perf_event_mipsxx.c revision 2c1b54d331bde7afbf8da24789cce2402e155495
1/*
2 * Linux performance counter support for MIPS.
3 *
4 * Copyright (C) 2010 MIPS Technologies, Inc.
5 * Copyright (C) 2011 Cavium Networks, Inc.
6 * Author: Deng-Cheng Zhu
7 *
8 * This code is based on the implementation for ARM, which is in turn
9 * based on the sparc64 perf event code and the x86 code. Performance
10 * counter access is based on the MIPS Oprofile code. And the callchain
11 * support references the code of MIPS stacktrace.c.
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License version 2 as
15 * published by the Free Software Foundation.
16 */
17
18#include <linux/cpumask.h>
19#include <linux/interrupt.h>
20#include <linux/smp.h>
21#include <linux/kernel.h>
22#include <linux/perf_event.h>
23#include <linux/uaccess.h>
24
25#include <asm/irq.h>
26#include <asm/irq_regs.h>
27#include <asm/stacktrace.h>
28#include <asm/time.h> /* For perf_irq */
29
30#define MIPS_MAX_HWEVENTS 4
31
32struct cpu_hw_events {
33	/* Array of events on this cpu. */
34	struct perf_event	*events[MIPS_MAX_HWEVENTS];
35
36	/*
37	 * Set the bit (indexed by the counter number) when the counter
38	 * is used for an event.
39	 */
40	unsigned long		used_mask[BITS_TO_LONGS(MIPS_MAX_HWEVENTS)];
41
42	/*
43	 * Software copy of the control register for each performance counter.
44	 * MIPS CPUs vary in performance counters. They use this differently,
45	 * and even may not use it.
46	 */
47	unsigned int		saved_ctrl[MIPS_MAX_HWEVENTS];
48};
49DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
50	.saved_ctrl = {0},
51};
52
53/* The description of MIPS performance events. */
54struct mips_perf_event {
55	unsigned int event_id;
56	/*
57	 * MIPS performance counters are indexed starting from 0.
58	 * CNTR_EVEN indicates the indexes of the counters to be used are
59	 * even numbers.
60	 */
61	unsigned int cntr_mask;
62	#define CNTR_EVEN	0x55555555
63	#define CNTR_ODD	0xaaaaaaaa
64	#define CNTR_ALL	0xffffffff
65#ifdef CONFIG_MIPS_MT_SMP
66	enum {
67		T  = 0,
68		V  = 1,
69		P  = 2,
70	} range;
71#else
72	#define T
73	#define V
74	#define P
75#endif
76};
77
78static struct mips_perf_event raw_event;
79static DEFINE_MUTEX(raw_event_mutex);
80
81#define UNSUPPORTED_PERF_EVENT_ID 0xffffffff
82#define C(x) PERF_COUNT_HW_CACHE_##x
83
84struct mips_pmu {
85	u64		max_period;
86	u64		valid_count;
87	u64		overflow;
88	const char	*name;
89	int		irq;
90	u64		(*read_counter)(unsigned int idx);
91	void		(*write_counter)(unsigned int idx, u64 val);
92	const struct mips_perf_event *(*map_raw_event)(u64 config);
93	const struct mips_perf_event (*general_event_map)[PERF_COUNT_HW_MAX];
94	const struct mips_perf_event (*cache_event_map)
95				[PERF_COUNT_HW_CACHE_MAX]
96				[PERF_COUNT_HW_CACHE_OP_MAX]
97				[PERF_COUNT_HW_CACHE_RESULT_MAX];
98	unsigned int	num_counters;
99};
100
101static struct mips_pmu mipspmu;
102
103#define M_CONFIG1_PC	(1 << 4)
104
105#define M_PERFCTL_EXL			(1      <<  0)
106#define M_PERFCTL_KERNEL		(1      <<  1)
107#define M_PERFCTL_SUPERVISOR		(1      <<  2)
108#define M_PERFCTL_USER			(1      <<  3)
109#define M_PERFCTL_INTERRUPT_ENABLE	(1      <<  4)
110#define M_PERFCTL_EVENT(event)		(((event) & 0x3ff)  << 5)
111#define M_PERFCTL_VPEID(vpe)		((vpe)    << 16)
112#define M_PERFCTL_MT_EN(filter)		((filter) << 20)
113#define    M_TC_EN_ALL			M_PERFCTL_MT_EN(0)
114#define    M_TC_EN_VPE			M_PERFCTL_MT_EN(1)
115#define    M_TC_EN_TC			M_PERFCTL_MT_EN(2)
116#define M_PERFCTL_TCID(tcid)		((tcid)   << 22)
117#define M_PERFCTL_WIDE			(1      << 30)
118#define M_PERFCTL_MORE			(1      << 31)
119
120#define M_PERFCTL_COUNT_EVENT_WHENEVER	(M_PERFCTL_EXL |		\
121					M_PERFCTL_KERNEL |		\
122					M_PERFCTL_USER |		\
123					M_PERFCTL_SUPERVISOR |		\
124					M_PERFCTL_INTERRUPT_ENABLE)
125
126#ifdef CONFIG_MIPS_MT_SMP
127#define M_PERFCTL_CONFIG_MASK		0x3fff801f
128#else
129#define M_PERFCTL_CONFIG_MASK		0x1f
130#endif
131#define M_PERFCTL_EVENT_MASK		0xfe0
132
133
134#ifdef CONFIG_MIPS_MT_SMP
135static int cpu_has_mipsmt_pertccounters;
136
137static DEFINE_RWLOCK(pmuint_rwlock);
138
139/*
140 * FIXME: For VSMP, vpe_id() is redefined for Perf-events, because
141 * cpu_data[cpuid].vpe_id reports 0 for _both_ CPUs.
142 */
143#if defined(CONFIG_HW_PERF_EVENTS)
144#define vpe_id()	(cpu_has_mipsmt_pertccounters ? \
145			0 : smp_processor_id())
146#else
147#define vpe_id()	(cpu_has_mipsmt_pertccounters ? \
148			0 : cpu_data[smp_processor_id()].vpe_id)
149#endif
150
151/* Copied from op_model_mipsxx.c */
152static unsigned int vpe_shift(void)
153{
154	if (num_possible_cpus() > 1)
155		return 1;
156
157	return 0;
158}
159
160static unsigned int counters_total_to_per_cpu(unsigned int counters)
161{
162	return counters >> vpe_shift();
163}
164
165static unsigned int counters_per_cpu_to_total(unsigned int counters)
166{
167	return counters << vpe_shift();
168}
169
170#else /* !CONFIG_MIPS_MT_SMP */
171#define vpe_id()	0
172
173#endif /* CONFIG_MIPS_MT_SMP */
174
175static void resume_local_counters(void);
176static void pause_local_counters(void);
177static irqreturn_t mipsxx_pmu_handle_irq(int, void *);
178static int mipsxx_pmu_handle_shared_irq(void);
179
180static unsigned int mipsxx_pmu_swizzle_perf_idx(unsigned int idx)
181{
182	if (vpe_id() == 1)
183		idx = (idx + 2) & 3;
184	return idx;
185}
186
187static u64 mipsxx_pmu_read_counter(unsigned int idx)
188{
189	idx = mipsxx_pmu_swizzle_perf_idx(idx);
190
191	switch (idx) {
192	case 0:
193		/*
194		 * The counters are unsigned, we must cast to truncate
195		 * off the high bits.
