1/*
2 *  Parisc performance counters
3 *  Copyright (C) 2001 Randolph Chung <tausq@debian.org>
4 *
5 *  This code is derived, with permission, from HP/UX sources.
6 *
7 *    This program is free software; you can redistribute it and/or modify
8 *    it under the terms of the GNU General Public License as published by
9 *    the Free Software Foundation; either version 2, or (at your option)
10 *    any later version.
11 *
12 *    This program is distributed in the hope that it will be useful,
13 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
14 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 *    GNU General Public License for more details.
16 *
17 *    You should have received a copy of the GNU General Public License
18 *    along with this program; if not, write to the Free Software
19 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 */
21
22/*
23 *  Edited comment from original sources:
24 *
25 *  This driver programs the PCX-U/PCX-W performance counters
26 *  on the PA-RISC 2.0 chips.  The driver keeps all images now
27 *  internally to the kernel to hopefully eliminate the possibility
28 *  of a bad image halting the CPU.  Also, there are different
29 *  images for the PCX-W and later chips vs the PCX-U chips.
30 *
31 *  Only 1 process is allowed to access the driver at any time,
32 *  so the only protection that is needed is at open and close.
33 *  A variable "perf_enabled" is used to hold the state of the
34 *  driver.  The spinlock "perf_lock" is used to protect the
35 *  modification of the state during open/close operations so
36 *  multiple processes don't get into the driver simultaneously.
37 *
38 *  This driver accesses the processor directly vs going through
39 *  the PDC INTRIGUE calls.  This is done to eliminate bugs introduced
40 *  in various PDC revisions.  The code is much more maintainable
41 *  and reliable this way vs having to debug on every version of PDC
42 *  on every box.
43 */
44
45#include <linux/capability.h>
46#include <linux/init.h>
47#include <linux/proc_fs.h>
48#include <linux/miscdevice.h>
49#include <linux/spinlock.h>
50
51#include <asm/uaccess.h>
52#include <asm/perf.h>
53#include <asm/parisc-device.h>
54#include <asm/processor.h>
55#include <asm/runway.h>
56#include <asm/io.h>		/* for __raw_read() */
57
58#include "perf_images.h"
59
60#define MAX_RDR_WORDS	24
61#define PERF_VERSION	2	/* derived from hpux's PI v2 interface */
62
63/* definition of RDR regs */
64struct rdr_tbl_ent {
65	uint16_t	width;
66	uint8_t		num_words;
67	uint8_t		write_control;
68};
69
70static int perf_processor_interface __read_mostly = UNKNOWN_INTF;
71static int perf_enabled __read_mostly;
72static spinlock_t perf_lock;
73struct parisc_device *cpu_device __read_mostly;
74
75/* RDRs to write for PCX-W */
76static const int perf_rdrs_W[] =
77	{ 0, 1, 4, 5, 6, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, -1 };
78
79/* RDRs to write for PCX-U */
80static const int perf_rdrs_U[] =
81	{ 0, 1, 4, 5, 6, 7, 16, 17, 18, 20, 21, 22, 23, 24, 25, -1 };
82
83/* RDR register descriptions for PCX-W */
84static const struct rdr_tbl_ent perf_rdr_tbl_W[] = {
85	{ 19,	1,	8 },   /* RDR 0 */
86	{ 16,	1,	16 },  /* RDR 1 */
