cache-sh4.c revision a6325247f50628c7e53a483807d0ef2c24a7aa90
1/*
2 * arch/sh/mm/cache-sh4.c
3 *
4 * Copyright (C) 1999, 2000, 2002  Niibe Yutaka
5 * Copyright (C) 2001 - 2007  Paul Mundt
6 * Copyright (C) 2003  Richard Curnow
7 * Copyright (c) 2007 STMicroelectronics (R&D) Ltd.
8 *
9 * This file is subject to the terms and conditions of the GNU General Public
10 * License.  See the file "COPYING" in the main directory of this archive
11 * for more details.
12 */
13#include <linux/init.h>
14#include <linux/mm.h>
15#include <linux/io.h>
16#include <linux/mutex.h>
17#include <linux/fs.h>
18#include <asm/mmu_context.h>
19#include <asm/cacheflush.h>
20
21/*
22 * The maximum number of pages we support up to when doing ranged dcache
23 * flushing. Anything exceeding this will simply flush the dcache in its
24 * entirety.
25 */
26#define MAX_DCACHE_PAGES	64	/* XXX: Tune for ways */
27#define MAX_ICACHE_PAGES	32
28
29static void __flush_cache_4096(unsigned long addr, unsigned long phys,
30			       unsigned long exec_offset);
31
32/*
33 * This is initialised here to ensure that it is not placed in the BSS.  If
34 * that were to happen, note that cache_init gets called before the BSS is
35 * cleared, so this would get nulled out which would be hopeless.
36 */
37static void (*__flush_dcache_segment_fn)(unsigned long, unsigned long) =
38	(void (*)(unsigned long, unsigned long))0xdeadbeef;
39
40/*
41 * Write back the range of D-cache, and purge the I-cache.
42 *
43 * Called from kernel/module.c:sys_init_module and routine for a.out format,
44 * signal handler code and kprobes code
45 */
46static void __uses_jump_to_uncached sh4_flush_icache_range(void *args)
47{
48	struct flusher_data *data = args;
49	unsigned long start, end;
50	unsigned long flags, v;
51	int i;
52
53	start = data->addr1;
54	end = data->addr2;
55
56	/* If there are too many pages then just blow away the caches */
57	if (((end - start) >> PAGE_SHIFT) >= MAX_ICACHE_PAGES) {
58		local_flush_cache_all(NULL);
59		return;
60	}
61
62	/*
63	 * Selectively flush d-cache then invalidate the i-cache.
64	 * This is inefficient, so only use this for small ranges.
65	 */
66	start &= ~(L1_CACHE_BYTES-1);
67	end += L1_CACHE_BYTES-1;
68	end &= ~(L1_CACHE_BYTES-1);
69
70	local_irq_save(flags);
71	jump_to_uncached();
72
73	for (v = start; v < end; v += L1_CACHE_BYTES) {
74		unsigned long icacheaddr;
75
76		__ocbwb(v);
77
78		icacheaddr = CACHE_IC_ADDRESS_ARRAY | (v &
79				cpu_data->icache.entry_mask);
80
81		/* Clear i-cache line valid-bit */
82		for (i = 0; i < cpu_data->icache.ways; i++) {
83			__raw_writel(0, icacheaddr);
84			icacheaddr += cpu_data->icache.way_incr;
85		}
86	}
87
88	back_to_cached();
89	local_irq_restore(flags);
90}
91
92static inline void flush_cache_4096(unsigned long start,
93				    unsigned long phys)
94{
95	unsigned long flags, exec_offset = 0;
96
97	/*
98	 * All types of SH-4 require PC to be in P2 to operate on the I-cache.
99	 * Some types of SH-4 require PC to be in P2 to operate on the D-cache.
