perf_event_mipsxx.c revision 82091564cfd7ab8def42777a9c662dbf655c5d25
1/*
2 * Linux performance counter support for MIPS.
3 *
4 * Copyright (C) 2010 MIPS Technologies, Inc.
5 * Copyright (C) 2011 Cavium Networks, Inc.
6 * Author: Deng-Cheng Zhu
7 *
8 * This code is based on the implementation for ARM, which is in turn
9 * based on the sparc64 perf event code and the x86 code. Performance
10 * counter access is based on the MIPS Oprofile code. And the callchain
11 * support references the code of MIPS stacktrace.c.
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License version 2 as
15 * published by the Free Software Foundation.
16 */
17
18#include <linux/cpumask.h>
19#include <linux/interrupt.h>
20#include <linux/smp.h>
21#include <linux/kernel.h>
22#include <linux/perf_event.h>
23#include <linux/uaccess.h>
24
25#include <asm/irq.h>
26#include <asm/irq_regs.h>
27#include <asm/stacktrace.h>
28#include <asm/time.h> /* For perf_irq */
29
30#define MIPS_MAX_HWEVENTS 4
31
32struct cpu_hw_events {
33	/* Array of events on this cpu. */
34	struct perf_event	*events[MIPS_MAX_HWEVENTS];
35
36	/*
37	 * Set the bit (indexed by the counter number) when the counter
38	 * is used for an event.
39	 */
40	unsigned long		used_mask[BITS_TO_LONGS(MIPS_MAX_HWEVENTS)];
41
42	/*
43	 * Software copy of the control register for each performance counter.
44	 * MIPS CPUs vary in performance counters. They use this differently,
45	 * and even may not use it.
46	 */
47	unsigned int		saved_ctrl[MIPS_MAX_HWEVENTS];
48};
49DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
50	.saved_ctrl = {0},
51};
52
53/* The description of MIPS performance events. */
54struct mips_perf_event {
55	unsigned int event_id;
56	/*
57	 * MIPS performance counters are indexed starting from 0.
58	 * CNTR_EVEN indicates the indexes of the counters to be used are
59	 * even numbers.
60	 */
61	unsigned int cntr_mask;
62	#define CNTR_EVEN	0x55555555
63	#define CNTR_ODD	0xaaaaaaaa
64	#define CNTR_ALL	0xffffffff
65#ifdef CONFIG_MIPS_MT_SMP
66	enum {
67		T  = 0,
68		V  = 1,
69		P  = 2,
70	} range;
71#else
72	#define T
73	#define V
74	#define P
75#endif
76};
77
78static struct mips_perf_event raw_event;
79static DEFINE_MUTEX(raw_event_mutex);
80
81#define UNSUPPORTED_PERF_EVENT_ID 0xffffffff
82#define C(x) PERF_COUNT_HW_CACHE_##x
83
84struct mips_pmu {
85	u64		max_period;
86	u64		valid_count;
87	u64		overflow;
88	const char	*name;
89	int		irq;
90	u64		(*read_counter)(unsigned int idx);
91	void		(*write_counter)(unsigned int idx, u64 val);
92	const struct mips_perf_event *(*map_raw_event)(u64 config);
93	const struct mips_perf_event (*general_event_map)[PERF_COUNT_HW_MAX];
94	const struct mips_perf_event (*cache_event_map)
95				[PERF_COUNT_HW_CACHE_MAX]
96				[PERF_COUNT_HW_CACHE_OP_MAX]
97				[PERF_COUNT_HW_CACHE_RESULT_MAX];
98	unsigned int	num_counters;
99};
100
101static struct mips_pmu mipspmu;
102
103#define M_CONFIG1_PC	(1 << 4)
104
105#define M_PERFCTL_EXL			(1      <<  0)
106#define M_PERFCTL_KERNEL		(1      <<  1)
107#define M_PERFCTL_SUPERVISOR		(1      <<  2)
108#define M_PERFCTL_USER			(1      <<  3)
109#define M_PERFCTL_INTERRUPT_ENABLE	(1      <<  4)
110#define M_PERFCTL_EVENT(event)		(((event) & 0x3ff)  << 5)
111#define M_PERFCTL_VPEID(vpe)		((vpe)    << 16)
112#define M_PERFCTL_MT_EN(filter)		((filter) << 20)
113#define    M_TC_EN_ALL			M_PERFCTL_MT_EN(0)
114#define    M_TC_EN_VPE			M_PERFCTL_MT_EN(1)
115#define    M_TC_EN_TC			M_PERFCTL_MT_EN(2)
116#define M_PERFCTL_TCID(tcid)		((tcid)   << 22)
117#define M_PERFCTL_WIDE			(1      << 30)
118#define M_PERFCTL_MORE			(1      << 31)
119
120#define M_PERFCTL_COUNT_EVENT_WHENEVER	(M_PERFCTL_EXL |		\
121					M_PERFCTL_KERNEL |		\
122					M_PERFCTL_USER |		\
123					M_PERFCTL_SUPERVISOR |		\
124					M_PERFCTL_INTERRUPT_ENABLE)
125
126#ifdef CONFIG_MIPS_MT_SMP
127#define M_PERFCTL_CONFIG_MASK		0x3fff801f
128#else
129#define M_PERFCTL_CONFIG_MASK		0x1f
130#endif
131#define M_PERFCTL_EVENT_MASK		0xfe0
132
133
134#ifdef CONFIG_MIPS_MT_SMP
135static int cpu_has_mipsmt_pertccounters;
136
137static DEFINE_RWLOCK(pmuint_rwlock);
138
139/*
140 * FIXME: For VSMP, vpe_id() is redefined for Perf-events, because
141 * cpu_data[cpuid].vpe_id reports 0 for _both_ CPUs.
142 */
143#if defined(CONFIG_HW_PERF_EVENTS)
144#define vpe_id()	(cpu_has_mipsmt_pertccounters ? \
145			0 : smp_processor_id())
146#else
147#define vpe_id()	(cpu_has_mipsmt_pertccounters ? \
148			0 : cpu_data[smp_processor_id()].vpe_id)
149#endif
150
151/* Copied from op_model_mipsxx.c */
152static unsigned int vpe_shift(void)
153{
154	if (num_possible_cpus() > 1)
155		return 1;
156
157	return 0;
158}
159
160static unsigned int counters_total_to_per_cpu(unsigned int counters)
161{
162	return counters >> vpe_shift();
163}
164
165static unsigned int counters_per_cpu_to_total(unsigned int counters)
166{
167	return counters << vpe_shift();
168}
169
170#else /* !CONFIG_MIPS_MT_SMP */
171#define vpe_id()	0
172
173#endif /* CONFIG_MIPS_MT_SMP */
174
175static void resume_local_counters(void);
176static void pause_local_counters(void);
177static irqreturn_t mipsxx_pmu_handle_irq(int, void *);
178static int mipsxx_pmu_handle_shared_irq(void);
179
180static unsigned int mipsxx_pmu_swizzle_perf_idx(unsigned int idx)
181{
182	if (vpe_id() == 1)
183		idx = (idx + 2) & 3;
184	return idx;
185}
186
187static u64 mipsxx_pmu_read_counter(unsigned int idx)
188{
189	idx = mipsxx_pmu_swizzle_perf_idx(idx);
190
191	switch (idx) {
192	case 0:
193		/*
194		 * The counters are unsigned, we must cast to truncate
195		 * off the high bits.