87	{ 72,	2,	0 },   /* RDR 2 */
88	{ 81,	2,	0 },   /* RDR 3 */
89	{ 328,	6,	0 },   /* RDR 4 */
90	{ 160,	3,	0 },   /* RDR 5 */
91	{ 336,	6,	0 },   /* RDR 6 */
92	{ 164,	3,	0 },   /* RDR 7 */
93	{ 0,	0,	0 },   /* RDR 8 */
94	{ 35,	1,	0 },   /* RDR 9 */
95	{ 6,	1,	0 },   /* RDR 10 */
96	{ 18,	1,	0 },   /* RDR 11 */
97	{ 13,	1,	0 },   /* RDR 12 */
98	{ 8,	1,	0 },   /* RDR 13 */
99	{ 8,	1,	0 },   /* RDR 14 */
100	{ 8,	1,	0 },   /* RDR 15 */
101	{ 1530,	24,	0 },   /* RDR 16 */
102	{ 16,	1,	0 },   /* RDR 17 */
103	{ 4,	1,	0 },   /* RDR 18 */
104	{ 0,	0,	0 },   /* RDR 19 */
105	{ 152,	3,	24 },  /* RDR 20 */
106	{ 152,	3,	24 },  /* RDR 21 */
107	{ 233,	4,	48 },  /* RDR 22 */
108	{ 233,	4,	48 },  /* RDR 23 */
109	{ 71,	2,	0 },   /* RDR 24 */
110	{ 71,	2,	0 },   /* RDR 25 */
111	{ 11,	1,	0 },   /* RDR 26 */
112	{ 18,	1,	0 },   /* RDR 27 */
113	{ 128,	2,	0 },   /* RDR 28 */
114	{ 0,	0,	0 },   /* RDR 29 */
115	{ 16,	1,	0 },   /* RDR 30 */
116	{ 16,	1,	0 },   /* RDR 31 */
117};
118
119/* RDR register descriptions for PCX-U */
120static const struct rdr_tbl_ent perf_rdr_tbl_U[] = {
121	{ 19,	1,	8 },              /* RDR 0 */
122	{ 32,	1,	16 },             /* RDR 1 */
123	{ 20,	1,	0 },              /* RDR 2 */
124	{ 0,	0,	0 },              /* RDR 3 */
125	{ 344,	6,	0 },              /* RDR 4 */
126	{ 176,	3,	0 },              /* RDR 5 */
127	{ 336,	6,	0 },              /* RDR 6 */
128	{ 0,	0,	0 },              /* RDR 7 */
129	{ 0,	0,	0 },              /* RDR 8 */
130	{ 0,	0,	0 },              /* RDR 9 */
131	{ 28,	1,	0 },              /* RDR 10 */
132	{ 33,	1,	0 },              /* RDR 11 */
133	{ 0,	0,	0 },              /* RDR 12 */
134	{ 230,	4,	0 },              /* RDR 13 */
135	{ 32,	1,	0 },              /* RDR 14 */
136	{ 128,	2,	0 },              /* RDR 15 */
137	{ 1494,	24,	0 },              /* RDR 16 */
138	{ 18,	1,	0 },              /* RDR 17 */
139	{ 4,	1,	0 },              /* RDR 18 */
140	{ 0,	0,	0 },              /* RDR 19 */
141	{ 158,	3,	24 },             /* RDR 20 */
142	{ 158,	3,	24 },             /* RDR 21 */
143	{ 194,	4,	48 },             /* RDR 22 */
144	{ 194,	4,	48 },             /* RDR 23 */
145	{ 71,	2,	0 },              /* RDR 24 */
146	{ 71,	2,	0 },              /* RDR 25 */
147	{ 28,	1,	0 },              /* RDR 26 */
148	{ 33,	1,	0 },              /* RDR 27 */
149	{ 88,	2,	0 },              /* RDR 28 */
150	{ 32,	1,	0 },              /* RDR 29 */
151	{ 24,	1,	0 },              /* RDR 30 */
152	{ 16,	1,	0 },              /* RDR 31 */
153};
154
155/*
156 * A non-zero write_control in the above tables is a byte offset into
157 * this array.
158 */
159static const uint64_t perf_bitmasks[] = {
160	0x0000000000000000ul,     /* first dbl word must be zero */
161	0xfdffe00000000000ul,     /* RDR0 bitmask */
162	0x003f000000000000ul,     /* RDR1 bitmask */
163	0x00fffffffffffffful,     /* RDR20-RDR21 bitmask (152 bits) */
164	0xfffffffffffffffful,
165	0xfffffffc00000000ul,
166	0xfffffffffffffffful,     /* RDR22-RDR23 bitmask (233 bits) */
167	0xfffffffffffffffful,
168	0xfffffffffffffffcul,
169	0xff00000000000000ul
170};
171
172/*
173 * Write control bitmasks for Pa-8700 processor given
174 * some things have changed slightly.