100	 */
101	if ((boot_cpu_data.flags & CPU_HAS_P2_FLUSH_BUG) ||
102	    (start < CACHE_OC_ADDRESS_ARRAY))
103		exec_offset = 0x20000000;
104
105	local_irq_save(flags);
106	__flush_cache_4096(start | SH_CACHE_ASSOC,
107			   P1SEGADDR(phys), exec_offset);
108	local_irq_restore(flags);
109}
110
111/*
112 * Write back & invalidate the D-cache of the page.
113 * (To avoid "alias" issues)
114 */
115static void sh4_flush_dcache_page(void *arg)
116{
117	struct page *page = arg;
118#ifndef CONFIG_SMP
119	struct address_space *mapping = page_mapping(page);
120
121	if (mapping && !mapping_mapped(mapping))
122		set_bit(PG_dcache_dirty, &page->flags);
123	else
124#endif
125	{
126		unsigned long phys = PHYSADDR(page_address(page));
127		unsigned long addr = CACHE_OC_ADDRESS_ARRAY;
128		int i, n;
129
130		/* Loop all the D-cache */
131		n = boot_cpu_data.dcache.n_aliases;
132		for (i = 0; i < n; i++, addr += 4096)
133			flush_cache_4096(addr, phys);
134	}
135
136	wmb();
137}
138
139/* TODO: Selective icache invalidation through IC address array.. */
140static void __uses_jump_to_uncached flush_icache_all(void)
141{
142	unsigned long flags, ccr;
143
144	local_irq_save(flags);
145	jump_to_uncached();
146
147	/* Flush I-cache */
148	ccr = ctrl_inl(CCR);
149	ccr |= CCR_CACHE_ICI;
150	ctrl_outl(ccr, CCR);
151
152	/*
153	 * back_to_cached() will take care of the barrier for us, don't add
154	 * another one!
155	 */
156
157	back_to_cached();
158	local_irq_restore(flags);
159}
160
161static inline void flush_dcache_all(void)
162{
163	(*__flush_dcache_segment_fn)(0UL, boot_cpu_data.dcache.way_size);
164	wmb();
165}
166
167static void sh4_flush_cache_all(void *unused)
168{
169	flush_dcache_all();
170	flush_icache_all();
171}
172
173static void __flush_cache_mm(struct mm_struct *mm, unsigned long start,
174			     unsigned long end)
175{
176	unsigned long d = 0, p = start & PAGE_MASK;
177	unsigned long alias_mask = boot_cpu_data.dcache.alias_mask;
178	unsigned long n_aliases = boot_cpu_data.dcache.n_aliases;
179	unsigned long select_bit;
180	unsigned long all_aliases_mask;
181	unsigned long addr_offset;
182	pgd_t *dir;
183	pmd_t *pmd;
184	pud_t *pud;
185	pte_t *pte;
186	int i;
187
188	dir = pgd_offset(mm, p);
189	pud = pud_offset(dir, p);
190	pmd = pmd_offset(pud, p);
191	end = PAGE_ALIGN(end);
192
193	all_aliases_mask = (1 << n_aliases) - 1;
194
195	do {
196		if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) {
197			p &= PMD_MASK;
198			p += PMD_SIZE;
199			pmd++;
200
201			continue;
202		}
203
204		pte = pte_offset_kernel(pmd, p);
205
206		do {
207			unsigned long phys;
208			pte_t entry = *pte;
209
210			if (!(pte_val(entry) & _PAGE_PRESENT)) {
211				pte++;
212				p += PAGE_SIZE;
213				continue;
214			}
215
216			phys = pte_val(entry) & PTE_PHYS_MASK;
217
218			if ((p ^ phys) & alias_mask) {
219				d |= 1 << ((p & alias_mask) >> PAGE_SHIFT);
220				d |= 1 << ((phys & alias_mask) >> PAGE_SHIFT);
221
222				if (d == all_aliases_mask)
223					goto loop_exit;
224			}
225
226			pte++;
227			p += PAGE_SIZE;
228		} while (p < end && ((unsigned long)pte & ~PAGE_MASK));
229		pmd++;
230	} while (p < end);
231
232loop_exit:
233	addr_offset = 0;
234	select_bit = 1;
235
236	for (i = 0; i < n_aliases; i++) {
237		if (d & select_bit) {
238			(*__flush_dcache_segment_fn)(addr_offset, PAGE_SIZE);
239			wmb();
240		}
241
242		select_bit <<= 1;
243		addr_offset += PAGE_SIZE;
244	}
245}
246
247/*
248 * Note : (RPC) since the caches are physically tagged, the only point
249 * of flush_cache_mm for SH-4 is to get rid of aliases from the
250 * D-cache.  The assumption elsewhere, e.g. flush_cache_range, is that
251 * lines can stay resident so long as the virtual address they were
252 * accessed with (hence cache set) is in accord with the physical
253 * address (i.e. tag).  It's no different here.  So I reckon we don't
254 * need to flush the I-cache, since aliases don't matter for that.  We
255 * should try that.
