits in the PSR that we allow ptrace() to change:
36 *	be, up, ac, mfl, mfh (the user mask; five bits total)
37 *	db (debug breakpoint fault; one bit)
38 *	id (instruction debug fault disable; one bit)
39 *	dd (data debug fault disable; one bit)
40 *	ri (restart instruction; two bits)
41 *	is (instruction set; one bit)
42 */
43#define IPSR_MASK (IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS	\
44		   | IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI)
45
46#define MASK(nbits)	((1UL << (nbits)) - 1)	/* mask with NBITS bits set */
47#define PFM_MASK	MASK(38)
48
49#define PTRACE_DEBUG	0
50
51#if PTRACE_DEBUG
52# define dprintk(format...)	printk(format)
53# define inline
54#else
55# define dprintk(format...)
56#endif
57
58/* Return TRUE if PT was created due to kernel-entry via a system-call.  */
59
60static inline int
61in_syscall (struct pt_regs *pt)
62{
63	return (long) pt->cr_ifs >= 0;
64}
65
66/*
67 * Collect the NaT bits for r1-r31 from scratch_unat and return a NaT
68 * bitset where bit i is set iff the NaT bit of register i is set.
69 */
70unsigned long
71ia64_get_scratch_nat_bits (struct pt_regs *pt, unsigned long scratch_unat)
72{
73#	define GET_BITS(first, last, unat)				\
74	({								\
75		unsigned long bit = ia64_unat_pos(&pt->r##first);	\
76		unsigned long nbits = (last - first + 1);		\
77		unsigned long mask = MASK(nbits) << first;		\
78		unsigned long dist;					\
79		if (bit < first)					\
80			dist = 64 + bit - first;			\
81		else							\
82			dist = bit - first;				\
83		ia64_rotr(unat, dist) & mask;				\
84	})
85	unsigned long val;
86
87	/*
88	 * Registers that are stored consecutively in struct pt_regs
89	 * can be handled in parallel.  If the register order in
90	 * struct_pt_regs changes, this code MUST be updated.
91	 */
92	val  = GET_BITS( 1,  1, scratch_unat);
93	val |= GET_BITS( 2,  3, scratch_unat);
94	val |= GET_BITS(12, 13, scratch_unat);
95	val |= GET_BITS(14, 14, scratch_unat);
96	val |= GET_BITS(15, 15, scratch_unat);
97	val |= GET_BITS( 8, 11, scratch_unat);
98	val |= GET_BITS(16, 31, scratch_unat);
99	return val;
100
101#	undef GET_BITS
102}
103
104/*
105 * Set the NaT bits for the scratch registers according to NAT and
106 * return the resulting unat (assuming the scratch registers are
107 * stored in PT).
108 */
109unsigned long
110ia64_put_scratch_nat_bits (struct pt_regs *pt, unsigned long nat)
111{
112#	define PUT_BITS(first, last, nat)				\
113	({								\
114		unsigned long bit = ia64_unat_pos(&pt->r##first);	\
115		unsigned long nbits = (last - first + 1);		\
116		unsigned long mask = MASK(nbits) << first;		\
117		long dist;						\
118		if (bit < first)					\
119			dist = 64 + bit - first;			\
120		else							\
121			dist = bit - first;				\
122		ia64_rotl(nat & mask, dist);				\
123	})
124	unsigned long scratch_unat;
125
126	/*
127	 * Registers that are stored consecutively in struct pt_regs
128	 * can be handled in parallel.  If the register order in
129	 * struct_pt_regs changes, this code MUST be updated.
130	 */
131	scratch_unat  = PUT_BITS( 1,  1, nat);
132	scratch_unat |= PUT_BITS( 2,  3, nat);
133	scratch_unat |= PUT_BITS(12, 13, nat);
134	scratch_unat |= PUT_BITS(14, 14, nat);
135	scratch_unat |= PUT_BITS(15, 15, nat);
136	scratch_unat |= PUT_BITS( 8, 11, nat);
137	scratch_unat |= PUT_BITS(16, 31, nat);
138
139	return scratch_unat;
140
141#	undef PUT_BITS
142}
143
144#define IA64_MLX_TEMPLATE	0x2
145#define IA64_MOVL_OPCODE	6
146
147void
148ia64_increment_ip (struct pt_regs *regs)
149{
150	unsigned long w0, ri = ia64_psr(regs)->ri + 1;
151
152	if (ri > 2) {
153		ri = 0;
154		regs->cr_iip += 16;
155	} else if (ri == 2) {
156		get_user(w0, (char __user *) regs->cr_iip + 0);
157		if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
158			/*
159			 * rfi'ing to slot 2 of an MLX bundle causes
160			 * an illegal operation fault.  We don't want
161			 * that to happen...
162			 */
163			ri = 0;
164			regs->cr_iip += 16;
165		}
166	}
167	ia64_psr(regs)->ri = ri;
168}
169
170void
171ia64_decrement_ip (struct pt_regs *regs)
172{
173	unsigned long w0, ri = ia64_psr(regs)->ri - 1;
174
175	if (ia64_psr(regs)->ri == 0) {
176		regs->cr_iip -= 16;
177		ri = 2;
178		get_user(w0, (char __user *) regs->cr_iip + 0);
179		if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
180			/*
181			 * rfi'ing to slot 2 of an MLX bundle causes
182			 * an illegal operation fault.  We don't want
183			 * that to happen...
184			 */
185			ri = 1;
186		}
187	}
188	ia64_psr(regs)->ri = ri;
189}
190
191/*
192 * This routine is used to read an rnat bits that are stored on the
193 * kernel backing store.  Since, in general, the alignment of the user
194 * and kernel are different, this is not completely trivial.  In
195 * essence, we need to construct the user RNAT based on up to two
196 * kernel RNAT values and/or the RNAT value saved in the child's
197 * pt_regs.
198 *
199 * user rbs
200 *
201 * +--------+ <-- lowest address
202 * | slot62 |
203 * +--------+
204 * |  rnat  | 0x....1f8
205 * +--------+
206 * | slot00 | \
207 * +--------+ |
208 * | slot01 | > child_regs->ar_rnat
209 * +--------+ |
210 * | slot02 | /				kernel rbs
211 * +--------+				+--------+
212 *	    <- child_regs->ar_bspstore	| slot61 | <-- krbs
213 * +- - - - +				+--------+
214 *					| slot62 |
215 * +- - - - +				+--------+
216 *					|  rnat	 |
217 * +- - - - +				+--------+
218 *   vrnat				| slot00 |
219 * +- - - - +				+--------+
220 *					=	 =
221 *					+--------+
222 *					| slot00 | \
223 *					+--------+ |
224 *					| slot01 | > child_stack->ar_rnat
225 *					+--------+ |
226 *					| slot02 | /
227 *					+--------+
228 *						  <--- child_stack->ar_bspstore
229 *
230 * The way to think of this code is as follows: bit 0 in the user rnat
231 * corresponds to some bit N (0 <= N <= 62) in one of the kernel rnat
232 * value.  The kernel rnat value holding this bit is stored in
233 * variable rnat0.  rnat1 is loaded with the kernel rnat value that
234 * form the upper bits of the user rnat value.
235 *
236 * Boundary cases:
237 *
238 * o when reading the rnat "below" the first rnat slot on the kernel
239 *   backing store, rnat0/rnat1 are set to 0 and the low order bits are
240 *   merged in from pt->ar_rnat.
241 *
242 * o when reading the rnat "above" the last rnat slot on the kernel
243 *   backing store, rnat0/rnat1 gets its value from sw->ar_rnat.
244 */
245static unsigned long
246get_rnat (struct task_struct *task, struct switch_stack *sw,
247	  unsigned long *krbs, unsigned long *urnat_addr,
248	  unsigned long *urbs_end)
249{
250	unsigned long rnat0 = 0, rnat1 = 0, urnat = 0, *slot0_kaddr;
251	unsigned long umask = 0, mask, m;
252	unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
253	long num_regs, nbits;
254	struct pt_regs *pt;
255
256	pt = task_pt_regs(task);
257	kbsp = (unsigned long *) sw->ar_bspstore;
258	ubspstore = (unsigned long *) pt->ar_bspstore;
259
260	if (urbs_end < urnat_addr)
261		nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_end);
262	else
263		nbits = 63;
264	mask = MASK(nbits);
265	/*
266	 * First, figure out which bit number slot 0 in user-land maps
267	 * to in the kernel rnat.  Do this by figuring out how many
268	 * register slots we're beyond the user's backingstore and
269	 * then computing the equivalent address in kernel space.
