1/* 2 * Parisc performance counters 3 * Copyright (C) 2001 Randolph Chung <tausq@debian.org> 4 * 5 * This code is derived, with permission, from HP/UX sources. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2, or (at your option) 10 * any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 20 */ 21 22/* 23 * Edited comment from original sources: 24 * 25 * This driver programs the PCX-U/PCX-W performance counters 26 * on the PA-RISC 2.0 chips. The driver keeps all images now 27 * internally to the kernel to hopefully eliminate the possibility 28 * of a bad image halting the CPU. Also, there are different 29 * images for the PCX-W and later chips vs the PCX-U chips. 30 * 31 * Only 1 process is allowed to access the driver at any time, 32 * so the only protection that is needed is at open and close. 33 * A variable "perf_enabled" is used to hold the state of the 34 * driver. The spinlock "perf_lock" is used to protect the 35 * modification of the state during open/close operations so 36 * multiple processes don't get into the driver simultaneously. 37 * 38 * This driver accesses the processor directly vs going through 39 * the PDC INTRIGUE calls. This is done to eliminate bugs introduced 40 * in various PDC revisions. The code is much more maintainable 41 * and reliable this way vs having to debug on every version of PDC 42 * on every box. 43 */ 44 45#include <linux/capability.h> 46#include <linux/init.h> 47#include <linux/proc_fs.h> 48#include <linux/miscdevice.h> 49#include <linux/spinlock.h> 50 51#include <asm/uaccess.h> 52#include <asm/perf.h> 53#include <asm/parisc-device.h> 54#include <asm/processor.h> 55#include <asm/runway.h> 56#include <asm/io.h> /* for __raw_read() */ 57 58#include "perf_images.h" 59 60#define MAX_RDR_WORDS 24 61#define PERF_VERSION 2 /* derived from hpux's PI v2 interface */ 62 63/* definition of RDR regs */ 64struct rdr_tbl_ent { 65 uint16_t width; 66 uint8_t num_words; 67 uint8_t write_control; 68}; 69 70static int perf_processor_interface __read_mostly = UNKNOWN_INTF; 71static int perf_enabled __read_mostly; 72static spinlock_t perf_lock; 73struct parisc_device *cpu_device __read_mostly; 74 75/* RDRs to write for PCX-W */ 76static const int perf_rdrs_W[] = 77 { 0, 1, 4, 5, 6, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, -1 }; 78 79/* RDRs to write for PCX-U */ 80static const int perf_rdrs_U[] = 81 { 0, 1, 4, 5, 6, 7, 16, 17, 18, 20, 21, 22, 23, 24, 25, -1 }; 82 83/* RDR register descriptions for PCX-W */ 84static const struct rdr_tbl_ent perf_rdr_tbl_W[] = { 85 { 19, 1, 8 }, /* RDR 0 */ 86 { 16, 1, 16 }, /* RDR 1 */ 87 { 72, 2, 0 }, /* RDR 2 */ 88 { 81, 2, 0 }, /* RDR 3 */ 89 { 328, 6, 0 }, /* RDR 4 */ 90 { 160, 3, 0 }, /* RDR 5 */ 91 { 336, 6, 0 }, /* RDR 6 */ 92 { 164, 3, 0 }, /* RDR 7 */ 93 { 0, 0, 0 }, /* RDR 8 */ 94 { 35, 1, 0 }, /* RDR 9 */ 95 { 6, 1, 0 }, /* RDR 10 */ 96 { 18, 1, 0 }, /* RDR 11 */ 97 { 13, 1, 0 }, /* RDR 12 */ 98 { 8, 1, 0 }, /* RDR 13 */ 99 { 8, 1, 0 }, /* RDR 14 */ 