ptrace.c revision eac738e6cea16bfbd7b9018d60d009aedd2d14b6
1/*
2 * Kernel support for the ptrace() and syscall tracing interfaces.
3 *
4 * Copyright (C) 1999-2005 Hewlett-Packard Co
5 *	David Mosberger-Tang <davidm@hpl.hp.com>
6 *
7 * Derived from the x86 and Alpha versions.
8 */
9#include <linux/kernel.h>
10#include <linux/sched.h>
11#include <linux/slab.h>
12#include <linux/mm.h>
13#include <linux/errno.h>
14#include <linux/ptrace.h>
15#include <linux/smp_lock.h>
16#include <linux/user.h>
17#include <linux/security.h>
18#include <linux/audit.h>
19#include <linux/signal.h>
20
21#include <asm/pgtable.h>
22#include <asm/processor.h>
23#include <asm/ptrace_offsets.h>
24#include <asm/rse.h>
25#include <asm/system.h>
26#include <asm/uaccess.h>
27#include <asm/unwind.h>
28#ifdef CONFIG_PERFMON
29#include <asm/perfmon.h>
30#endif
31
32#include "entry.h"
33
34/*
35 * Bits in the PSR that we allow ptrace() to change:
36 *	be, up, ac, mfl, mfh (the user mask; five bits total)
37 *	db (debug breakpoint fault; one bit)
38 *	id (instruction debug fault disable; one bit)
39 *	dd (data debug fault disable; one bit)
40 *	ri (restart instruction; two bits)
41 *	is (instruction set; one bit)
42 */
43#define IPSR_MASK (IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS	\
44		   | IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI)
45
46#define MASK(nbits)	((1UL << (nbits)) - 1)	/* mask with NBITS bits set */
47#define PFM_MASK	MASK(38)
48
49#define PTRACE_DEBUG	0
50
51#if PTRACE_DEBUG
52# define dprintk(format...)	printk(format)
53# define inline
54#else
55# define dprintk(format...)
56#endif
57
58/* Return TRUE if PT was created due to kernel-entry via a system-call.  */
59
60static inline int
61in_syscall (struct pt_regs *pt)
62{
63	return (long) pt->cr_ifs >= 0;
64}
65
66/*
67 * Collect the NaT bits for r1-r31 from scratch_unat and return a NaT
68 * bitset where bit i is set iff the NaT bit of register i is set.
69 */
70unsigned long
71ia64_get_scratch_nat_bits (struct pt_regs *pt, unsigned long scratch_unat)
72{
73#	define GET_BITS(first, last, unat)				\
74	({								\
75		unsigned long bit = ia64_unat_pos(&pt->r##first);	\
76		unsigned long nbits = (last - first + 1);		\
77		unsigned long mask = MASK(nbits) << first;		\
78		unsigned long dist;					\
79		if (bit < first)					\
80			dist = 64 + bit - first;			\
81		else							\
82			dist = bit - first;				\
83		ia64_rotr(unat, dist) & mask;				\
84	})
85	unsigned long val;
86
87	/*
88	 * Registers that are stored consecutively in struct pt_regs
89	 * can be handled in parallel.  If the register order in
90	 * struct_pt_regs changes, this code MUST be updated.
91	 */
92	val  = GET_BITS( 1,  1, scratch_unat);
93	val |= GET_BITS( 2,  3, scratch_unat);
94	val |= GET_BITS(12, 13, scratch_unat);
95	val |= GET_BITS(14, 14, scratch_unat);
96	val |= GET_BITS(15, 15, scratch_unat);
97	val |= GET_BITS( 8, 11, scratch_unat);
98	val |= GET_BITS(16, 31, scratch_unat);
99	return val;
100
101#	undef GET_BITS
102}
103
104/*
105 * Set the NaT bits for the scratch registers according to NAT and
106 * return the resulting unat (assuming the scratch registers are
107 * stored in PT).
108 */
109unsigned long
110ia64_put_scratch_nat_bits (struct pt_regs *pt, unsigned long nat)
111{
112#	define PUT_BITS(first, last, nat)				\
113	({								\
114		unsigned long bit = ia64_unat_pos(&pt->r##first);	\
115		unsigned long nbits = (last - first + 1);		\
116		unsigned long mask = MASK(nbits) << first;		\
117		long dist;						\
118		if (bit < first)					\
119			dist = 64 + bit - first;			\
120		else							\
121			dist = bit - first;				\
122		ia64_rotl(nat & mask, dist);				\
123	})
124	unsigned long scratch_unat;
125
126	/*
127	 * Registers that are stored consecutively in struct pt_regs
128	 * can be handled in parallel.  If the register order in
129	 * struct_pt_regs changes, this code MUST be updated.
130	 */
131	scratch_unat  = PUT_BITS( 1,  1, nat);
132	scratch_unat |= PUT_BITS( 2,  3, nat);
133	scratch_unat |= PUT_BITS(12, 13, nat);
134	scratch_unat |= PUT_BITS(14, 14, nat);
135	scratch_unat |= PUT_BITS(15, 15, nat);
136	scratch_unat |= PUT_BITS( 8, 11, nat);
137	scratch_unat |= PUT_BITS(16, 31, nat);
138
139	return scratch_unat;
140
141#	undef PUT_BITS
142}
143
144#define IA64_MLX_TEMPLATE	0x2
145#define IA64_MOVL_OPCODE	6
146
147void
148ia64_increment_ip (struct pt_regs *regs)
149{
150	unsigned long w0, ri = ia64_psr(regs)->ri + 1;
151
152	if (ri > 2) {
153		ri = 0;
154		regs->cr_iip += 16;
155	} else if (ri == 2) {
156		get_user(w0, (char __user *) regs->cr_iip + 0);
157		if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
158			/*
159			 * rfi'ing to slot 2 of an MLX bundle causes
160			 * an illegal operation fault.  We don't want
161			 * that to happen...
162			 */
163			ri = 0;
164			regs->cr_iip += 16;
165		}
166	}
167	ia64_psr(regs)->ri = ri;
168}
169
170void
171ia64_decrement_ip (struct pt_regs *regs)
172{
173	unsigned long w0, ri = ia64_psr(regs)->ri - 1;
174
175	if (ia64_psr(regs)->ri == 0) {
176		regs->cr_iip -= 16;
177		ri = 2;
178		get_user(w0, (char __user *) regs->cr_iip + 0);
179		if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
180			/*
181			 * rfi'ing to slot 2 of an MLX bundle causes
182			 * an illegal operation fault.  We don't want
183			 * that to happen...
184			 */
185			ri = 1;
186		}
187	}
188	ia64_psr(regs)->ri = ri;
189}
190
191/*
192 * This routine is used to read an rnat bits that are stored on the
193 * kernel backing store.  Since, in general, the alignment of the user
194 * and kernel are different, this is not completely trivial.  In
195 * essence, we need to construct the user RNAT based on up to two
196 * kernel RNAT values and/or the RNAT value saved in the child's
197 * pt_regs.
198 *
199 * user rbs
200 *
201 * +--------+ <-- lowest address
202 * | slot62 |
203 * +--------+
204 * |  rnat  | 0x....1f8
205 * +--------+
206 * | slot00 | \
207 * +--------+ |
208 * | slot01 | > child_regs->ar_rnat
209 * +--------+ |
210 * | slot02 | /				kernel rbs
211 * +--------+				+--------+
212 *	    <- child_regs->ar_bspstore	| slot61 | <-- krbs
213 * +- - - - +				+--------+
214 *					| slot62 |
215 * +- - - - +				+--------+
216 *					|  rnat	 |
217 * +- - - - +				+--------+
218 *   vrnat				| slot00 |
219 * +- - - - +				+--------+
220 *					=	 =
221 *					+--------+
222 *					| slot00 | \
223 *					+--------+ |
224 *					| slot01 | > child_stack->ar_rnat
225 *					+--------+ |
226 *					| slot02 | /
227 *					+--------+
228 *						  <--- child_stack->ar_bspstore
229 *
230 * The way to think of this code is as follows: bit 0 in the user rnat
231 * corresponds to some bit N (0 <= N <= 62) in one of the kernel rnat
232 * value.  The kernel rnat value holding this bit is stored in
233 * variable rnat0.  rnat1 is loaded with the kernel rnat value that
234 * form the upper bits of the user rnat value.