196		 */
197		return (u32)read_c0_perfcntr0();
198	case 1:
199		return (u32)read_c0_perfcntr1();
200	case 2:
201		return (u32)read_c0_perfcntr2();
202	case 3:
203		return (u32)read_c0_perfcntr3();
204	default:
205		WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
206		return 0;
207	}
208}
209
210static u64 mipsxx_pmu_read_counter_64(unsigned int idx)
211{
212	idx = mipsxx_pmu_swizzle_perf_idx(idx);
213
214	switch (idx) {
215	case 0:
216		return read_c0_perfcntr0_64();
217	case 1:
218		return read_c0_perfcntr1_64();
219	case 2:
220		return read_c0_perfcntr2_64();
221	case 3:
222		return read_c0_perfcntr3_64();
223	default:
224		WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
225		return 0;
226	}
227}
228
229static void mipsxx_pmu_write_counter(unsigned int idx, u64 val)
230{
231	idx = mipsxx_pmu_swizzle_perf_idx(idx);
232
233	switch (idx) {
234	case 0:
235		write_c0_perfcntr0(val);
236		return;
237	case 1:
238		write_c0_perfcntr1(val);
239		return;
240	case 2:
241		write_c0_perfcntr2(val);
242		return;
243	case 3:
244		write_c0_perfcntr3(val);
245		return;
246	}
247}
248
249static void mipsxx_pmu_write_counter_64(unsigned int idx, u64 val)
250{
251	idx = mipsxx_pmu_swizzle_perf_idx(idx);
252
253	switch (idx) {
254	case 0:
255		write_c0_perfcntr0_64(val);
256		return;
257	case 1:
258		write_c0_perfcntr1_64(val);
259		return;
260	case 2:
261		write_c0_perfcntr2_64(val);
262		return;
263	case 3:
264		write_c0_perfcntr3_64(val);
265		return;
266	}
267}
268
269static unsigned int mipsxx_pmu_read_control(unsigned int idx)
270{
271	idx = mipsxx_pmu_swizzle_perf_idx(idx);
272
273	switch (idx) {
274	case 0:
275		return read_c0_perfctrl0();
276	case 1:
277		return read_c0_perfctrl1();
278	case 2:
279		return read_c0_perfctrl2();
280	case 3:
281		return read_c0_perfctrl3();
282	default:
283		WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
284		return 0;
285	}
286}
287
288static void mipsxx_pmu_write_control(unsigned int idx, unsigned int val)
289{
290	idx = mipsxx_pmu_swizzle_perf_idx(idx);
291
292	switch (idx) {
293	case 0:
294		write_c0_perfctrl0(val);
295		return;
296	case 1:
297		write_c0_perfctrl1(val);
298		return;
299	case 2:
300		write_c0_perfctrl2(val);
301		return;
302	case 3:
303		write_c0_perfctrl3(val);
304		return;
305	}
306}
307
308static int mipsxx_pmu_alloc_counter(struct cpu_hw_events *cpuc,
309				    struct hw_perf_event *hwc)
310{
311	int i;
312
313	/*
314	 * We only need to care the counter mask. The range has been
315	 * checked definitely.
316	 */
317	unsigned long cntr_mask = (hwc->event_base >> 8) & 0xffff;
318
319	for (i = mipspmu.num_counters - 1; i >= 0; i--) {
320		/*
321		 * Note that some MIPS perf events can be counted by both
322		 * even and odd counters, wheresas many other are only by
323		 * even _or_ odd counters. This introduces an issue that
324		 * when the former kind of event takes the counter the
325		 * latter kind of event wants to use, then the "counter
326		 * allocation" for the latter event will fail. In fact if
327		 * they can be dynamically swapped, they both feel happy.
328		 * But here we leave this issue alone for now.
329		 */
330		if (test_bit(i, &cntr_mask) &&
331			!test_and_set_bit(i, cpuc->used_mask))
332			return i;
333	}
334
335	return -EAGAIN;
336}
337
338static void mipsxx_pmu_enable_event(struct hw_perf_event *evt, int idx)
339{
340	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
341
342	WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
343
344	cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0xff) |
345		(evt->config_base & M_PERFCTL_CONFIG_MASK) |
346		/* Make sure interrupt enabled. */
347		M_PERFCTL_INTERRUPT_ENABLE;
348	/*
349	 * We do not actually let the counter run. Leave it until start().