196		 */
197		return (u32)read_c0_perfcntr0();
198	case 1:
199		return (u32)read_c0_perfcntr1();
200	case 2:
201		return (u32)read_c0_perfcntr2();
202	case 3:
203		return (u32)read_c0_perfcntr3();
204	default:
205		WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
206		return 0;
207	}
208}
209
210static u64 mipsxx_pmu_read_counter_64(unsigned int idx)
211{
212	idx = mipsxx_pmu_swizzle_perf_idx(idx);
213
214	switch (idx) {
215	case 0:
216		return read_c0_perfcntr0_64();
217	case 1:
218		return read_c0_perfcntr1_64();
219	case 2:
220		return read_c0_perfcntr2_64();
221	case 3:
222		return read_c0_perfcntr3_64();
223	default:
224		WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
225		return 0;
226	}
227}
228
229static void mipsxx_pmu_write_counter(unsigned int idx, u64 val)
230{
231	idx = mipsxx_pmu_swizzle_perf_idx(idx);
232
233	switch (idx) {
234	case 0:
235		write_c0_perfcntr0(val);
236		return;
237	case 1:
238		write_c0_perfcntr1(val);
239		return;
240	case 2:
241		write_c0_perfcntr2(val);
242		return;
243	case 3:
244		write_c0_perfcntr3(val);
245		return;
246	}
247}
248
249static void mipsxx_pmu_write_counter_64(unsigned int idx, u64 val)
250{
251	idx = mipsxx_pmu_swizzle_perf_idx(idx);
252
253	switch (idx) {
254	case 0:
255		write_c0_perfcntr0_64(val);
256		return;
257	case 1:
258		write_c0_perfcntr1_64(val);
259		return;
260	case 2:
261		write_c0_perfcntr2_64(val);
262		return;
263	case 3:
264		write_c0_perfcntr3_64(val);
265		return;
266	}
267}
268
269static unsigned int mipsxx_pmu_read_control(unsigned int idx)
270{
271	idx = mipsxx_pmu_swizzle_perf_idx(idx);
272
273	switch (idx) {
274	case 0:
275		return read_c0_perfctrl0();
276	case 1:
277		return read_c0_perfctrl1();
278	case 2:
279		return read_c0_perfctrl2();
280	case 3:
281		return read_c0_perfctrl3();
282	default:
283		WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
284		return 0;
285	}
286}
287
288static void mipsxx_pmu_write_control(unsigned int idx, unsigned int val)
289{
290	idx = mipsxx_pmu_swizzle_perf_idx(idx);
291
292	switch (idx) {
293	case 0:
294		write_c0_perfctrl0(val);
295		return;
296	case 1:
297		write_c0_perfctrl1(val);
298		return;
299	case 2:
300		write_c0_perfctrl2(val);
301		return;
302	case 3:
303		write_c0_perfctrl3(val);
304		return;
305	}
306}
307
308static int mipsxx_pmu_alloc_counter(struct cpu_hw_events *cpuc,
309				    struct hw_perf_event *hwc)
310{
311	int i;
312
313	/*
314	 * We only need to care the counter mask. The range has been
315	 * checked definitely.
316	 */
317	unsigned long cntr_mask = (hwc->event_base >> 8) & 0xffff;
318
319	for (i = mipspmu.num_counters - 1; i >= 0; i--) {
320		/*
321		 * Note that some MIPS perf events can be counted by both
322		 * even and odd counters, wheresas many other are only by
323		 * even _or_ odd counters. This introduces an issue that
324		 * when the former kind of event takes the counter the
325		 * latter kind of event wants to use, then the "counter
326		 * allocation" for the latter event will fail. In fact if
327		 * they can be dynamically swapped, they both feel happy.
328		 * But here we leave this issue alone for now.
329		 */
330		if (test_bit(i, &cntr_mask) &&
331			!test_and_set_bit(i, cpuc->used_mask))
332			return i;
333	}
334
335	return -EAGAIN;
336}
337
338static void mipsxx_pmu_enable_event(struct hw_perf_event *evt, int idx)
339{
340	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
341
342	WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
343
344	cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0xff) |
345		(evt->config_base & M_PERFCTL_CONFIG_MASK) |
346		/* Make sure interrupt enabled. */
347		M_PERFCTL_INTERRUPT_ENABLE;
348	/*
349	 * We do not actually let the counter run. Leave it until start().
350	 */
351}
352
353static void mipsxx_pmu_disable_event(int idx)
354{
355	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
356	unsigned long flags;
357
358	WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
359
360	local_irq_save(flags);
361	cpuc->saved_ctrl[idx] = mipsxx_pmu_read_control(idx) &
362		~M_PERFCTL_COUNT_EVENT_WHENEVER;
363	mipsxx_pmu_write_control(idx, cpuc->saved_ctrl[idx]);
364	local_irq_restore(flags);
365}
366
367static int mipspmu_event_set_period(struct perf_event *event,
368				    struct hw_perf_event *hwc,
369				    int idx)
370{
371	u64 left = local64_read(&hwc->period_left);
372	u64 period = hwc->sample_period;
373	int ret = 0;
374
375	if (unlikely((left + period) & (1ULL << 63))) {
376		/* left underflowed by more than period. */
377		left = period;
378		local64_set(&hwc->period_left, left);
379		hwc->last_period = period;
380		ret = 1;
381	} else	if (unlikely((left + period) <= period)) {
382		/* left underflowed by less than period. */
383		left += period;
384		local64_set(&hwc->period_left, left);
385		hwc->last_period = period;
386		ret = 1;
387	}
388
389	if (left > mipspmu.max_period) {
390		left = mipspmu.max_period;
391		local64_set(&hwc->period_left, left);
392	}
393
394	local64_set(&hwc->prev_count, mipspmu.overflow - left);
395
396	mipspmu.write_counter(idx, mipspmu.overflow - left);
397
398	perf_event_update_userpage(event);
399
400	return ret;
401}
402
403static void mipspmu_event_update(struct perf_event *event,
404				 struct hw_perf_event *hwc,
405				 int idx)
406{
407	u64 prev_raw_count, new_raw_count;
408	u64 delta;
409
410again:
411	prev_raw_count = local64_read(&hwc->prev_count);
412	new_raw_count = mipspmu.read_counter(idx);
413
414	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
415				new_raw_count) != prev_raw_count)
416		goto again;
417
418	delta = new_raw_count - prev_raw_count;
419
420	local64_add(delta, &event->count);
421	local64_sub(delta, &hwc->period_left);
422}
423
424static void mipspmu_start(struct perf_event *event, int flags)
425{
426	struct hw_perf_event *hwc = &event->hw;
427
428	if (flags & PERF_EF_RELOAD)
429		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
430
431	hwc->state = 0;
432
433	/* Set the period for the event. */
434	mipspmu_event_set_period(event, hwc, hwc->idx);
435
436	/* Enable the event. */
437	mipsxx_pmu_enable_event(hwc, hwc->idx);
438}
439
440static void mipspmu_stop(struct perf_event *event, int flags)
441{
442	struct hw_perf_event *hwc = &event->hw;
443
444	if (!(hwc->state & PERF_HES_STOPPED)) {
445		/* We are working on a local event. */
446		mipsxx_pmu_disable_event(hwc->idx);
447		barrier();
448		mipspmu_event_update(event, hwc, hwc->idx);
449		hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
450	}
451}
452
453static int mipspmu_add(struct perf_event *event, int flags)
454{
455	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
456	struct hw_perf_event *hwc = &event->hw;
457	int idx;
458	int err = 0;
459
460	perf_pmu_disable(event->pmu);
461
462	/* To look for a free counter for this event. */
463	idx = mipsxx_pmu_alloc_counter(cpuc, hwc);
464	if (idx < 0) {
465		err = idx;
466		goto out;
467	}
468
469	/*
470	 * If there is an event in the counter we are going to use then
471	 * make sure it is disabled.