175 */
176static const uint64_t perf_bitmasks_piranha[] = {
177	0x0000000000000000ul,     /* first dbl word must be zero */
178	0xfdffe00000000000ul,     /* RDR0 bitmask */
179	0x003f000000000000ul,     /* RDR1 bitmask */
180	0x00fffffffffffffful,     /* RDR20-RDR21 bitmask (158 bits) */
181	0xfffffffffffffffful,
182	0xfffffffc00000000ul,
183	0xfffffffffffffffful,     /* RDR22-RDR23 bitmask (210 bits) */
184	0xfffffffffffffffful,
185	0xfffffffffffffffful,
186	0xfffc000000000000ul
187};
188
189static const uint64_t *bitmask_array;   /* array of bitmasks to use */
190
191/******************************************************************************
192 * Function Prototypes
193 *****************************************************************************/
194static int perf_config(uint32_t *image_ptr);
195static int perf_release(struct inode *inode, struct file *file);
196static int perf_open(struct inode *inode, struct file *file);
197static ssize_t perf_read(struct file *file, char __user *buf, size_t cnt, loff_t *ppos);
198static ssize_t perf_write(struct file *file, const char __user *buf, size_t count,
199	loff_t *ppos);
200static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
201static void perf_start_counters(void);
202static int perf_stop_counters(uint32_t *raddr);
203static const struct rdr_tbl_ent * perf_rdr_get_entry(uint32_t rdr_num);
204static int perf_rdr_read_ubuf(uint32_t	rdr_num, uint64_t *buffer);
205static int perf_rdr_clear(uint32_t rdr_num);
206static int perf_write_image(uint64_t *memaddr);
207static void perf_rdr_write(uint32_t rdr_num, uint64_t *buffer);
208
209/* External Assembly Routines */
210extern uint64_t perf_rdr_shift_in_W (uint32_t rdr_num, uint16_t width);
211extern uint64_t perf_rdr_shift_in_U (uint32_t rdr_num, uint16_t width);
212extern void perf_rdr_shift_out_W (uint32_t rdr_num, uint64_t buffer);
213extern void perf_rdr_shift_out_U (uint32_t rdr_num, uint64_t buffer);
214extern void perf_intrigue_enable_perf_counters (void);
215extern void perf_intrigue_disable_perf_counters (void);
216
217/******************************************************************************
218 * Function Definitions
219 *****************************************************************************/
220
221
222/*
223 * configure:
224 *
225 * Configure the cpu with a given data image.  First turn off the counters,
226 * then download the image, then turn the counters back on.
227 */
228static int perf_config(uint32_t *image_ptr)
229{
230	long error;
231	uint32_t raddr[4];
232
233	/* Stop the counters*/
234	error = perf_stop_counters(raddr);
235	if (error != 0) {
236		printk("perf_config: perf_stop_counters = %ld\n", error);
237		return -EINVAL;
238	}
239
240printk("Preparing to write image\n");
241	/* Write the image to the chip */
242	error = perf_write_image((uint64_t *)image_ptr);
243	if (error != 0) {
244		printk("perf_config: DOWNLOAD = %ld\n", error);
245		return -EINVAL;
246	}
247
248printk("Preparing to start counters\n");
249
250	/* Start the counters */
251	perf_start_counters();
252
253	return sizeof(uint32_t);
254}
255
256/*
257 * Open the device and initialize all of its memory.  The device is only
258 * opened once, but can be "queried" by multiple processes that know its
259 * file descriptor.
260 */
261static int perf_open(struct inode *inode, struct file *file)
262{
263	spin_lock(&perf_lock);
264	if (perf_enabled) {
265		spin_unlock(&perf_lock);
266		return -EBUSY;
267	}
268	perf_enabled = 1;
269 	spin_unlock(&perf_lock);
270
271	return 0;
272}
273
274/*
275 * Close the device.