235 *
236 * Boundary cases:
237 *
238 * o when reading the rnat "below" the first rnat slot on the kernel
239 *   backing store, rnat0/rnat1 are set to 0 and the low order bits are
240 *   merged in from pt->ar_rnat.
241 *
242 * o when reading the rnat "above" the last rnat slot on the kernel
243 *   backing store, rnat0/rnat1 gets its value from sw->ar_rnat.
244 */
245static unsigned long
246get_rnat (struct task_struct *task, struct switch_stack *sw,
247	  unsigned long *krbs, unsigned long *urnat_addr,
248	  unsigned long *urbs_end)
249{
250	unsigned long rnat0 = 0, rnat1 = 0, urnat = 0, *slot0_kaddr;
251	unsigned long umask = 0, mask, m;
252	unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
253	long num_regs, nbits;
254	struct pt_regs *pt;
255
256	pt = task_pt_regs(task);
257	kbsp = (unsigned long *) sw->ar_bspstore;
258	ubspstore = (unsigned long *) pt->ar_bspstore;
259
260	if (urbs_end < urnat_addr)
261		nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_end);
262	else
263		nbits = 63;
264	mask = MASK(nbits);
265	/*
266	 * First, figure out which bit number slot 0 in user-land maps
267	 * to in the kernel rnat.  Do this by figuring out how many
268	 * register slots we're beyond the user's backingstore and
269	 * then computing the equivalent address in kernel space.
270	 */
271	num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
272	slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
273	shift = ia64_rse_slot_num(slot0_kaddr);
274	rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
275	rnat0_kaddr = rnat1_kaddr - 64;
276
277	if (ubspstore + 63 > urnat_addr) {
278		/* some bits need to be merged in from pt->ar_rnat */
279		umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
280		urnat = (pt->ar_rnat & umask);
281		mask &= ~umask;
282		if (!mask)
283			return urnat;
284	}
285
286	m = mask << shift;
287	if (rnat0_kaddr >= kbsp)
288		rnat0 = sw->ar_rnat;
289	else if (rnat0_kaddr > krbs)
290		rnat0 = *rnat0_kaddr;
291	urnat |= (rnat0 & m) >> shift;
292
293	m = mask >> (63 - shift);
294	if (rnat1_kaddr >= kbsp)
295		rnat1 = sw->ar_rnat;
296	else if (rnat1_kaddr > krbs)
297		rnat1 = *rnat1_kaddr;
298	urnat |= (rnat1 & m) << (63 - shift);
299	return urnat;
300}
301
302/*
303 * The reverse of get_rnat.
304 */
305static void
306put_rnat (struct task_struct *task, struct switch_stack *sw,
307	  unsigned long *krbs, unsigned long *urnat_addr, unsigned long urnat,
308	  unsigned long *urbs_end)
309{
310	unsigned long rnat0 = 0, rnat1 = 0, *slot0_kaddr, umask = 0, mask, m;
311	unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
312	long num_regs, nbits;
313	struct pt_regs *pt;
314	unsigned long cfm, *urbs_kargs;
315
316	pt = task_pt_regs(task);
317	kbsp = (unsigned long *) sw->ar_bspstore;
318	ubspstore = (unsigned long *) pt->ar_bspstore;
319
320	urbs_kargs = urbs_end;
321	if (in_syscall(pt)) {
322		/*
323		 * If entered via syscall, don't allow user to set rnat bits
324		 * for syscall args.
325		 */
326		cfm = pt->cr_ifs;
327		urbs_kargs = ia64_rse_skip_regs(urbs_end, -(cfm & 0x7f));
328	}
329
330	if (urbs_kargs >= urnat_addr)
331		nbits = 63;
332	else {
333		if ((urnat_addr - 63) >= urbs_kargs)
334			return;
335		nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_kargs);
336	}
337	mask = MASK(nbits);
338
339	/*
340	 * First, figure out which bit number slot 0 in user-land maps
341	 * to in the kernel rnat.  Do this by figuring out how many
342	 * register slots we're beyond the user's backingstore and
343	 * then computing the equivalent address in kernel space.
344	 */
345	num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
346	slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
347	shift = ia64_rse_slot_num(slot0_kaddr);
348	rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
349	rnat0_kaddr = rnat1_kaddr - 64;
350
351	if (ubspstore + 63 > urnat_addr) {
352		/* some bits need to be place in pt->ar_rnat: */
353		umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
354		pt->ar_rnat = (pt->ar_rnat & ~umask) | (urnat & umask);
355		mask &= ~umask;
356		if (!mask)
357			return;
358	}
359	/*
360	 * Note: Section 11.1 of the EAS guarantees that bit 63 of an
361	 * rnat slot is ignored. so we don't have to clear it here.
362	 */
363	rnat0 = (urnat << shift);
364	m = mask << shift;
365	if (rnat0_kaddr >= kbsp)
366		sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat0 & m);
367	else if (rnat0_kaddr > krbs)
368		*rnat0_kaddr = ((*rnat0_kaddr & ~m) | (rnat0 & m));
369
370	rnat1 = (urnat >> (63 - shift));
371	m = mask >> (63 - shift);
372	if (rnat1_kaddr >= kbsp)
373		sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat1 & m);
374	else if (rnat1_kaddr > krbs)
375		*rnat1_kaddr = ((*rnat1_kaddr & ~m) | (rnat1 & m));
376}
377
378static inline int
379on_kernel_rbs (unsigned long addr, unsigned long bspstore,
380	       unsigned long urbs_end)
381{
382	unsigned long *rnat_addr = ia64_rse_rnat_addr((unsigned long *)
383						      urbs_end);
384	return (addr >= bspstore && addr <= (unsigned long) rnat_addr);
385}
386
387/*
388 * Read a word from the user-level backing store of task CHILD.  ADDR
389 * is the user-level address to read the word from, VAL a pointer to
390 * the return value, and USER_BSP gives the end of the user-level
391 * backing store (i.e., it's the address that would be in ar.bsp after
392 * the user executed a "cover" instruction).
393 *
394 * This routine takes care of accessing the kernel register backing
395 * store for those registers that got spilled there.  It also takes
396 * care of calculating the appropriate RNaT collection words.
397 */
398long
399ia64_peek (struct task_struct *child, struct switch_stack *child_stack,
400	   unsigned long user_rbs_end, unsigned long addr, long *val)
401{
402	unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end, *rnat_addr;
403	struct pt_regs *child_regs;
404	size_t copied;
405	long ret;
406
407	urbs_end = (long *) user_rbs_end;
408	laddr = (unsigned long *) addr;
409	child_regs = task_pt_regs(child);
410	bspstore = (unsigned long *) child_regs->ar_bspstore;
411	krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
412	if (on_kernel_rbs(addr, (unsigned long) bspstore,
413			  (unsigned long) urbs_end))
414	{
415		/*
416		 * Attempt to read the RBS in an area that's actually
417		 * on the kernel RBS => read the corresponding bits in
418		 * the kernel RBS.
419		 */
420		rnat_addr = ia64_rse_rnat_addr(laddr);
421		ret = get_rnat(child, child_stack, krbs, rnat_addr, urbs_end);
422
423		if (laddr == rnat_addr) {
424			/* return NaT collection word itself */
425			*val = ret;
426			return 0;
427		}
428
429		if (((1UL << ia64_rse_slot_num(laddr)) & ret) != 0) {
430			/*
431			 * It is implementation dependent whether the
432			 * data portion of a NaT value gets saved on a
433			 * st8.spill or RSE spill (e.g., see EAS 2.6,
434			 * 4.4.4.6 Register Spill and Fill).  To get
435			 * consistent behavior across all possible
436			 * IA-64 implementations, we return zero in
437			 * this case.