350	 */
351}
352
353static void mipsxx_pmu_disable_event(int idx)
354{
355	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
356	unsigned long flags;
357
358	WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
359
360	local_irq_save(flags);
361	cpuc->saved_ctrl[idx] = mipsxx_pmu_read_control(idx) &
362		~M_PERFCTL_COUNT_EVENT_WHENEVER;
363	mipsxx_pmu_write_control(idx, cpuc->saved_ctrl[idx]);
364	local_irq_restore(flags);
365}
366
367static int mipspmu_event_set_period(struct perf_event *event,
368				    struct hw_perf_event *hwc,
369				    int idx)
370{
371	u64 left = local64_read(&hwc->period_left);
372	u64 period = hwc->sample_period;
373	int ret = 0;
374
375	if (unlikely((left + period) & (1ULL << 63))) {
376		/* left underflowed by more than period. */
377		left = period;
378		local64_set(&hwc->period_left, left);
379		hwc->last_period = period;
380		ret = 1;
381	} else	if (unlikely((left + period) <= period)) {
382		/* left underflowed by less than period. */
383		left += period;
384		local64_set(&hwc->period_left, left);
385		hwc->last_period = period;
386		ret = 1;
387	}
388
389	if (left > mipspmu.max_period) {
390		left = mipspmu.max_period;
391		local64_set(&hwc->period_left, left);
392	}
393
394	local64_set(&hwc->prev_count, mipspmu.overflow - left);
395
396	mipspmu.write_counter(idx, mipspmu.overflow - left);
397
398	perf_event_update_userpage(event);
399
400	return ret;
401}
402
403static void mipspmu_event_update(struct perf_event *event,
404				 struct hw_perf_event *hwc,
405				 int idx)
406{
407	u64 prev_raw_count, new_raw_count;
408	u64 delta;
409
410again:
411	prev_raw_count = local64_read(&hwc->prev_count);
412	new_raw_count = mipspmu.read_counter(idx);
413
414	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
415				new_raw_count) != prev_raw_count)
416		goto again;
417
418	delta = new_raw_count - prev_raw_count;
419
420	local64_add(delta, &event->count);
421	local64_sub(delta, &hwc->period_left);
422}
423
424static void mipspmu_start(struct perf_event *event, int flags)
425{
426	struct hw_perf_event *hwc = &event->hw;
427
428	if (flags & PERF_EF_RELOAD)
429		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
430
431	hwc->state = 0;
432
433	/* Set the period for the event. */
434	mipspmu_event_set_period(event, hwc, hwc->idx);
435
436	/* Enable the event. */
437	mipsxx_pmu_enable_event(hwc, hwc->idx);
438}
439
440static void mipspmu_stop(struct perf_event *event, int flags)
441{
442	struct hw_perf_event *hwc = &event->hw;
443
444	if (!(hwc->state & PERF_HES_STOPPED)) {
445		/* We are working on a local event. */
446		mipsxx_pmu_disable_event(hwc->idx);
447		barrier();
448		mipspmu_event_update(event, hwc, hwc->idx);
449		hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
450	}
451}
452
453static int mipspmu_add(struct perf_event *event, int flags)
454{
455	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
456	struct hw_perf_event *hwc = &event->hw;
457	int idx;
458	int err = 0;
459
460	perf_pmu_disable(event->pmu);
461
462	/* To look for a free counter for this event. */
463	idx = mipsxx_pmu_alloc_counter(cpuc, hwc);
464	if (idx < 0) {
465		err = idx;
466		goto out;
467	}
468
469	/*
470	 * If there is an event in the counter we are going to use then
471	 * make sure it is disabled.
472	 */
473	event->hw.idx = idx;
474	mipsxx_pmu_disable_event(idx);
475	cpuc->events[idx] = event;
476
477	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
478	if (flags & PERF_EF_START)
479		mipspmu_start(event, PERF_EF_RELOAD);
480
481	/* Propagate our changes to the userspace mapping. */
482	perf_event_update_userpage(event);
483
484out:
485	perf_pmu_enable(event->pmu);
486	return err;
487}
488
489static void mipspmu_del(struct perf_event *event, int flags)
490{
491	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
492	struct hw_perf_event *hwc = &event->hw;
493	int idx = hwc->idx;
494
495	WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
496
497	mipspmu_stop(event, PERF_EF_UPDATE);
498	cpuc->events[idx] = NULL;
499	clear_bit(idx, cpuc->used_mask);
500
501	perf_event_update_userpage(event);
502}
503
504static void mipspmu_read(struct perf_event *event)
505{
506	struct hw_perf_event *hwc = &event->hw;
507
508	/* Don't read disabled counters! */
509	if (hwc->idx < 0)
510		return;
511
512	mipspmu_event_update(event, hwc, hwc->idx);
513}
514
515static void mipspmu_enable(struct pmu *pmu)
516{
517#ifdef CONFIG_MIPS_MT_SMP
518	write_unlock(&pmuint_rwlock);
519#endif
520	resume_local_counters();
521}
522
523/*
524 * MIPS performance counters can be per-TC. The control registers can
525 * not be directly accessed accross CPUs. Hence if we want to do global
526 * control, we need cross CPU calls. on_each_cpu() can help us, but we
527 * can not make sure this function is called with interrupts enabled. So
528 * here we pause local counters and then grab a rwlock and leave the
529 * counters on other CPUs alone. If any counter interrupt raises while
530 * we own the write lock, simply pause local counters on that CPU and
531 * spin in the handler. Also we know we won't be switched to another
532 * CPU after pausing local counters and before grabbing the lock.
533 */
534static void mipspmu_disable(struct pmu *pmu)
535{
536	pause_local_counters();
537#ifdef CONFIG_MIPS_MT_SMP
538	write_lock(&pmuint_rwlock);
539#endif
540}
541
542static atomic_t active_events = ATOMIC_INIT(0);
543static DEFINE_MUTEX(pmu_reserve_mutex);
544static int (*save_perf_irq)(void);
545
546static int mipspmu_get_irq(void)
547{
548	int err;
549
550	if (mipspmu.irq >= 0) {
551		/* Request my own irq handler. */
552		err = request_irq(mipspmu.irq, mipsxx_pmu_handle_irq,
553			IRQF_PERCPU | IRQF_NOBALANCING,
554			"mips_perf_pmu", NULL);
555		if (err) {
556			pr_warning("Unable to request IRQ%d for MIPS "
557			   "performance counters!\n", mipspmu.irq);
558		}
559	} else if (cp0_perfcount_irq < 0) {
560		/*
561		 * We are sharing the irq number with the timer interrupt.
562		 */
563		save_perf_irq = perf_irq;
564		perf_irq = mipsxx_pmu_handle_shared_irq;
565		err = 0;
566	} else {
567		pr_warning("The platform hasn't properly defined its "
568			"interrupt controller.\n");
569		err = -ENOENT;
570	}
571
572	return err;
573}
574
575static void mipspmu_free_irq(void)
576{
577	if (mipspmu.irq >= 0)
578		free_irq(mipspmu.irq, NULL);
579	else if (cp0_perfcount_irq < 0)
580		perf_irq = save_perf_irq;
581}
582
583/*
584 * mipsxx/rm9000/loongson2 have different performance counters, they have
585 * specific low-level init routines.
586 */
587static void reset_counters(void *arg);
588static int __hw_perf_event_init(struct perf_event *event);
589
590static void hw_perf_event_destroy(struct perf_event *event)
591{
592	if (atomic_dec_and_mutex_lock(&active_events,
593				&pmu_reserve_mutex)) {
594		/*
595		 * We must not call the destroy function with interrupts
596		 * disabled.