270	 */
271	num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
272	slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
273	shift = ia64_rse_slot_num(slot0_kaddr);
274	rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
275	rnat0_kaddr = rnat1_kaddr - 64;
276
277	if (ubspstore + 63 > urnat_addr) {
278		/* some bits need to be merged in from pt->ar_rnat */
279		umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
280		urnat = (pt->ar_rnat & umask);
281		mask &= ~umask;
282		if (!mask)
283			return urnat;
284	}
285
286	m = mask << shift;
287	if (rnat0_kaddr >= kbsp)
288		rnat0 = sw->ar_rnat;
289	else if (rnat0_kaddr > krbs)
290		rnat0 = *rnat0_kaddr;
291	urnat |= (rnat0 & m) >> shift;
292
293	m = mask >> (63 - shift);
294	if (rnat1_kaddr >= kbsp)
295		rnat1 = sw->ar_rnat;
296	else if (rnat1_kaddr > krbs)
297		rnat1 = *rnat1_kaddr;
298	urnat |= (rnat1 & m) << (63 - shift);
299	return urnat;
300}
301
302/*
303 * The reverse of get_rnat.
304 */
305static void
306put_rnat (struct task_struct *task, struct switch_stack *sw,
307	  unsigned long *krbs, unsigned long *urnat_addr, unsigned long urnat,
308	  unsigned long *urbs_end)
309{
310	unsigned long rnat0 = 0, rnat1 = 0, *slot0_kaddr, umask = 0, mask, m;
311	unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
312	long num_regs, nbits;
313	struct pt_regs *pt;
314	unsigned long cfm, *urbs_kargs;
315
316	pt = task_pt_regs(task);
317	kbsp = (unsigned long *) sw->ar_bspstore;
318	ubspstore = (unsigned long *) pt->ar_bspstore;
319
320	urbs_kargs = urbs_end;
321	if (in_syscall(pt)) {
322		/*
323		 * If entered via syscall, don't allow user to set rnat bits
324		 * for syscall args.
325		 */
326		cfm = pt->cr_ifs;
327		urbs_kargs = ia64_rse_skip_regs(urbs_end, -(cfm & 0x7f));
328	}
329
330	if (urbs_kargs >= urnat_addr)
331		nbits = 63;
332	else {
333		if ((urnat_addr - 63) >= urbs_kargs)
334			return;
335		nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_kargs);
336	}
337	mask = MASK(nbits);
338
339	/*
340	 * First, figure out which bit number slot 0 in user-land maps
341	 * to in the kernel rnat.  Do this by figuring out how many
342	 * register slots we're beyond the user's backingstore and
343	 * then computing the equivalent address in kernel space.
344	 */
345	num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
346	slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
347	shift = ia64_rse_slot_num(slot0_kaddr);
348	rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
349	rnat0_kaddr = rnat1_kaddr - 64;
350
351	if (ubspstore + 63 > urnat_addr) {
352		/* some bits need to be place in pt->ar_rnat: */
353		umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
354		pt->ar_rnat = (pt->ar_rnat & ~umask) | (urnat & umask);
355		mask &= ~umask;
356		if (!mask)
357			return;
358	}
359	/*
360	 * Note: Section 11.1 of the EAS guarantees that bit 63 of an
361	 * rnat slot is ignored. so we don't have to clear it here.
362	 */
363	rnat0 = (urnat << shift);
364	m = mask << shift;
365	if (rnat0_kaddr >= kbsp)
366		sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat0 & m);
367	else if (rnat0_kaddr > krbs)
368		*rnat0_kaddr = ((*rnat0_kaddr & ~m) | (rnat0 & m));
369
370	rnat1 = (urnat >> (63 - shift));
371	m = mask >> (63 - shift);
372	if (rnat1_kaddr >= kbsp)
373		sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat1 & m);
374	else if (rnat1_kaddr > krbs)
375		*rnat1_kaddr = ((*rnat1_kaddr & ~m) | (rnat1 & m));
376}
377
378static inline int
379on_kernel_rbs (unsigned long addr, unsigned long bspstore,
380	       unsigned long urbs_end)
381{
382	unsigned long *rnat_addr = ia64_rse_rnat_addr((unsigned long *)
383						      urbs_end);
384	return (addr >= bspstore && addr <= (unsigned long) rnat_addr);
385}
386
387/*
388 * Read a word from the user-level backing store of task CHILD.  ADDR
389 * is the user-level address to read the word from, VAL a pointer to
390 * the return value, and USER_BSP gives the end of the user-level
391 * backing store (i.e., it's the address that would be in ar.bsp after
392 * the user executed a "cover" instruction).
393 *
394 * This routine takes care of accessing the kernel register backing
395 * store for those registers that got spilled there.  It also takes
396 * care of calculating the appropriate RNaT collection words.
397 */
398long
399ia64_peek (struct task_struct *child, struct switch_stack *child_stack,
400	   unsigned long user_rbs_end, unsigned long addr, long *val)
401{
402	unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end, *rnat_addr;
403	struct pt_regs *child_regs;
404	size_t copied;
405	long ret;
406
407	urbs_end = (long *) user_rbs_end;
408	laddr = (unsigned long *) addr;
409	child_regs = task_pt_regs(child);
410	bspstore = (unsigned long *) child_regs->ar_bspstore;
411	krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
412	if (on_kernel_rbs(addr, (unsigned long) bspstore,
413			  (unsigned long) urbs_end))
414	{
415		/*
416		 * Attempt to read the RBS in an area that's actually
417		 * on the kernel RBS => read the corresponding bits in
418		 * the kernel RBS.
419		 */
420		rnat_addr = ia64_rse_rnat_addr(laddr);
421		ret = get_rnat(child, child_stack, krbs, rnat_addr, urbs_end);
422
423		if (laddr == rnat_addr) {
424			/* return NaT collection word itself */
425			*val = ret;
426			return 0;
427		}
428
429		if (((1UL << ia64_rse_slot_num(laddr)) & ret) != 0) {
430			/*
431			 * It is implementation dependent whether the
432			 * data portion of a NaT value gets saved on a
433			 * st8.spill or RSE spill (e.g., see EAS 2.6,
434			 * 4.4.4.6 Register Spill and Fill).  To get
435			 * consistent behavior across all possible
436			 * IA-64 implementations, we return zero in
437			 * this case.
438			 */
439			*val = 0;
440			return 0;
441		}
442
443		if (laddr < urbs_end) {
444			/*
445			 * The desired word is on the kernel RBS and
446			 * is not a NaT.
447			 */
448			regnum = ia64_rse_num_regs(bspstore, laddr);
449			*val = *ia64_rse_skip_regs(krbs, regnum);
450			return 0;
451		}
452	}
453	copied = access_process_vm(child, addr, &ret, sizeof(ret), 0);
454	if (copied != sizeof(ret))
455		return -EIO;
456	*val = ret;
457	return 0;
458}
459
460long
461ia64_poke (struct task_struct *child, struct switch_stack *child_stack,
462	   unsigned long user_rbs_end, unsigned long addr, long val)
463{
464	unsigned long *bspstore, *krbs, regnum, *laddr;
465	unsigned long *urbs_end = (long *) user_rbs_end;
466	struct pt_regs *child_regs;
467
468	laddr = (unsigned long *) addr;
469	child_regs = task_pt_regs(child);
470	bspstore = (unsigned long *) child_regs->ar_bspstore;
471	krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
472	if (on_kernel_rbs(addr, (unsigned long) bspstore,
473			  (unsigned long) urbs_end))
474	{
475		/*
476		 * Attempt to write the RBS in an area that's actually
477		 * on the kernel RBS => write the corresponding bits
478		 * in the kernel RBS.