472	 */
473	event->hw.idx = idx;
474	mipsxx_pmu_disable_event(idx);
475	cpuc->events[idx] = event;
476
477	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
478	if (flags & PERF_EF_START)
479		mipspmu_start(event, PERF_EF_RELOAD);
480
481	/* Propagate our changes to the userspace mapping. */
482	perf_event_update_userpage(event);
483
484out:
485	perf_pmu_enable(event->pmu);
486	return err;
487}
488
489static void mipspmu_del(struct perf_event *event, int flags)
490{
491	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
492	struct hw_perf_event *hwc = &event->hw;
493	int idx = hwc->idx;
494
495	WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
496
497	mipspmu_stop(event, PERF_EF_UPDATE);
498	cpuc->events[idx] = NULL;
499	clear_bit(idx, cpuc->used_mask);
500
501	perf_event_update_userpage(event);
502}
503
504static void mipspmu_read(struct perf_event *event)
505{
506	struct hw_perf_event *hwc = &event->hw;
507
508	/* Don't read disabled counters! */
509	if (hwc->idx < 0)
510		return;
511
512	mipspmu_event_update(event, hwc, hwc->idx);
513}
514
515static void mipspmu_enable(struct pmu *pmu)
516{
517#ifdef CONFIG_MIPS_MT_SMP
518	write_unlock(&pmuint_rwlock);
519#endif
520	resume_local_counters();
521}
522
523/*
524 * MIPS performance counters can be per-TC. The control registers can
525 * not be directly accessed accross CPUs. Hence if we want to do global
526 * control, we need cross CPU calls. on_each_cpu() can help us, but we
527 * can not make sure this function is called with interrupts enabled. So
528 * here we pause local counters and then grab a rwlock and leave the
529 * counters on other CPUs alone. If any counter interrupt raises while
530 * we own the write lock, simply pause local counters on that CPU and
531 * spin in the handler. Also we know we won't be switched to another
532 * CPU after pausing local counters and before grabbing the lock.
533 */
534static void mipspmu_disable(struct pmu *pmu)
535{
536	pause_local_counters();
537#ifdef CONFIG_MIPS_MT_SMP
538	write_lock(&pmuint_rwlock);
539#endif
540}
541
542static atomic_t active_events = ATOMIC_INIT(0);
543static DEFINE_MUTEX(pmu_reserve_mutex);
544static int (*save_perf_irq)(void);
545
546static int mipspmu_get_irq(void)
547{
548	int err;
549
550	if (mipspmu.irq >= 0) {
551		/* Request my own irq handler. */
552		err = request_irq(mipspmu.irq, mipsxx_pmu_handle_irq,
553			IRQF_PERCPU | IRQF_NOBALANCING,
554			"mips_perf_pmu", NULL);
555		if (err) {
556			pr_warning("Unable to request IRQ%d for MIPS "
557			   "performance counters!\n", mipspmu.irq);
558		}
559	} else if (cp0_perfcount_irq < 0) {
560		/*
561		 * We are sharing the irq number with the timer interrupt.
562		 */
563		save_perf_irq = perf_irq;
564		perf_irq = mipsxx_pmu_handle_shared_irq;
565		err = 0;
566	} else {
567		pr_warning("The platform hasn't properly defined its "
568			"interrupt controller.\n");
569		err = -ENOENT;
570	}
571
572	return err;
573}
574
575static void mipspmu_free_irq(void)
576{
577	if (mipspmu.irq >= 0)
578		free_irq(mipspmu.irq, NULL);
579	else if (cp0_perfcount_irq < 0)
580		perf_irq = save_perf_irq;
581}
582
583/*
584 * mipsxx/rm9000/loongson2 have different performance counters, they have
585 * specific low-level init routines.
586 */
587static void reset_counters(void *arg);
588static int __hw_perf_event_init(struct perf_event *event);
589
590static void hw_perf_event_destroy(struct perf_event *event)
591{
592	if (atomic_dec_and_mutex_lock(&active_events,
593				&pmu_reserve_mutex)) {
594		/*
595		 * We must not call the destroy function with interrupts
596		 * disabled.
597		 */
598		on_each_cpu(reset_counters,
599			(void *)(long)mipspmu.num_counters, 1);
600		mipspmu_free_irq();
601		mutex_unlock(&pmu_reserve_mutex);
602	}
603}
604
605static int mipspmu_event_init(struct perf_event *event)
606{
607	int err = 0;
608
609	switch (event->attr.type) {
610	case PERF_TYPE_RAW:
611	case PERF_TYPE_HARDWARE:
612	case PERF_TYPE_HW_CACHE:
613		break;
614
615	default:
616		return -ENOENT;
617	}
618
619	if (event->cpu >= nr_cpumask_bits ||
620	    (event->cpu >= 0 && !cpu_online(event->cpu)))
621		return -ENODEV;
622
623	if (!atomic_inc_not_zero(&active_events)) {
624		if (atomic_read(&active_events) > MIPS_MAX_HWEVENTS) {
625			atomic_dec(&active_events);
626			return -ENOSPC;
627		}
628
629		mutex_lock(&pmu_reserve_mutex);
630		if (atomic_read(&active_events) == 0)
631			err = mipspmu_get_irq();
632
633		if (!err)
634			atomic_inc(&active_events);
635		mutex_unlock(&pmu_reserve_mutex);
636	}
637
638	if (err)
639		return err;
640
641	err = __hw_perf_event_init(event);
642	if (err)
643		hw_perf_event_destroy(event);
644
645	return err;
646}
647
648static struct pmu pmu = {
649	.pmu_enable	= mipspmu_enable,
650	.pmu_disable	= mipspmu_disable,
651	.event_init	= mipspmu_event_init,
652	.add		= mipspmu_add,
653	.del		= mipspmu_del,
654	.start		= mipspmu_start,
655	.stop		= mipspmu_stop,
656	.read		= mipspmu_read,
657};
658
659static unsigned int mipspmu_perf_event_encode(const struct mips_perf_event *pev)
660{
661/*
662 * Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for
663 * event_id.