597		 */
598		on_each_cpu(reset_counters,
599			(void *)(long)mipspmu.num_counters, 1);
600		mipspmu_free_irq();
601		mutex_unlock(&pmu_reserve_mutex);
602	}
603}
604
605static int mipspmu_event_init(struct perf_event *event)
606{
607	int err = 0;
608
609	switch (event->attr.type) {
610	case PERF_TYPE_RAW:
611	case PERF_TYPE_HARDWARE:
612	case PERF_TYPE_HW_CACHE:
613		break;
614
615	default:
616		return -ENOENT;
617	}
618
619	if (event->cpu >= nr_cpumask_bits ||
620	    (event->cpu >= 0 && !cpu_online(event->cpu)))
621		return -ENODEV;
622
623	if (!atomic_inc_not_zero(&active_events)) {
624		if (atomic_read(&active_events) > MIPS_MAX_HWEVENTS) {
625			atomic_dec(&active_events);
626			return -ENOSPC;
627		}
628
629		mutex_lock(&pmu_reserve_mutex);
630		if (atomic_read(&active_events) == 0)
631			err = mipspmu_get_irq();
632
633		if (!err)
634			atomic_inc(&active_events);
635		mutex_unlock(&pmu_reserve_mutex);
636	}
637
638	if (err)
639		return err;
640
641	err = __hw_perf_event_init(event);
642	if (err)
643		hw_perf_event_destroy(event);
644
645	return err;
646}
647
648static struct pmu pmu = {
649	.pmu_enable	= mipspmu_enable,
650	.pmu_disable	= mipspmu_disable,
651	.event_init	= mipspmu_event_init,
652	.add		= mipspmu_add,
653	.del		= mipspmu_del,
654	.start		= mipspmu_start,
655	.stop		= mipspmu_stop,
656	.read		= mipspmu_read,
657};
658
659static unsigned int mipspmu_perf_event_encode(const struct mips_perf_event *pev)
660{
661/*
662 * Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for
663 * event_id.
664 */
665#ifdef CONFIG_MIPS_MT_SMP
666	return ((unsigned int)pev->range << 24) |
667		(pev->cntr_mask & 0xffff00) |
668		(pev->event_id & 0xff);
669#else
670	return (pev->cntr_mask & 0xffff00) |
671		(pev->event_id & 0xff);
672#endif
673}
674
675static const struct mips_perf_event *mipspmu_map_general_event(int idx)
676{
677	const struct mips_perf_event *pev;
678
679	pev = ((*mipspmu.general_event_map)[idx].event_id ==
680		UNSUPPORTED_PERF_EVENT_ID ? ERR_PTR(-EOPNOTSUPP) :
681		&(*mipspmu.general_event_map)[idx]);
682
683	return pev;
684}
685
686static const struct mips_perf_event *mipspmu_map_cache_event(u64 config)
687{
688	unsigned int cache_type, cache_op, cache_result;
689	const struct mips_perf_event *pev;
690
691	cache_type = (config >> 0) & 0xff;
692	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
693		return ERR_PTR(-EINVAL);
694
695	cache_op = (config >> 8) & 0xff;
696	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
697		return ERR_PTR(-EINVAL);
698
699	cache_result = (config >> 16) & 0xff;
700	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
701		return ERR_PTR(-EINVAL);
702
703	pev = &((*mipspmu.cache_event_map)
704					[cache_type]
705					[cache_op]
706					[cache_result]);
707
708	if (pev->event_id == UNSUPPORTED_PERF_EVENT_ID)
709		return ERR_PTR(-EOPNOTSUPP);
710
711	return pev;
712
713}
714
715static int validate_event(struct cpu_hw_events *cpuc,
716	       struct perf_event *event)
717{
718	struct hw_perf_event fake_hwc = event->hw;
719
720	/* Allow mixed event group. So return 1 to pass validation. */
721	if (event->pmu != &pmu || event->state <= PERF_EVENT_STATE_OFF)
722		return 1;
723
724	return mipsxx_pmu_alloc_counter(cpuc, &fake_hwc) >= 0;
725}
726
727static int validate_group(struct perf_event *event)
728{
729	struct perf_event *sibling, *leader = event->group_leader;
730	struct cpu_hw_events fake_cpuc;
731
732	memset(&fake_cpuc, 0, sizeof(fake_cpuc));
733
734	if (!validate_event(&fake_cpuc, leader))
735		return -ENOSPC;
736
737	list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
738		if (!validate_event(&fake_cpuc, sibling))
739			return -ENOSPC;
740	}
741
742	if (!validate_event(&fake_cpuc, event))
743		return -ENOSPC;
744
745	return 0;
746}
747
748/* This is needed by specific irq handlers in perf_event_*.c */
749static void handle_associated_event(struct cpu_hw_events *cpuc,
750				    int idx, struct perf_sample_data *data,
751				    struct pt_regs *regs)
752{
753	struct perf_event *event = cpuc->events[idx];
754	struct hw_perf_event *hwc = &event->hw;
755
756	mipspmu_event_update(event, hwc, idx);
757	data->period = event->hw.last_period;
758	if (!mipspmu_event_set_period(event, hwc, idx))
759		return;
760
761	if (perf_event_overflow(event, data, regs))
762		mipsxx_pmu_disable_event(idx);
763}
764
765
766static int __n_counters(void)
767{
768	if (!(read_c0_config1() & M_CONFIG1_PC))
769		return 0;
770	if (!(read_c0_perfctrl0() & M_PERFCTL_MORE))
771		return 1;
772	if (!(read_c0_perfctrl1() & M_PERFCTL_MORE))
773		return 2;
774	if (!(read_c0_perfctrl2() & M_PERFCTL_MORE))
775		return 3;
776
777	return 4;
778}
779
780static int n_counters(void)
781{
782	int counters;
783
784	switch (current_cpu_type()) {
785	case CPU_R10000:
786		counters = 2;
787		break;
788
789	case CPU_R12000:
790	case CPU_R14000:
791		counters = 4;
792		break;
793
794	default:
795		counters = __n_counters();
796	}
797
798	return counters;
799}
800
801static void reset_counters(void *arg)
802{
803	int counters = (int)(long)arg;
804	switch (counters) {
805	case 4:
806		mipsxx_pmu_write_control(3, 0);
807		mipspmu.write_counter(3, 0);
808	case 3:
809		mipsxx_pmu_write_control(2, 0);
810		mipspmu.write_counter(2, 0);
811	case 2:
812		mipsxx_pmu_write_control(1, 0);
813		mipspmu.write_counter(1, 0);
814	case 1:
815		mipsxx_pmu_write_control(0, 0);
816		mipspmu.write_counter(0, 0);
817	}
818}
819
820/* 24K/34K/1004K cores can share the same event map. */
821static const struct mips_perf_event mipsxxcore_event_map
822				[PERF_COUNT_HW_MAX] = {
823	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
824	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
825	[PERF_COUNT_HW_CACHE_REFERENCES] = { UNSUPPORTED_PERF_EVENT_ID },
826	[PERF_COUNT_HW_CACHE_MISSES] = { UNSUPPORTED_PERF_EVENT_ID },
827	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_EVEN, T },
828	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
829	[PERF_COUNT_HW_BUS_CYCLES] = { UNSUPPORTED_PERF_EVENT_ID },
830};
831
832/* 74K core has different branch event code. */
833static const struct mips_perf_event mipsxx74Kcore_event_map
834				[PERF_COUNT_HW_MAX] = {
835	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
836	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
837	[PERF_COUNT_HW_CACHE_REFERENCES] = { UNSUPPORTED_PERF_EVENT_ID },
838	[PERF_COUNT_HW_CACHE_MISSES] = { UNSUPPORTED_PERF_EVENT_ID },
839	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x27, CNTR_EVEN, T },
840	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x27, CNTR_ODD, T },
841	[PERF_COUNT_HW_BUS_CYCLES] = { UNSUPPORTED_PERF_EVENT_ID },
842};
843
844/* 24K/34K/1004K cores can share the same cache event map. */
845static const struct mips_perf_event mipsxxcore_cache_map
846				[PERF_COUNT_HW_CACHE_MAX]
847				[PERF_COUNT_HW_CACHE_OP_MAX]
848				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
849[C(L1D)] = {
850	/*
851	 * Like some other architectures (e.g. ARM), the performance
852	 * counters don't differentiate between read and write
853	 * accesses/misses, so this isn't strictly correct, but it's the
854	 * best we can do. Writes and reads get combined.