256 *
257 * Caller takes mm->mmap_sem.
258 */
259static void sh4_flush_cache_mm(void *arg)
260{
261	struct mm_struct *mm = arg;
262
263	if (cpu_context(smp_processor_id(), mm) == NO_CONTEXT)
264		return;
265
266	/*
267	 * If cache is only 4k-per-way, there are never any 'aliases'.  Since
268	 * the cache is physically tagged, the data can just be left in there.
269	 */
270	if (boot_cpu_data.dcache.n_aliases == 0)
271		return;
272
273	/*
274	 * Don't bother groveling around the dcache for the VMA ranges
275	 * if there are too many PTEs to make it worthwhile.
276	 */
277	if (mm->nr_ptes >= MAX_DCACHE_PAGES)
278		flush_dcache_all();
279	else {
280		struct vm_area_struct *vma;
281
282		/*
283		 * In this case there are reasonably sized ranges to flush,
284		 * iterate through the VMA list and take care of any aliases.
285		 */
286		for (vma = mm->mmap; vma; vma = vma->vm_next)
287			__flush_cache_mm(mm, vma->vm_start, vma->vm_end);
288	}
289
290	/* Only touch the icache if one of the VMAs has VM_EXEC set. */
291	if (mm->exec_vm)
292		flush_icache_all();
293}
294
295/*
296 * Write back and invalidate I/D-caches for the page.
297 *
298 * ADDR: Virtual Address (U0 address)
299 * PFN: Physical page number
300 */
301static void sh4_flush_cache_page(void *args)
302{
303	struct flusher_data *data = args;
304	struct vm_area_struct *vma;
305	unsigned long address, pfn, phys;
306	unsigned int alias_mask;
307
308	vma = data->vma;
309	address = data->addr1;
310	pfn = data->addr2;
311	phys = pfn << PAGE_SHIFT;
312
313	if (cpu_context(smp_processor_id(), vma->vm_mm) == NO_CONTEXT)
314		return;
315
316	alias_mask = boot_cpu_data.dcache.alias_mask;
317
318	/* We only need to flush D-cache when we have alias */
319	if ((address^phys) & alias_mask) {
320		/* Loop 4K of the D-cache */
321		flush_cache_4096(
322			CACHE_OC_ADDRESS_ARRAY | (address & alias_mask),
323			phys);
324		/* Loop another 4K of the D-cache */
325		flush_cache_4096(
326			CACHE_OC_ADDRESS_ARRAY | (phys & alias_mask),
327			phys);
328	}
329
330	alias_mask = boot_cpu_data.icache.alias_mask;
331	if (vma->vm_flags & VM_EXEC) {
332		/*
333		 * Evict entries from the portion of the cache from which code
334		 * may have been executed at this address (virtual).  There's
335		 * no need to evict from the portion corresponding to the
336		 * physical address as for the D-cache, because we know the
337		 * kernel has never executed the code through its identity
338		 * translation.
339		 */
340		flush_cache_4096(
341			CACHE_IC_ADDRESS_ARRAY | (address & alias_mask),
342			phys);
343	}
344}
345
346/*
347 * Write back and invalidate D-caches.