276 */
277static int perf_release(struct inode *inode, struct file *file)
278{
279	spin_lock(&perf_lock);
280	perf_enabled = 0;
281	spin_unlock(&perf_lock);
282
283	return 0;
284}
285
286/*
287 * Read does nothing for this driver
288 */
289static ssize_t perf_read(struct file *file, char __user *buf, size_t cnt, loff_t *ppos)
290{
291	return 0;
292}
293
294/*
295 * write:
296 *
297 * This routine downloads the image to the chip.  It must be
298 * called on the processor that the download should happen
299 * on.
300 */
301static ssize_t perf_write(struct file *file, const char __user *buf, size_t count,
302	loff_t *ppos)
303{
304	int err;
305	size_t image_size;
306	uint32_t image_type;
307	uint32_t interface_type;
308	uint32_t test;
309
310	if (perf_processor_interface == ONYX_INTF)
311		image_size = PCXU_IMAGE_SIZE;
312	else if (perf_processor_interface == CUDA_INTF)
313		image_size = PCXW_IMAGE_SIZE;
314	else
315		return -EFAULT;
316
317	if (!capable(CAP_SYS_ADMIN))
318		return -EACCES;
319
320	if (count != sizeof(uint32_t))
321		return -EIO;
322
323	if ((err = copy_from_user(&image_type, buf, sizeof(uint32_t))) != 0)
324		return err;
325
326	/* Get the interface type and test type */
327   	interface_type = (image_type >> 16) & 0xffff;
328	test           = (image_type & 0xffff);
329
330	/* Make sure everything makes sense */
331
332	/* First check the machine type is correct for
333	   the requested image */
334        if (((perf_processor_interface == CUDA_INTF) &&
335		       (interface_type != CUDA_INTF)) ||
336	    ((perf_processor_interface == ONYX_INTF) &&
337	               (interface_type != ONYX_INTF)))
338		return -EINVAL;
339
340	/* Next check to make sure the requested image
341	   is valid */
342	if (((interface_type == CUDA_INTF) &&
343		       (test >= MAX_CUDA_IMAGES)) ||
344	    ((interface_type == ONYX_INTF) &&
345		       (test >= MAX_ONYX_IMAGES)))
346		return -EINVAL;
347
348	/* Copy the image into the processor */
349	if (interface_type == CUDA_INTF)
350		return perf_config(cuda_images[test]);
351	else
352		return perf_config(onyx_images[test]);
353
354	return count;
355}
356
357/*
358 * Patch the images that need to know the IVA addresses.
359 */
360static void perf_patch_images(void)
361{
362#if 0 /* FIXME!! */
363/*
364 * NOTE:  this routine is VERY specific to the current TLB image.
365 * If the image is changed, this routine might also need to be changed.
366 */
367	extern void $i_itlb_miss_2_0();
368	extern void $i_dtlb_miss_2_0();
369	extern void PA2_0_iva();
370
371	/*
372	 * We can only use the lower 32-bits, the upper 32-bits should be 0
373	 * anyway given this is in the kernel
374	 */
375	uint32_t itlb_addr  = (uint32_t)&($i_itlb_miss_2_0);
376	uint32_t dtlb_addr  = (uint32_t)&($i_dtlb_miss_2_0);
377	uint32_t IVAaddress = (uint32_t)&PA2_0_iva;
378
379	if (perf_processor_interface == ONYX_INTF) {
380		/* clear last 2 bytes */
381		onyx_images[TLBMISS][15] &= 0xffffff00;
382		/* set 2 bytes */
383		onyx_images[TLBMISS][15] |= (0x000000ff&((dtlb_addr) >> 24));
384		onyx_images[TLBMISS][16] = (dtlb_addr << 8)&0xffffff00;
385		onyx_images[TLBMISS][17] = itlb_addr;
386
387		/* clear last 2 bytes */
388		onyx_images[TLBHANDMISS][15] &= 0xffffff00;
389		/* set 2 bytes */
390		onyx_images[TLBHANDMISS][15] |= (0x000000ff&((dtlb_addr) >> 24));