855	 */
856	[C(OP_READ)] = {
857		[C(RESULT_ACCESS)]	= { 0x0a, CNTR_EVEN, T },
858		[C(RESULT_MISS)]	= { 0x0b, CNTR_EVEN | CNTR_ODD, T },
859	},
860	[C(OP_WRITE)] = {
861		[C(RESULT_ACCESS)]	= { 0x0a, CNTR_EVEN, T },
862		[C(RESULT_MISS)]	= { 0x0b, CNTR_EVEN | CNTR_ODD, T },
863	},
864	[C(OP_PREFETCH)] = {
865		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
866		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
867	},
868},
869[C(L1I)] = {
870	[C(OP_READ)] = {
871		[C(RESULT_ACCESS)]	= { 0x09, CNTR_EVEN, T },
872		[C(RESULT_MISS)]	= { 0x09, CNTR_ODD, T },
873	},
874	[C(OP_WRITE)] = {
875		[C(RESULT_ACCESS)]	= { 0x09, CNTR_EVEN, T },
876		[C(RESULT_MISS)]	= { 0x09, CNTR_ODD, T },
877	},
878	[C(OP_PREFETCH)] = {
879		[C(RESULT_ACCESS)]	= { 0x14, CNTR_EVEN, T },
880		/*
881		 * Note that MIPS has only "hit" events countable for
882		 * the prefetch operation.
883		 */
884		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
885	},
886},
887[C(LL)] = {
888	[C(OP_READ)] = {
889		[C(RESULT_ACCESS)]	= { 0x15, CNTR_ODD, P },
890		[C(RESULT_MISS)]	= { 0x16, CNTR_EVEN, P },
891	},
892	[C(OP_WRITE)] = {
893		[C(RESULT_ACCESS)]	= { 0x15, CNTR_ODD, P },
894		[C(RESULT_MISS)]	= { 0x16, CNTR_EVEN, P },
895	},
896	[C(OP_PREFETCH)] = {
897		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
898		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
899	},
900},
901[C(DTLB)] = {
902	[C(OP_READ)] = {
903		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
904		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
905	},
906	[C(OP_WRITE)] = {
907		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
908		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
909	},
910	[C(OP_PREFETCH)] = {
911		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
912		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
913	},
914},
915[C(ITLB)] = {
916	[C(OP_READ)] = {
917		[C(RESULT_ACCESS)]	= { 0x05, CNTR_EVEN, T },
918		[C(RESULT_MISS)]	= { 0x05, CNTR_ODD, T },
919	},
920	[C(OP_WRITE)] = {
921		[C(RESULT_ACCESS)]	= { 0x05, CNTR_EVEN, T },
922		[C(RESULT_MISS)]	= { 0x05, CNTR_ODD, T },
923	},
924	[C(OP_PREFETCH)] = {
925		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
926		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
927	},
928},
929[C(BPU)] = {
930	/* Using the same code for *HW_BRANCH* */
931	[C(OP_READ)] = {
932		[C(RESULT_ACCESS)]	= { 0x02, CNTR_EVEN, T },
933		[C(RESULT_MISS)]	= { 0x02, CNTR_ODD, T },
934	},
935	[C(OP_WRITE)] = {
936		[C(RESULT_ACCESS)]	= { 0x02, CNTR_EVEN, T },
937		[C(RESULT_MISS)]	= { 0x02, CNTR_ODD, T },
938	},
939	[C(OP_PREFETCH)] = {
940		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
941		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
942	},
943},
944[C(NODE)] = {
945	[C(OP_READ)] = {
946		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
947		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
948	},
949	[C(OP_WRITE)] = {
950		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
951		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
952	},
953	[C(OP_PREFETCH)] = {
954		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
955		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
956	},
957},
958};
959
960/* 74K core has completely different cache event map. */
961static const struct mips_perf_event mipsxx74Kcore_cache_map
962				[PERF_COUNT_HW_CACHE_MAX]
963				[PERF_COUNT_HW_CACHE_OP_MAX]
964				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
965[C(L1D)] = {
966	/*
967	 * Like some other architectures (e.g. ARM), the performance
968	 * counters don't differentiate between read and write
969	 * accesses/misses, so this isn't strictly correct, but it's the
970	 * best we can do. Writes and reads get combined.
971	 */
972	[C(OP_READ)] = {
973		[C(RESULT_ACCESS)]	= { 0x17, CNTR_ODD, T },
974		[C(RESULT_MISS)]	= { 0x18, CNTR_ODD, T },
975	},
976	[C(OP_WRITE)] = {
977		[C(RESULT_ACCESS)]	= { 0x17, CNTR_ODD, T },
978		[C(RESULT_MISS)]	= { 0x18, CNTR_ODD, T },
979	},
980	[C(OP_PREFETCH)] = {
981		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
982		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
983	},
984},
985[C(L1I)] = {
986	[C(OP_READ)] = {
987		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
988		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
989	},
990	[C(OP_WRITE)] = {
991		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
992		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
993	},
994	[C(OP_PREFETCH)] = {
995		[C(RESULT_ACCESS)]	= { 0x34, CNTR_EVEN, T },
996		/*
997		 * Note that MIPS has only "hit" events countable for
998		 * the prefetch operation.