348 *
349 * START, END: Virtual Address (U0 address)
350 *
351 * NOTE: We need to flush the _physical_ page entry.
352 * Flushing the cache lines for U0 only isn't enough.
353 * We need to flush for P1 too, which may contain aliases.
354 */
355static void sh4_flush_cache_range(void *args)
356{
357	struct flusher_data *data = args;
358	struct vm_area_struct *vma;
359	unsigned long start, end;
360
361	vma = data->vma;
362	start = data->addr1;
363	end = data->addr2;
364
365	if (cpu_context(smp_processor_id(), vma->vm_mm) == NO_CONTEXT)
366		return;
367
368	/*
369	 * If cache is only 4k-per-way, there are never any 'aliases'.  Since
370	 * the cache is physically tagged, the data can just be left in there.
371	 */
372	if (boot_cpu_data.dcache.n_aliases == 0)
373		return;
374
375	/*
376	 * Don't bother with the lookup and alias check if we have a
377	 * wide range to cover, just blow away the dcache in its
378	 * entirety instead. -- PFM.
379	 */
380	if (((end - start) >> PAGE_SHIFT) >= MAX_DCACHE_PAGES)
381		flush_dcache_all();
382	else
383		__flush_cache_mm(vma->vm_mm, start, end);
384
385	if (vma->vm_flags & VM_EXEC) {
386		/*
387		 * TODO: Is this required???  Need to look at how I-cache
388		 * coherency is assured when new programs are loaded to see if
389		 * this matters.
390		 */
391		flush_icache_all();
392	}
393}
394
395/**
396 * __flush_cache_4096
397 *
398 * @addr:  address in memory mapped cache array
399 * @phys:  P1 address to flush (has to match tags if addr has 'A' bit
400 *         set i.e. associative write)
401 * @exec_offset: set to 0x20000000 if flush has to be executed from P2
402 *               region else 0x0
403 *
404 * The offset into the cache array implied by 'addr' selects the
405 * 'colour' of the virtual address range that will be flushed.  The
406 * operation (purge/write-back) is selected by the lower 2 bits of
407 * 'phys'.
408 */
409static void __flush_cache_4096(unsigned long addr, unsigned long phys,
410			       unsigned long exec_offset)
411{
412	int way_count;
413	unsigned long base_addr = addr;
414	struct cache_info *dcache;
415	unsigned long way_incr;
416	unsigned long a, ea, p;
417	unsigned long temp_pc;
418
419	dcache = &boot_cpu_data.dcache;
420	/* Write this way for better assembly. */
421	way_count = dcache->ways;
422	way_incr = dcache->way_incr;
423
424	/*
425	 * Apply exec_offset (i.e. branch to P2 if required.).
426	 *
427	 * FIXME:
428	 *
429	 *	If I write "=r" for the (temp_pc), it puts this in r6 hence
430	 *	trashing exec_offset before it's been added on - why?  Hence
431	 *	"=&r" as a 'workaround'
432	 */
433	asm volatile("mov.l 1f, %0\n\t"
434		     "add   %1, %0\n\t"
435		     "jmp   @%0\n\t"
436		     "nop\n\t"
437		     ".balign 4\n\t"
438		     "1:  .long 2f\n\t"
439		     "2:\n" : "=&r" (temp_pc) : "r" (exec_offset));
440
441	/*
442	 * We know there will be >=1 iteration, so write as do-while to avoid
443	 * pointless nead-of-loop check for 0 iterations.
444	 */
445	do {
446		ea = base_addr + PAGE_SIZE;
447		a = base_addr;
448		p = phys;
449
450		do {
451			*(volatile unsigned long *)a = p;
452			/*
453			 * Next line: intentionally not p+32, saves an add, p
454			 * will do since only the cache tag bits need to
455			 * match.