100 { 8, 1, 0 }, /* RDR 15 */ 101 { 1530, 24, 0 }, /* RDR 16 */ 102 { 16, 1, 0 }, /* RDR 17 */ 103 { 4, 1, 0 }, /* RDR 18 */ 104 { 0, 0, 0 }, /* RDR 19 */ 105 { 152, 3, 24 }, /* RDR 20 */ 106 { 152, 3, 24 }, /* RDR 21 */ 107 { 233, 4, 48 }, /* RDR 22 */ 108 { 233, 4, 48 }, /* RDR 23 */ 109 { 71, 2, 0 }, /* RDR 24 */ 110 { 71, 2, 0 }, /* RDR 25 */ 111 { 11, 1, 0 }, /* RDR 26 */ 112 { 18, 1, 0 }, /* RDR 27 */ 113 { 128, 2, 0 }, /* RDR 28 */ 114 { 0, 0, 0 }, /* RDR 29 */ 115 { 16, 1, 0 }, /* RDR 30 */ 116 { 16, 1, 0 }, /* RDR 31 */ 117}; 118 119/* RDR register descriptions for PCX-U */ 120static const struct rdr_tbl_ent perf_rdr_tbl_U[] = { 121 { 19, 1, 8 }, /* RDR 0 */ 122 { 32, 1, 16 }, /* RDR 1 */ 123 { 20, 1, 0 }, /* RDR 2 */ 124 { 0, 0, 0 }, /* RDR 3 */ 125 { 344, 6, 0 }, /* RDR 4 */ 126 { 176, 3, 0 }, /* RDR 5 */ 127 { 336, 6, 0 }, /* RDR 6 */ 128 { 0, 0, 0 }, /* RDR 7 */ 129 { 0, 0, 0 }, /* RDR 8 */ 130 { 0, 0, 0 }, /* RDR 9 */ 131 { 28, 1, 0 }, /* RDR 10 */ 132 { 33, 1, 0 }, /* RDR 11 */ 133 { 0, 0, 0 }, /* RDR 12 */ 134 { 230, 4, 0 }, /* RDR 13 */ 135 { 32, 1, 0 }, /* RDR 14 */ 136 { 128, 2, 0 }, /* RDR 15 */ 137 { 1494, 24, 0 }, /* RDR 16 */ 138 { 18, 1, 0 }, /* RDR 17 */ 139 { 4, 1, 0 }, /* RDR 18 */ 140 { 0, 0, 0 }, /* RDR 19 */ 141 { 158, 3, 24 }, /* RDR 20 */ 142 { 158, 3, 24 }, /* RDR 21 */ 143 { 194, 4, 48 }, /* RDR 22 */ 144 { 194, 4, 48 }, /* RDR 23 */ 145 { 71, 2, 0 }, /* RDR 24 */ 146 { 71, 2, 0 }, /* RDR 25 */ 147 { 28, 1, 0 }, /* RDR 26 */ 148 { 33, 1, 0 }, /* RDR 27 */ 149 { 88, 2, 0 }, /* RDR 28 */ 150 { 32, 1, 0 }, /* RDR 29 */ 151 { 24, 1, 0 }, /* RDR 30 */ 152 { 16, 1, 0 }, /* RDR 31 */ 153}; 154 155/* 156 * A non-zero write_control in the above tables is a byte offset into 157 * this array. 158 */ 159static const uint64_t perf_bitmasks[] = { 160 0x0000000000000000ul, /* first dbl word must be zero */ 161 0xfdffe00000000000ul, /* RDR0 bitmask */ 162 0x003f000000000000ul, /* RDR1 bitmask */ 163 0x00fffffffffffffful, /* RDR20-RDR21 bitmask (152 bits) */ 164 0xfffffffffffffffful, 165 0xfffffffc00000000ul, 166 0xfffffffffffffffful, /* RDR22-RDR23 bitmask (233 bits) */ 167 0xfffffffffffffffful, 168 0xfffffffffffffffcul, 169 0xff00000000000000ul 170}; 171 172/* 173 * Write control bitmasks for Pa-8700 processor given 174 * some things have changed slightly. 175 */ 176static const uint64_t perf_bitmasks_piranha[] = { 177 0x0000000000000000ul, /* first dbl word must be zero */ 178 0xfdffe00000000000ul, /* RDR0 bitmask */ 179 0x003f000000000000ul, /* RDR1 bitmask */ 180 0x00fffffffffffffful, /* RDR20-RDR21 bitmask (158 bits) */ 181 0xfffffffffffffffful, 182 0xfffffffc00000000ul, 183 0xfffffffffffffffful, /* RDR22-RDR23 bitmask (210 bits) */ 184 0xfffffffffffffffful, 185 0xfffffffffffffffful, 186 0xfffc000000000000ul 187}; 188 189static const uint64_t *bitmask_array; /* array of bitmasks to use */ 190 191/****************************************************************************** 192 * Function Prototypes 193 *****************************************************************************/ 194static int perf_config(uint32_t *image_ptr); 195static int perf_release(struct inode *inode, struct file *file); 196static int perf_open(struct inode *inode, struct file *file); 197static ssize_t perf_read(struct file *file, char __user *buf, size_t cnt, loff_t *ppos); 198static ssize_t perf_write(struct file *file, const char __user *buf, size_t count, 199 loff_t *ppos); 200static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 201static void perf_start_counters(void); 202static int perf_stop_counters(uint32_t *raddr); 203static const struct rdr_tbl_ent * perf_rdr_get_entry(uint32_t rdr_num); 204static int perf_rdr_read_ubuf(uint32_t rdr_num, uint64_t *buffer); 205static int perf_rdr_clear(uint32_t rdr_num); 206static int perf_write_image(uint64_t *memaddr); 207static void perf_rdr_write(uint32_t rdr_num, uint64_t *buffer); 208 209/* External Assembly Routines */ 210extern uint64_t perf_rdr_shift_in_W (uint32_t rdr_num, uint16_t width); 211extern uint64_t perf_rdr_shift_in_U (uint32_t rdr_num, uint16_t width); 212extern void perf_rdr_shift_out_W (uint32_t rdr_num, uint64_t buffer); 213extern void perf_rdr_shift_out_U (uint32_t rdr_num, uint64_t buffer); 214extern void perf_intrigue_enable_perf_counters (void); 215extern void perf_intrigue_disable_perf_counters (void); 216 217/****************************************************************************** 218 * Function Definitions 219 *****************************************************************************/ 220 221 222/* 223 * configure: 224 * 225 * Configure the cpu with a given data image. First turn off the counters, 226 * then download the image, then turn the counters back on. 227 */ 228static int perf_config(uint32_t *image_ptr) 229{ 230 long error; 231 uint32_t raddr[4]; 232 233 /* Stop the counters*/ 234 error = perf_stop_counters(raddr); 235 if (error != 0) { 236 printk("perf_config: perf_stop_counters = %ld\n", error); 237 return -EINVAL; 238 } 239 240printk("Preparing to write image\n"); 241 /* Write the image to the chip */ 242 error = perf_write_image((uint64_t *)image_ptr); 243 if (error != 0) { 244 printk("perf_config: DOWNLOAD = %ld\n", error); 245 return -EINVAL; 246 } 247 248printk("Preparing to start counters\n"); 249 250 /* Start the counters */ 251 perf_start_counters(); 252 253 return sizeof(uint32_t); 254} 255 256/* 257 * Open the device and initialize all of its memory. The device is only 258 * opened once, but can be "queried" by multiple processes that know its 259 * file descriptor. 260 */ 261static int perf_open(struct inode *inode, struct file *file) 262{ 263 spin_lock(&perf_lock); 264 if (perf_enabled) { 265 spin_unlock(&perf_lock); 266 return -EBUSY; 267 } 268 perf_enabled = 1; 269 spin_unlock(&perf_lock); 270 271 return 0; 272} 273 274/* 275 * Close the device. 