438			 */
439			*val = 0;
440			return 0;
441		}
442
443		if (laddr < urbs_end) {
444			/*
445			 * The desired word is on the kernel RBS and
446			 * is not a NaT.
447			 */
448			regnum = ia64_rse_num_regs(bspstore, laddr);
449			*val = *ia64_rse_skip_regs(krbs, regnum);
450			return 0;
451		}
452	}
453	copied = access_process_vm(child, addr, &ret, sizeof(ret), 0);
454	if (copied != sizeof(ret))
455		return -EIO;
456	*val = ret;
457	return 0;
458}
459
460long
461ia64_poke (struct task_struct *child, struct switch_stack *child_stack,
462	   unsigned long user_rbs_end, unsigned long addr, long val)
463{
464	unsigned long *bspstore, *krbs, regnum, *laddr;
465	unsigned long *urbs_end = (long *) user_rbs_end;
466	struct pt_regs *child_regs;
467
468	laddr = (unsigned long *) addr;
469	child_regs = task_pt_regs(child);
470	bspstore = (unsigned long *) child_regs->ar_bspstore;
471	krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
472	if (on_kernel_rbs(addr, (unsigned long) bspstore,
473			  (unsigned long) urbs_end))
474	{
475		/*
476		 * Attempt to write the RBS in an area that's actually
477		 * on the kernel RBS => write the corresponding bits
478		 * in the kernel RBS.
479		 */
480		if (ia64_rse_is_rnat_slot(laddr))
481			put_rnat(child, child_stack, krbs, laddr, val,
482				 urbs_end);
483		else {
484			if (laddr < urbs_end) {
485				regnum = ia64_rse_num_regs(bspstore, laddr);
486				*ia64_rse_skip_regs(krbs, regnum) = val;
487			}
488		}
489	} else if (access_process_vm(child, addr, &val, sizeof(val), 1)
490		   != sizeof(val))
491		return -EIO;
492	return 0;
493}
494
495/*
496 * Calculate the address of the end of the user-level register backing
497 * store.  This is the address that would have been stored in ar.bsp
498 * if the user had executed a "cover" instruction right before
499 * entering the kernel.  If CFMP is not NULL, it is used to return the
500 * "current frame mask" that was active at the time the kernel was
501 * entered.
502 */
503unsigned long
504ia64_get_user_rbs_end (struct task_struct *child, struct pt_regs *pt,
505		       unsigned long *cfmp)
506{
507	unsigned long *krbs, *bspstore, cfm = pt->cr_ifs;
508	long ndirty;
509
510	krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
511	bspstore = (unsigned long *) pt->ar_bspstore;
512	ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
513
514	if (in_syscall(pt))
515		ndirty += (cfm & 0x7f);
516	else
517		cfm &= ~(1UL << 63);	/* clear valid bit */
518
519	if (cfmp)
520		*cfmp = cfm;
521	return (unsigned long) ia64_rse_skip_regs(bspstore, ndirty);
522}
523
524/*
525 * Synchronize (i.e, write) the RSE backing store living in kernel
526 * space to the VM of the CHILD task.  SW and PT are the pointers to
527 * the switch_stack and pt_regs structures, respectively.
528 * USER_RBS_END is the user-level address at which the backing store
529 * ends.
530 */
531long
532ia64_sync_user_rbs (struct task_struct *child, struct switch_stack *sw,
533		    unsigned long user_rbs_start, unsigned long user_rbs_end)
534{
535	unsigned long addr, val;
536	long ret;
537
538	/* now copy word for word from kernel rbs to user rbs: */
539	for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
540		ret = ia64_peek(child, sw, user_rbs_end, addr, &val);
541		if (ret < 0)
542			return ret;
543		if (access_process_vm(child, addr, &val, sizeof(val), 1)
544		    != sizeof(val))
545			return -EIO;
546	}
547	return 0;
548}
549
550static long
551ia64_sync_kernel_rbs (struct task_struct *child, struct switch_stack *sw,
552		unsigned long user_rbs_start, unsigned long user_rbs_end)
553{
554	unsigned long addr, val;
555	long ret;
556
557	/* now copy word for word from user rbs to kernel rbs: */
558	for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
559		if (access_process_vm(child, addr, &val, sizeof(val), 0)
560				!= sizeof(val))
561			return -EIO;
562
563		ret = ia64_poke(child, sw, user_rbs_end, addr, val);
564		if (ret < 0)
565			return ret;
566	}
567	return 0;
568}
569
570typedef long (*syncfunc_t)(struct task_struct *, struct switch_stack *,
571			    unsigned long, unsigned long);
572
573static void do_sync_rbs(struct unw_frame_info *info, void *arg)
574{
575	struct pt_regs *pt;
576	unsigned long urbs_end;
577	syncfunc_t fn = arg;
578
579	if (unw_unwind_to_user(info) < 0)
580		return;
581	pt = task_pt_regs(info->task);
582	urbs_end = ia64_get_user_rbs_end(info->task, pt, NULL);
583
584	fn(info->task, info->sw, pt->ar_bspstore, urbs_end);
585}
586
587/*
588 * when a thread is stopped (ptraced), debugger might change thread's user
589 * stack (change memory directly), and we must avoid the RSE stored in kernel
590 * to override user stack (user space's RSE is newer than kernel's in the
591 * case). To workaround the issue, we copy kernel RSE to user RSE before the
592 * task is stopped, so user RSE has updated data.  we then copy user RSE to
593 * kernel after the task is resummed from traced stop and kernel will use the
594 * newer RSE to return to user. TIF_RESTORE_RSE is the flag to indicate we need
595 * synchronize user RSE to kernel.
596 */
597void ia64_ptrace_stop(void)
598{
599	if (test_and_set_tsk_thread_flag(current, TIF_RESTORE_RSE))
600		return;
601	tsk_set_notify_resume(current);
602	unw_init_running(do_sync_rbs, ia64_sync_user_rbs);
603}
604
605/*
606 * This is called to read back the register backing store.
607 */
608void ia64_sync_krbs(void)
609{
610	clear_tsk_thread_flag(current, TIF_RESTORE_RSE);
611	tsk_clear_notify_resume(current);
612
613	unw_init_running(do_sync_rbs, ia64_sync_kernel_rbs);
614}
615
616/*
617 * After PTRACE_ATTACH, a thread's register backing store area in user
618 * space is assumed to contain correct data whenever the thread is
619 * stopped.  arch_ptrace_stop takes care of this on tracing stops.
620 * But if the child was already stopped for job control when we attach
621 * to it, then it might not ever get into ptrace_stop by the time we
622 * want to examine the user memory containing the RBS.
623 */
624void
625ptrace_attach_sync_user_rbs (struct task_struct *child)
626{
627	int stopped = 0;
628	struct unw_frame_info info;
629
630	/*
631	 * If the child is in TASK_STOPPED, we need to change that to
632	 * TASK_TRACED momentarily while we operate on it.  This ensures
633	 * that the child won't be woken up and return to user mode while
634	 * we are doing the sync.  (It can only be woken up for SIGKILL.)
635	 */
636
637	read_lock(&tasklist_lock);
638	if (child->signal) {
639		spin_lock_irq(&child->sighand->siglock);
640		if (child->state == TASK_STOPPED &&
641		    !test_and_set_tsk_thread_flag(child, TIF_RESTORE_RSE)) {
642			tsk_set_notify_resume(child);
643
644			child->state = TASK_TRACED;
645			stopped = 1;
646		}
647		spin_unlock_irq(&child->sighand->siglock);
648	}
649	read_unlock(&tasklist_lock);
650
651	if (!stopped)
652		return;
653
654	unw_init_from_blocked_task(&info, child);
655	do_sync_rbs(&info, ia64_sync_user_rbs);
656
657	/*
658	 * Now move the child back into TASK_STOPPED if it should be in a
659	 * job control stop, so that SIGCONT can be used to wake it up.