456			 */
457			*(volatile unsigned long *)(a+32) = p;
458			a += 64;
459			p += 64;
460		} while (a < ea);
461
462		base_addr += way_incr;
463	} while (--way_count != 0);
464}
465
466/*
467 * Break the 1, 2 and 4 way variants of this out into separate functions to
468 * avoid nearly all the overhead of having the conditional stuff in the function
469 * bodies (+ the 1 and 2 way cases avoid saving any registers too).
470 *
471 * We want to eliminate unnecessary bus transactions, so this code uses
472 * a non-obvious technique.
473 *
474 * Loop over a cache way sized block of, one cache line at a time. For each
475 * line, use movca.a to cause the current cache line contents to be written
476 * back, but without reading anything from main memory. However this has the
477 * side effect that the cache is now caching that memory location. So follow
478 * this with a cache invalidate to mark the cache line invalid. And do all
479 * this with interrupts disabled, to avoid the cache line being accidently
480 * evicted while it is holding garbage.
481 *
482 * This also breaks in a number of circumstances:
483 * - if there are modifications to the region of memory just above
484 *   empty_zero_page (for example because a breakpoint has been placed
485 *   there), then these can be lost.
486 *
487 *   This is because the the memory address which the cache temporarily
488 *   caches in the above description is empty_zero_page. So the
489 *   movca.l hits the cache (it is assumed that it misses, or at least
490 *   isn't dirty), modifies the line and then invalidates it, losing the
491 *   required change.
492 *
493 * - If caches are disabled or configured in write-through mode, then
494 *   the movca.l writes garbage directly into memory.
495 */
496static void __flush_dcache_segment_writethrough(unsigned long start,
497					        unsigned long extent_per_way)
498{
499	unsigned long addr;
500	int i;
501
502	addr = CACHE_OC_ADDRESS_ARRAY | (start & cpu_data->dcache.entry_mask);
503
504	while (extent_per_way) {
505		for (i = 0; i < cpu_data->dcache.ways; i++)
506			__raw_writel(0, addr + cpu_data->dcache.way_incr * i);
507
508		addr += cpu_data->dcache.linesz;
509		extent_per_way -= cpu_data->dcache.linesz;
510	}
511}
512
513static void __flush_dcache_segment_1way(unsigned long start,
514					unsigned long extent_per_way)
515{
516	unsigned long orig_sr, sr_with_bl;
517	unsigned long base_addr;
518	unsigned long way_incr, linesz, way_size;
519	struct cache_info *dcache;
520	register unsigned long a0, a0e;
521
522	asm volatile("stc sr, %0" : "=r" (orig_sr));
523	sr_with_bl = orig_sr | (1<<28);
524	base_addr = ((unsigned long)&empty_zero_page[0]);
525
526	/*
527	 * The previous code aligned base_addr to 16k, i.e. the way_size of all
528	 * existing SH-4 D-caches.  Whilst I don't see a need to have this
529	 * aligned to any better than the cache line size (which it will be
530	 * anyway by construction), let's align it to at least the way_size of
531	 * any existing or conceivable SH-4 D-cache.  -- RPC
532	 */
533	base_addr = ((base_addr >> 16) << 16);