276 */ 277static int perf_release(struct inode *inode, struct file *file) 278{ 279 spin_lock(&perf_lock); 280 perf_enabled = 0; 281 spin_unlock(&perf_lock); 282 283 return 0; 284} 285 286/* 287 * Read does nothing for this driver 288 */ 289static ssize_t perf_read(struct file *file, char __user *buf, size_t cnt, loff_t *ppos) 290{ 291 return 0; 292} 293 294/* 295 * write: 296 * 297 * This routine downloads the image to the chip. It must be 298 * called on the processor that the download should happen 299 * on. 300 */ 301static ssize_t perf_write(struct file *file, const char __user *buf, size_t count, 302 loff_t *ppos) 303{ 304 int err; 305 size_t image_size; 306 uint32_t image_type; 307 uint32_t interface_type; 308 uint32_t test; 309 310 if (perf_processor_interface == ONYX_INTF) 311 image_size = PCXU_IMAGE_SIZE; 312 else if (perf_processor_interface == CUDA_INTF) 313 image_size = PCXW_IMAGE_SIZE; 314 else 315 return -EFAULT; 316 317 if (!capable(CAP_SYS_ADMIN)) 318 return -EACCES; 319 320 if (count != sizeof(uint32_t)) 321 return -EIO; 322 323 if ((err = copy_from_user(&image_type, buf, sizeof(uint32_t))) != 0) 324 return err; 325 326 /* Get the interface type and test type */ 327 interface_type = (image_type >> 16) & 0xffff; 328 test = (image_type & 0xffff); 329 330 /* Make sure everything makes sense */ 331 332 /* First check the machine type is correct for 333 the requested image */ 334 if (((perf_processor_interface == CUDA_INTF) && 335 (interface_type != CUDA_INTF)) || 336 ((perf_processor_interface == ONYX_INTF) && 337 (interface_type != ONYX_INTF))) 338 return -EINVAL; 339 340 /* Next check to make sure the requested image 341 is valid */ 342 if (((interface_type == CUDA_INTF) && 343 (test >= MAX_CUDA_IMAGES)) || 344 ((interface_type == ONYX_INTF) && 345 (test >= MAX_ONYX_IMAGES))) 346 return -EINVAL; 347 348 /* Copy the image into the processor */ 349 if (interface_type == CUDA_INTF) 350 return perf_config(cuda_images[test]); 351 else 352 return perf_config(onyx_images[test]); 353 354 return count; 355} 356 357/* 358 * Patch the images that need to know the IVA addresses. 359 */ 360static void perf_patch_images(void) 361{ 362#if 0 /* FIXME!! */ 363/* 364 * NOTE: this routine is VERY specific to the current TLB image. 365 * If the image is changed, this routine might also need to be changed. 366 */ 367 extern void $i_itlb_miss_2_0(); 368 extern void $i_dtlb_miss_2_0(); 369 extern void PA2_0_iva(); 370 371 /* 372 * We can only use the lower 32-bits, the upper 32-bits should be 0 373 * anyway given this is in the kernel 374 */ 375 uint32_t itlb_addr = (uint32_t)&($i_itlb_miss_2_0); 376 uint32_t dtlb_addr = (uint32_t)&($i_dtlb_miss_2_0); 377 uint32_t IVAaddress = (uint32_t)&PA2_0_iva; 378 379 if (perf_processor_interface == ONYX_INTF) { 380 /* clear last 2 bytes */ 381 onyx_images[TLBMISS][15] &= 0xffffff00; 382 /* set 2 bytes */ 383 onyx_images[TLBMISS][15] |= (0x000000ff&((dtlb_addr) >> 24)); 384 onyx_images[TLBMISS][16] = (dtlb_addr << 8)&0xffffff00; 385 onyx_images[TLBMISS][17] = itlb_addr; 386 387 /* clear last 2 bytes */ 388 