999		 */
1000		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1001	},
1002},
1003[C(LL)] = {
1004	[C(OP_READ)] = {
1005		[C(RESULT_ACCESS)]	= { 0x1c, CNTR_ODD, P },
1006		[C(RESULT_MISS)]	= { 0x1d, CNTR_EVEN | CNTR_ODD, P },
1007	},
1008	[C(OP_WRITE)] = {
1009		[C(RESULT_ACCESS)]	= { 0x1c, CNTR_ODD, P },
1010		[C(RESULT_MISS)]	= { 0x1d, CNTR_EVEN | CNTR_ODD, P },
1011	},
1012	[C(OP_PREFETCH)] = {
1013		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1014		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1015	},
1016},
1017[C(DTLB)] = {
1018	/* 74K core does not have specific DTLB events. */
1019	[C(OP_READ)] = {
1020		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1021		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1022	},
1023	[C(OP_WRITE)] = {
1024		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1025		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1026	},
1027	[C(OP_PREFETCH)] = {
1028		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1029		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1030	},
1031},
1032[C(ITLB)] = {
1033	[C(OP_READ)] = {
1034		[C(RESULT_ACCESS)]	= { 0x04, CNTR_EVEN, T },
1035		[C(RESULT_MISS)]	= { 0x04, CNTR_ODD, T },
1036	},
1037	[C(OP_WRITE)] = {
1038		[C(RESULT_ACCESS)]	= { 0x04, CNTR_EVEN, T },
1039		[C(RESULT_MISS)]	= { 0x04, CNTR_ODD, T },
1040	},
1041	[C(OP_PREFETCH)] = {
1042		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1043		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1044	},
1045},
1046[C(BPU)] = {
1047	/* Using the same code for *HW_BRANCH* */
1048	[C(OP_READ)] = {
1049		[C(RESULT_ACCESS)]	= { 0x27, CNTR_EVEN, T },
1050		[C(RESULT_MISS)]	= { 0x27, CNTR_ODD, T },
1051	},
1052	[C(OP_WRITE)] = {
1053		[C(RESULT_ACCESS)]	= { 0x27, CNTR_EVEN, T },
1054		[C(RESULT_MISS)]	= { 0x27, CNTR_ODD, T },
1055	},
1056	[C(OP_PREFETCH)] = {
1057		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1058		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1059	},
1060},
1061[C(NODE)] = {
1062	[C(OP_READ)] = {
1063		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1064		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1065	},
1066	[C(OP_WRITE)] = {
1067		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1068		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1069	},
1070	[C(OP_PREFETCH)] = {
1071		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1072		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1073	},
1074},
1075};
1076
1077#ifdef CONFIG_MIPS_MT_SMP
1078static void check_and_calc_range(struct perf_event *event,
1079				 const struct mips_perf_event *pev)
1080{
1081	struct hw_perf_event *hwc = &event->hw;
1082
1083	if (event->cpu >= 0) {
1084		if (pev->range > V) {
1085			/*
1086			 * The user selected an event that is processor
1087			 * wide, while expecting it to be VPE wide.
1088			 */
1089			hwc->config_base |= M_TC_EN_ALL;
1090		} else {
1091			/*
1092			 * FIXME: cpu_data[event->cpu].vpe_id reports 0
1093			 * for both CPUs.
1094			 */
1095			hwc->config_base |= M_PERFCTL_VPEID(event->cpu);
1096			hwc->config_base |= M_TC_EN_VPE;
1097		}
1098	} else
1099		hwc->config_base |= M_TC_EN_ALL;
1100}
1101#else
1102static void check_and_calc_range(struct perf_event *event,
1103				 const struct mips_perf_event *pev)
1104{
1105}
1106#endif
1107
1108static int __hw_perf_event_init(struct perf_event *event)
1109{
1110	struct perf_event_attr *attr = &event->attr;
1111	struct hw_perf_event *hwc = &event->hw;
1112	const struct mips_perf_event *pev;
1113	int err;
1114
1115	/* Returning MIPS event descriptor for generic perf event. */
1116	if (PERF_TYPE_HARDWARE == event->attr.type) {
1117		if (event->attr.config >= PERF_COUNT_HW_MAX)
1118			return -EINVAL;
1119		pev = mipspmu_map_general_event(event->attr.config);
1120	} else if (PERF_TYPE_HW_CACHE == event->attr.type) {
1121		pev = mipspmu_map_cache_event(event->attr.config);
1122	} else if (PERF_TYPE_RAW == event->attr.type) {
1123		/* We are working on the global raw event. */
1124		mutex_lock(&raw_event_mutex);
1125		pev = mipspmu.map_raw_event(event->attr.config);
1126	} else {
1127		/* The event type is not (yet) supported. */
1128		return -EOPNOTSUPP;
1129	}
1130
1131	if (IS_ERR(pev)) {
1132		if (PERF_TYPE_RAW == event->attr.type)
1133			mutex_unlock(&raw_event_mutex);
1134		return PTR_ERR(pev);
1135	}
1136
1137	/*
1138	 * We allow max flexibility on how each individual counter shared
1139	 * by the single CPU operates (the mode exclusion and the range).
1140	 */
1141	hwc->config_base = M_PERFCTL_INTERRUPT_ENABLE;
1142
1143	/* Calculate range bits and validate it. */
1144	if (num_possible_cpus() > 1)
1145		check_and_calc_range(event, pev);
1146
1147	hwc->event_base = mipspmu_perf_event_encode(pev);
1148	if (PERF_TYPE_RAW == event->attr.type)
1149		mutex_unlock(&raw_event_mutex);
1150
1151	if (!attr->exclude_user)
1152		hwc->config_base |= M_PERFCTL_USER;
1153	if (!attr->exclude_kernel) {
1154		hwc->config_base |= M_PERFCTL_KERNEL;
1155		/* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */
1156		hwc->config_base |= M_PERFCTL_EXL;
1157	}
1158	if (!attr->exclude_hv)
1159		hwc->config_base |= M_PERFCTL_SUPERVISOR;
1160
1161	hwc->config_base &= M_PERFCTL_CONFIG_MASK;
1162	/*
1163	 * The event can belong to another cpu. We do not assign a local
1164	 * counter for it for now.