391		onyx_images[TLBHANDMISS][16] = (dtlb_addr << 8)&0xffffff00;
392		onyx_images[TLBHANDMISS][17] = itlb_addr;
393
394		/* clear last 2 bytes */
395		onyx_images[BIG_CPI][15] &= 0xffffff00;
396		/* set 2 bytes */
397		onyx_images[BIG_CPI][15] |= (0x000000ff&((dtlb_addr) >> 24));
398		onyx_images[BIG_CPI][16] = (dtlb_addr << 8)&0xffffff00;
399		onyx_images[BIG_CPI][17] = itlb_addr;
400
401	    onyx_images[PANIC][15] &= 0xffffff00;  /* clear last 2 bytes */
402	 	onyx_images[PANIC][15] |= (0x000000ff&((IVAaddress) >> 24)); /* set 2 bytes */
403		onyx_images[PANIC][16] = (IVAaddress << 8)&0xffffff00;
404
405
406	} else if (perf_processor_interface == CUDA_INTF) {
407		/* Cuda interface */
408		cuda_images[TLBMISS][16] =
409			(cuda_images[TLBMISS][16]&0xffff0000) |
410			((dtlb_addr >> 8)&0x0000ffff);
411		cuda_images[TLBMISS][17] =
412			((dtlb_addr << 24)&0xff000000) | ((itlb_addr >> 16)&0x000000ff);
413		cuda_images[TLBMISS][18] = (itlb_addr << 16)&0xffff0000;
414
415		cuda_images[TLBHANDMISS][16] =
416			(cuda_images[TLBHANDMISS][16]&0xffff0000) |
417			((dtlb_addr >> 8)&0x0000ffff);
418		cuda_images[TLBHANDMISS][17] =
419			((dtlb_addr << 24)&0xff000000) | ((itlb_addr >> 16)&0x000000ff);
420		cuda_images[TLBHANDMISS][18] = (itlb_addr << 16)&0xffff0000;
421
422		cuda_images[BIG_CPI][16] =
423			(cuda_images[BIG_CPI][16]&0xffff0000) |
424			((dtlb_addr >> 8)&0x0000ffff);
425		cuda_images[BIG_CPI][17] =
426			((dtlb_addr << 24)&0xff000000) | ((itlb_addr >> 16)&0x000000ff);
427		cuda_images[BIG_CPI][18] = (itlb_addr << 16)&0xffff0000;
428	} else {
429		/* Unknown type */
430	}
431#endif
432}
433
434
435/*
436 * ioctl routine
437 * All routines effect the processor that they are executed on.  Thus you
438 * must be running on the processor that you wish to change.
439 */
440
441static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
442{
443	long error_start;
444	uint32_t raddr[4];
445	int error = 0;
446
447	switch (cmd) {
448
449	    case PA_PERF_ON:
450			/* Start the counters */
451			perf_start_counters();
452			break;
453
454	    case PA_PERF_OFF:
455			error_start = perf_stop_counters(raddr);
456			if (error_start != 0) {
457				printk(KERN_ERR "perf_off: perf_stop_counters = %ld\n", error_start);
458				error = -EFAULT;
459				break;
460			}
461
462			/* copy out the Counters */
463			if (copy_to_user((void __user *)arg, raddr,
464					sizeof (raddr)) != 0) {
465				error =  -EFAULT;
466				break;
467			}
468			break;
469
470	    case PA_PERF_VERSION:
471  	  		/* Return the version # */
472			error = put_user(PERF_VERSION, (int *)arg);
473			break;
474
475	    default:
476  	 		error = -ENOTTY;
477	}
478
479	return error;
480}
481
482static const struct file_operations perf_fops = {
483	.llseek = no_llseek,
484	.read = perf_read,
485	.write = perf_write,
486	.unlocked_ioctl = perf_ioctl,
487	.compat_ioctl = perf_ioctl,
488	.open = perf_open,
489	.release = perf_release
490};
491
492static struct miscdevice perf_dev = {
493	MISC_DYNAMIC_MINOR,
494	PA_PERF_DEV,
495	&perf_fops
496};
497
498/*
499 * Initialize the module
500 */
501static int __init perf_init(void)
502{
503	int ret;
504
505	/* Determine correct processor interface to use */
506	bitmask_array = perf_bitmasks;
507
508	if (boot_cpu_data.cpu_type == pcxu ||
509	    boot_cpu_data.cpu_type == pcxu_) {