onyx_images[TLBHANDMISS][15] &= 0xffffff00; 389 /* set 2 bytes */ 390 onyx_images[TLBHANDMISS][15] |= (0x000000ff&((dtlb_addr) >> 24)); 391 onyx_images[TLBHANDMISS][16] = (dtlb_addr << 8)&0xffffff00; 392 onyx_images[TLBHANDMISS][17] = itlb_addr; 393 394 /* clear last 2 bytes */ 395 onyx_images[BIG_CPI][15] &= 0xffffff00; 396 /* set 2 bytes */ 397 onyx_images[BIG_CPI][15] |= (0x000000ff&((dtlb_addr) >> 24)); 398 onyx_images[BIG_CPI][16] = (dtlb_addr << 8)&0xffffff00; 399 onyx_images[BIG_CPI][17] = itlb_addr; 400 401 onyx_images[PANIC][15] &= 0xffffff00; /* clear last 2 bytes */ 402 onyx_images[PANIC][15] |= (0x000000ff&((IVAaddress) >> 24)); /* set 2 bytes */ 403 onyx_images[PANIC][16] = (IVAaddress << 8)&0xffffff00; 404 405 406 } else if (perf_processor_interface == CUDA_INTF) { 407 /* Cuda interface */ 408 cuda_images[TLBMISS][16] = 409 (cuda_images[TLBMISS][16]&0xffff0000) | 410 ((dtlb_addr >> 8)&0x0000ffff); 411 cuda_images[TLBMISS][17] = 412 ((dtlb_addr << 24)&0xff000000) | ((itlb_addr >> 16)&0x000000ff); 413 cuda_images[TLBMISS][18] = (itlb_addr << 16)&0xffff0000; 414 415 cuda_images[TLBHANDMISS][16] = 416 (cuda_images[TLBHANDMISS][16]&0xffff0000) | 417 ((dtlb_addr >> 8)&0x0000ffff); 418 cuda_images[TLBHANDMISS][17] = 419 ((dtlb_addr << 24)&0xff000000) | ((itlb_addr >> 16)&0x000000ff); 420 cuda_images[TLBHANDMISS][18] = (itlb_addr << 16)&0xffff0000; 421 422 cuda_images[BIG_CPI][16] = 423 (cuda_images[BIG_CPI][16]&0xffff0000) | 424 ((dtlb_addr >> 8)&0x0000ffff); 425 cuda_images[BIG_CPI][17] = 426 ((dtlb_addr << 24)&0xff000000) | ((itlb_addr >> 16)&0x000000ff); 427 cuda_images[BIG_CPI][18] = (itlb_addr << 16)&0xffff0000; 428 } else { 429 /* Unknown type */ 430 } 431#endif 432} 433 434 435/* 436 * ioctl routine 437 * All routines effect the processor that they are executed on. Thus you 438 * must be running on the processor that you wish to change. 439 */ 440 441static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 442{ 443 long error_start; 444 uint32_t raddr[4]; 445 int error = 0; 446 447 switch (cmd) { 448 449 case PA_PERF_ON: 450 /* Start the counters */ 451 perf_start_counters(); 452 break; 453 454 case PA_PERF_OFF: 455 error_start = perf_stop_counters(raddr); 456 if (error_start != 0) { 457 printk(KERN_ERR "perf_off: perf_stop_counters = %ld\n", error_start); 458 error = -EFAULT; 459 break; 460 } 461 462 /* copy out the Counters */ 463 if (copy_to_user((void __user *)arg, raddr, 464 sizeof (raddr)) != 0) { 465 error = -EFAULT; 466 break; 467 } 468 break; 469 470 case PA_PERF_VERSION: 471 /* Return the version # */ 472 error = put_user(PERF_VERSION, (int *)arg); 473 break; 474 475 default: 476 error = -ENOTTY; 477 } 478 479 return error; 480} 481 482static const struct file_operations perf_fops = { 483 .llseek = no_llseek, 484 .read = perf_read, 485 .write = perf_write, 486 .unlocked_ioctl = perf_ioctl, 487 .compat_ioctl = perf_ioctl, 488 .open = perf_open, 489 .release = perf_release 490}; 491 492static struct miscdevice perf_dev = { 493 MISC_DYNAMIC_MINOR, 494 PA_PERF_DEV, 495 &perf_fops 496}; 497 498/* 499 * Initialize the module 500 */ 501static int __init perf_init(void) 502{ 503 int ret; 504 505 /* Determine correct processor interface to use */ 506 bitmask_array = perf_bitmasks; 507 508 if (boot_cpu_data.cpu_type == pcxu || 509 boot_cpu_data.cpu_type == pcxu_) { 510 perf_processor_interface = ONYX_INTF; 511 } else if (boot_cpu_data.cpu_type == pcxw || 512 boot_cpu_data.cpu_type == pcxw_ || 513 boot_cpu_data.cpu_type == pcxw2 || 514 boot_cpu_data.cpu_type == mako || 515 boot_cpu_data.cpu_type == mako2) { 516 perf_processor_interface = CUDA_INTF; 517 if (boot_cpu_data.cpu_type == pcxw2 || 518 boot_cpu_data.cpu_type == mako || 519 boot_cpu_data.cpu_type == mako2) 520 bitmask_array = perf_bitmasks_piranha; 521 } else { 522 perf_processor_interface = UNKNOWN_INTF; 523 printk("Performance monitoring counters not supported on this processor\n"); 524 return -ENODEV; 525 } 526 527 ret = misc_register(&perf_dev); 528 if (ret) { 529 printk(KERN_ERR "Performance monitoring counters: " 530 "cannot register misc device.\n"); 531 return ret; 532 } 533 534 /* Patch the images to match the system */ 535 perf_patch_images(); 536 537 spin_lock_init(&perf_lock); 538 539 /* TODO: this only lets us access the first cpu.. what to do for SMP? */ 540 cpu_device = per_cpu(cpu_data, 0).dev; 541 printk("Performance monitoring counters enabled for %s\n", 542 per_cpu(cpu_data, 0).dev->name); 543 544 return 0; 545} 546 547/* 548 * perf_start_counters(void) 549 * 550 * Start the counters. 551 */ 552static void perf_start_counters(void) 553{ 554 /* Enable performance monitor counters */ 555 perf_intrigue_enable_perf_counters(); 556} 557 558/* 559 * perf_stop_counters 560 * 561 * Stop the performance counters and save counts 562 * in a per_processor array. 563 */ 564static int perf_stop_counters(uint32_t *raddr) 565{ 566 uint64_t userbuf[MAX_RDR_WORDS]; 567 568 /* Disable performance counters */ 569 perf_intrigue_disable_perf_counters(); 570 571 if (perf_processor_interface == ONYX_INTF) { 572 uint64_t tmp64; 573 /* 574 * Read the counters 575 */ 576 if (!perf_rdr_read_ubuf(16, userbuf)) 577 return -13; 578 579 /* Counter0 is bits 1398 to 1429 */ 580 tmp64 = (userbuf[21] << 22) & 0x00000000ffc00000; 581 tmp64 |= (userbuf[22] >> 42) & 0x00000000003fffff; 582 /* OR sticky0 (bit 1430) to counter0 bit 32 */ 583 tmp64 |= (userbuf[22] >> 10) & 0x0000000080000000; 584 raddr[0] = (uint32_t)tmp64; 585 586 /* Counter1 is bits 1431 to 1462 */ 587 tmp64 = (userbuf[22] >> 9) & 0x00000000ffffffff; 588 /* OR sticky1 (bit 1463) to counter1 bit 32 */ 589 tmp64 |= (userbuf[22] << 23) & 0x0000000080000000; 590 raddr[1] = (uint32_t)tmp64; 591 592 /* Counter2 is bits 1464 to 1495 */ 593 tmp64 = (userbuf[22] << 24) & 0x00000000ff000000; 594 tmp64 |= (userbuf[23] >> 40) & 0x0000000000ffffff; 595 /* OR sticky2 (bit 1496) to counter2 bit 32 */ 596 tmp64 |= (userbuf[23] >> 8) & 0x0000000080000000; 597 