1/* 2 * PowerPC version 3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 4 * 5 * Derived from "arch/i386/mm/fault.c" 6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 7 * 8 * Modified by Cort Dougan and Paul Mackerras. 9 * 10 * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com) 11 * 12 * This program is free software; you can redistribute it and/or 13 * modify it under the terms of the GNU General Public License 14 * as published by the Free Software Foundation; either version 15 * 2 of the License, or (at your option) any later version. 16 */ 17 18#include <linux/signal.h> 19#include <linux/sched.h> 20#include <linux/kernel.h> 21#include <linux/errno.h> 22#include <linux/string.h> 23#include <linux/types.h> 24#include <linux/ptrace.h> 25#include <linux/mman.h> 26#include <linux/mm.h> 27#include <linux/interrupt.h> 28#include <linux/highmem.h> 29#include <linux/module.h> 30#include <linux/kprobes.h> 31#include <linux/kdebug.h> 32#include <linux/perf_event.h> 33#include <linux/magic.h> 34#include <linux/ratelimit.h> 35 36#include <asm/firmware.h> 37#include <asm/page.h> 38#include <asm/pgtable.h> 39#include <asm/mmu.h> 40#include <asm/mmu_context.h> 41#include <asm/uaccess.h> 42#include <asm/tlbflush.h> 43#include <asm/siginfo.h> 44#include <asm/debug.h> 45#include <mm/mmu_decl.h> 46 47#include "icswx.h" 48 49#ifdef CONFIG_KPROBES 50static inline int notify_page_fault(struct pt_regs *regs) 51{ 52 int ret = 0; 53 54 /* kprobe_running() needs smp_processor_id() */ 55 if (!user_mode(regs)) { 56 preempt_disable(); 57 if (kprobe_running() && kprobe_fault_handler(regs, 11)) 58 ret = 1; 59 preempt_enable(); 60 } 61 62 return ret; 63} 64#else 65static inline int notify_page_fault(struct pt_regs *regs) 66{ 67 return 0; 68} 69#endif 70 71/* 72 * Check whether the instruction at regs->nip is a store using 73 * an update addressing form which will update r1. 74 */ 75static int store_updates_sp(struct pt_regs *regs) 76{ 77 unsigned int inst; 78 79 if (get_user(inst, (unsigned int __user *)regs->nip)) 80 return 0; 81 /* check for 1 in the rA field */ 82 if (((inst >> 16) & 0x1f) != 1) 83 return 0; 84 /* check major opcode */ 85 switch (inst >> 26) { 86 case 37: /* stwu */ 87 case 39: /* stbu */ 88 case 45: /* sthu */ 89 case 53: /* stfsu */ 90 case 55: /* stfdu */ 91 return 1; 92 case 62: /* std or stdu */ 93 return (inst & 3) == 1; 94 case 31: 95 /* check minor opcode */ 96 switch ((inst >> 1) & 0x3ff) { 97 case 181: /* stdux */ 98 case 183: /* stwux */ 99 case 247: /* stbux */ 100 case 439: /* sthux */ 101 case 695: /* stfsux */ 102 case 759: /* stfdux */ 103 return 1; 104 } 105 } 106 return 0; 107} 108/* 109 * do_page_fault error handling helpers 110 */ 111 112#define MM_FAULT_RETURN 0 113#define MM_FAULT_CONTINUE -1 114#define MM_FAULT_ERR(sig) (sig) 115 116static int out_of_memory(struct pt_regs *regs) 117{ 118 /* 119 * We ran out of memory, or some other thing happened to us that made 120 * us unable to handle the page fault gracefully. 121 */ 122 up_read(¤t->mm->mmap_sem); 123 if (!user_mode(regs)) 124 return MM_FAULT_ERR(SIGKILL); 125 pagefault_out_of_memory(); 126 return MM_FAULT_RETURN; 127} 128 129static int do_sigbus(struct pt_regs *regs, unsigned long address) 130{ 131 siginfo_t info; 132 133 up_read(¤t->mm->mmap_sem); 134 135 if (user_mode(regs)) { 136 info.si_signo = SIGBUS; 137 info.si_errno = 0; 138 info.si_code = BUS_ADRERR; 139 info.si_addr = (void __user *)address; 140 force_sig_info(SIGBUS, &info, current); 141 return MM_FAULT_RETURN; 142 } 143 return MM_FAULT_ERR(SIGBUS); 144} 145 146static int mm_fault_error(struct pt_regs *regs, unsigned long addr, int fault) 147{ 148 /* 149 * Pagefault was interrupted by SIGKILL. We have no reason to 150 * continue the pagefault. 151 */ 152 if (fatal_signal_pending(current)) { 153 /* 154 * If we have retry set, the mmap semaphore will have 155 * alrady been released in __lock_page_or_retry(). Else 156 * we release it now. 157 */ 158 if (!