479		 */
480		if (ia64_rse_is_rnat_slot(laddr))
481			put_rnat(child, child_stack, krbs, laddr, val,
482				 urbs_end);
483		else {
484			if (laddr < urbs_end) {
485				regnum = ia64_rse_num_regs(bspstore, laddr);
486				*ia64_rse_skip_regs(krbs, regnum) = val;
487			}
488		}
489	} else if (access_process_vm(child, addr, &val, sizeof(val), 1)
490		   != sizeof(val))
491		return -EIO;
492	return 0;
493}
494
495/*
496 * Calculate the address of the end of the user-level register backing
497 * store.  This is the address that would have been stored in ar.bsp
498 * if the user had executed a "cover" instruction right before
499 * entering the kernel.  If CFMP is not NULL, it is used to return the
500 * "current frame mask" that was active at the time the kernel was
501 * entered.
502 */
503unsigned long
504ia64_get_user_rbs_end (struct task_struct *child, struct pt_regs *pt,
505		       unsigned long *cfmp)
506{
507	unsigned long *krbs, *bspstore, cfm = pt->cr_ifs;
508	long ndirty;
509
510	krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
511	bspstore = (unsigned long *) pt->ar_bspstore;
512	ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
513
514	if (in_syscall(pt))
515		ndirty += (cfm & 0x7f);
516	else
517		cfm &= ~(1UL << 63);	/* clear valid bit */
518
519	if (cfmp)
520		*cfmp = cfm;
521	return (unsigned long) ia64_rse_skip_regs(bspstore, ndirty);
522}
523
524/*
525 * Synchronize (i.e, write) the RSE backing store living in kernel
526 * space to the VM of the CHILD task.  SW and PT are the pointers to
527 * the switch_stack and pt_regs structures, respectively.
528 * USER_RBS_END is the user-level address at which the backing store
529 * ends.
530 */
531long
532ia64_sync_user_rbs (struct task_struct *child, struct switch_stack *sw,
533		    unsigned long user_rbs_start, unsigned long user_rbs_end)
534{
535	unsigned long addr, val;
536	long ret;
537
538	/* now copy word for word from kernel rbs to user rbs: */
539	for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
540		ret = ia64_peek(child, sw, user_rbs_end, addr, &val);
541		if (ret < 0)
542			return ret;
543		if (access_process_vm(child, addr, &val, sizeof(val), 1)
544		    != sizeof(val))
545			return -EIO;
546	}
547	return 0;
548}
549
550static long
551ia64_sync_kernel_rbs (struct task_struct *child, struct switch_stack *sw,
552		unsigned long user_rbs_start, unsigned long user_rbs_end)
553{
554	unsigned long addr, val;
555	long ret;
556
557	/* now copy word for word from user rbs to kernel rbs: */
558	for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
559		if (access_process_vm(child, addr, &val, sizeof(val), 0)
560				!= sizeof(val))
561			return -EIO;
562
563		ret = ia64_poke(child, sw, user_rbs_end, addr, val);
564		if (ret < 0)
565			return ret;
566	}
567	return 0;
568}
569
570typedef long (*syncfunc_t)(struct task_struct *, struct switch_stack *,
571			    unsigned long, unsigned long);
572
573static void do_sync_rbs(struct unw_frame_info *info, void *arg)
574{
575	struct pt_regs *pt;
576	unsigned long urbs_end;
577	syncfunc_t fn = arg;
578
579	if (unw_unwind_to_user(info) < 0)
580		return;
581	pt = task_pt_regs(info->task);
582	urbs_end = ia64_get_user_rbs_end(info->task, pt, NULL);
583
584	fn(info->task, info->sw, pt->ar_bspstore, urbs_end);
585}
586
587/*
588 * when a thread is stopped (ptraced), debugger might change thread's user
589 * stack (change memory directly), and we must avoid the RSE stored in kernel
590 * to override user stack (user space's RSE is newer than kernel's in the
591 * case). To workaround the issue, we copy kernel RSE to user RSE before the
592 * task is stopped, so user RSE has updated data.  we then copy user RSE to
593 * kernel after the task is resummed from traced stop and kernel will use the
594 * newer RSE to return to user. TIF_RESTORE_RSE is the flag to indicate we need
595 * synchronize user RSE to kernel.
596 */
597void ia64_ptrace_stop(void)
598{
599	if (test_and_set_tsk_thread_flag(current, TIF_RESTORE_RSE))
600		return;
601	tsk_set_notify_resume(current);
602	unw_init_running(do_sync_rbs, ia64_sync_user_rbs);
603}
604
605/*
606 * This is called to read back the register backing store.
607 */
608void ia64_sync_krbs(void)
609{
610	clear_tsk_thread_flag(current, TIF_RESTORE_RSE);
611	tsk_clear_notify_resume(current);
612
613	unw_init_running(do_sync_rbs, ia64_sync_kernel_rbs);
614}
615
616/*
617 * After PTRACE_ATTACH, a thread's register backing store area in user
618 * space is assumed to contain correct data whenever the thread is
619 * stopped.  arch_ptrace_stop takes care of this on tracing stops.
620 * But if the child was already stopped for job control when we attach
621 * to it, then it might not ever get into ptrace_stop by the time we
622 * want to examine the user memory containing the RBS.
623 */
624void
625ptrace_attach_sync_user_rbs (struct task_struct *child)
626{
627	int stopped = 0;
628	struct unw_frame_info info;
629
630	/*
631	 * If the child is in TASK_STOPPED, we need to change that to
632	 * TASK_TRACED momentarily while we operate on it.  This ensures
633	 * that the child won't be woken up and return to user mode while
634	 * we are doing the sync.  (It can only be woken up for SIGKILL.)
635	 */
636
637	read_lock(&tasklist_lock);
638	if (child->signal) {
639		spin_lock_irq(&child->sighand->siglock);
640		if (child->state == TASK_STOPPED &&
641		    !test_and_set_tsk_thread_flag(child, TIF_RESTORE_RSE)) {
642			tsk_set_notify_resume(child);
643
644			child->state = TASK_TRACED;
645			stopped = 1;
646		}
647		spin_unlock_irq(&child->sighand->siglock);
648	}
649	read_unlock(&tasklist_lock);
650
651	if (!stopped)
652		return;
653
654	unw_init_from_blocked_task(&info, child);
655	do_sync_rbs(&info, ia64_sync_user_rbs);
656
657	/*
658	 * Now move the child back into TASK_STOPPED if it should be in a
659	 * job control stop, so that SIGCONT can be used to wake it up.
660	 */
661	read_lock(&tasklist_lock);
662	if (child->signal) {
663		spin_lock_irq(&child->sighand->siglock);
664		if (child->state == TASK_TRACED &&
665		    (child->signal->flags & SIGNAL_STOP_STOPPED)) {
666			child->state = TASK_STOPPED;
667		}
668		spin_unlock_irq(&child->sighand->siglock);
669	}
670	read_unlock(&tasklist_lock);
671}
672
673static inline int
674thread_matches (struct task_struct *thread, unsigned long addr)
675{
676	unsigned long thread_rbs_end;
677	struct pt_regs *thread_regs;
678
679	if (ptrace_check_attach(thread, 0) < 0)
680		/*
681		 * If the thread is not in an attachable state, we'll
682		 * ignore it.  The net effect is that if ADDR happens
683		 * to overlap with the portion of the thread's
684		 * register backing store that is currently residing
685		 * on the thread's kernel stack, then ptrace() may end
686		 * up accessing a stale value.  But if the thread
687		 * isn't stopped, that's a problem anyhow, so we're
688		 * doing as well as we can...
689		 */
690		return 0;
691
692	thread_regs = task_pt_regs(thread);
693	thread_rbs_end = ia64_get_user_rbs_end(thread, thread_regs, NULL);
694	if (!on_kernel_rbs(addr, thread_regs->ar_bspstore, thread_rbs_end))
695		return 0;
696
697	return 1;	/* looks like we've got a winner */
698}
699
700/*
701 * GDB apparently wants to be able to read the register-backing store
702 * of any thread when attached to a given process.  If we are peeking
703 * or poking an address that happens to reside in the kernel-backing
704 * store of another thread, we need to attach to that thread, because
705 * otherwise we end up accessing stale data.