660	 */
661	read_lock(&tasklist_lock);
662	if (child->signal) {
663		spin_lock_irq(&child->sighand->siglock);
664		if (child->state == TASK_TRACED &&
665		    (child->signal->flags & SIGNAL_STOP_STOPPED)) {
666			child->state = TASK_STOPPED;
667		}
668		spin_unlock_irq(&child->sighand->siglock);
669	}
670	read_unlock(&tasklist_lock);
671}
672
673static inline int
674thread_matches (struct task_struct *thread, unsigned long addr)
675{
676	unsigned long thread_rbs_end;
677	struct pt_regs *thread_regs;
678
679	if (ptrace_check_attach(thread, 0) < 0)
680		/*
681		 * If the thread is not in an attachable state, we'll
682		 * ignore it.  The net effect is that if ADDR happens
683		 * to overlap with the portion of the thread's
684		 * register backing store that is currently residing
685		 * on the thread's kernel stack, then ptrace() may end
686		 * up accessing a stale value.  But if the thread
687		 * isn't stopped, that's a problem anyhow, so we're
688		 * doing as well as we can...
689		 */
690		return 0;
691
692	thread_regs = task_pt_regs(thread);
693	thread_rbs_end = ia64_get_user_rbs_end(thread, thread_regs, NULL);
694	if (!on_kernel_rbs(addr, thread_regs->ar_bspstore, thread_rbs_end))
695		return 0;
696
697	return 1;	/* looks like we've got a winner */
698}
699
700/*
701 * Write f32-f127 back to task->thread.fph if it has been modified.
702 */
703inline void
704ia64_flush_fph (struct task_struct *task)
705{
706	struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
707
708	/*
709	 * Prevent migrating this task while
710	 * we're fiddling with the FPU state
711	 */
712	preempt_disable();
713	if (ia64_is_local_fpu_owner(task) && psr->mfh) {
714		psr->mfh = 0;
715		task->thread.flags |= IA64_THREAD_FPH_VALID;
716		ia64_save_fpu(&task->thread.fph[0]);
717	}
718	preempt_enable();
719}
720
721/*
722 * Sync the fph state of the task so that it can be manipulated
723 * through thread.fph.  If necessary, f32-f127 are written back to
724 * thread.fph or, if the fph state hasn't been used before, thread.fph
725 * is cleared to zeroes.  Also, access to f32-f127 is disabled to
726 * ensure that the task picks up the state from thread.fph when it
727 * executes again.
728 */
729void
730ia64_sync_fph (struct task_struct *task)
731{
732	struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
733
734	ia64_flush_fph(task);
735	if (!(task->thread.flags & IA64_THREAD_FPH_VALID)) {
736		task->thread.flags |= IA64_THREAD_FPH_VALID;
737		memset(&task->thread.fph, 0, sizeof(task->thread.fph));
738	}
739	ia64_drop_fpu(task);
740	psr->dfh = 1;
741}
742
743static int
744access_fr (struct unw_frame_info *info, int regnum, int hi,
745	   unsigned long *data, int write_access)
746{
747	struct ia64_fpreg fpval;
748	int ret;
749
750	ret = unw_get_fr(info, regnum, &fpval);
751	if (ret < 0)
752		return ret;
753
754	if (write_access) {
755		fpval.u.bits[hi] = *data;
756		ret = unw_set_fr(info, regnum, fpval);
757	} else
758		*data = fpval.u.bits[hi];
759	return ret;
760}
761
762/*
763 * Change the machine-state of CHILD such that it will return via the normal
764 * kernel exit-path, rather than the syscall-exit path.
765 */
766static void
767convert_to_non_syscall (struct task_struct *child, struct pt_regs  *pt,
768			unsigned long cfm)
769{
770	struct unw_frame_info info, prev_info;
771	unsigned long ip, sp, pr;
772
773	unw_init_from_blocked_task(&info, child);
774	while (1) {
775		prev_info = info;
776		if (unw_unwind(&info) < 0)
777			return;
778
779		unw_get_sp(&info, &sp);
780		if ((long)((unsigned long)child + IA64_STK_OFFSET - sp)
781		    < IA64_PT_REGS_SIZE) {
782			dprintk("ptrace.%s: ran off the top of the kernel "
783				"stack\n", __FUNCTION__);
784			return;
785		}
786		if (unw_get_pr (&prev_info, &pr) < 0) {
787			unw_get_rp(&prev_info, &ip);
788			dprintk("ptrace.%s: failed to read "
789				"predicate register (ip=0x%lx)\n",
790				__FUNCTION__, ip);
791			return;
792		}
793		if (unw_is_intr_frame(&info)
794		    && (pr & (1UL << PRED_USER_STACK)))
795			break;
796	}
797
798	/*
799	 * Note: at the time of this call, the target task is blocked
800	 * in notify_resume_user() and by clearling PRED_LEAVE_SYSCALL
801	 * (aka, "pLvSys") we redirect execution from
802	 * .work_pending_syscall_end to .work_processed_kernel.
803	 */
804	unw_get_pr(&prev_info, &pr);
805	pr &= ~((1UL << PRED_SYSCALL) | (1UL << PRED_LEAVE_SYSCALL));
806	pr |=  (1UL << PRED_NON_SYSCALL);
807	unw_set_pr(&prev_info, pr);
808
809	pt->cr_ifs = (1UL << 63) | cfm;
810	/*
811	 * Clear the memory that is NOT written on syscall-entry to
812	 * ensure we do not leak kernel-state to user when execution
813	 * resumes.
814	 */
815	pt->r2 = 0;
816	pt->r3 = 0;
817	pt->r14 = 0;
818	memset(&pt->r16, 0, 16*8);	/* clear r16-r31 */
819	memset(&pt->f6, 0, 6*16);	/* clear f6-f11 */
820	pt->b7 = 0;
821	pt->ar_ccv = 0;
822	pt->ar_csd = 0;
823	pt->ar_ssd = 0;
824}
825
826static int
827access_nat_bits (struct task_struct *child, struct pt_regs *pt,
828		 struct unw_frame_info *info,
829		 unsigned long *data, int write_access)
830{
831	unsigned long regnum, nat_bits, scratch_unat, dummy = 0;
832	char nat = 0;
833
834	if (write_access) {
835		nat_bits = *data;
836		scratch_unat = ia64_put_scratch_nat_bits(pt, nat_bits);
837		if (unw_set_ar(info, UNW_AR_UNAT, scratch_unat) < 0) {
838			dprintk("ptrace: failed to set ar.unat\n");
839			return -1;
840		}
841		for (regnum = 4; regnum <= 7; ++regnum) {
842			unw_get_gr(info, regnum, &dummy, &nat);
843			unw_set_gr(info, regnum, dummy,
844				   (nat_bits >> regnum) & 1);
845		}
846	} else {
847		if (unw_get_ar(info, UNW_AR_UNAT, &scratch_unat) < 0) {
848			dprintk("ptrace: failed to read ar.unat\n");
849			return -1;
850		}
851		nat_bits = ia64_get_scratch_nat_bits(pt, scratch_unat);
852		for (regnum = 4; regnum <= 7; ++regnum) {
853			unw_get_gr(info, regnum, &dummy, &nat);
854			nat_bits |= (nat != 0) << regnum;
855		}
856		*data = nat_bits;
857	}
858	return 0;
859}
860
861static int
862access_uarea (struct task_struct *child, unsigned long addr,
863	      unsigned long *data, int write_access)
864{
865	unsigned long *ptr, regnum, urbs_end, cfm;
866	struct switch_stack *sw;
867	struct pt_regs *pt;
868#	define pt_reg_addr(pt, reg)	((void *)			    \
869					 ((unsigned long) (pt)		    \
870					  + offsetof(struct pt_regs, reg)))
871
872
873	pt = task_pt_regs(child);
874	sw = (struct switch_stack *) (child->thread.ksp + 16);
875
876	if ((addr & 0x7) != 0) {
877		dprintk("ptrace: unaligned register address 0x%lx\n", addr);
878		return -1;
879	}
880
881	if (addr < PT_F127 + 16) {
882		/* accessing fph */
883		if (write_access)
884			ia64_sync_fph(child);
885		else
886			ia64_flush_fph(child);
887		ptr = (unsigned long *)
888			((unsigned long) &child->thread.fph + addr);
889	} else if ((addr >= PT_F10) && (addr < PT_F11 + 16)) {
890		/* scratch registers untouched by kernel (saved in pt_regs) */
891		ptr = pt_reg_addr(pt, f10) + (addr - PT_F10);
892	} else if (addr >= PT_F12 && addr < PT_F15 + 16) {
893		/*
894		 * Scratch registers untouched by kernel (saved in
895		 * switch_stack).