(fault & VM_FAULT_RETRY)) 159 up_read(¤t->mm->mmap_sem); 160 /* Coming from kernel, we need to deal with uaccess fixups */ 161 if (user_mode(regs)) 162 return MM_FAULT_RETURN; 163 return MM_FAULT_ERR(SIGKILL); 164 } 165 166 /* No fault: be happy */ 167 if (!(fault & VM_FAULT_ERROR)) 168 return MM_FAULT_CONTINUE; 169 170 /* Out of memory */ 171 if (fault & VM_FAULT_OOM) 172 return out_of_memory(regs); 173 174 /* Bus error. x86 handles HWPOISON here, we'll add this if/when 175 * we support the feature in HW 176 */ 177 if (fault & VM_FAULT_SIGBUS) 178 return do_sigbus(regs, addr); 179 180 /* We don't understand the fault code, this is fatal */ 181 BUG(); 182 return MM_FAULT_CONTINUE; 183} 184 185/* 186 * For 600- and 800-family processors, the error_code parameter is DSISR 187 * for a data fault, SRR1 for an instruction fault. For 400-family processors 188 * the error_code parameter is ESR for a data fault, 0 for an instruction 189 * fault. 190 * For 64-bit processors, the error_code parameter is 191 * - DSISR for a non-SLB data access fault, 192 * - SRR1 & 0x08000000 for a non-SLB instruction access fault 193 * - 0 any SLB fault. 194 * 195 * The return value is 0 if the fault was handled, or the signal 196 * number if this is a kernel fault that can't be handled here. 197 */ 198int __kprobes do_page_fault(struct pt_regs *regs, unsigned long address, 199 unsigned long error_code) 200{ 201 struct vm_area_struct * vma; 202 struct mm_struct *mm = current->mm; 203 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 204 int code = SEGV_MAPERR; 205 int is_write = 0; 206 int trap = TRAP(regs); 207 int is_exec = trap == 0x400; 208 int fault; 209 210#if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE)) 211 /* 212 * Fortunately the bit assignments in SRR1 for an instruction 213 * fault and DSISR for a data fault are mostly the same for the 214 * bits we are interested in. But there are some bits which 215 * indicate errors in DSISR but can validly be set in SRR1. 216 */ 217 if (trap == 0x400) 218 error_code &= 0x48200000; 219 else 220 is_write = error_code & DSISR_ISSTORE; 221#else 222 is_write = error_code & ESR_DST; 223#endif /* CONFIG_4xx || CONFIG_BOOKE */ 224 225 if (is_write) 226 flags |= FAULT_FLAG_WRITE; 227 228#ifdef CONFIG_PPC_ICSWX 229 /* 230 * we need to do this early because this "data storage 231 * interrupt" does not update the DAR/DEAR so we don't want to 232 * look at it 233 */ 234 if (error_code & ICSWX_DSI_UCT) { 235 int rc = acop_handle_fault(regs, address, error_code); 236 if (rc) 237 return rc; 238 } 239#endif /* CONFIG_PPC_ICSWX */ 240 241 if (notify_page_fault(regs)) 242 return 0; 243 244 if (unlikely(debugger_fault_handler(regs))) 245 return 0; 246 247 /* On a kernel SLB miss we can only check for a valid exception entry */ 248 if (!user_mode(regs) && (address >= TASK_SIZE)) 249 return SIGSEGV; 250 251#if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE) || \ 252 defined(CONFIG_PPC_BOOK3S_64)) 253 if (error_code & DSISR_DABRMATCH) { 254 /* DABR match */ 255 do_dabr(regs, address, error_code); 256 return 0; 257 } 258#endif 259 260 /* We restore the interrupt state now */ 261 if (!arch_irq_disabled_regs(regs)) 262 local_irq_enable(); 263 264 if (in_atomic() || mm == NULL) { 265 if (!user_mode(regs)) 266 return SIGSEGV; 267 /* in_atomic() in user mode is really bad, 268 as is current->mm == NULL. */ 269 printk(KERN_EMERG "Page fault in user mode with " 270 "in_atomic() = %d mm = %p\n", in_atomic(), mm); 271 printk(KERN_EMERG "NIP = %lx MSR = %lx\n", 272 regs->nip, regs->msr); 273 die("Weird page fault", regs, SIGSEGV); 274 } 275 276 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address); 277 278 /* When running in the kernel we expect faults to occur only to 279 * addresses in user space. All other faults represent errors in the 280 * kernel and should generate an OOPS. Unfortunately, in the case of an 281 * erroneous fault occurring in a code path which already holds mmap_sem 282 * we will deadlock attempting to validate the fault against the 283 * address space. Luckily the kernel only validly references user 284 * space from well defined areas of code, which are listed in the 285 * exceptions table. 