706 *
707 * task_list_lock must be read-locked before calling this routine!
708 */
709static struct task_struct *
710find_thread_for_addr (struct task_struct *child, unsigned long addr)
711{
712	struct task_struct *p;
713	struct mm_struct *mm;
714	struct list_head *this, *next;
715	int mm_users;
716
717	if (!(mm = get_task_mm(child)))
718		return child;
719
720	/* -1 because of our get_task_mm(): */
721	mm_users = atomic_read(&mm->mm_users) - 1;
722	if (mm_users <= 1)
723		goto out;		/* not multi-threaded */
724
725	/*
726	 * Traverse the current process' children list.  Every task that
727	 * one attaches to becomes a child.  And it is only attached children
728	 * of the debugger that are of interest (ptrace_check_attach checks
729	 * for this).
730	 */
731 	list_for_each_safe(this, next, &current->children) {
732		p = list_entry(this, struct task_struct, sibling);
733		if (p->tgid != child->tgid)
734			continue;
735		if (thread_matches(p, addr)) {
736			child = p;
737			goto out;
738		}
739	}
740
741  out:
742	mmput(mm);
743	return child;
744}
745
746/*
747 * Write f32-f127 back to task->thread.fph if it has been modified.
748 */
749inline void
750ia64_flush_fph (struct task_struct *task)
751{
752	struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
753
754	/*
755	 * Prevent migrating this task while
756	 * we're fiddling with the FPU state
757	 */
758	preempt_disable();
759	if (ia64_is_local_fpu_owner(task) && psr->mfh) {
760		psr->mfh = 0;
761		task->thread.flags |= IA64_THREAD_FPH_VALID;
762		ia64_save_fpu(&task->thread.fph[0]);
763	}
764	preempt_enable();
765}
766
767/*
768 * Sync the fph state of the task so that it can be manipulated
769 * through thread.fph.  If necessary, f32-f127 are written back to
770 * thread.fph or, if the fph state hasn't been used before, thread.fph
771 * is cleared to zeroes.  Also, access to f32-f127 is disabled to
772 * ensure that the task picks up the state from thread.fph when it
773 * executes again.
774 */
775void
776ia64_sync_fph (struct task_struct *task)
777{
778	struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
779
780	ia64_flush_fph(task);
781	if (!(task->thread.flags & IA64_THREAD_FPH_VALID)) {
782		task->thread.flags |= IA64_THREAD_FPH_VALID;
783		memset(&task->thread.fph, 0, sizeof(task->thread.fph));
784	}
785	ia64_drop_fpu(task);
786	psr->dfh = 1;
787}
788
789static int
790access_fr (struct unw_frame_info *info, int regnum, int hi,
791	   unsigned long *data, int write_access)
792{
793	struct ia64_fpreg fpval;
794	int ret;
795
796	ret = unw_get_fr(info, regnum, &fpval);
797	if (ret < 0)
798		return ret;
799
800	if (write_access) {
801		fpval.u.bits[hi] = *data;
802		ret = unw_set_fr(info, regnum, fpval);
803	} else
804		*data = fpval.u.bits[hi];
805	return ret;
806}
807
808/*
809 * Change the machine-state of CHILD such that it will return via the normal
810 * kernel exit-path, rather than the syscall-exit path.
811 */
812static void
813convert_to_non_syscall (struct task_struct *child, struct pt_regs  *pt,
814			unsigned long cfm)
815{
816	struct unw_frame_info info, prev_info;
817	unsigned long ip, sp, pr;
818
819	unw_init_from_blocked_task(&info, child);
820	while (1) {
821		prev_info = info;
822		if (unw_unwind(&info) < 0)
823			return;
824
825		unw_get_sp(&info, &sp);
826		if ((long)((unsigned long)child + IA64_STK_OFFSET - sp)
827		    < IA64_PT_REGS_SIZE) {
828			dprintk("ptrace.%s: ran off the top of the kernel "
829				"stack\n", __FUNCTION__);
830			return;
831		}
832		if (unw_get_pr (&prev_info, &pr) < 0) {
833			unw_get_rp(&prev_info, &ip);
834			dprintk("ptrace.%s: failed to read "
835				"predicate register (ip=0x%lx)\n",
836				__FUNCTION__, ip);
837			return;
838		}
839		if (unw_is_intr_frame(&info)
840		    && (pr & (1UL << PRED_USER_STACK)))
841			break;
842	}
843
844	/*
845	 * Note: at the time of this call, the target task is blocked
846	 * in notify_resume_user() and by clearling PRED_LEAVE_SYSCALL
847	 * (aka, "pLvSys") we redirect execution from
848	 * .work_pending_syscall_end to .work_processed_kernel.
849	 */
850	unw_get_pr(&prev_info, &pr);
851	pr &= ~((1UL << PRED_SYSCALL) | (1UL << PRED_LEAVE_SYSCALL));
852	pr |=  (1UL << PRED_NON_SYSCALL);
853	unw_set_pr(&prev_info, pr);
854
855	pt->cr_ifs = (1UL << 63) | cfm;
856	/*
857	 * Clear the memory that is NOT written on syscall-entry to
858	 * ensure we do not leak kernel-state to user when execution
859	 * resumes.
860	 */
861	pt->r2 = 0;
862	pt->r3 = 0;
863	pt->r14 = 0;
864	memset(&pt->r16, 0, 16*8);	/* clear r16-r31 */
865	memset(&pt->f6, 0, 6*16);	/* clear f6-f11 */
866	pt->b7 = 0;
867	pt->ar_ccv = 0;
868	pt->ar_csd = 0;
869	pt->ar_ssd = 0;
870}
871
872static int
873access_nat_bits (struct task_struct *child, struct pt_regs *pt,
874		 struct unw_frame_info *info,
875		 unsigned long *data, int write_access)
876{
877	unsigned long regnum, nat_bits, scratch_unat, dummy = 0;
878	char nat = 0;
879
880	if (write_access) {
881		nat_bits = *data;
882		scratch_unat = ia64_put_scratch_nat_bits(pt, nat_bits);
883		if (unw_set_ar(info, UNW_AR_UNAT, scratch_unat) < 0) {
884			dprintk("ptrace: failed to set ar.unat\n");
885			return -1;
886		}
887		for (regnum = 4; regnum <= 7; ++regnum) {
888			unw_get_gr(info, regnum, &dummy, &nat);
889			unw_set_gr(info, regnum, dummy,
890				   (nat_bits >> regnum) & 1);
891		}
892	} else {
893		if (unw_get_ar(info, UNW_AR_UNAT, &scratch_unat) < 0) {
894			dprintk("ptrace: failed to read ar.unat\n");
895			return -1;
896		}
897		nat_bits = ia64_get_scratch_nat_bits(pt, scratch_unat);
898		for (regnum = 4; regnum <= 7; ++regnum) {
899			unw_get_gr(info, regnum, &dummy, &nat);
900			nat_bits |= (nat != 0) << regnum;
901		}
902		*data = nat_bits;
903	}
904	return 0;
905}
906
907static int
908access_uarea (struct task_struct *child, unsigned long addr,
909	      unsigned long *data, int write_access)
910{
911	unsigned long *ptr, regnum, urbs_end, cfm;
912	struct switch_stack *sw;
913	struct pt_regs *pt;
914#	define pt_reg_addr(pt, reg)	((void *)			    \
915					 ((unsigned long) (pt)		    \
916					  + offsetof(struct pt_regs, reg)))
917
918
919	pt = task_pt_regs(child);
920	sw = (struct switch_stack *) (child->thread.ksp + 16);
921
922	if ((addr & 0x7) != 0) {
923		dprintk("ptrace: unaligned register address 0x%lx\n", addr);
924		return -1;
925	}
926
927	if (addr < PT_F127 + 16) {
928		/* accessing fph */
929		if (write_access)
930			ia64_sync_fph(child);
931		else
932			ia64_flush_fph(child);
933		ptr = (unsigned long *)
934			((unsigned long) &child->thread.fph + addr);
935	} else if ((addr >= PT_F10) && (addr < PT_F11 + 16)) {
936		/* scratch registers untouched by kernel (saved in pt_regs) */
937		ptr = pt_reg_addr(pt, f10) + (addr - PT_F10);
938	} else if (addr >= PT_F12 && addr < PT_F15 + 16) {
939		/*
940		 * Scratch registers untouched by kernel (saved in
941		 * switch_stack).