664 */
665#ifdef CONFIG_MIPS_MT_SMP
666	return ((unsigned int)pev->range << 24) |
667		(pev->cntr_mask & 0xffff00) |
668		(pev->event_id & 0xff);
669#else
670	return (pev->cntr_mask & 0xffff00) |
671		(pev->event_id & 0xff);
672#endif
673}
674
675static const struct mips_perf_event *mipspmu_map_general_event(int idx)
676{
677	const struct mips_perf_event *pev;
678
679	pev = ((*mipspmu.general_event_map)[idx].event_id ==
680		UNSUPPORTED_PERF_EVENT_ID ? ERR_PTR(-EOPNOTSUPP) :
681		&(*mipspmu.general_event_map)[idx]);
682
683	return pev;
684}
685
686static const struct mips_perf_event *mipspmu_map_cache_event(u64 config)
687{
688	unsigned int cache_type, cache_op, cache_result;
689	const struct mips_perf_event *pev;
690
691	cache_type = (config >> 0) & 0xff;
692	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
693		return ERR_PTR(-EINVAL);
694
695	cache_op = (config >> 8) & 0xff;
696	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
697		return ERR_PTR(-EINVAL);
698
699	cache_result = (config >> 16) & 0xff;
700	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
701		return ERR_PTR(-EINVAL);
702
703	pev = &((*mipspmu.cache_event_map)
704					[cache_type]
705					[cache_op]
706					[cache_result]);
707
708	if (pev->event_id == UNSUPPORTED_PERF_EVENT_ID)
709		return ERR_PTR(-EOPNOTSUPP);
710
711	return pev;
712
713}
714
715static int validate_event(struct cpu_hw_events *cpuc,
716	       struct perf_event *event)
717{
718	struct hw_perf_event fake_hwc = event->hw;
719
720	/* Allow mixed event group. So return 1 to pass validation. */
721	if (event->pmu != &pmu || event->state <= PERF_EVENT_STATE_OFF)
722		return 1;
723
724	return mipsxx_pmu_alloc_counter(cpuc, &fake_hwc) >= 0;
725}
726
727static int validate_group(struct perf_event *event)
728{
729	struct perf_event *sibling, *leader = event->group_leader;
730	struct cpu_hw_events fake_cpuc;
731
732	memset(&fake_cpuc, 0, sizeof(fake_cpuc));
733
734	if (!validate_event(&fake_cpuc, leader))
735		return -ENOSPC;
736
737	list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
738		if (!validate_event(&fake_cpuc, sibling))
739			return -ENOSPC;
740	}
741
742	if (!validate_event(&fake_cpuc, event))
743		return -ENOSPC;
744
745	return 0;
746}
747
748/* This is needed by specific irq handlers in perf_event_*.c */
749static void handle_associated_event(struct cpu_hw_events *cpuc,
750				    int idx, struct perf_sample_data *data,
751				    struct pt_regs *regs)
752{
753	struct perf_event *event = cpuc->events[idx];
754	struct hw_perf_event *hwc = &event->hw;
755
756	mipspmu_event_update(event, hwc, idx);
757	data->period = event->hw.last_period;
758	if (!mipspmu_event_set_period(event, hwc, idx))
759		return;
760
761	if (perf_event_overflow(event, data, regs))
762		mipsxx_pmu_disable_event(idx);
763}
764
765
766static int __n_counters(void)
767{
768	if (!(read_c0_config1() & M_CONFIG1_PC))
769		return 0;
770	if (!(read_c0_perfctrl0() & M_PERFCTL_MORE))
771		return 1;
772	if (!(read_c0_perfctrl1() & M_PERFCTL_MORE))
773		return 2;
774	if (!(read_c0_perfctrl2() & M_PERFCTL_MORE))
775		return 3;
776
777	return 4;
778}
779
780static int n_counters(void)
781{
782	int counters;
783
784	switch (current_cpu_type()) {
785	case CPU_R10000:
786		counters = 2;
787		break;
788
789	case CPU_R12000:
790	case CPU_R14000:
791		counters = 4;
792		break;
793
794	default:
795		counters = __n_counters();
796	}
797
798	return counters;
799}
800
801static void reset_counters(void *arg)
802{
803	int counters = (int)(long)arg;
804	switch (counters) {
805	case 4:
806		mipsxx_pmu_write_control(3, 0);
807		mipspmu.write_counter(3, 0);
808	case 3:
809		mipsxx_pmu_write_control(2, 0);
810		mipspmu.write_counter(2, 0);
811	case 2:
812		mipsxx_pmu_write_control(1, 0);
813		mipspmu.write_counter(1, 0);
814	case 1:
815		mipsxx_pmu_write_control(0, 0);
816		mipspmu.write_counter(0, 0);
817	}
818}
819
820/* 24K/34K/1004K cores can share the same event map. */
821static const struct mips_perf_event mipsxxcore_event_map
822				[PERF_COUNT_HW_MAX] = {
823	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
824	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
825	[PERF_COUNT_HW_CACHE_REFERENCES] = { UNSUPPORTED_PERF_EVENT_ID },
826	[PERF_COUNT_HW_CACHE_MISSES] = { UNSUPPORTED_PERF_EVENT_ID },
827	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_EVEN, T },
828	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
829	[PERF_COUNT_HW_BUS_CYCLES] = { UNSUPPORTED_PERF_EVENT_ID },
830};
831
832/* 74K core has different branch event code. */
833static const struct mips_perf_event mipsxx74Kcore_event_map
834				[PERF_COUNT_HW_MAX] = {
835	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
836	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
837	[PERF_COUNT_HW_CACHE_REFERENCES] = { UNSUPPORTED_PERF_EVENT_ID },
838	[PERF_COUNT_HW_CACHE_MISSES] = { UNSUPPORTED_PERF_EVENT_ID },
839	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x27, CNTR_EVEN, T },
840	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x27, CNTR_ODD, T },
841	[PERF_COUNT_HW_BUS_CYCLES] = { UNSUPPORTED_PERF_EVENT_ID },
842};
843
844static const struct mips_perf_event octeon_event_map[PERF_COUNT_HW_MAX] = {
845	[PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
846	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x03, CNTR_ALL },
847	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x2b, CNTR_ALL },
848	[PERF_COUNT_HW_CACHE_MISSES] = { 0x2e, CNTR_ALL  },
849	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x08, CNTR_ALL },
850	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x09, CNTR_ALL },
851	[PERF_COUNT_HW_BUS_CYCLES] = { 0x25, CNTR_ALL },
852};
853
854/* 24K/34K/1004K cores can share the same cache event map. */
855static const struct mips_perf_event mipsxxcore_cache_map
856				[PERF_COUNT_HW_CACHE_MAX]
857				[PERF_COUNT_HW_CACHE_OP_MAX]
858				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
859[C(L1D)] = {
860	/*
861	 * Like some other architectures (e.g. ARM), the performance
862	 * counters don't differentiate between read and write
863	 * accesses/misses, so this isn't strictly correct, but it's the
864	 * best we can do. Writes and reads get combined.