286 * 287 * As the vast majority of faults will be valid we will only perform 288 * the source reference check when there is a possibility of a deadlock. 289 * Attempt to lock the address space, if we cannot we then validate the 290 * source. If this is invalid we can skip the address space check, 291 * thus avoiding the deadlock. 292 */ 293 if (!down_read_trylock(&mm->mmap_sem)) { 294 if (!user_mode(regs) && !search_exception_tables(regs->nip)) 295 goto bad_area_nosemaphore; 296 297retry: 298 down_read(&mm->mmap_sem); 299 } else { 300 /* 301 * The above down_read_trylock() might have succeeded in 302 * which case we'll have missed the might_sleep() from 303 * down_read(): 304 */ 305 might_sleep(); 306 } 307 308 vma = find_vma(mm, address); 309 if (!vma) 310 goto bad_area; 311 if (vma->vm_start <= address) 312 goto good_area; 313 if (!(vma->vm_flags & VM_GROWSDOWN)) 314 goto bad_area; 315 316 /* 317 * N.B. The POWER/Open ABI allows programs to access up to 318 * 288 bytes below the stack pointer. 319 * The kernel signal delivery code writes up to about 1.5kB 320 * below the stack pointer (r1) before decrementing it. 321 * The exec code can write slightly over 640kB to the stack 322 * before setting the user r1. Thus we allow the stack to 323 * expand to 1MB without further checks. 324 */ 325 if (address + 0x100000 < vma->vm_end) { 326 /* get user regs even if this fault is in kernel mode */ 327 struct pt_regs *uregs = current->thread.regs; 328 if (uregs == NULL) 329 goto bad_area; 330 331 /* 332 * A user-mode access to an address a long way below 333 * the stack pointer is only valid if the instruction 334 * is one which would update the stack pointer to the 335 * address accessed if the instruction completed, 336 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb 337 * (or the byte, halfword, float or double forms). 338 * 339 * If we don't check this then any write to the area 340 * between the last mapped region and the stack will 341 * expand the stack rather than segfaulting. 342 */ 343 if (address + 2048 < uregs->gpr[1] 344 && (!user_mode(regs) || !store_updates_sp(regs))) 345 goto bad_area; 346 } 347 if (expand_stack(vma, address)) 348 goto bad_area; 349 350good_area: 351 code = SEGV_ACCERR; 352#if defined(CONFIG_6xx) 353 if (error_code & 0x95700000) 354 /* an error such as lwarx to I/O controller space, 355 address matching DABR, eciwx, etc. */ 356 goto bad_area; 357#endif /* CONFIG_6xx */ 358#if defined(CONFIG_8xx) 359 /* 8xx sometimes need to load a invalid/non-present TLBs. 360 * These must be invalidated separately as linux mm don't. 361 */ 362 if (error_code & 0x40000000) /* no translation? */ 363 _tlbil_va(address, 0, 0, 0); 364 365 /* The MPC8xx seems to always set 0x80000000, which is 366 * "undefined". Of those that can be set, this is the only 367 * one which seems bad. 368 */ 369 if (error_code & 0x10000000) 370 /* Guarded storage error. */ 371 goto bad_area; 372#endif /* CONFIG_8xx */ 373 374 if (is_exec) { 375#ifdef CONFIG_PPC_STD_MMU 376 /* Protection fault on exec go straight to failure on 377 * Hash based MMUs as they either don't support per-page 378 * execute permission, or if they do, it's handled already 379 * at the hash level. This test would probably have to 380 * be removed if we change the way this works to make hash 381 * processors use the same I/D cache coherency mechanism 382 * as embedded. 383 */ 384 if (error_code & DSISR_PROTFAULT) 385 goto bad_area; 386#endif /* CONFIG_PPC_STD_MMU */ 387 388 /* 389 * Allow execution from readable areas if the MMU does not 390 * provide separate controls over reading and executing. 