942		 */
943		ptr = (unsigned long *) ((long) sw
944					 + (addr - PT_NAT_BITS - 32));
945	} else if (addr < PT_AR_LC + 8) {
946		/* preserved state: */
947		struct unw_frame_info info;
948		char nat = 0;
949		int ret;
950
951		unw_init_from_blocked_task(&info, child);
952		if (unw_unwind_to_user(&info) < 0)
953			return -1;
954
955		switch (addr) {
956		      case PT_NAT_BITS:
957			return access_nat_bits(child, pt, &info,
958					       data, write_access);
959
960		      case PT_R4: case PT_R5: case PT_R6: case PT_R7:
961			if (write_access) {
962				/* read NaT bit first: */
963				unsigned long dummy;
964
965				ret = unw_get_gr(&info, (addr - PT_R4)/8 + 4,
966						 &dummy, &nat);
967				if (ret < 0)
968					return ret;
969			}
970			return unw_access_gr(&info, (addr - PT_R4)/8 + 4, data,
971					     &nat, write_access);
972
973		      case PT_B1: case PT_B2: case PT_B3:
974		      case PT_B4: case PT_B5:
975			return unw_access_br(&info, (addr - PT_B1)/8 + 1, data,
976					     write_access);
977
978		      case PT_AR_EC:
979			return unw_access_ar(&info, UNW_AR_EC, data,
980					     write_access);
981
982		      case PT_AR_LC:
983			return unw_access_ar(&info, UNW_AR_LC, data,
984					     write_access);
985
986		      default:
987			if (addr >= PT_F2 && addr < PT_F5 + 16)
988				return access_fr(&info, (addr - PT_F2)/16 + 2,
989						 (addr & 8) != 0, data,
990						 write_access);
991			else if (addr >= PT_F16 && addr < PT_F31 + 16)
992				return access_fr(&info,
993						 (addr - PT_F16)/16 + 16,
994						 (addr & 8) != 0,
995						 data, write_access);
996			else {
997				dprintk("ptrace: rejecting access to register "
998					"address 0x%lx\n", addr);
999				return -1;
1000			}
1001		}
1002	} else if (addr < PT_F9+16) {
1003		/* scratch state */
1004		switch (addr) {
1005		      case PT_AR_BSP:
1006			/*
1007			 * By convention, we use PT_AR_BSP to refer to
1008			 * the end of the user-level backing store.
1009			 * Use ia64_rse_skip_regs(PT_AR_BSP, -CFM.sof)
1010			 * to get the real value of ar.bsp at the time
1011			 * the kernel was entered.
1012			 *
1013			 * Furthermore, when changing the contents of
1014			 * PT_AR_BSP (or PT_CFM) we MUST copy any
1015			 * users-level stacked registers that are
1016			 * stored on the kernel stack back to
1017			 * user-space because otherwise, we might end
1018			 * up clobbering kernel stacked registers.
1019			 * Also, if this happens while the task is
1020			 * blocked in a system call, which convert the
1021			 * state such that the non-system-call exit
1022			 * path is used.  This ensures that the proper
1023			 * state will be picked up when resuming
1024			 * execution.  However, it *also* means that
1025			 * once we write PT_AR_BSP/PT_CFM, it won't be
1026			 * possible to modify the syscall arguments of
1027			 * the pending system call any longer.  This
1028			 * shouldn't be an issue because modifying
1029			 * PT_AR_BSP/PT_CFM generally implies that
1030			 * we're either abandoning the pending system
1031			 * call or that we defer it's re-execution
1032			 * (e.g., due to GDB doing an inferior
1033			 * function call).
1034			 */
1035			urbs_end = ia64_get_user_rbs_end(child, pt, &cfm);
1036			if (write_access) {
1037				if (*data != urbs_end) {
1038					if (ia64_sync_user_rbs(child, sw,
1039							       pt->ar_bspstore,
1040							       urbs_end) < 0)
1041						return -1;
1042					if (in_syscall(pt))
1043						convert_to_non_syscall(child,
1044								       pt,
1045								       cfm);
1046					/*
1047					 * Simulate user-level write
1048					 * of ar.bsp:
1049					 */
1050					pt->loadrs = 0;
1051					pt->ar_bspstore = *data;
1052				}
1053			} else
1054				*data = urbs_end;
1055			return 0;
1056
1057		      case PT_CFM:
1058			urbs_end = ia64_get_user_rbs_end(child, pt, &cfm);
1059			if (write_access) {
1060				if (((cfm ^ *data) & PFM_MASK) != 0) {
1061					if (ia64_sync_user_rbs(child, sw,
1062							       pt->ar_bspstore,
1063							       urbs_end) < 0)
1064						return -1;
1065					if (in_syscall(pt))
1066						convert_to_non_syscall(child,
1067								       pt,
1068								       cfm);
1069					pt->cr_ifs = ((pt->cr_ifs & ~PFM_MASK)
1070						      | (*data & PFM_MASK));
1071				}
1072			} else
1073				*data = cfm;
1074			return 0;
1075
1076		      case PT_CR_IPSR:
1077			if (write_access) {
1078				unsigned long tmp = *data;
1079				/* psr.ri==3 is a reserved value: SDM 2:25 */
1080				if ((tmp & IA64_PSR_RI) == IA64_PSR_RI)
1081					tmp &= ~IA64_PSR_RI;
1082				pt->cr_ipsr = ((tmp & IPSR_MASK)
1083					       | (pt->cr_ipsr & ~IPSR_MASK));
1084			} else
1085				*data = (pt->cr_ipsr & IPSR_MASK);
1086			return 0;
1087
1088		      case PT_AR_RSC:
1089			if (write_access)
1090				pt->ar_rsc = *data | (3 << 2); /* force PL3 */
1091			else
1092				*data = pt->ar_rsc;
1093			return 0;
1094
1095		      case PT_AR_RNAT:
1096			ptr = pt_reg_addr(pt, ar_rnat);
1097			break;
1098		      case PT_R1:
1099			ptr = pt_reg_addr(pt, r1);
1100			break;
1101		      case PT_R2:  case PT_R3:
1102			ptr = pt_reg_addr(pt, r2) + (addr - PT_R2);
1103			break;
1104		      case PT_R8:  case PT_R9:  case PT_R10: case PT_R11:
1105			ptr = pt_reg_addr(pt, r8) + (addr - PT_R8);
1106			break;
1107		      case PT_R12: case PT_R13:
1108			ptr = pt_reg_addr(pt, r12) + (addr - PT_R12);
1109			break;
1110		      case PT_R14:
1111			ptr = pt_reg_addr(pt, r14);
1112			break;
1113		      case PT_R15:
1114			ptr = pt_reg_addr(pt, r15);
1115			break;
1116		      case PT_R16: case PT_R17: case PT_R18: case PT_R19:
1117		      case PT_R20: case PT_R21: case PT_R22: case PT_R23:
1118		      case PT_R24: case PT_R25: case PT_R26: case PT_R27:
1119		      case PT_R28: case PT_R29: case PT_R30: case PT_R31:
1120			ptr = pt_reg_addr(pt, r16) + (addr - PT_R16);
1121			break;
1122		      case PT_B0:
1123			ptr = pt_reg_addr(pt, b0);
1124			break;
1125		      case PT_B6:
1126			ptr = pt_reg_addr(pt, b6);
1127			break;
1128		      case PT_B7:
1129			ptr = pt_reg_addr(pt, b7);
1130			break;
1131		      case PT_F6:  case PT_F6+8: case PT_F7: case PT_F7+8:
1132		      case PT_F8:  case PT_F8+8: case PT_F9: case PT_F9+8:
1133			ptr = pt_reg_addr(pt, f6) + (addr - PT_F6);
1134			break;
1135		      case PT_AR_BSPSTORE:
1136			ptr = pt_reg_addr(pt, ar_bspstore);
1137			break;
1138		      case PT_AR_UNAT:
1139			ptr = pt_reg_addr(pt, ar_unat);
1140			break;
1141		      case PT_AR_PFS:
1142			ptr = pt_reg_addr(pt, ar_pfs);
1143			break;
1144		      case PT_AR_CCV:
1145			ptr = pt_reg_addr(pt, ar_ccv);
1146			break;
1147		      case PT_AR_FPSR:
1148			ptr = pt_reg_addr(pt, ar_fpsr);
1149			break;
1150		      case PT_CR_IIP:
1151			ptr = pt_reg_addr(pt, cr_iip);
1152			break;
1153		      case PT_PR:
1154			ptr = pt_reg_addr(pt, pr);
1155			break;
1156			/* scratch register */
1157
1158		      default:
1159			/* disallow accessing anything else... */
1160			dprintk("ptrace: rejecting access to register "
1161				"address 0x%lx\n", addr);
1162			return -1;
1163		}
1164	} else if (addr <= PT_AR_SSD) {
1165		ptr = pt_reg_addr(pt, ar_csd) + (addr - PT_AR_CSD);
1166	} else {
1167		/* access debug registers */
1168
1169		if (addr >= PT_IBR) {
1170			regnum = (addr - PT_IBR) >> 3;
1171			ptr = &child->thread.ibr[0];
1172		} else {
1173			regnum = (addr - PT_DBR) >> 3;
1174			ptr = &child->thread.dbr[0];
1175		}
1176
1177		if (regnum >= 8) {
1178			dprintk("ptrace: rejecting access to register "
1179				"address 0x%lx\n", addr);
1180			return -1;
1181		}
1182#ifdef CONFIG_PERFMON
1183		/*
1184		 * Check if debug registers are used by perfmon. This
1185		 * test must be done once we know that we can do the
1186		 * operation, i.e. the arguments are all valid, but
1187		 * before we start modifying the state.