1165	 */
1166	hwc->idx = -1;
1167	hwc->config = 0;
1168
1169	if (!hwc->sample_period) {
1170		hwc->sample_period  = mipspmu.max_period;
1171		hwc->last_period    = hwc->sample_period;
1172		local64_set(&hwc->period_left, hwc->sample_period);
1173	}
1174
1175	err = 0;
1176	if (event->group_leader != event) {
1177		err = validate_group(event);
1178		if (err)
1179			return -EINVAL;
1180	}
1181
1182	event->destroy = hw_perf_event_destroy;
1183	return err;
1184}
1185
1186static void pause_local_counters(void)
1187{
1188	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1189	int ctr = mipspmu.num_counters;
1190	unsigned long flags;
1191
1192	local_irq_save(flags);
1193	do {
1194		ctr--;
1195		cpuc->saved_ctrl[ctr] = mipsxx_pmu_read_control(ctr);
1196		mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr] &
1197					 ~M_PERFCTL_COUNT_EVENT_WHENEVER);
1198	} while (ctr > 0);
1199	local_irq_restore(flags);
1200}
1201
1202static void resume_local_counters(void)
1203{
1204	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1205	int ctr = mipspmu.num_counters;
1206
1207	do {
1208		ctr--;
1209		mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr]);
1210	} while (ctr > 0);
1211}
1212
1213static int mipsxx_pmu_handle_shared_irq(void)
1214{
1215	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1216	struct perf_sample_data data;
1217	unsigned int counters = mipspmu.num_counters;
1218	u64 counter;
1219	int handled = IRQ_NONE;
1220	struct pt_regs *regs;
1221
1222	if (cpu_has_mips_r2 && !(read_c0_cause() & (1 << 26)))
1223		return handled;
1224	/*
1225	 * First we pause the local counters, so that when we are locked
1226	 * here, the counters are all paused. When it gets locked due to
1227	 * perf_disable(), the timer interrupt handler will be delayed.
1228	 *
1229	 * See also mipsxx_pmu_start().
1230	 */
1231	pause_local_counters();
1232#ifdef CONFIG_MIPS_MT_SMP
1233	read_lock(&pmuint_rwlock);
1234#endif
1235
1236	regs = get_irq_regs();
1237
1238	perf_sample_data_init(&data, 0);
1239
1240	switch (counters) {
1241#define HANDLE_COUNTER(n)						\
1242	case n + 1:							\
1243		if (test_bit(n, cpuc->used_mask)) {			\
1244			counter = mipspmu.read_counter(n);		\
1245			if (counter & mipspmu.overflow) {		\
1246				handle_associated_event(cpuc, n, &data, regs); \
1247				handled = IRQ_HANDLED;			\
1248			}						\
1249		}
1250	HANDLE_COUNTER(3)
1251	HANDLE_COUNTER(2)
1252	HANDLE_COUNTER(1)
1253	HANDLE_COUNTER(0)
1254	}
1255
1256	/*
1257	 * Do all the work for the pending perf events. We can do this
1258	 * in here because the performance counter interrupt is a regular
1259	 * interrupt, not NMI.
1260	 */
1261	if (handled == IRQ_HANDLED)
1262		irq_work_run();
1263
1264#ifdef CONFIG_MIPS_MT_SMP
1265	read_unlock(&pmuint_rwlock);
1266#endif
1267	resume_local_counters();
1268	return handled;
1269}
1270
1271static irqreturn_t mipsxx_pmu_handle_irq(int irq, void *dev)
1272{
1273	return mipsxx_pmu_handle_shared_irq();
1274}
1275
1276/* 24K */
1277#define IS_UNSUPPORTED_24K_EVENT(r, b)					\
1278	((b) == 12 || (r) == 151 || (r) == 152 || (b) == 26 ||		\
1279	 (b) == 27 || (r) == 28 || (r) == 158 || (b) == 31 ||		\
1280	 (b) == 32 || (b) == 34 || (b) == 36 || (r) == 168 ||		\
1281	 (r) == 172 || (b) == 47 || ((b) >= 56 && (b) <= 63) ||		\
1282	 ((b) >= 68 && (b) <= 127))
1283#define IS_BOTH_COUNTERS_24K_EVENT(b)					\
1284	((b) == 0 || (b) == 1 || (b) == 11)
1285
1286/* 34K */
1287#define IS_UNSUPPORTED_34K_EVENT(r, b)					\
1288	((b) == 12 || (r) == 27 || (r) == 158 || (b) == 36 ||		\
1289	 (b) == 38 || (r) == 175 || ((b) >= 56 && (b) <= 63) ||		\
1290	 ((b) >= 68 && (b) <= 127))
1291#define IS_BOTH_COUNTERS_34K_EVENT(b)					\
1292	((b) == 0 || (b) == 1 || (b) == 11)
1293#ifdef CONFIG_MIPS_MT_SMP
1294#define IS_RANGE_P_34K_EVENT(r, b)					\
1295	((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||		\
1296	 (b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 ||		\
1297	 (r) == 176 || ((b) >= 50 && (b) <= 55) ||			\
1298	 ((b) >= 64 && (b) <= 67))
1299#define IS_RANGE_V_34K_EVENT(r)	((r) == 47)
1300#endif
1301
1302/* 74K */
1303#define IS_UNSUPPORTED_74K_EVENT(r, b)					\
1304	((r) == 5 || ((r) >= 135 && (r) <= 137) ||			\
1305	 ((b) >= 10 && (b) <= 12) || (b) == 22 || (b) == 27 ||		\
1306	 (b) == 33 || (b) == 34 || ((b) >= 47 && (b) <= 49) ||		\
1307	 (r) == 178 || (b) == 55 || (b) == 57 || (b) == 60 ||		\
1308	 (b) == 61 || (r) == 62 || (r) == 191 ||			\
1309	 ((b) >= 64 && (b) <= 127))
1310#define IS_BOTH_COUNTERS_74K_EVENT(b)					\
1311	((b) == 0 || (b) == 1)
1312
1313/* 1004K */
1314#define IS_UNSUPPORTED_1004K_EVENT(r, b)				\
1315	((b) == 12 || (r) == 27 || (r) == 158 || (b) == 38 ||		\
1316	 (r) == 175 || (b) == 63 || ((b) >= 68 && (b) <= 127))
1317#define IS_BOTH_COUNTERS_1004K_EVENT(b)					\
1318	((b) == 0 || (b) == 1 || (b) == 11)
1319#ifdef CONFIG_MIPS_MT_SMP
1320#define IS_RANGE_P_1004K_EVENT(r, b)					\
1321	((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||		\
1322	 (b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 ||		\
1323	 (r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) ||	\
1324	 (r) == 188 || (b) == 61 || (b) == 62 ||			\
1325	 ((b) >= 64 && (b) <= 67))
1326#define IS_RANGE_V_1004K_EVENT(r)	((r) == 47)
1327#endif
1328
1329/*
1330 * User can use 0-255 raw events, where 0-127 for the events of even
1331 * counters, and 128-255 for odd counters. Note that bit 7 is used to
1332 * indicate the parity. So, for example, when user wants to take the
1333 * Event Num of 15 for odd counters (by referring to the user manual),
1334 * then 128 needs to be added to 15 as the input for the event config,
1335 * i.e., 143 (0x8F) to be used.