391 * 392 * Note: That code used to not be enabled for 4xx/BookE. 393 * It is now as I/D cache coherency for these is done at 394 * set_pte_at() time and I see no reason why the test 395 * below wouldn't be valid on those processors. This -may- 396 * break programs compiled with a really old ABI though. 397 */ 398 if (!(vma->vm_flags & VM_EXEC) && 399 (cpu_has_feature(CPU_FTR_NOEXECUTE) || 400 !(vma->vm_flags & (VM_READ | VM_WRITE)))) 401 goto bad_area; 402 /* a write */ 403 } else if (is_write) { 404 if (!(vma->vm_flags & VM_WRITE)) 405 goto bad_area; 406 /* a read */ 407 } else { 408 /* protection fault */ 409 if (error_code & 0x08000000) 410 goto bad_area; 411 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) 412 goto bad_area; 413 } 414 415 /* 416 * If for any reason at all we couldn't handle the fault, 417 * make sure we exit gracefully rather than endlessly redo 418 * the fault. 419 */ 420 fault = handle_mm_fault(mm, vma, address, flags); 421 if (unlikely(fault & (VM_FAULT_RETRY|VM_FAULT_ERROR))) { 422 int rc = mm_fault_error(regs, address, fault); 423 if (rc >= MM_FAULT_RETURN) 424 return rc; 425 } 426 427 /* 428 * Major/minor page fault accounting is only done on the 429 * initial attempt. If we go through a retry, it is extremely 430 * likely that the page will be found in page cache at that point. 431 */ 432 if (flags & FAULT_FLAG_ALLOW_RETRY) { 433 if (fault & VM_FAULT_MAJOR) { 434 current->maj_flt++; 435 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, 436 regs, address); 437#ifdef CONFIG_PPC_SMLPAR 438 if (firmware_has_feature(FW_FEATURE_CMO)) { 439 preempt_disable(); 440 get_lppaca()->page_ins += (1 << PAGE_FACTOR); 441 preempt_enable(); 442 } 443#endif /* CONFIG_PPC_SMLPAR */ 444 } else { 445 current->min_flt++; 446 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, 447 regs, address); 448 } 449 if (fault & VM_FAULT_RETRY) { 450 /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk 451 * of starvation. */ 452 flags &= ~FAULT_FLAG_ALLOW_RETRY; 453 goto retry; 454 } 455 } 456 457 up_read(&mm->mmap_sem); 458 return 0; 459 460bad_area: 461 up_read(&mm->mmap_sem); 462 463bad_area_nosemaphore: 464 /* User mode accesses cause a SIGSEGV */ 465 if (user_mode(regs)) { 466 _exception(SIGSEGV, regs, code, address); 467 return 0; 468 } 469 470 if (is_exec && (error_code & DSISR_PROTFAULT)) 471 printk_ratelimited(KERN_CRIT "kernel tried to execute NX-protected" 472 " page (%lx) - exploit attempt? (uid: %d)\n", 473 address, current_uid()); 474 475 return SIGSEGV; 476 477} 478 479/* 480 * bad_page_fault is called when we have a bad access from the kernel. 481 * It is called from the DSI and ISI handlers in head.S and from some 482 * of the procedures in traps.c. 483 */ 484void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig) 485{ 486 const struct exception_table_entry *entry; 487 unsigned long *stackend; 488 489 /* Are we prepared to handle this fault? */ 490 if ((entry = search_exception_tables(regs->nip)) != NULL) { 491 regs->nip = entry->fixup; 492 return; 493 } 494 495 /* kernel has accessed a bad area */ 496 497 switch (regs->trap) { 498 case 0x300: 499 case 0x380: 500 printk(KERN_ALERT "Unable to handle kernel paging request for " 501 "data at address 0x%08lx\n", regs->dar); 502 break; 503 case 0x400: 504 case 0x480: 505 printk(KERN_ALERT "Unable to handle kernel paging request for " 506 "instruction fetch\n"); 507 break; 508 default: 509 printk(KERN_ALERT "Unable to handle kernel paging request for " 510 "unknown fault\n"); 511 break; 512 } 513 printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n", 514 regs->nip); 515 516 stackend = end_of_stack(current); 517 if (current != &init_task && *stackend != STACK_END_MAGIC) 518 printk(KERN_ALERT "Thread overran stack, or stack corrupted\n"); 519 520 die("Kernel access of bad area", regs, sig); 521} 522