raddr[2] = (uint32_t)tmp64; 598 599 /* Counter3 is bits 1497 to 1528 */ 600 tmp64 = (userbuf[23] >> 7) & 0x00000000ffffffff; 601 /* OR sticky3 (bit 1529) to counter3 bit 32 */ 602 tmp64 |= (userbuf[23] << 25) & 0x0000000080000000; 603 raddr[3] = (uint32_t)tmp64; 604 605 /* 606 * Zero out the counters 607 */ 608 609 /* 610 * The counters and sticky-bits comprise the last 132 bits 611 * (1398 - 1529) of RDR16 on a U chip. We'll zero these 612 * out the easy way: zero out last 10 bits of dword 21, 613 * all of dword 22 and 58 bits (plus 6 don't care bits) of 614 * dword 23. 615 */ 616 userbuf[21] &= 0xfffffffffffffc00ul; /* 0 to last 10 bits */ 617 userbuf[22] = 0; 618 userbuf[23] = 0; 619 620 /* 621 * Write back the zeroed bytes + the image given 622 * the read was destructive. 623 */ 624 perf_rdr_write(16, userbuf); 625 } else { 626 627 /* 628 * Read RDR-15 which contains the counters and sticky bits 629 */ 630 if (!perf_rdr_read_ubuf(15, userbuf)) { 631 return -13; 632 } 633 634 /* 635 * Clear out the counters 636 */ 637 perf_rdr_clear(15); 638 639 /* 640 * Copy the counters 641 */ 642 raddr[0] = (uint32_t)((userbuf[0] >> 32) & 0x00000000ffffffffUL); 643 raddr[1] = (uint32_t)(userbuf[0] & 0x00000000ffffffffUL); 644 raddr[2] = (uint32_t)((userbuf[1] >> 32) & 0x00000000ffffffffUL); 645 raddr[3] = (uint32_t)(userbuf[1] & 0x00000000ffffffffUL); 646 } 647 648 return 0; 649} 650 651/* 652 * perf_rdr_get_entry 653 * 654 * Retrieve a pointer to the description of what this 655 * RDR contains. 656 */ 657static const struct rdr_tbl_ent * perf_rdr_get_entry(uint32_t rdr_num) 658{ 659 if (perf_processor_interface == ONYX_INTF) { 660 return &perf_rdr_tbl_U[rdr_num]; 661 } else { 662 return &perf_rdr_tbl_W[rdr_num]; 663 } 664} 665 666/* 667 * perf_rdr_read_ubuf 668 * 669 * Read the RDR value into the buffer specified. 670 */ 671static int perf_rdr_read_ubuf(uint32_t rdr_num, uint64_t *buffer) 672{ 673 uint64_t data, data_mask = 0; 674 uint32_t width, xbits, i; 675 const struct rdr_tbl_ent *tentry; 676 677 tentry = perf_rdr_get_entry(rdr_num); 678 if ((width = tentry->width) == 0) 679 return 0; 680 681 /* Clear out buffer */ 682 i = tentry->num_words; 683 while (i--) { 684 buffer[i] = 0; 685 } 686 687 /* Check for bits an even number of 64 */ 688 if ((xbits = width & 0x03f) != 0) { 689 data_mask = 1; 690 data_mask <<= (64 - xbits); 691 data_mask--; 692 } 693 694 /* Grab all of the data */ 695 i = tentry->num_words; 696 while (i--) { 697 698 if (perf_processor_interface == ONYX_INTF) { 699 data = perf_rdr_shift_in_U(rdr_num, width); 700 } else { 701 data = perf_rdr_shift_in_W(rdr_num, width); 702 } 703 if (xbits) { 704 buffer[i] |= (data << (64 - xbits)); 705 if (i) { 706 buffer[i-1] |= ((data >> xbits) & data_mask); 707 } 708 } else { 709 buffer[i] = data; 710 } 711 } 712 713 return 1; 714} 715 716/* 717 * perf_rdr_clear 718 * 719 * Zero out the given RDR register 720 */ 721static int perf_rdr_clear(uint32_t rdr_num) 722{ 723 const struct rdr_tbl_ent *tentry; 