865	 */
866	[C(OP_READ)] = {
867		[C(RESULT_ACCESS)]	= { 0x0a, CNTR_EVEN, T },
868		[C(RESULT_MISS)]	= { 0x0b, CNTR_EVEN | CNTR_ODD, T },
869	},
870	[C(OP_WRITE)] = {
871		[C(RESULT_ACCESS)]	= { 0x0a, CNTR_EVEN, T },
872		[C(RESULT_MISS)]	= { 0x0b, CNTR_EVEN | CNTR_ODD, T },
873	},
874	[C(OP_PREFETCH)] = {
875		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
876		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
877	},
878},
879[C(L1I)] = {
880	[C(OP_READ)] = {
881		[C(RESULT_ACCESS)]	= { 0x09, CNTR_EVEN, T },
882		[C(RESULT_MISS)]	= { 0x09, CNTR_ODD, T },
883	},
884	[C(OP_WRITE)] = {
885		[C(RESULT_ACCESS)]	= { 0x09, CNTR_EVEN, T },
886		[C(RESULT_MISS)]	= { 0x09, CNTR_ODD, T },
887	},
888	[C(OP_PREFETCH)] = {
889		[C(RESULT_ACCESS)]	= { 0x14, CNTR_EVEN, T },
890		/*
891		 * Note that MIPS has only "hit" events countable for
892		 * the prefetch operation.
893		 */
894		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
895	},
896},
897[C(LL)] = {
898	[C(OP_READ)] = {
899		[C(RESULT_ACCESS)]	= { 0x15, CNTR_ODD, P },
900		[C(RESULT_MISS)]	= { 0x16, CNTR_EVEN, P },
901	},
902	[C(OP_WRITE)] = {
903		[C(RESULT_ACCESS)]	= { 0x15, CNTR_ODD, P },
904		[C(RESULT_MISS)]	= { 0x16, CNTR_EVEN, P },
905	},
906	[C(OP_PREFETCH)] = {
907		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
908		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
909	},
910},
911[C(DTLB)] = {
912	[C(OP_READ)] = {
913		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
914		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
915	},
916	[C(OP_WRITE)] = {
917		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
918		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
919	},
920	[C(OP_PREFETCH)] = {
921		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
922		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
923	},
924},
925[C(ITLB)] = {
926	[C(OP_READ)] = {
927		[C(RESULT_ACCESS)]	= { 0x05, CNTR_EVEN, T },
928		[C(RESULT_MISS)]	= { 0x05, CNTR_ODD, T },
929	},
930	[C(OP_WRITE)] = {
931		[C(RESULT_ACCESS)]	= { 0x05, CNTR_EVEN, T },
932		[C(RESULT_MISS)]	= { 0x05, CNTR_ODD, T },
933	},
934	[C(OP_PREFETCH)] = {
935		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
936		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
937	},
938},
939[C(BPU)] = {
940	/* Using the same code for *HW_BRANCH* */
941	[C(OP_READ)] = {
942		[C(RESULT_ACCESS)]	= { 0x02, CNTR_EVEN, T },
943		[C(RESULT_MISS)]	= { 0x02, CNTR_ODD, T },
944	},
945	[C(OP_WRITE)] = {
946		[C(RESULT_ACCESS)]	= { 0x02, CNTR_EVEN, T },
947		[C(RESULT_MISS)]	= { 0x02, CNTR_ODD, T },
948	},
949	[C(OP_PREFETCH)] = {
950		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
951		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
952	},
953},
954[C(NODE)] = {
955	[C(OP_READ)] = {
956		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
957		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
958	},
959	[C(OP_WRITE)] = {
960		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
961		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
962	},
963	[C(OP_PREFETCH)] = {
964		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
965		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
966	},
967},
968};
969
970/* 74K core has completely different cache event map. */
971static const struct mips_perf_event mipsxx74Kcore_cache_map
972				[PERF_COUNT_HW_CACHE_MAX]
973				[PERF_COUNT_HW_CACHE_OP_MAX]
974				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
975[C(L1D)] = {
976	/*
977	 * Like some other architectures (e.g. ARM), the performance
978	 * counters don't differentiate between read and write
979	 * accesses/misses, so this isn't strictly correct, but it's the
980	 * best we can do. Writes and reads get combined.
981	 */
982	[C(OP_READ)] = {
983		[C(RESULT_ACCESS)]	= { 0x17, CNTR_ODD, T },
984		[C(RESULT_MISS)]	= { 0x18, CNTR_ODD, T },
985	},
986	[C(OP_WRITE)] = {
987		[C(RESULT_ACCESS)]	= { 0x17, CNTR_ODD, T },
988		[C(RESULT_MISS)]	= { 0x18, CNTR_ODD, T },
989	},
990	[C(OP_PREFETCH)] = {
991		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
992		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
993	},
994},
995[C(L1I)] = {
996	[C(OP_READ)] = {
997		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
998		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
999	},
1000	[C(OP_WRITE)] = {
1001		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
1002		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
1003	},
1004	[C(OP_PREFETCH)] = {
1005		[C(RESULT_ACCESS)]	= { 0x34, CNTR_EVEN, T },
1006		/*
1007		 * Note that MIPS has only "hit" events countable for
1008		 * the prefetch operation.