510		perf_processor_interface = ONYX_INTF;
511	} else if (boot_cpu_data.cpu_type == pcxw ||
512		 boot_cpu_data.cpu_type == pcxw_ ||
513		 boot_cpu_data.cpu_type == pcxw2 ||
514		 boot_cpu_data.cpu_type == mako ||
515		 boot_cpu_data.cpu_type == mako2) {
516		perf_processor_interface = CUDA_INTF;
517		if (boot_cpu_data.cpu_type == pcxw2 ||
518		    boot_cpu_data.cpu_type == mako ||
519		    boot_cpu_data.cpu_type == mako2)
520			bitmask_array = perf_bitmasks_piranha;
521	} else {
522		perf_processor_interface = UNKNOWN_INTF;
523		printk("Performance monitoring counters not supported on this processor\n");
524		return -ENODEV;
525	}
526
527	ret = misc_register(&perf_dev);
528	if (ret) {
529		printk(KERN_ERR "Performance monitoring counters: "
530			"cannot register misc device.\n");
531		return ret;
532	}
533
534	/* Patch the images to match the system */
535    	perf_patch_images();
536
537	spin_lock_init(&perf_lock);
538
539	/* TODO: this only lets us access the first cpu.. what to do for SMP? */
540	cpu_device = per_cpu(cpu_data, 0).dev;
541	printk("Performance monitoring counters enabled for %s\n",
542		per_cpu(cpu_data, 0).dev->name);
543
544	return 0;
545}
546
547/*
548 * perf_start_counters(void)
549 *
550 * Start the counters.
551 */
552static void perf_start_counters(void)
553{
554	/* Enable performance monitor counters */
555	perf_intrigue_enable_perf_counters();
556}
557
558/*
559 * perf_stop_counters
560 *
561 * Stop the performance counters and save counts
562 * in a per_processor array.
563 */
564static int perf_stop_counters(uint32_t *raddr)
565{
566	uint64_t userbuf[MAX_RDR_WORDS];
567
568	/* Disable performance counters */
569	perf_intrigue_disable_perf_counters();
570
571	if (perf_processor_interface == ONYX_INTF) {
572		uint64_t tmp64;
573		/*
574		 * Read the counters
575		 */
576		if (!perf_rdr_read_ubuf(16, userbuf))
577			return -13;
578
579		/* Counter0 is bits 1398 to 1429 */
580		tmp64 =  (userbuf[21] << 22) & 0x00000000ffc00000;
581		tmp64 |= (userbuf[22] >> 42) & 0x00000000003fffff;
582		/* OR sticky0 (bit 1430) to counter0 bit 32 */
583		tmp64 |= (userbuf[22] >> 10) & 0x0000000080000000;
584		raddr[0] = (uint32_t)tmp64;
585
586		/* Counter1 is bits 1431 to 1462 */
587		tmp64 =  (userbuf[22] >> 9) & 0x00000000ffffffff;
588		/* OR sticky1 (bit 1463) to counter1 bit 32 */
589		tmp64 |= (userbuf[22] << 23) & 0x0000000080000000;
590		raddr[1] = (uint32_t)tmp64;
591
592		/* Counter2 is bits 1464 to 1495 */
593		tmp64 =  (userbuf[22] << 24) & 0x00000000ff000000;
594		tmp64 |= (userbuf[23] >> 40) & 0x0000000000ffffff;
595		/* OR sticky2 (bit 1496) to counter2 bit 32 */
596		tmp64 |= (userbuf[23] >> 8) & 0x0000000080000000;
597		raddr[2] = (uint32_t)tmp64;
598
599		/* Counter3 is bits 1497 to 1528 */
600		tmp64 =  (userbuf[23] >> 7) & 0x00000000ffffffff;
601		/* OR sticky3 (bit 1529) to counter3 bit 32 */
602		tmp64 |= (userbuf[23] << 25) & 0x0000000080000000;
603		raddr[3] = (uint32_t)tmp64;
604
605		/*
606		 * Zero out the counters
607		 */
608
609		/*
610		 * The counters and sticky-bits comprise the last 132 bits
611		 * (1398 - 1529) of RDR16 on a U chip.  We'll zero these
612		 * out the easy way: zero out last 10 bits of dword 21,
613		 * all of dword 22 and 58 bits (plus 6 don't care bits) of
614		 * dword 23.