896		 */
897		ptr = (unsigned long *) ((long) sw
898					 + (addr - PT_NAT_BITS - 32));
899	} else if (addr < PT_AR_LC + 8) {
900		/* preserved state: */
901		struct unw_frame_info info;
902		char nat = 0;
903		int ret;
904
905		unw_init_from_blocked_task(&info, child);
906		if (unw_unwind_to_user(&info) < 0)
907			return -1;
908
909		switch (addr) {
910		      case PT_NAT_BITS:
911			return access_nat_bits(child, pt, &info,
912					       data, write_access);
913
914		      case PT_R4: case PT_R5: case PT_R6: case PT_R7:
915			if (write_access) {
916				/* read NaT bit first: */
917				unsigned long dummy;
918
919				ret = unw_get_gr(&info, (addr - PT_R4)/8 + 4,
920						 &dummy, &nat);
921				if (ret < 0)
922					return ret;
923			}
924			return unw_access_gr(&info, (addr - PT_R4)/8 + 4, data,
925					     &nat, write_access);
926
927		      case PT_B1: case PT_B2: case PT_B3:
928		      case PT_B4: case PT_B5:
929			return unw_access_br(&info, (addr - PT_B1)/8 + 1, data,
930					     write_access);
931
932		      case PT_AR_EC:
933			return unw_access_ar(&info, UNW_AR_EC, data,
934					     write_access);
935
936		      case PT_AR_LC:
937			return unw_access_ar(&info, UNW_AR_LC, data,
938					     write_access);
939
940		      default:
941			if (addr >= PT_F2 && addr < PT_F5 + 16)
942				return access_fr(&info, (addr - PT_F2)/16 + 2,
943						 (addr & 8) != 0, data,
944						 write_access);
945			else if (addr >= PT_F16 && addr < PT_F31 + 16)
946				return access_fr(&info,
947						 (addr - PT_F16)/16 + 16,
948						 (addr & 8) != 0,
949						 data, write_access);
950			else {
951				dprintk("ptrace: rejecting access to register "
952					"address 0x%lx\n", addr);
953				return -1;
954			}
955		}
956	} else if (addr < PT_F9+16) {
957		/* scratch state */
958		switch (addr) {
959		      case PT_AR_BSP:
960			/*
961			 * By convention, we use PT_AR_BSP to refer to
962			 * the end of the user-level backing store.
963			 * Use ia64_rse_skip_regs(PT_AR_BSP, -CFM.sof)
964			 * to get the real value of ar.bsp at the time
965			 * the kernel was entered.
966			 *
967			 * Furthermore, when changing the contents of
968			 * PT_AR_BSP (or PT_CFM) while the task is
969			 * blocked in a system call, convert the state
970			 * so that the non-system-call exit
971			 * path is used.  This ensures that the proper
972			 * state will be picked up when resuming
973			 * execution.  However, it *also* means that
974			 * once we write PT_AR_BSP/PT_CFM, it won't be
975			 * possible to modify the syscall arguments of
976			 * the pending system call any longer.  This
977			 * shouldn't be an issue because modifying
978			 * PT_AR_BSP/PT_CFM generally implies that
979			 * we're either abandoning the pending system
980			 * call or that we defer it's re-execution
981			 * (e.g., due to GDB doing an inferior
982			 * function call).
983			 */
984			urbs_end = ia64_get_user_rbs_end(child, pt, &cfm);
985			if (write_access) {
986				if (*data != urbs_end) {
987					if (in_syscall(pt))
988						convert_to_non_syscall(child,
989								       pt,
990								       cfm);
991					/*
992					 * Simulate user-level write
993					 * of ar.bsp:
994					 */
995					pt->loadrs = 0;
996					pt->ar_bspstore = *data;
997				}
998			} else
999				*data = urbs_end;
1000			return 0;
1001
1002		      case PT_CFM:
1003			urbs_end = ia64_get_user_rbs_end(child, pt, &cfm);
1004			if (write_access) {
1005				if (((cfm ^ *data) & PFM_MASK) != 0) {
1006					if (in_syscall(pt))
1007						convert_to_non_syscall(child,
1008								       pt,
1009								       cfm);
1010					pt->cr_ifs = ((pt->cr_ifs & ~PFM_MASK)
1011						      | (*data & PFM_MASK));
1012				}
1013			} else
1014				*data = cfm;
1015			return 0;
1016
1017		      case PT_CR_IPSR:
1018			if (write_access) {
1019				unsigned long tmp = *data;
1020				/* psr.ri==3 is a reserved value: SDM 2:25 */
1021				if ((tmp & IA64_PSR_RI) == IA64_PSR_RI)
1022					tmp &= ~IA64_PSR_RI;
1023				pt->cr_ipsr = ((tmp & IPSR_MASK)
1024					       | (pt->cr_ipsr & ~IPSR_MASK));
1025			} else
1026				*data = (pt->cr_ipsr & IPSR_MASK);
1027			return 0;
1028
1029		      case PT_AR_RSC:
1030			if (write_access)
1031				pt->ar_rsc = *data | (3 << 2); /* force PL3 */
1032			else
1033				*data = pt->ar_rsc;
1034			return 0;
1035
1036		      case PT_AR_RNAT:
1037			ptr = pt_reg_addr(pt, ar_rnat);
1038			break;
1039		      case PT_R1:
1040			ptr = pt_reg_addr(pt, r1);
1041			break;
1042		      case PT_R2:  case PT_R3:
1043			ptr = pt_reg_addr(pt, r2) + (addr - PT_R2);
1044			break;
1045		      case PT_R8:  case PT_R9:  case PT_R10: case PT_R11:
1046			ptr = pt_reg_addr(pt, r8) + (addr - PT_R8);
1047			break;
1048		      case PT_R12: case PT_R13:
1049			ptr = pt_reg_addr(pt, r12) + (addr - PT_R12);
1050			break;
1051		      case PT_R14:
1052			ptr = pt_reg_addr(pt, r14);
1053			break;
1054		      case PT_R15:
1055			ptr = pt_reg_addr(pt, r15);
1056			break;
1057		      case PT_R16: case PT_R17: case PT_R18: case PT_R19:
1058		      case PT_R20: case PT_R21: case PT_R22: case PT_R23:
1059		      case PT_R24: case PT_R25: case PT_R26: case PT_R27:
1060		      case PT_R28: case PT_R29: case PT_R30: case PT_R31:
1061			ptr = pt_reg_addr(pt, r16) + (addr - PT_R16);
1062			break;
1063		      case PT_B0:
1064			ptr = pt_reg_addr(pt, b0);
1065			break;
1066		      case PT_B6:
1067			ptr = pt_reg_addr(pt, b6);
1068			break;
1069		      case PT_B7:
1070			ptr = pt_reg_addr(pt, b7);
1071			break;
1072		      case PT_F6:  case PT_F6+8: case PT_F7: case PT_F7+8:
1073		      case PT_F8:  case PT_F8+8: case PT_F9: case PT_F9+8:
1074			ptr = pt_reg_addr(pt, f6) + (addr - PT_F6);
1075			break;