534	base_addr |= start;
535
536	dcache = &boot_cpu_data.dcache;
537	linesz = dcache->linesz;
538	way_incr = dcache->way_incr;
539	way_size = dcache->way_size;
540
541	a0 = base_addr;
542	a0e = base_addr + extent_per_way;
543	do {
544		asm volatile("ldc %0, sr" : : "r" (sr_with_bl));
545		asm volatile("movca.l r0, @%0\n\t"
546			     "ocbi @%0" : : "r" (a0));
547		a0 += linesz;
548		asm volatile("movca.l r0, @%0\n\t"
549			     "ocbi @%0" : : "r" (a0));
550		a0 += linesz;
551		asm volatile("movca.l r0, @%0\n\t"
552			     "ocbi @%0" : : "r" (a0));
553		a0 += linesz;
554		asm volatile("movca.l r0, @%0\n\t"
555			     "ocbi @%0" : : "r" (a0));
556		asm volatile("ldc %0, sr" : : "r" (orig_sr));
557		a0 += linesz;
558	} while (a0 < a0e);
559}
560
561static void __flush_dcache_segment_2way(unsigned long start,
562					unsigned long extent_per_way)
563{
564	unsigned long orig_sr, sr_with_bl;
565	unsigned long base_addr;
566	unsigned long way_incr, linesz, way_size;
567	struct cache_info *dcache;
568	register unsigned long a0, a1, a0e;
569
570	asm volatile("stc sr, %0" : "=r" (orig_sr));
571	sr_with_bl = orig_sr | (1<<28);
572	base_addr = ((unsigned long)&empty_zero_page[0]);
573
574	/* See comment under 1-way above */
575	base_addr = ((base_addr >> 16) << 16);
576	base_addr |= start;
577
578	dcache = &boot_cpu_data.dcache;
579	linesz = dcache->linesz;
580	way_incr = dcache->way_incr;
581	way_size = dcache->way_size;
582
583	a0 = base_addr;
584	a1 = a0 + way_incr;
585	a0e = base_addr + extent_per_way;
586	do {
587		asm volatile("ldc %0, sr" : : "r" (sr_with_bl));
588		asm volatile("movca.l r0, @%0\n\t"
589			     "movca.l r0, @%1\n\t"
590			     "ocbi @%0\n\t"
591			     "ocbi @%1" : :
592			     "r" (a0), "r" (a1));
593		a0 += linesz;
594		a1 += linesz;
595		asm volatile("movca.l r0, @%0\n\t"
596			     "movca.l r0, @%1\n\t"
597			     "ocbi @%0\n\t"
598			     "ocbi @%1" : :
599			     "r" (a0), "r" (a1));
600		a0 += linesz;
601		a1 += linesz;
602		asm volatile("movca.l r0, @%0\n\t"
603			     "movca.l r0, @%1\n\t"
604			     "ocbi @%0\n\t"
605			     "ocbi @%1" : :
606			     "r" (a0), "r" (a1));
607		a0 += linesz;
608		a1 += linesz;
609		asm volatile("movca.l r0, @%0\n\t"
610			     "movca.l r0, @%1\n\t"
611			     "ocbi @%0\n\t"
612			     "ocbi @%1" : :
613			     "r" (a0), "r" (a1));
614		asm volatile("ldc %0, sr" : : "r" (orig_sr));
615		a0 += linesz;
616		a1 += linesz;
617	} while (a0 < a0e);
618}
619
620static void __flush_dcache_segment_4way(unsigned long start,
621					unsigned long extent_per_way)
622{
623	unsigned long orig_sr, sr_with_bl;
624	unsigned long base_addr;
625	unsigned long way_incr, linesz, way_size;
626	struct cache_info *dcache;
627	register unsigned long a0, a1, a2, a3, a0e;
628
629	asm volatile("stc sr, %0" : "=r" (orig_sr));
630	sr_with_bl = orig_sr | (1<<28);
631	base_addr = ((unsigned long)&empty_zero_page[0]);
632
633	/* See comment under 1-way above */
634	base_addr = ((base_addr >> 16) << 16);
635	base_addr |= start;
636
637	dcache = &boot_cpu_data.dcache;
638	linesz = dcache->linesz;
639	way_incr = dcache->way_incr;