1009		 */
1010		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1011	},
1012},
1013[C(LL)] = {
1014	[C(OP_READ)] = {
1015		[C(RESULT_ACCESS)]	= { 0x1c, CNTR_ODD, P },
1016		[C(RESULT_MISS)]	= { 0x1d, CNTR_EVEN | CNTR_ODD, P },
1017	},
1018	[C(OP_WRITE)] = {
1019		[C(RESULT_ACCESS)]	= { 0x1c, CNTR_ODD, P },
1020		[C(RESULT_MISS)]	= { 0x1d, CNTR_EVEN | CNTR_ODD, P },
1021	},
1022	[C(OP_PREFETCH)] = {
1023		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1024		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1025	},
1026},
1027[C(DTLB)] = {
1028	/* 74K core does not have specific DTLB events. */
1029	[C(OP_READ)] = {
1030		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1031		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1032	},
1033	[C(OP_WRITE)] = {
1034		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1035		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1036	},
1037	[C(OP_PREFETCH)] = {
1038		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1039		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1040	},
1041},
1042[C(ITLB)] = {
1043	[C(OP_READ)] = {
1044		[C(RESULT_ACCESS)]	= { 0x04, CNTR_EVEN, T },
1045		[C(RESULT_MISS)]	= { 0x04, CNTR_ODD, T },
1046	},
1047	[C(OP_WRITE)] = {
1048		[C(RESULT_ACCESS)]	= { 0x04, CNTR_EVEN, T },
1049		[C(RESULT_MISS)]	= { 0x04, CNTR_ODD, T },
1050	},
1051	[C(OP_PREFETCH)] = {
1052		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1053		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1054	},
1055},
1056[C(BPU)] = {
1057	/* Using the same code for *HW_BRANCH* */
1058	[C(OP_READ)] = {
1059		[C(RESULT_ACCESS)]	= { 0x27, CNTR_EVEN, T },
1060		[C(RESULT_MISS)]	= { 0x27, CNTR_ODD, T },
1061	},
1062	[C(OP_WRITE)] = {
1063		[C(RESULT_ACCESS)]	= { 0x27, CNTR_EVEN, T },
1064		[C(RESULT_MISS)]	= { 0x27, CNTR_ODD, T },
1065	},
1066	[C(OP_PREFETCH)] = {
1067		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1068		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1069	},
1070},
1071[C(NODE)] = {
1072	[C(OP_READ)] = {
1073		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1074		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1075	},
1076	[C(OP_WRITE)] = {
1077		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1078		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1079	},
1080	[C(OP_PREFETCH)] = {
1081		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1082		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1083	},
1084},
1085};
1086
1087
1088static const struct mips_perf_event octeon_cache_map
1089				[PERF_COUNT_HW_CACHE_MAX]
1090				[PERF_COUNT_HW_CACHE_OP_MAX]
1091				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1092[C(L1D)] = {
1093	[C(OP_READ)] = {
1094		[C(RESULT_ACCESS)]	= { 0x2b, CNTR_ALL },
1095		[C(RESULT_MISS)]	= { 0x2e, CNTR_ALL },
1096	},
1097	[C(OP_WRITE)] = {
1098		[C(RESULT_ACCESS)]	= { 0x30, CNTR_ALL },
1099		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1100	},
1101	[C(OP_PREFETCH)] = {
1102		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1103		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1104	},
1105},
1106[C(L1I)] = {
1107	[C(OP_READ)] = {
1108		[C(RESULT_ACCESS)]	= { 0x18, CNTR_ALL },
1109		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1110	},
1111	[C(OP_WRITE)] = {
1112		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1113		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1114	},
1115	[C(OP_PREFETCH)] = {
1116		[C(RESULT_ACCESS)]	= { 0x19, CNTR_ALL },
1117		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1118	},
1119},
1120[C(LL)] = {
1121	[C(OP_READ)] = {
1122		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1123		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1124	},
1125	[C(OP_WRITE)] = {
1126		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1127		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1128	},
1129	[C(OP_PREFETCH)] = {
1130		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1131		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1132	},
1133},
1134[C(DTLB)] = {
1135	/*
1136	 * Only general DTLB misses are counted use the same event for
1137	 * read and write.
1138	 */
1139	[C(OP_READ)] = {
1140		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1141		[C(RESULT_MISS)]	= { 0x35, CNTR_ALL },
1142	},
1143	[C(OP_WRITE)] = {
1144		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1145		[C(RESULT_MISS)]	= { 0x35, CNTR_ALL },
1146	},
1147	[C(OP_PREFETCH)] = {
1148		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1149		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1150	},
1151},
1152[C(ITLB)] = {
1153	[C(OP_READ)] = {
1154		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1155		[C(RESULT_MISS)]	= { 0x37, CNTR_ALL },
1156	},
1157	[C(OP_WRITE)] = {
1158		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1159		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1160	},
1161	[C(OP_PREFETCH)] = {
1162		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1163		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1164	},
1165},
1166[C(BPU)] = {
1167	/* Using the same code for *HW_BRANCH* */
1168	[C(OP_READ)] = {
1169		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1170		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1171	},
1172	[C(OP_WRITE)] = {
1173		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1174		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1175	},
1176	[C(OP_PREFETCH)] = {
1177		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1178		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1179	},
1180},
1181};
1182
1183#ifdef CONFIG_MIPS_MT_SMP
1184static void check_and_calc_range(struct perf_event *event,
1185				 const struct mips_perf_event *pev)
1186{
1187	struct hw_perf_event *hwc = &event->hw;
1188
1189	if (event->cpu >= 0) {
1190		if (pev->range > V) {
1191			/*
1192			 * The user selected an event that is processor
1193			 * wide, while expecting it to be VPE wide.
1194			 */
1195			hwc->config_base |= M_TC_EN_ALL;
1196		} else {
1197			/*
1198			 * FIXME: cpu_data[event->cpu].vpe_id reports 0
1199			 * for both CPUs.
1200			 */
1201			hwc->config_base |= M_PERFCTL_VPEID(event->cpu);
1202			hwc->config_base |= M_TC_EN_VPE;
1203		}
1204	} else
1205		hwc->config_base |= M_TC_EN_ALL;
1206}
1207#else
1208static void check_and_calc_range(struct perf_event *event,
1209				 const struct mips_perf_event *pev)
1210{
1211}
1212#endif
1213
1214static int __hw_perf_event_init(struct perf_event *event)
1215{
1216	struct perf_event_attr *attr = &event->attr;
1217	struct hw_perf_event *hwc = &event->hw;
1218	const struct mips_perf_event *pev;
1219	int err;
1220
1221	/* Returning MIPS event descriptor for generic perf event. */
1222	if (PERF_TYPE_HARDWARE == event->attr.type) {
1223		if (event->attr.config >= PERF_COUNT_HW_MAX)
1224			return -EINVAL;
1225		pev = mipspmu_map_general_event(event->attr.config);
1226	} else if (PERF_TYPE_HW_CACHE == event->attr.type) {
1227		pev = mipspmu_map_cache_event(event->attr.config);
1228	} else if (PERF_TYPE_RAW == event->attr.type) {
1229		/* We are working on the global raw event. */
1230		mutex_lock(&raw_event_mutex);
1231		pev = mipspmu.map_raw_event(event->attr.config);
1232	} else {
1233		/* The event type is not (yet) supported. */
1234		return -EOPNOTSUPP;
1235	}
1236
1237	if (IS_ERR(pev)) {
1238		if (PERF_TYPE_RAW == event->attr.type)
1239			mutex_unlock(&raw_event_mutex);
1240		return PTR_ERR(pev);
1241	}
1242
1243	/*
1244	 * We allow max flexibility on how each individual counter shared
1245	 * by the single CPU operates (the mode exclusion and the range).