1076		      case PT_AR_BSPSTORE:
1077			ptr = pt_reg_addr(pt, ar_bspstore);
1078			break;
1079		      case PT_AR_UNAT:
1080			ptr = pt_reg_addr(pt, ar_unat);
1081			break;
1082		      case PT_AR_PFS:
1083			ptr = pt_reg_addr(pt, ar_pfs);
1084			break;
1085		      case PT_AR_CCV:
1086			ptr = pt_reg_addr(pt, ar_ccv);
1087			break;
1088		      case PT_AR_FPSR:
1089			ptr = pt_reg_addr(pt, ar_fpsr);
1090			break;
1091		      case PT_CR_IIP:
1092			ptr = pt_reg_addr(pt, cr_iip);
1093			break;
1094		      case PT_PR:
1095			ptr = pt_reg_addr(pt, pr);
1096			break;
1097			/* scratch register */
1098
1099		      default:
1100			/* disallow accessing anything else... */
1101			dprintk("ptrace: rejecting access to register "
1102				"address 0x%lx\n", addr);
1103			return -1;
1104		}
1105	} else if (addr <= PT_AR_SSD) {
1106		ptr = pt_reg_addr(pt, ar_csd) + (addr - PT_AR_CSD);
1107	} else {
1108		/* access debug registers */
1109
1110		if (addr >= PT_IBR) {
1111			regnum = (addr - PT_IBR) >> 3;
1112			ptr = &child->thread.ibr[0];
1113		} else {
1114			regnum = (addr - PT_DBR) >> 3;
1115			ptr = &child->thread.dbr[0];
1116		}
1117
1118		if (regnum >= 8) {
1119			dprintk("ptrace: rejecting access to register "
1120				"address 0x%lx\n", addr);
1121			return -1;
1122		}
1123#ifdef CONFIG_PERFMON
1124		/*
1125		 * Check if debug registers are used by perfmon. This
1126		 * test must be done once we know that we can do the
1127		 * operation, i.e. the arguments are all valid, but
1128		 * before we start modifying the state.
1129		 *
1130		 * Perfmon needs to keep a count of how many processes
1131		 * are trying to modify the debug registers for system
1132		 * wide monitoring sessions.
1133		 *
1134		 * We also include read access here, because they may
1135		 * cause the PMU-installed debug register state
1136		 * (dbr[], ibr[]) to be reset. The two arrays are also
1137		 * used by perfmon, but we do not use
1138		 * IA64_THREAD_DBG_VALID. The registers are restored
1139		 * by the PMU context switch code.
1140		 */
1141		if (pfm_use_debug_registers(child)) return -1;
1142#endif
1143
1144		if (!(child->thread.flags & IA64_THREAD_DBG_VALID)) {
1145			child->thread.flags |= IA64_THREAD_DBG_VALID;
1146			memset(child->thread.dbr, 0,
1147			       sizeof(child->thread.dbr));
1148			memset(child->thread.ibr, 0,
1149			       sizeof(child->thread.ibr));
1150		}
1151
1152		ptr += regnum;
1153
1154		if ((regnum & 1) && write_access) {
1155			/* don't let the user set kernel-level breakpoints: */
1156			*ptr = *data & ~(7UL << 56);
1157			return 0;
1158		}
1159	}
1160	if (write_access)
1161		*ptr = *data;
1162	else
1163		*data = *ptr;
1164	return 0;
1165}
1166
1167static long
1168ptrace_getregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
1169{
1170	unsigned long psr, ec, lc, rnat, bsp, cfm, nat_bits, val;
1171	struct unw_frame_info info;
1172	struct ia64_fpreg fpval;
1173	struct switch_stack *sw;
1174	struct pt_regs *pt;
1175	long ret, retval = 0;
1176	char nat = 0;
1177	int i;
1178
1179	if (!access_ok(VERIFY_WRITE, ppr, sizeof(struct pt_all_user_regs)))
1180		return -EIO;
1181
1182	pt = task_pt_regs(child);
1183	sw = (struct switch_stack *) (child->thread.ksp + 16);
1184	unw_init_from_blocked_task(&info, child);
1185	if (unw_unwind_to_user(&info) < 0) {
1186		return -EIO;
1187	}
1188
1189	if (((unsigned long) ppr & 0x7) != 0) {
1190		dprintk("ptrace:unaligned register address %p\n", ppr);
1191		return -EIO;
1192	}
1193
1194	if (access_uarea(child, PT_CR_IPSR, &psr, 0) < 0
1195	    || access_uarea(child, PT_AR_EC, &ec, 0) < 0
1196	    || access_uarea(child, PT_AR_LC, &lc, 0) < 0
1197	    || access_uarea(child, PT_AR_RNAT, &rnat, 0) < 0
1198	    || access_uarea(child, PT_AR_BSP, &bsp, 0) < 0
1199	    || access_uarea(child, PT_CFM, &cfm, 0)
1200	    || access_uarea(child, PT_NAT_BITS, &nat_bits, 0))
1201		return -EIO;
1202
1203	/* control regs */
1204
1205	retval |= __put_user(pt->cr_iip, &ppr->cr_iip);
1206	retval |= __put_user(psr, &ppr->cr_ipsr);
1207
1208	/* app regs */
1209
1210	retval |= __put_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
1211	retval |= __put_user(pt->ar_rsc, &ppr->ar[PT_AUR_RSC]);
1212	retval |= __put_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
1213	retval |= __put_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
1214	retval |= __put_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
1215	retval |= __put_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
1216
1217	retval |= __put_user(ec, &ppr->ar[PT_AUR_EC]);
1218	retval |= __put_user(lc, &ppr->ar[PT_AUR_LC]);
1219	retval |= __put_user(rnat, &ppr->ar[PT_AUR_RNAT]);
1220	retval |= __put_user(bsp, &ppr->ar[PT_AUR_BSP]);
1221	retval |= __put_user(cfm, &ppr->cfm);
1222
1223	/* gr1-gr3 */
1224
1225	retval |= __copy_to_user(&ppr->gr[1], &pt->r1, sizeof(long));
1226	retval |= __copy_to_user(&ppr->gr[2], &pt->r2, sizeof(long) *2);
1227
1228	/* gr4-gr7 */
1229
1230	for (i = 4; i < 8; i++) {
1231		if (unw_access_gr(&info, i, &val, &nat, 0) < 0)
1232			return -EIO;
1233		retval |= __put_user(val, &ppr->gr[i]);
1234	}
1235
1236	/* gr8-gr11 */
1237
1238	retval |= __copy_to_user(&ppr->gr[8], &pt->r8, sizeof(long) * 4);
1239
1240	/* gr12-gr15 */
1241
1242	retval |= __copy_to_user(&ppr->gr[12], &pt->r12, sizeof(long) * 2);
1243	retval |= __copy_to_user(&ppr->gr[14], &pt->r14, sizeof(long));
1244	retval |= __copy_to_user(&ppr->gr[15], &pt->r15, sizeof(long));
1245
1246	/* gr16-gr31 */
1247
1248	retval |= __copy_to_user(&ppr->gr[16], &pt->r16, sizeof(long) * 16);
1249
1250	/* b0 */
1251
1252	retval |= __put_user(pt->b0, &ppr->br[0]);
1253
1254	/* b1-b5 */
1255
1256	for (i = 1; i < 6; i++) {
1257		if (unw_access_br(&info, i, &val, 0) < 0)