724 int32_t i; 725 726 tentry = perf_rdr_get_entry(rdr_num); 727 728 if (tentry->width == 0) { 729 return -1; 730 } 731 732 i = tentry->num_words; 733 while (i--) { 734 if (perf_processor_interface == ONYX_INTF) { 735 perf_rdr_shift_out_U(rdr_num, 0UL); 736 } else { 737 perf_rdr_shift_out_W(rdr_num, 0UL); 738 } 739 } 740 741 return 0; 742} 743 744 745/* 746 * perf_write_image 747 * 748 * Write the given image out to the processor 749 */ 750static int perf_write_image(uint64_t *memaddr) 751{ 752 uint64_t buffer[MAX_RDR_WORDS]; 753 uint64_t *bptr; 754 uint32_t dwords; 755 const uint32_t *intrigue_rdr; 756 const uint64_t *intrigue_bitmask; 757 uint64_t tmp64; 758 void __iomem *runway; 759 const struct rdr_tbl_ent *tentry; 760 int i; 761 762 /* Clear out counters */ 763 if (perf_processor_interface == ONYX_INTF) { 764 765 perf_rdr_clear(16); 766 767 /* Toggle performance monitor */ 768 perf_intrigue_enable_perf_counters(); 769 perf_intrigue_disable_perf_counters(); 770 771 intrigue_rdr = perf_rdrs_U; 772 } else { 773 perf_rdr_clear(15); 774 intrigue_rdr = perf_rdrs_W; 775 } 776 777 /* Write all RDRs */ 778 while (*intrigue_rdr != -1) { 779 tentry = perf_rdr_get_entry(*intrigue_rdr); 780 perf_rdr_read_ubuf(*intrigue_rdr, buffer); 781 bptr = &buffer[0]; 782 dwords = tentry->num_words; 783 if (tentry->write_control) { 784 intrigue_bitmask = &bitmask_array[tentry->write_control >> 3]; 785 while (dwords--) { 786 tmp64 = *intrigue_bitmask & *memaddr++; 787 tmp64 |= (~(*intrigue_bitmask++)) & *bptr; 788 *bptr++ = tmp64; 789 } 790 } else { 791 while (dwords--) { 792 *bptr++ = *memaddr++; 793 } 794 } 795 796 perf_rdr_write(*intrigue_rdr, buffer); 797 intrigue_rdr++; 798 } 799 800 /* 801 * Now copy out the Runway stuff which is not in RDRs 802 */ 803 804 if (cpu_device == NULL) 805 { 806 printk(KERN_ERR "write_image: cpu_device not yet initialized!\n"); 807 return -1; 808 } 809 810 runway = ioremap_nocache(cpu_device->hpa.start, 4096); 811 812 /* Merge intrigue bits into Runway STATUS 0 */ 813 tmp64 = __raw_readq(runway + RUNWAY_STATUS) & 0xffecfffffffffffful; 814 __raw_writeq(tmp64 | (*memaddr++ & 0x0013000000000000ul), 815 runway + RUNWAY_STATUS); 816 817 /* Write RUNWAY DEBUG registers */ 818 for (i = 0; i < 8; i++) { 819 __raw_writeq(*memaddr++, runway + RUNWAY_DEBUG); 820 } 821 822 return 0; 823} 824 825/* 826 * perf_rdr_write 827 * 828 * Write the given RDR register with the contents 829 * of the given buffer. 830 */ 831static void perf_rdr_write(uint32_t rdr_num, uint64_t *buffer) 832{ 833 const struct rdr_tbl_ent *tentry; 834 int32_t i; 835 836printk("perf_rdr_write\n"); 837 tentry = perf_rdr_get_entry(rdr_num); 838 if (tentry->width == 0) { return; } 839 840 i = tentry->num_words; 841 while (i--) { 842 if (perf_processor_interface == ONYX_INTF) { 843 perf_rdr_shift_out_U(rdr_num, buffer[i]); 844 } else { 845 perf_rdr_shift_out_W(rdr_num, buffer[i]); 846 } 847 } 848printk("perf_rdr_write done\n"); 849} 850 851module_init(perf_init); 852