640	way_size = dcache->way_size;
641
642	a0 = base_addr;
643	a1 = a0 + way_incr;
644	a2 = a1 + way_incr;
645	a3 = a2 + way_incr;
646	a0e = base_addr + extent_per_way;
647	do {
648		asm volatile("ldc %0, sr" : : "r" (sr_with_bl));
649		asm volatile("movca.l r0, @%0\n\t"
650			     "movca.l r0, @%1\n\t"
651			     "movca.l r0, @%2\n\t"
652			     "movca.l r0, @%3\n\t"
653			     "ocbi @%0\n\t"
654			     "ocbi @%1\n\t"
655			     "ocbi @%2\n\t"
656			     "ocbi @%3\n\t" : :
657			     "r" (a0), "r" (a1), "r" (a2), "r" (a3));
658		a0 += linesz;
659		a1 += linesz;
660		a2 += linesz;
661		a3 += linesz;
662		asm volatile("movca.l r0, @%0\n\t"
663			     "movca.l r0, @%1\n\t"
664			     "movca.l r0, @%2\n\t"
665			     "movca.l r0, @%3\n\t"
666			     "ocbi @%0\n\t"
667			     "ocbi @%1\n\t"
668			     "ocbi @%2\n\t"
669			     "ocbi @%3\n\t" : :
670			     "r" (a0), "r" (a1), "r" (a2), "r" (a3));
671		a0 += linesz;
672		a1 += linesz;
673		a2 += linesz;
674		a3 += linesz;
675		asm volatile("movca.l r0, @%0\n\t"
676			     "movca.l r0, @%1\n\t"
677			     "movca.l r0, @%2\n\t"
678			     "movca.l r0, @%3\n\t"
679			     "ocbi @%0\n\t"
680			     "ocbi @%1\n\t"
681			     "ocbi @%2\n\t"
682			     "ocbi @%3\n\t" : :
683			     "r" (a0), "r" (a1), "r" (a2), "r" (a3));
684		a0 += linesz;
685		a1 += linesz;
686		a2 += linesz;
687		a3 += linesz;
688		asm volatile("movca.l r0, @%0\n\t"
689			     "movca.l r0, @%1\n\t"
690			     "movca.l r0, @%2\n\t"
691			     "movca.l r0, @%3\n\t"
692			     "ocbi @%0\n\t"
693			     "ocbi @%1\n\t"
694			     "ocbi @%2\n\t"
695			     "ocbi @%3\n\t" : :
696			     "r" (a0), "r" (a1), "r" (a2), "r" (a3));
697		asm volatile("ldc %0, sr" : : "r" (orig_sr));
698		a0 += linesz;
699		a1 += linesz;
700		a2 += linesz;
701		a3 += linesz;
702	} while (a0 < a0e);
703}
704
705extern void __weak sh4__flush_region_init(void);
706
707/*
708 * SH-4 has virtually indexed and physically tagged cache.
709 */
710void __init sh4_cache_init(void)
711{
712	unsigned int wt_enabled = !!(__raw_readl(CCR) & CCR_CACHE_WT);
713
714	printk("PVR=%08x CVR=%08x PRR=%08x\n",
715		ctrl_inl(CCN_PVR),
716		ctrl_inl(CCN_CVR),
717		ctrl_inl(CCN_PRR));
718
719	if (wt_enabled)
720		__flush_dcache_segment_fn = __flush_dcache_segment_writethrough;
721	else {
722		switch (boot_cpu_data.dcache.ways) {
723		case 1:
724			__flush_dcache_segment_fn = __flush_dcache_segment_1way;
725			break;
726		case 2:
727			__flush_dcache_segment_fn = __flush_dcache_segment_2way;
728			break;
729		case 4:
730			__flush_dcache_segment_fn = __flush_dcache_segment_4way;
731			break;
732		default:
733			panic("unknown number of cache ways\n");
734			break;
735		}
736	}
737
738	local_flush_icache_range	= sh4_flush_icache_range;
739	local_flush_dcache_page		= sh4_flush_dcache_page;
740	local_flush_cache_all		= sh4_flush_cache_all;
741	local_flush_cache_mm		= sh4_flush_cache_mm;
742	local_flush_cache_dup_mm	= sh4_flush_cache_mm;
743	local_flush_cache_page		= sh4_flush_cache_page;
744	local_flush_cache_range		= sh4_flush_cache_range;
745
746	sh4__flush_region_init();
747}
748