1188		 *
1189		 * Perfmon needs to keep a count of how many processes
1190		 * are trying to modify the debug registers for system
1191		 * wide monitoring sessions.
1192		 *
1193		 * We also include read access here, because they may
1194		 * cause the PMU-installed debug register state
1195		 * (dbr[], ibr[]) to be reset. The two arrays are also
1196		 * used by perfmon, but we do not use
1197		 * IA64_THREAD_DBG_VALID. The registers are restored
1198		 * by the PMU context switch code.
1199		 */
1200		if (pfm_use_debug_registers(child)) return -1;
1201#endif
1202
1203		if (!(child->thread.flags & IA64_THREAD_DBG_VALID)) {
1204			child->thread.flags |= IA64_THREAD_DBG_VALID;
1205			memset(child->thread.dbr, 0,
1206			       sizeof(child->thread.dbr));
1207			memset(child->thread.ibr, 0,
1208			       sizeof(child->thread.ibr));
1209		}
1210
1211		ptr += regnum;
1212
1213		if ((regnum & 1) && write_access) {
1214			/* don't let the user set kernel-level breakpoints: */
1215			*ptr = *data & ~(7UL << 56);
1216			return 0;
1217		}
1218	}
1219	if (write_access)
1220		*ptr = *data;
1221	else
1222		*data = *ptr;
1223	return 0;
1224}
1225
1226static long
1227ptrace_getregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
1228{
1229	unsigned long psr, ec, lc, rnat, bsp, cfm, nat_bits, val;
1230	struct unw_frame_info info;
1231	struct ia64_fpreg fpval;
1232	struct switch_stack *sw;
1233	struct pt_regs *pt;
1234	long ret, retval = 0;
1235	char nat = 0;
1236	int i;
1237
1238	if (!access_ok(VERIFY_WRITE, ppr, sizeof(struct pt_all_user_regs)))
1239		return -EIO;
1240
1241	pt = task_pt_regs(child);
1242	sw = (struct switch_stack *) (child->thread.ksp + 16);
1243	unw_init_from_blocked_task(&info, child);
1244	if (unw_unwind_to_user(&info) < 0) {
1245		return -EIO;
1246	}
1247
1248	if (((unsigned long) ppr & 0x7) != 0) {
1249		dprintk("ptrace:unaligned register address %p\n", ppr);
1250		return -EIO;
1251	}
1252
1253	if (access_uarea(child, PT_CR_IPSR, &psr, 0) < 0
1254	    || access_uarea(child, PT_AR_EC, &ec, 0) < 0
1255	    || access_uarea(child, PT_AR_LC, &lc, 0) < 0
1256	    || access_uarea(child, PT_AR_RNAT, &rnat, 0) < 0
1257	    || access_uarea(child, PT_AR_BSP, &bsp, 0) < 0
1258	    || access_uarea(child, PT_CFM, &cfm, 0)
1259	    || access_uarea(child, PT_NAT_BITS, &nat_bits, 0))
1260		return -EIO;
1261
1262	/* control regs */
1263
1264	retval |= __put_user(pt->cr_iip, &ppr->cr_iip);
1265	retval |= __put_user(psr, &ppr->cr_ipsr);
1266
1267	/* app regs */
1268
1269	retval |= __put_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
1270	retval |= __put_user(pt->ar_rsc, &ppr->ar[PT_AUR_RSC]);
1271	retval |= __put_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
1272	retval |= __put_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
1273	retval |= __put_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
1274	retval |= __put_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
1275
1276	retval |= __put_user(ec, &ppr->ar[PT_AUR_EC]);
1277	retval |= __put_user(lc, &ppr->ar[PT_AUR_LC]);
1278	retval |= __put_user(rnat, &ppr->ar[PT_AUR_RNAT]);
1279	retval |= __put_user(bsp, &ppr->ar[PT_AUR_BSP]);
1280	retval |= __put_user(cfm, &ppr->cfm);
1281
1282	/* gr1-gr3 */
1283
1284	retval |= __copy_to_user(&ppr->gr[1], &pt->r1, sizeof(long));
1285	retval |= __copy_to_user(&ppr->gr[2], &pt->r2, sizeof(long) *2);
1286
1287	/* gr4-gr7 */
1288
1289	for (i = 4; i < 8; i++) {
1290		if (unw_access_gr(&info, i, &val, &nat, 0) < 0)
1291			return -EIO;
1292		retval |= __put_user(val, &ppr->gr[i]);
1293	}
1294
1295	/* gr8-gr11 */
1296
1297	retval |= __copy_to_user(&ppr->gr[8], &pt->r8, sizeof(long) * 4);
1298
1299	/* gr12-gr15 */
1300
1301	retval |= __copy_to_user(&ppr->gr[12], &pt->r12, sizeof(long) * 2);
1302	retval |= __copy_to_user(&ppr->gr[14], &pt->r14, sizeof(long));
1303	retval |= __copy_to_user(&ppr->gr[15], &pt->r15, sizeof(long));
1304
1305	/* gr16-gr31 */
1306
1307	retval |= __copy_to_user(&ppr->gr[16], &pt->r16, sizeof(long) * 16);
1308
1309	/* b0 */
1310
1311	retval |= __put_user(pt->b0, &ppr->br[0]);
1312
1313	/* b1-b5 */
1314
1315	for (i = 1; i < 6; i++) {
1316		if (unw_access_br(&info, i, &val, 0) < 0)
1317			return -EIO;
1318		__put_user(val, &ppr->br[i]);
1319	}
1320
1321	/* b6-b7 */
1322
1323	retval |= __put_user(pt->b6, &ppr->br[6]);
1324	retval |= __put_user(pt->b7, &ppr->br[7]);
1325
1326	/* fr2-fr5 */
1327
1328	for (i = 2; i < 6; i++) {
1329		if (unw_get_fr(&info, i, &fpval) < 0)
1330			return -EIO;
1331		retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
1332	}
1333
1334	/* fr6-fr11 */
1335
1336	retval |= __copy_to_user(&ppr->fr[6], &pt->f6,
1337				 sizeof(struct ia64_fpreg) * 6);
1338
1339	/* fp scratch regs(12-15) */
1340
1341	retval |= __copy_to_user(&ppr->fr[12], &sw->f12,
1342				 sizeof(struct ia64_fpreg) * 4);
1343
1344	/* fr16-fr31 */
1345
1346	for (i = 16; i < 32; i++) {
1347		if (unw_get_fr(&info, i, &fpval) < 0)
1348			return -EIO;
1349		retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
1350	}
1351
1352	/* fph */
1353
1354	ia64_flush_fph(child);
1355	retval |= __copy_to_user(&ppr->fr[32], &child->thread.fph,
1356				 sizeof(ppr->fr[32]) * 96);
1357
1358	/*  preds */
1359
1360	retval |= __put_user(pt->pr, &ppr->pr);
1361
1362	/* nat bits */
1363
1364	retval |= __put_user(nat_bits, &ppr->nat);
1365
1366	ret = retval ? -EIO : 0;
1367	return ret;
1368}
1369
1370static long
1371ptrace_setregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
1372{
1373	unsigned long psr, rsc, ec, lc, rnat, bsp, cfm, nat_bits, val = 0;
1374	struct unw_frame_info info;
1375	struct switch_stack *sw;
1376	struct ia64_fpreg fpval;
1377	struct pt_regs *pt;
1378	long ret, retval = 0;
1379	int i;
1380
1381	memset(&fpval, 0, sizeof(fpval));
1382
1383	if (!access_ok(VERIFY_READ, ppr, sizeof(struct pt_all_user_regs)))
1384		return -EIO;
1385
1386	pt = task_pt_regs(child);
1387	sw = (struct switch_stack *) (child->thread.ksp + 16);
1388	unw_init_from_blocked_task(&info, child);