1258			return -EIO;
1259		__put_user(val, &ppr->br[i]);
1260	}
1261
1262	/* b6-b7 */
1263
1264	retval |= __put_user(pt->b6, &ppr->br[6]);
1265	retval |= __put_user(pt->b7, &ppr->br[7]);
1266
1267	/* fr2-fr5 */
1268
1269	for (i = 2; i < 6; i++) {
1270		if (unw_get_fr(&info, i, &fpval) < 0)
1271			return -EIO;
1272		retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
1273	}
1274
1275	/* fr6-fr11 */
1276
1277	retval |= __copy_to_user(&ppr->fr[6], &pt->f6,
1278				 sizeof(struct ia64_fpreg) * 6);
1279
1280	/* fp scratch regs(12-15) */
1281
1282	retval |= __copy_to_user(&ppr->fr[12], &sw->f12,
1283				 sizeof(struct ia64_fpreg) * 4);
1284
1285	/* fr16-fr31 */
1286
1287	for (i = 16; i < 32; i++) {
1288		if (unw_get_fr(&info, i, &fpval) < 0)
1289			return -EIO;
1290		retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
1291	}
1292
1293	/* fph */
1294
1295	ia64_flush_fph(child);
1296	retval |= __copy_to_user(&ppr->fr[32], &child->thread.fph,
1297				 sizeof(ppr->fr[32]) * 96);
1298
1299	/*  preds */
1300
1301	retval |= __put_user(pt->pr, &ppr->pr);
1302
1303	/* nat bits */
1304
1305	retval |= __put_user(nat_bits, &ppr->nat);
1306
1307	ret = retval ? -EIO : 0;
1308	return ret;
1309}
1310
1311static long
1312ptrace_setregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
1313{
1314	unsigned long psr, rsc, ec, lc, rnat, bsp, cfm, nat_bits, val = 0;
1315	struct unw_frame_info info;
1316	struct switch_stack *sw;
1317	struct ia64_fpreg fpval;
1318	struct pt_regs *pt;
1319	long ret, retval = 0;
1320	int i;
1321
1322	memset(&fpval, 0, sizeof(fpval));
1323
1324	if (!access_ok(VERIFY_READ, ppr, sizeof(struct pt_all_user_regs)))
1325		return -EIO;
1326
1327	pt = task_pt_regs(child);
1328	sw = (struct switch_stack *) (child->thread.ksp + 16);
1329	unw_init_from_blocked_task(&info, child);
1330	if (unw_unwind_to_user(&info) < 0) {
1331		return -EIO;
1332	}
1333
1334	if (((unsigned long) ppr & 0x7) != 0) {
1335		dprintk("ptrace:unaligned register address %p\n", ppr);
1336		return -EIO;
1337	}
1338
1339	/* control regs */
1340
1341	retval |= __get_user(pt->cr_iip, &ppr->cr_iip);
1342	retval |= __get_user(psr, &ppr->cr_ipsr);
1343
1344	/* app regs */
1345
1346	retval |= __get_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
1347	retval |= __get_user(rsc, &ppr->ar[PT_AUR_RSC]);
1348	retval |= __get_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
1349	retval |= __get_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
1350	retval |= __get_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
1351	retval |= __get_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
1352
1353	retval |= __get_user(ec, &ppr->ar[PT_AUR_EC]);
1354	retval |= __get_user(lc, &ppr->ar[PT_AUR_LC]);
1355	retval |= __get_user(rnat, &ppr->ar[PT_AUR_RNAT]);
1356	retval |= __get_user(bsp, &ppr->ar[PT_AUR_BSP]);
1357	retval |= __get_user(cfm, &ppr->cfm);
1358
1359	/* gr1-gr3 */
1360
1361	retval |= __copy_from_user(&pt->r1, &ppr->gr[1], sizeof(long));
1362	retval |= __copy_from_user(&pt->r2, &ppr->gr[2], sizeof(long) * 2);
1363
1364	/* gr4-gr7 */
1365
1366	for (i = 4; i < 8; i++) {
1367		retval |= __get_user(val, &ppr->gr[i]);
1368		/* NaT bit will be set via PT_NAT_BITS: */
1369		if (unw_set_gr(&info, i, val, 0) < 0)
1370			return -EIO;
1371	}
1372
1373	/* gr8-gr11 */
1374
1375	retval |= __copy_from_user(&pt->r8, &ppr->gr[8], sizeof(long) * 4);
1376
1377	/* gr12-gr15 */
1378
1379	retval |= __copy_from_user(&pt->r12, &ppr->gr[12], sizeof(long) * 2);
1380	retval |= __copy_from_user(&pt->r14, &ppr->gr[14], sizeof(long));
1381	retval |= __copy_from_user(&pt->r15, &ppr->gr[15], sizeof(long));
1382
1383	/* gr16-gr31 */
1384
1385	retval |= __copy_from_user(&pt->r16, &ppr->gr[16], sizeof(long) * 16);
1386
1387	/* b0 */
1388
1389	retval |= __get_user(pt->b0, &ppr->br[0]);
1390
1391	/* b1-b5 */
1392
1393	for (i = 1; i < 6; i++) {
1394		retval |= __get_user(val, &ppr->br[i]);
1395		unw_set_br(&info, i, val);
1396	}
1397
1398	/* b6-b7 */
1399
1400	retval |= __get_user(pt->b6, &ppr->br[6]);
1401	retval |= __get_user(pt->b7, &ppr->br[7]);
1402
1403	/* fr2-fr5 */
1404
1405	for (i = 2; i < 6; i++) {
1406		retval |= __copy_from_user(&fpval, &ppr->fr[i], sizeof(fpval));
1407		if (unw_set_fr(&info, i, fpval) < 0)
1408			return -EIO;
1409	}
1410
1411	/* fr6-fr11 */
1412
1413	retval |= __copy_from_user(&pt->f6, &ppr->fr[6],
1414				   sizeof(ppr->fr[6]) * 6);
1415
1416	/* fp scratch regs(12-15) */
1417
1418	retval |= __copy_from_user(&sw->f12, &ppr->fr[12],
1419				   sizeof(ppr->fr[12]) * 4);
1420
1421	/* fr16-fr31 */
1422
1423	for (i = 16; i < 32; i++) {
1424		retval |= __copy_from_user(&fpval, &ppr->fr[i],
1425					   sizeof(fpval));
1426		if (unw_set_fr(&info, i, fpval) < 0)
1427			return -EIO;
1428	}
1429
1430	/* fph */
1431
1432	ia64_sync_fph(child);
1433	retval |= __copy_from_user(&child->thread.fph, &ppr->fr[32],
1434				   sizeof(ppr->fr[32]) * 96);
1435
1436	/* preds */
1437
1438	retval |= __get_user(pt->pr, &ppr->pr);
1439
1440	/* nat bits */
1441
1442	retval |= __get_user(nat_bits, &ppr->nat);
1443
1444	retval |= access_uarea(child, PT_CR_IPSR, &psr, 1);
1445	retval |= access_uarea(child, PT_AR_RSC, &rsc, 1);
1446	retval |= access_uarea(child, PT_AR_EC, &ec, 1);
1447	retval |= access_uarea(child, PT_AR_LC, &lc, 1);
1448	retval |= access_uarea(child, PT_AR_RNAT, &rnat, 1);
1449	retval |= access_uarea(child, PT_AR_BSP, &bsp, 1);
1450	retval |= access_uarea(child, PT_CFM, &cfm, 1);
1451	retval |= access_uarea(child, PT_NAT_BITS, &nat_bits, 1);
1452
1453	ret = retval ? -EIO : 0;
1454	return ret;
1455}
1456
1457/*
1458 * Called by kernel/ptrace.c when detaching..
1459 *
1460 * Make sure the single step bit is not set.