1246	 */
1247	hwc->config_base = M_PERFCTL_INTERRUPT_ENABLE;
1248
1249	/* Calculate range bits and validate it. */
1250	if (num_possible_cpus() > 1)
1251		check_and_calc_range(event, pev);
1252
1253	hwc->event_base = mipspmu_perf_event_encode(pev);
1254	if (PERF_TYPE_RAW == event->attr.type)
1255		mutex_unlock(&raw_event_mutex);
1256
1257	if (!attr->exclude_user)
1258		hwc->config_base |= M_PERFCTL_USER;
1259	if (!attr->exclude_kernel) {
1260		hwc->config_base |= M_PERFCTL_KERNEL;
1261		/* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */
1262		hwc->config_base |= M_PERFCTL_EXL;
1263	}
1264	if (!attr->exclude_hv)
1265		hwc->config_base |= M_PERFCTL_SUPERVISOR;
1266
1267	hwc->config_base &= M_PERFCTL_CONFIG_MASK;
1268	/*
1269	 * The event can belong to another cpu. We do not assign a local
1270	 * counter for it for now.
1271	 */
1272	hwc->idx = -1;
1273	hwc->config = 0;
1274
1275	if (!hwc->sample_period) {
1276		hwc->sample_period  = mipspmu.max_period;
1277		hwc->last_period    = hwc->sample_period;
1278		local64_set(&hwc->period_left, hwc->sample_period);
1279	}
1280
1281	err = 0;
1282	if (event->group_leader != event) {
1283		err = validate_group(event);
1284		if (err)
1285			return -EINVAL;
1286	}
1287
1288	event->destroy = hw_perf_event_destroy;
1289	return err;
1290}
1291
1292static void pause_local_counters(void)
1293{
1294	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1295	int ctr = mipspmu.num_counters;
1296	unsigned long flags;
1297
1298	local_irq_save(flags);
1299	do {
1300		ctr--;
1301		cpuc->saved_ctrl[ctr] = mipsxx_pmu_read_control(ctr);
1302		mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr] &
1303					 ~M_PERFCTL_COUNT_EVENT_WHENEVER);
1304	} while (ctr > 0);
1305	local_irq_restore(flags);
1306}
1307
1308static void resume_local_counters(void)
1309{
1310	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1311	int ctr = mipspmu.num_counters;
1312
1313	do {
1314		ctr--;
1315		mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr]);
1316	} while (ctr > 0);
1317}
1318
1319static int mipsxx_pmu_handle_shared_irq(void)
1320{
1321	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1322	struct perf_sample_data data;
1323	unsigned int counters = mipspmu.num_counters;
1324	u64 counter;
1325	int handled = IRQ_NONE;
1326	struct pt_regs *regs;
1327
1328	if (cpu_has_mips_r2 && !(read_c0_cause() & (1 << 26)))
1329		return handled;
1330	/*
1331	 * First we pause the local counters, so that when we are locked
1332	 * here, the counters are all paused. When it gets locked due to
1333	 * perf_disable(), the timer interrupt handler will be delayed.
1334	 *
1335	 * See also mipsxx_pmu_start().
1336	 */
1337	pause_local_counters();
1338#ifdef CONFIG_MIPS_MT_SMP
1339	read_lock(&pmuint_rwlock);
1340#endif
1341
1342	regs = get_irq_regs();
1343
1344	perf_sample_data_init(&data, 0);
1345
1346	switch (counters) {
1347#define HANDLE_COUNTER(n)						\
1348	case n + 1:							\
1349		if (test_bit(n, cpuc->used_mask)) {			\
1350			counter = mipspmu.read_counter(n);		\
1351			if (counter & mipspmu.overflow) {		\
1352				handle_associated_event(cpuc, n, &data, regs); \
1353				handled = IRQ_HANDLED;			\
1354			}						\
1355		}
1356	HANDLE_COUNTER(3)
1357	HANDLE_COUNTER(2)
1358	HANDLE_COUNTER(1)
1359	HANDLE_COUNTER(0)
1360	}
1361
1362	/*
1363	 * Do all the work for the pending perf events. We can do this
1364	 * in here because the performance counter interrupt is a regular
1365	 * interrupt, not NMI.
1366	 */
1367	if (handled == IRQ_HANDLED)
1368		irq_work_run();
1369
1370#ifdef CONFIG_MIPS_MT_SMP
1371	read_unlock(&pmuint_rwlock);
1372#endif
1373	resume_local_counters();
1374	return handled;
1375}
1376
1377static irqreturn_t mipsxx_pmu_handle_irq(int irq, void *dev)
1378{
1379	return mipsxx_pmu_handle_shared_irq();
1380}
1381
1382/* 24K */
1383#define IS_BOTH_COUNTERS_24K_EVENT(b)					\
1384	((b) == 0 || (b) == 1 || (b) == 11)
1385
1386/* 34K */
1387#define IS_BOTH_COUNTERS_34K_EVENT(b)					\
1388	((b) == 0 || (b) == 1 || (b) == 11)
1389#ifdef CONFIG_MIPS_MT_SMP
1390#define IS_RANGE_P_34K_EVENT(r, b)					\
1391	((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||		\
1392	 (b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 ||		\
1393	 (r) == 176 || ((b) >= 50 && (b) <= 55) ||			\
1394	 ((b) >= 64 && (b) <= 67))
1395#define IS_RANGE_V_34K_EVENT(r)	((r) == 47)
1396#endif
1397
1398/* 74K */
1399#define IS_BOTH_COUNTERS_74K_EVENT(b)					\
1400	((b) == 0 || (b) == 1)
1401
1402/* 1004K */
1403#define IS_BOTH_COUNTERS_1004K_EVENT(b)					\
1404	((b) == 0 || (b) == 1 || (b) == 11)
1405#ifdef CONFIG_MIPS_MT_SMP
1406#define IS_RANGE_P_1004K_EVENT(r, b)					\
1407	((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||		\
1408	 (b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 ||		\
1409	 (r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) ||	\
1410	 (r) == 188 || (b) == 61 || (b) == 62 ||			\
1411	 ((b) >= 64 && (b) <= 67))
1412#define IS_RANGE_V_1004K_EVENT(r)	((r) == 47)
1413#endif
1414
1415/*
1416 * User can use 0-255 raw events, where 0-127 for the events of even
1417 * counters, and 128-255 for odd counters. Note that bit 7 is used to
1418 * indicate the parity. So, for example, when user wants to take the
1419 * Event Num of 15 for odd counters (by referring to the user manual),
1420 * then 128 needs to be added to 15 as the input for the event config,
1421 * i.e., 143 (0x8F) to be used.
1422 */
1423static const struct mips_perf_event *mipsxx_pmu_map_raw_event(u64 config)
1424{
1425	unsigned int raw_id = config & 0xff;
1426	unsigned int base_id = raw_id & 0x7f;
1427
1428	raw_event.event_id = base_id;
1429
1430	switch (current_cpu_type()) {
1431	case CPU_24K:
1432		if (IS_BOTH_COUNTERS_24K_EVENT(base_id))
1433			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1434		else
1435			raw_event.cntr_mask =
1436				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1437#ifdef CONFIG_MIPS_MT_SMP
1438		/*
1439		 * This is actually doing nothing. Non-multithreading
1440		 * CPUs will not check and calculate the range.