1389	if (unw_unwind_to_user(&info) < 0) {
1390		return -EIO;
1391	}
1392
1393	if (((unsigned long) ppr & 0x7) != 0) {
1394		dprintk("ptrace:unaligned register address %p\n", ppr);
1395		return -EIO;
1396	}
1397
1398	/* control regs */
1399
1400	retval |= __get_user(pt->cr_iip, &ppr->cr_iip);
1401	retval |= __get_user(psr, &ppr->cr_ipsr);
1402
1403	/* app regs */
1404
1405	retval |= __get_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
1406	retval |= __get_user(rsc, &ppr->ar[PT_AUR_RSC]);
1407	retval |= __get_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
1408	retval |= __get_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
1409	retval |= __get_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
1410	retval |= __get_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
1411
1412	retval |= __get_user(ec, &ppr->ar[PT_AUR_EC]);
1413	retval |= __get_user(lc, &ppr->ar[PT_AUR_LC]);
1414	retval |= __get_user(rnat, &ppr->ar[PT_AUR_RNAT]);
1415	retval |= __get_user(bsp, &ppr->ar[PT_AUR_BSP]);
1416	retval |= __get_user(cfm, &ppr->cfm);
1417
1418	/* gr1-gr3 */
1419
1420	retval |= __copy_from_user(&pt->r1, &ppr->gr[1], sizeof(long));
1421	retval |= __copy_from_user(&pt->r2, &ppr->gr[2], sizeof(long) * 2);
1422
1423	/* gr4-gr7 */
1424
1425	for (i = 4; i < 8; i++) {
1426		retval |= __get_user(val, &ppr->gr[i]);
1427		/* NaT bit will be set via PT_NAT_BITS: */
1428		if (unw_set_gr(&info, i, val, 0) < 0)
1429			return -EIO;
1430	}
1431
1432	/* gr8-gr11 */
1433
1434	retval |= __copy_from_user(&pt->r8, &ppr->gr[8], sizeof(long) * 4);
1435
1436	/* gr12-gr15 */
1437
1438	retval |= __copy_from_user(&pt->r12, &ppr->gr[12], sizeof(long) * 2);
1439	retval |= __copy_from_user(&pt->r14, &ppr->gr[14], sizeof(long));
1440	retval |= __copy_from_user(&pt->r15, &ppr->gr[15], sizeof(long));
1441
1442	/* gr16-gr31 */
1443
1444	retval |= __copy_from_user(&pt->r16, &ppr->gr[16], sizeof(long) * 16);
1445
1446	/* b0 */
1447
1448	retval |= __get_user(pt->b0, &ppr->br[0]);
1449
1450	/* b1-b5 */
1451
1452	for (i = 1; i < 6; i++) {
1453		retval |= __get_user(val, &ppr->br[i]);
1454		unw_set_br(&info, i, val);
1455	}
1456
1457	/* b6-b7 */
1458
1459	retval |= __get_user(pt->b6, &ppr->br[6]);
1460	retval |= __get_user(pt->b7, &ppr->br[7]);
1461
1462	/* fr2-fr5 */
1463
1464	for (i = 2; i < 6; i++) {
1465		retval |= __copy_from_user(&fpval, &ppr->fr[i], sizeof(fpval));
1466		if (unw_set_fr(&info, i, fpval) < 0)
1467			return -EIO;
1468	}
1469
1470	/* fr6-fr11 */
1471
1472	retval |= __copy_from_user(&pt->f6, &ppr->fr[6],
1473				   sizeof(ppr->fr[6]) * 6);
1474
1475	/* fp scratch regs(12-15) */
1476
1477	retval |= __copy_from_user(&sw->f12, &ppr->fr[12],
1478				   sizeof(ppr->fr[12]) * 4);
1479
1480	/* fr16-fr31 */
1481
1482	for (i = 16; i < 32; i++) {
1483		retval |= __copy_from_user(&fpval, &ppr->fr[i],
1484					   sizeof(fpval));
1485		if (unw_set_fr(&info, i, fpval) < 0)
1486			return -EIO;
1487	}
1488
1489	/* fph */
1490
1491	ia64_sync_fph(child);
1492	retval |= __copy_from_user(&child->thread.fph, &ppr->fr[32],
1493				   sizeof(ppr->fr[32]) * 96);
1494
1495	/* preds */
1496
1497	retval |= __get_user(pt->pr, &ppr->pr);
1498
1499	/* nat bits */
1500
1501	retval |= __get_user(nat_bits, &ppr->nat);
1502
1503	retval |= access_uarea(child, PT_CR_IPSR, &psr, 1);
1504	retval |= access_uarea(child, PT_AR_RSC, &rsc, 1);
1505	retval |= access_uarea(child, PT_AR_EC, &ec, 1);
1506	retval |= access_uarea(child, PT_AR_LC, &lc, 1);
1507	retval |= access_uarea(child, PT_AR_RNAT, &rnat, 1);
1508	retval |= access_uarea(child, PT_AR_BSP, &bsp, 1);
1509	retval |= access_uarea(child, PT_CFM, &cfm, 1);
1510	retval |= access_uarea(child, PT_NAT_BITS, &nat_bits, 1);
1511
1512	ret = retval ? -EIO : 0;
1513	return ret;
1514}
1515
1516/*
1517 * Called by kernel/ptrace.c when detaching..
1518 *
1519 * Make sure the single step bit is not set.
1520 */
1521void
1522ptrace_disable (struct task_struct *child)
1523{
1524	struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1525
1526	/* make sure the single step/taken-branch trap bits are not set: */
1527	clear_tsk_thread_flag(child, TIF_SINGLESTEP);
1528	child_psr->ss = 0;
1529	child_psr->tb = 0;
1530}
1531
1532asmlinkage long
1533sys_ptrace (long request, pid_t pid, unsigned long addr, unsigned long data)
1534{
1535	struct pt_regs *pt;
1536	unsigned long peek_or_poke;
1537	struct task_struct *child;
1538	struct switch_stack *sw;
1539	long ret;
1540
1541	lock_kernel();
1542	ret = -EPERM;
1543	if (request == PTRACE_TRACEME) {
1544		ret = ptrace_traceme();
1545		goto out;
1546	}
1547
1548	peek_or_poke = (request == PTRACE_PEEKTEXT
1549			|| request == PTRACE_PEEKDATA
1550			|| request == PTRACE_POKETEXT
1551			|| request == PTRACE_POKEDATA);
1552	ret = -ESRCH;
1553	read_lock(&tasklist_lock);
1554	{
1555		child = find_task_by_pid(pid);
1556		if (child) {
1557			if (peek_or_poke)
1558				child = find_thread_for_addr(child, addr);
1559			get_task_struct(child);
1560		}
1561	}
1562	read_unlock(&tasklist_lock);
1563	if (!child)
1564		goto out;
1565	ret = -EPERM;
1566	if (pid == 1)		/* no messing around with init! */
1567		goto out_tsk;
1568
1569	if (request == PTRACE_ATTACH) {
1570		ret = ptrace_attach(child);
1571		if (!ret)
1572			arch_ptrace_attach(child);
1573		goto out_tsk;
1574	}
1575
1576	ret = ptrace_check_attach(child, request == PTRACE_KILL);
1577	if (ret < 0)
1578		goto out_tsk;
1579
1580	pt = task_pt_regs(child);
1581	sw = (struct switch_stack *) (child->thread.ksp + 16);
1582
1583	switch (request) {
1584	      case PTRACE_PEEKTEXT:
1585	      case PTRACE_PEEKDATA:
1586		/* read word at location addr */
1587		if (access_process_vm(child, addr, &data, sizeof(data), 0)
1588		    != sizeof(data)) {
1589			ret = -EIO;
1590			goto out_tsk;
1591		}
1592		ret = data;
1593		/* ensure "ret" is not mistaken as an error code */
1594		force_successful_syscall_return();
1595		goto out_tsk;
1596
1597	/* PTRACE_POKETEXT and PTRACE_POKEDATA is handled
1598	 * by the generic ptrace_request().