615		 */
616		userbuf[21] &= 0xfffffffffffffc00ul;	/* 0 to last 10 bits */
617		userbuf[22] = 0;
618		userbuf[23] = 0;
619
620		/*
621		 * Write back the zeroed bytes + the image given
622		 * the read was destructive.
623		 */
624		perf_rdr_write(16, userbuf);
625	} else {
626
627		/*
628		 * Read RDR-15 which contains the counters and sticky bits
629		 */
630		if (!perf_rdr_read_ubuf(15, userbuf)) {
631			return -13;
632		}
633
634		/*
635		 * Clear out the counters
636		 */
637		perf_rdr_clear(15);
638
639		/*
640		 * Copy the counters
641		 */
642		raddr[0] = (uint32_t)((userbuf[0] >> 32) & 0x00000000ffffffffUL);
643		raddr[1] = (uint32_t)(userbuf[0] & 0x00000000ffffffffUL);
644		raddr[2] = (uint32_t)((userbuf[1] >> 32) & 0x00000000ffffffffUL);
645		raddr[3] = (uint32_t)(userbuf[1] & 0x00000000ffffffffUL);
646	}
647
648	return 0;
649}
650
651/*
652 * perf_rdr_get_entry
653 *
654 * Retrieve a pointer to the description of what this
655 * RDR contains.
656 */
657static const struct rdr_tbl_ent * perf_rdr_get_entry(uint32_t rdr_num)
658{
659	if (perf_processor_interface == ONYX_INTF) {
660		return &perf_rdr_tbl_U[rdr_num];
661	} else {
662		return &perf_rdr_tbl_W[rdr_num];
663	}
664}
665
666/*
667 * perf_rdr_read_ubuf
668 *
669 * Read the RDR value into the buffer specified.
670 */
671static int perf_rdr_read_ubuf(uint32_t	rdr_num, uint64_t *buffer)
672{
673	uint64_t	data, data_mask = 0;
674	uint32_t	width, xbits, i;
675	const struct rdr_tbl_ent *tentry;
676
677	tentry = perf_rdr_get_entry(rdr_num);
678	if ((width = tentry->width) == 0)
679		return 0;
680
681	/* Clear out buffer */
682	i = tentry->num_words;
683	while (i--) {
684		buffer[i] = 0;
685	}
686
687	/* Check for bits an even number of 64 */
688	if ((xbits = width & 0x03f) != 0) {
689		data_mask = 1;
690		data_mask <<= (64 - xbits);
691		data_mask--;
692	}
693
694	/* Grab all of the data */
695	i = tentry->num_words;
696	while (i--) {
697
698		if (perf_processor_interface == ONYX_INTF) {
699			data = perf_rdr_shift_in_U(rdr_num, width);
700		} else {
701			data = perf_rdr_shift_in_W(rdr_num, width);
702		}
703		if (xbits) {
704			buffer[i] |= (data << (64 - xbits));
705			if (i) {
706				buffer[i-1] |= ((data >> xbits) & data_mask);
707			}
708		} else {
709			buffer[i] = data;
710		}
711	}
712
713	return 1;
714}
715
716/*
717 * perf_rdr_clear
718 *
719 * Zero out the given RDR register
720 */
721static int perf_rdr_clear(uint32_t	rdr_num)
722{
723	const struct rdr_tbl_ent *tentry;
724	int32_t		i;
725
726	tentry = perf_rdr_get_entry(rdr_num);
727
728	if (tentry->width == 0) {
729		return -1;
730	}
731
732	i = tentry->num_words;
733	while (i--) {
734		if (perf_processor_interface == ONYX_INTF) {
735			perf_rdr_shift_out_U(rdr_num, 0UL);
736		} else {