1336 */
1337static const struct mips_perf_event *mipsxx_pmu_map_raw_event(u64 config)
1338{
1339	unsigned int raw_id = config & 0xff;
1340	unsigned int base_id = raw_id & 0x7f;
1341
1342	switch (current_cpu_type()) {
1343	case CPU_24K:
1344		if (IS_UNSUPPORTED_24K_EVENT(raw_id, base_id))
1345			return ERR_PTR(-EOPNOTSUPP);
1346		raw_event.event_id = base_id;
1347		if (IS_BOTH_COUNTERS_24K_EVENT(base_id))
1348			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1349		else
1350			raw_event.cntr_mask =
1351				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1352#ifdef CONFIG_MIPS_MT_SMP
1353		/*
1354		 * This is actually doing nothing. Non-multithreading
1355		 * CPUs will not check and calculate the range.
1356		 */
1357		raw_event.range = P;
1358#endif
1359		break;
1360	case CPU_34K:
1361		if (IS_UNSUPPORTED_34K_EVENT(raw_id, base_id))
1362			return ERR_PTR(-EOPNOTSUPP);
1363		raw_event.event_id = base_id;
1364		if (IS_BOTH_COUNTERS_34K_EVENT(base_id))
1365			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1366		else
1367			raw_event.cntr_mask =
1368				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1369#ifdef CONFIG_MIPS_MT_SMP
1370		if (IS_RANGE_P_34K_EVENT(raw_id, base_id))
1371			raw_event.range = P;
1372		else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id)))
1373			raw_event.range = V;
1374		else
1375			raw_event.range = T;
1376#endif
1377		break;
1378	case CPU_74K:
1379		if (IS_UNSUPPORTED_74K_EVENT(raw_id, base_id))
1380			return ERR_PTR(-EOPNOTSUPP);
1381		raw_event.event_id = base_id;
1382		if (IS_BOTH_COUNTERS_74K_EVENT(base_id))
1383			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1384		else
1385			raw_event.cntr_mask =
1386				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1387#ifdef CONFIG_MIPS_MT_SMP
1388		raw_event.range = P;
1389#endif
1390		break;
1391	case CPU_1004K:
1392		if (IS_UNSUPPORTED_1004K_EVENT(raw_id, base_id))
1393			return ERR_PTR(-EOPNOTSUPP);
1394		raw_event.event_id = base_id;
1395		if (IS_BOTH_COUNTERS_1004K_EVENT(base_id))
1396			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1397		else
1398			raw_event.cntr_mask =
1399				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1400#ifdef CONFIG_MIPS_MT_SMP
1401		if (IS_RANGE_P_1004K_EVENT(raw_id, base_id))
1402			raw_event.range = P;
1403		else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id)))
1404			raw_event.range = V;
1405		else
1406			raw_event.range = T;
1407#endif
1408		break;
1409	}
1410
1411	return &raw_event;
1412}
1413
1414static int __init
1415init_hw_perf_events(void)
1416{
1417	int counters, irq;
1418	int counter_bits;
1419
1420	pr_info("Performance counters: ");
1421
1422	counters = n_counters();
1423	if (counters == 0) {
1424		pr_cont("No available PMU.\n");
1425		return -ENODEV;
1426	}
1427
1428#ifdef CONFIG_MIPS_MT_SMP
1429	cpu_has_mipsmt_pertccounters = read_c0_config7() & (1<<19);
1430	if (!cpu_has_mipsmt_pertccounters)
1431		counters = counters_total_to_per_cpu(counters);
1432#endif
1433
1434#ifdef MSC01E_INT_BASE
1435	if (cpu_has_veic) {
1436		/*
1437		 * Using platform specific interrupt controller defines.
1438		 */
1439		irq = MSC01E_INT_BASE + MSC01E_INT_PERFCTR;
1440	} else {
1441#endif
1442		if (cp0_perfcount_irq >= 0)
1443			irq = MIPS_CPU_IRQ_BASE + cp0_perfcount_irq;
1444		else
1445			irq = -1;
1446#ifdef MSC01E_INT_BASE
1447	}
1448#endif
1449
1450	mipspmu.map_raw_event = mipsxx_pmu_map_raw_event;
1451
1452	switch (current_cpu_type()) {
1453	case CPU_24K:
1454		mipspmu.name = "mips/24K";
1455		mipspmu.general_event_map = &mipsxxcore_event_map;
1456		mipspmu.cache_event_map = &mipsxxcore_cache_map;
1457		break;
1458	case CPU_34K:
1459		mipspmu.name = "mips/34K";
1460		mipspmu.general_event_map = &mipsxxcore_event_map;
1461		mipspmu.cache_event_map = &mipsxxcore_cache_map;
1462		break;
1463	case CPU_74K:
1464		mipspmu.name = "mips/74K";
1465		mipspmu.general_event_map = &mipsxx74Kcore_event_map;
1466		mipspmu.cache_event_map = &mipsxx74Kcore_cache_map;
1467		break;
1468	case CPU_1004K:
1469		mipspmu.name = "mips/1004K";
1470		mipspmu.general_event_map = &mipsxxcore_event_map;
1471		mipspmu.cache_event_map = &mipsxxcore_cache_map;
1472		break;
1473	default:
1474		pr_cont("Either hardware does not support performance "
1475			"counters, or not yet implemented.\n");
1476		return -ENODEV;
1477	}
1478
1479	mipspmu.num_counters = counters;
1480	mipspmu.irq = irq;
1481
1482	if (read_c0_perfctrl0() & M_PERFCTL_WIDE) {
1483		mipspmu.max_period = (1ULL << 63) - 1;
1484		mipspmu.valid_count = (1ULL << 63) - 1;
1485		mipspmu.overflow = 1ULL << 63;
1486		mipspmu.read_counter = mipsxx_pmu_read_counter_64;
1487		mipspmu.write_counter = mipsxx_pmu_write_counter_64;
1488		counter_bits = 64;
1489	} else {
1490		mipspmu.max_period = (1ULL << 31) - 1;
1491		mipspmu.valid_count = (1ULL << 31) - 1;
1492		mipspmu.overflow = 1ULL << 31;
1493		mipspmu.read_counter = mipsxx_pmu_read_counter;
1494		mipspmu.write_counter = mipsxx_pmu_write_counter;
1495		counter_bits = 32;
1496	}
1497
1498	on_each_cpu(reset_counters, (void *)(long)counters, 1);
1499
1500	pr_cont("%s PMU enabled, %d %d-bit counters available to each "
1501		"CPU, irq %d%s\n", mipspmu.name, counters, counter_bits, irq,
1502		irq < 0 ? " (share with timer interrupt)" : "");
1503
1504	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1505
1506	return 0;
1507}
1508early_initcall(init_hw_perf_events);
1509