1441		 */
1442		raw_event.range = P;
1443#endif
1444		break;
1445	case CPU_34K:
1446		if (IS_BOTH_COUNTERS_34K_EVENT(base_id))
1447			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1448		else
1449			raw_event.cntr_mask =
1450				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1451#ifdef CONFIG_MIPS_MT_SMP
1452		if (IS_RANGE_P_34K_EVENT(raw_id, base_id))
1453			raw_event.range = P;
1454		else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id)))
1455			raw_event.range = V;
1456		else
1457			raw_event.range = T;
1458#endif
1459		break;
1460	case CPU_74K:
1461		if (IS_BOTH_COUNTERS_74K_EVENT(base_id))
1462			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1463		else
1464			raw_event.cntr_mask =
1465				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1466#ifdef CONFIG_MIPS_MT_SMP
1467		raw_event.range = P;
1468#endif
1469		break;
1470	case CPU_1004K:
1471		if (IS_BOTH_COUNTERS_1004K_EVENT(base_id))
1472			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1473		else
1474			raw_event.cntr_mask =
1475				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1476#ifdef CONFIG_MIPS_MT_SMP
1477		if (IS_RANGE_P_1004K_EVENT(raw_id, base_id))
1478			raw_event.range = P;
1479		else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id)))
1480			raw_event.range = V;
1481		else
1482			raw_event.range = T;
1483#endif
1484		break;
1485	}
1486
1487	return &raw_event;
1488}
1489
1490static const struct mips_perf_event *octeon_pmu_map_raw_event(u64 config)
1491{
1492	unsigned int raw_id = config & 0xff;
1493	unsigned int base_id = raw_id & 0x7f;
1494
1495
1496	raw_event.cntr_mask = CNTR_ALL;
1497	raw_event.event_id = base_id;
1498
1499	if (current_cpu_type() == CPU_CAVIUM_OCTEON2) {
1500		if (base_id > 0x42)
1501			return ERR_PTR(-EOPNOTSUPP);
1502	} else {
1503		if (base_id > 0x3a)
1504			return ERR_PTR(-EOPNOTSUPP);
1505	}
1506
1507	switch (base_id) {
1508	case 0x00:
1509	case 0x0f:
1510	case 0x1e:
1511	case 0x1f:
1512	case 0x2f:
1513	case 0x34:
1514	case 0x3b ... 0x3f:
1515		return ERR_PTR(-EOPNOTSUPP);
1516	default:
1517		break;
1518	}
1519
1520	return &raw_event;
1521}
1522
1523static int __init
1524init_hw_perf_events(void)
1525{
1526	int counters, irq;
1527	int counter_bits;
1528
1529	pr_info("Performance counters: ");
1530
1531	counters = n_counters();
1532	if (counters == 0) {
1533		pr_cont("No available PMU.\n");
1534		return -ENODEV;
1535	}
1536
1537#ifdef CONFIG_MIPS_MT_SMP
1538	cpu_has_mipsmt_pertccounters = read_c0_config7() & (1<<19);
1539	if (!cpu_has_mipsmt_pertccounters)
1540		counters = counters_total_to_per_cpu(counters);
1541#endif
1542
1543#ifdef MSC01E_INT_BASE
1544	if (cpu_has_veic) {
1545		/*
1546		 * Using platform specific interrupt controller defines.
1547		 */
1548		irq = MSC01E_INT_BASE + MSC01E_INT_PERFCTR;
1549	} else {
1550#endif
1551		if (cp0_perfcount_irq >= 0)
1552			irq = MIPS_CPU_IRQ_BASE + cp0_perfcount_irq;
1553		else
1554			irq = -1;
1555#ifdef MSC01E_INT_BASE
1556	}
1557#endif
1558
1559	mipspmu.map_raw_event = mipsxx_pmu_map_raw_event;
1560
1561	switch (current_cpu_type()) {
1562	case CPU_24K:
1563		mipspmu.name = "mips/24K";
1564		mipspmu.general_event_map = &mipsxxcore_event_map;
1565		mipspmu.cache_event_map = &mipsxxcore_cache_map;
1566		break;
1567	case CPU_34K:
1568		mipspmu.name = "mips/34K";
1569		mipspmu.general_event_map = &mipsxxcore_event_map;
1570		mipspmu.cache_event_map = &mipsxxcore_cache_map;
1571		break;
1572	case CPU_74K:
1573		mipspmu.name = "mips/74K";
1574		mipspmu.general_event_map = &mipsxx74Kcore_event_map;
1575		mipspmu.cache_event_map = &mipsxx74Kcore_cache_map;
1576		break;
1577	case CPU_1004K:
1578		mipspmu.name = "mips/1004K";
1579		mipspmu.general_event_map = &mipsxxcore_event_map;
1580		mipspmu.cache_event_map = &mipsxxcore_cache_map;
1581		break;
1582	case CPU_CAVIUM_OCTEON:
1583	case CPU_CAVIUM_OCTEON_PLUS:
1584	case CPU_CAVIUM_OCTEON2:
1585		mipspmu.name = "octeon";
1586		mipspmu.general_event_map = &octeon_event_map;
1587		mipspmu.cache_event_map = &octeon_cache_map;
1588		mipspmu.map_raw_event = octeon_pmu_map_raw_event;
1589		break;
1590	default:
1591		pr_cont("Either hardware does not support performance "
1592			"counters, or not yet implemented.\n");
1593		return -ENODEV;
1594	}
1595
1596	mipspmu.num_counters = counters;
1597	mipspmu.irq = irq;
1598
1599	if (read_c0_perfctrl0() & M_PERFCTL_WIDE) {
1600		mipspmu.max_period = (1ULL << 63) - 1;
1601		mipspmu.valid_count = (1ULL << 63) - 1;
1602		mipspmu.overflow = 1ULL << 63;
1603		mipspmu.read_counter = mipsxx_pmu_read_counter_64;
1604		mipspmu.write_counter = mipsxx_pmu_write_counter_64;
1605		counter_bits = 64;
1606	} else {
1607		mipspmu.max_period = (1ULL << 31) - 1;
1608		mipspmu.valid_count = (1ULL << 31) - 1;
1609		mipspmu.overflow = 1ULL << 31;
1610		mipspmu.read_counter = mipsxx_pmu_read_counter;
1611		mipspmu.write_counter = mipsxx_pmu_write_counter;
1612		counter_bits = 32;
1613	}
1614
1615	on_each_cpu(reset_counters, (void *)(long)counters, 1);
1616
1617	pr_cont("%s PMU enabled, %d %d-bit counters available to each "
1618		"CPU, irq %d%s\n", mipspmu.name, counters, counter_bits, irq,
1619		irq < 0 ? " (share with timer interrupt)" : "");
1620
1621	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1622
1623	return 0;
1624}
1625early_initcall(init_hw_perf_events);
1626