737			perf_rdr_shift_out_W(rdr_num, 0UL);
738		}
739	}
740
741	return 0;
742}
743
744
745/*
746 * perf_write_image
747 *
748 * Write the given image out to the processor
749 */
750static int perf_write_image(uint64_t *memaddr)
751{
752	uint64_t buffer[MAX_RDR_WORDS];
753	uint64_t *bptr;
754	uint32_t dwords;
755	const uint32_t *intrigue_rdr;
756	const uint64_t *intrigue_bitmask;
757	uint64_t tmp64;
758	void __iomem *runway;
759	const struct rdr_tbl_ent *tentry;
760	int i;
761
762	/* Clear out counters */
763	if (perf_processor_interface == ONYX_INTF) {
764
765		perf_rdr_clear(16);
766
767		/* Toggle performance monitor */
768		perf_intrigue_enable_perf_counters();
769		perf_intrigue_disable_perf_counters();
770
771		intrigue_rdr = perf_rdrs_U;
772	} else {
773		perf_rdr_clear(15);
774		intrigue_rdr = perf_rdrs_W;
775	}
776
777	/* Write all RDRs */
778	while (*intrigue_rdr != -1) {
779		tentry = perf_rdr_get_entry(*intrigue_rdr);
780		perf_rdr_read_ubuf(*intrigue_rdr, buffer);
781		bptr   = &buffer[0];
782		dwords = tentry->num_words;
783		if (tentry->write_control) {
784			intrigue_bitmask = &bitmask_array[tentry->write_control >> 3];
785			while (dwords--) {
786				tmp64 = *intrigue_bitmask & *memaddr++;
787				tmp64 |= (~(*intrigue_bitmask++)) & *bptr;
788				*bptr++ = tmp64;
789			}
790		} else {
791			while (dwords--) {
792				*bptr++ = *memaddr++;
793			}
794		}
795
796		perf_rdr_write(*intrigue_rdr, buffer);
797		intrigue_rdr++;
798	}
799
800	/*
801	 * Now copy out the Runway stuff which is not in RDRs
802	 */
803
804	if (cpu_device == NULL)
805	{
806		printk(KERN_ERR "write_image: cpu_device not yet initialized!\n");
807		return -1;
808	}
809
810	runway = ioremap_nocache(cpu_device->hpa.start, 4096);
811
812	/* Merge intrigue bits into Runway STATUS 0 */
813	tmp64 = __raw_readq(runway + RUNWAY_STATUS) & 0xffecfffffffffffful;
814	__raw_writeq(tmp64 | (*memaddr++ & 0x0013000000000000ul),
815		     runway + RUNWAY_STATUS);
816
817	/* Write RUNWAY DEBUG registers */
818	for (i = 0; i < 8; i++) {
819		__raw_writeq(*memaddr++, runway + RUNWAY_DEBUG);
820	}
821
822	return 0;
823}
824
825/*
826 * perf_rdr_write
827 *
828 * Write the given RDR register with the contents
829 * of the given buffer.
830 */
831static void perf_rdr_write(uint32_t rdr_num, uint64_t *buffer)
832{
833	const struct rdr_tbl_ent *tentry;
834	int32_t		i;
835
836printk("perf_rdr_write\n");
837	tentry = perf_rdr_get_entry(rdr_num);
838	if (tentry->width == 0) { return; }
839
840	i = tentry->num_words;
841	while (i--) {
842		if (perf_processor_interface == ONYX_INTF) {
843			perf_rdr_shift_out_U(rdr_num, buffer[i]);
844		} else {
845			perf_rdr_shift_out_W(rdr_num, buffer[i]);
846		}
847	}
848printk("perf_rdr_write done\n");
849}
850
851module_init(perf_init);
852