1599	 */
1600
1601	      case PTRACE_PEEKUSR:
1602		/* read the word at addr in the USER area */
1603		if (access_uarea(child, addr, &data, 0) < 0) {
1604			ret = -EIO;
1605			goto out_tsk;
1606		}
1607		ret = data;
1608		/* ensure "ret" is not mistaken as an error code */
1609		force_successful_syscall_return();
1610		goto out_tsk;
1611
1612	      case PTRACE_POKEUSR:
1613		/* write the word at addr in the USER area */
1614		if (access_uarea(child, addr, &data, 1) < 0) {
1615			ret = -EIO;
1616			goto out_tsk;
1617		}
1618		ret = 0;
1619		goto out_tsk;
1620
1621	      case PTRACE_OLD_GETSIGINFO:
1622		/* for backwards-compatibility */
1623		ret = ptrace_request(child, PTRACE_GETSIGINFO, addr, data);
1624		goto out_tsk;
1625
1626	      case PTRACE_OLD_SETSIGINFO:
1627		/* for backwards-compatibility */
1628		ret = ptrace_request(child, PTRACE_SETSIGINFO, addr, data);
1629		goto out_tsk;
1630
1631	      case PTRACE_SYSCALL:
1632		/* continue and stop at next (return from) syscall */
1633	      case PTRACE_CONT:
1634		/* restart after signal. */
1635		ret = -EIO;
1636		if (!valid_signal(data))
1637			goto out_tsk;
1638		if (request == PTRACE_SYSCALL)
1639			set_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
1640		else
1641			clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
1642		child->exit_code = data;
1643
1644		/*
1645		 * Make sure the single step/taken-branch trap bits
1646		 * are not set:
1647		 */
1648		clear_tsk_thread_flag(child, TIF_SINGLESTEP);
1649		ia64_psr(pt)->ss = 0;
1650		ia64_psr(pt)->tb = 0;
1651
1652		wake_up_process(child);
1653		ret = 0;
1654		goto out_tsk;
1655
1656	      case PTRACE_KILL:
1657		/*
1658		 * Make the child exit.  Best I can do is send it a
1659		 * sigkill.  Perhaps it should be put in the status
1660		 * that it wants to exit.
1661		 */
1662		if (child->exit_state == EXIT_ZOMBIE)
1663			/* already dead */
1664			goto out_tsk;
1665		child->exit_code = SIGKILL;
1666
1667		ptrace_disable(child);
1668		wake_up_process(child);
1669		ret = 0;
1670		goto out_tsk;
1671
1672	      case PTRACE_SINGLESTEP:
1673		/* let child execute for one instruction */
1674	      case PTRACE_SINGLEBLOCK:
1675		ret = -EIO;
1676		if (!valid_signal(data))
1677			goto out_tsk;
1678
1679		clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
1680		set_tsk_thread_flag(child, TIF_SINGLESTEP);
1681		if (request == PTRACE_SINGLESTEP) {
1682			ia64_psr(pt)->ss = 1;
1683		} else {
1684			ia64_psr(pt)->tb = 1;
1685		}
1686		child->exit_code = data;
1687
1688		/* give it a chance to run. */
1689		wake_up_process(child);
1690		ret = 0;
1691		goto out_tsk;
1692
1693	      case PTRACE_DETACH:
1694		/* detach a process that was attached. */
1695		ret = ptrace_detach(child, data);
1696		goto out_tsk;
1697
1698	      case PTRACE_GETREGS:
1699		ret = ptrace_getregs(child,
1700				     (struct pt_all_user_regs __user *) data);
1701		goto out_tsk;
1702
1703	      case PTRACE_SETREGS:
1704		ret = ptrace_setregs(child,
1705				     (struct pt_all_user_regs __user *) data);
1706		goto out_tsk;
1707
1708	      default:
1709		ret = ptrace_request(child, request, addr, data);
1710		goto out_tsk;
1711	}
1712  out_tsk:
1713	put_task_struct(child);
1714  out:
1715	unlock_kernel();
1716	return ret;
1717}
1718
1719
1720static void
1721syscall_trace (void)
1722{
1723	/*
1724	 * The 0x80 provides a way for the tracing parent to
1725	 * distinguish between a syscall stop and SIGTRAP delivery.
1726	 */
1727	ptrace_notify(SIGTRAP
1728		      | ((current->ptrace & PT_TRACESYSGOOD) ? 0x80 : 0));
1729
1730	/*
1731	 * This isn't the same as continuing with a signal, but it
1732	 * will do for normal use.  strace only continues with a
1733	 * signal if the stopping signal is not SIGTRAP.  -brl
1734	 */
1735	if (current->exit_code) {
1736		send_sig(current->exit_code, current, 1);
1737		current->exit_code = 0;
1738	}
1739}
1740
1741/* "asmlinkage" so the input arguments are preserved... */
1742
1743asmlinkage void
1744syscall_trace_enter (long arg0, long arg1, long arg2, long arg3,
1745		     long arg4, long arg5, long arg6, long arg7,
1746		     struct pt_regs regs)
1747{
1748	if (test_thread_flag(TIF_SYSCALL_TRACE)
1749	    && (current->ptrace & PT_PTRACED))
1750		syscall_trace();
1751
1752	/* copy user rbs to kernel rbs */
1753	if (test_thread_flag(TIF_RESTORE_RSE))
1754		ia64_sync_krbs();
1755
1756	if (unlikely(current->audit_context)) {
1757		long syscall;
1758		int arch;
1759
1760		if (IS_IA32_PROCESS(&regs)) {
1761			syscall = regs.r1;
1762			arch = AUDIT_ARCH_I386;
1763		} else {
1764			syscall = regs.r15;
1765			arch = AUDIT_ARCH_IA64;
1766		}
1767
1768		audit_syscall_entry(arch, syscall, arg0, arg1, arg2, arg3);
1769	}
1770
1771}
1772
1773/* "asmlinkage" so the input arguments are preserved... */
1774
1775asmlinkage void
1776syscall_trace_leave (long arg0, long arg1, long arg2, long arg3,
1777		     long arg4, long arg5, long arg6, long arg7,
1778		     struct pt_regs regs)
1779{
1780	if (unlikely(current->audit_context)) {
1781		int success = AUDITSC_RESULT(regs.r10);
1782		long result = regs.r8;
1783
1784		if (success != AUDITSC_SUCCESS)
1785			result = -result;
1786		audit_syscall_exit(success, result);
1787	}
1788
1789	if ((test_thread_flag(TIF_SYSCALL_TRACE)
1790	    || test_thread_flag(TIF_SINGLESTEP))
1791	    && (current->ptrace & PT_PTRACED))
1792		syscall_trace();
1793
1794	/* copy user rbs to kernel rbs */
1795	if (test_thread_flag(TIF_RESTORE_RSE))
1796		ia64_sync_krbs();
1797}
1798