1461 */
1462void
1463ptrace_disable (struct task_struct *child)
1464{
1465	struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1466
1467	/* make sure the single step/taken-branch trap bits are not set: */
1468	clear_tsk_thread_flag(child, TIF_SINGLESTEP);
1469	child_psr->ss = 0;
1470	child_psr->tb = 0;
1471}
1472
1473long
1474arch_ptrace (struct task_struct *child, long request, long addr, long data)
1475{
1476	struct pt_regs *pt;
1477	struct switch_stack *sw;
1478	long ret;
1479
1480	pt = task_pt_regs(child);
1481	sw = (struct switch_stack *) (child->thread.ksp + 16);
1482
1483	switch (request) {
1484	      case PTRACE_PEEKTEXT:
1485	      case PTRACE_PEEKDATA:
1486		/* read word at location addr */
1487		if (access_process_vm(child, addr, &data, sizeof(data), 0)
1488		    != sizeof(data)) {
1489			ret = -EIO;
1490			goto out_tsk;
1491		}
1492		ret = data;
1493		/* ensure "ret" is not mistaken as an error code */
1494		force_successful_syscall_return();
1495		goto out_tsk;
1496
1497	/* PTRACE_POKETEXT and PTRACE_POKEDATA is handled
1498	 * by the generic ptrace_request().
1499	 */
1500
1501	      case PTRACE_PEEKUSR:
1502		/* read the word at addr in the USER area */
1503		if (access_uarea(child, addr, &data, 0) < 0) {
1504			ret = -EIO;
1505			goto out_tsk;
1506		}
1507		ret = data;
1508		/* ensure "ret" is not mistaken as an error code */
1509		force_successful_syscall_return();
1510		goto out_tsk;
1511
1512	      case PTRACE_POKEUSR:
1513		/* write the word at addr in the USER area */
1514		if (access_uarea(child, addr, &data, 1) < 0) {
1515			ret = -EIO;
1516			goto out_tsk;
1517		}
1518		ret = 0;
1519		goto out_tsk;
1520
1521	      case PTRACE_OLD_GETSIGINFO:
1522		/* for backwards-compatibility */
1523		ret = ptrace_request(child, PTRACE_GETSIGINFO, addr, data);
1524		goto out_tsk;
1525
1526	      case PTRACE_OLD_SETSIGINFO:
1527		/* for backwards-compatibility */
1528		ret = ptrace_request(child, PTRACE_SETSIGINFO, addr, data);
1529		goto out_tsk;
1530
1531	      case PTRACE_SYSCALL:
1532		/* continue and stop at next (return from) syscall */
1533	      case PTRACE_CONT:
1534		/* restart after signal. */
1535		ret = -EIO;
1536		if (!valid_signal(data))
1537			goto out_tsk;
1538		if (request == PTRACE_SYSCALL)
1539			set_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
1540		else
1541			clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
1542		child->exit_code = data;
1543
1544		/*
1545		 * Make sure the single step/taken-branch trap bits
1546		 * are not set:
1547		 */
1548		clear_tsk_thread_flag(child, TIF_SINGLESTEP);
1549		ia64_psr(pt)->ss = 0;
1550		ia64_psr(pt)->tb = 0;
1551
1552		wake_up_process(child);
1553		ret = 0;
1554		goto out_tsk;
1555
1556	      case PTRACE_KILL:
1557		/*
1558		 * Make the child exit.  Best I can do is send it a
1559		 * sigkill.  Perhaps it should be put in the status
1560		 * that it wants to exit.
1561		 */
1562		if (child->exit_state == EXIT_ZOMBIE)
1563			/* already dead */
1564			return 0;
1565		child->exit_code = SIGKILL;
1566
1567		ptrace_disable(child);
1568		wake_up_process(child);
1569		ret = 0;
1570		goto out_tsk;
1571
1572	      case PTRACE_SINGLESTEP:
1573		/* let child execute for one instruction */
1574	      case PTRACE_SINGLEBLOCK:
1575		ret = -EIO;
1576		if (!valid_signal(data))
1577			goto out_tsk;
1578
1579		clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
1580		set_tsk_thread_flag(child, TIF_SINGLESTEP);
1581		if (request == PTRACE_SINGLESTEP) {
1582			ia64_psr(pt)->ss = 1;
1583		} else {
1584			ia64_psr(pt)->tb = 1;
1585		}
1586		child->exit_code = data;
1587
1588		/* give it a chance to run. */
1589		wake_up_process(child);
1590		ret = 0;
1591		goto out_tsk;
1592
1593	      case PTRACE_DETACH:
1594		/* detach a process that was attached. */
1595		ret = ptrace_detach(child, data);
1596		goto out_tsk;
1597
1598	      case PTRACE_GETREGS:
1599		ret = ptrace_getregs(child,
1600				     (struct pt_all_user_regs __user *) data);
1601		goto out_tsk;
1602
1603	      case PTRACE_SETREGS:
1604		ret = ptrace_setregs(child,
1605				     (struct pt_all_user_regs __user *) data);
1606		goto out_tsk;
1607
1608	      default:
1609		ret = ptrace_request(child, request, addr, data);
1610		goto out_tsk;
1611	}
1612  out_tsk:
1613	return ret;
1614}
1615
1616
1617static void
1618syscall_trace (void)
1619{
1620	/*
1621	 * The 0x80 provides a way for the tracing parent to
1622	 * distinguish between a syscall stop and SIGTRAP delivery.
1623	 */
1624	ptrace_notify(SIGTRAP
1625		      | ((current->ptrace & PT_TRACESYSGOOD) ? 0x80 : 0));
1626
1627	/*
1628	 * This isn't the same as continuing with a signal, but it
1629	 * will do for normal use.  strace only continues with a
1630	 * signal if the stopping signal is not SIGTRAP.  -brl
1631	 */
1632	if (current->exit_code) {
1633		send_sig(current->exit_code, current, 1);
1634		current->exit_code = 0;
1635	}
1636}
1637
1638/* "asmlinkage" so the input arguments are preserved... */
1639
1640asmlinkage void
1641syscall_trace_enter (long arg0, long arg1, long arg2, long arg3,
1642		     long arg4, long arg5, long arg6, long arg7,
1643		     struct pt_regs regs)
1644{
1645	if (test_thread_flag(TIF_SYSCALL_TRACE)
1646	    && (current->ptrace & PT_PTRACED))
1647		syscall_trace();
1648
1649	/* copy user rbs to kernel rbs */
1650	if (test_thread_flag(TIF_RESTORE_RSE))
1651		ia64_sync_krbs();
1652
1653	if (unlikely(current->audit_context)) {
1654		long syscall;
1655		int arch;
1656
1657		if (IS_IA32_PROCESS(&regs)) {
1658			syscall = regs.r1;
1659			arch = AUDIT_ARCH_I386;
1660		} else {
1661			syscall = regs.r15;
1662			arch = AUDIT_ARCH_IA64;
1663		}
1664
1665		audit_syscall_entry(arch, syscall, arg0, arg1, arg2, arg3);
1666	}
1667
1668}
1669
1670/* "asmlinkage" so the input arguments are preserved... */
1671
1672asmlinkage void
1673syscall_trace_leave (long arg0, long arg1, long arg2, long arg3,
1674		     long arg4, long arg5, long arg6, long arg7,
1675		     struct pt_regs regs)
1676{
1677	if (unlikely(current->audit_context)) {
1678		int success = AUDITSC_RESULT(regs.r10);
1679		long result = regs.r8;
1680
1681		if (success != AUDITSC_SUCCESS)
1682			result = -result;
1683		audit_syscall_exit(success, result);
1684	}
1685
1686	if ((test_thread_flag(TIF_SYSCALL_TRACE)
1687	    || test_thread_flag(TIF_SINGLESTEP))
1688	    && (current->ptrace & PT_PTRACED))
1689		syscall_trace();
1690
1691	/* copy user rbs to kernel rbs */
1692	if (test_thread_flag(TIF_RESTORE_RSE))
1693		ia64_sync_krbs();
1694}
1695