setup.c revision bfffe79bc29a9c4c817d5f51590961220e26db1a
1/*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
3 *
4 *   This program is free software; you can redistribute it and/or
5 *   modify it under the terms of the GNU General Public License
6 *   as published by the Free Software Foundation, version 2.
7 *
8 *   This program is distributed in the hope that it will be useful, but
9 *   WITHOUT ANY WARRANTY; without even the implied warranty of
10 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 *   NON INFRINGEMENT.  See the GNU General Public License for
12 *   more details.
13 */
14
15#include <linux/sched.h>
16#include <linux/kernel.h>
17#include <linux/mmzone.h>
18#include <linux/bootmem.h>
19#include <linux/module.h>
20#include <linux/node.h>
21#include <linux/cpu.h>
22#include <linux/ioport.h>
23#include <linux/irq.h>
24#include <linux/kexec.h>
25#include <linux/pci.h>
26#include <linux/initrd.h>
27#include <linux/io.h>
28#include <linux/highmem.h>
29#include <linux/smp.h>
30#include <linux/timex.h>
31#include <asm/setup.h>
32#include <asm/sections.h>
33#include <asm/cacheflush.h>
34#include <asm/pgalloc.h>
35#include <asm/mmu_context.h>
36#include <hv/hypervisor.h>
37#include <arch/interrupts.h>
38
39/* <linux/smp.h> doesn't provide this definition. */
40#ifndef CONFIG_SMP
41#define setup_max_cpus 1
42#endif
43
44static inline int ABS(int x) { return x >= 0 ? x : -x; }
45
46/* Chip information */
47char chip_model[64] __write_once;
48
49struct pglist_data node_data[MAX_NUMNODES] __read_mostly;
50EXPORT_SYMBOL(node_data);
51
52/* We only create bootmem data on node 0. */
53static bootmem_data_t __initdata node0_bdata;
54
55/* Information on the NUMA nodes that we compute early */
56unsigned long __cpuinitdata node_start_pfn[MAX_NUMNODES];
57unsigned long __cpuinitdata node_end_pfn[MAX_NUMNODES];
58unsigned long __initdata node_memmap_pfn[MAX_NUMNODES];
59unsigned long __initdata node_percpu_pfn[MAX_NUMNODES];
60unsigned long __initdata node_free_pfn[MAX_NUMNODES];
61
62static unsigned long __initdata node_percpu[MAX_NUMNODES];
63
64#ifdef CONFIG_HIGHMEM
65/* Page frame index of end of lowmem on each controller. */
66unsigned long __cpuinitdata node_lowmem_end_pfn[MAX_NUMNODES];
67
68/* Number of pages that can be mapped into lowmem. */
69static unsigned long __initdata mappable_physpages;
70#endif
71
72/* Data on which physical memory controller corresponds to which NUMA node */
73int node_controller[MAX_NUMNODES] = { [0 ... MAX_NUMNODES-1] = -1 };
74
75#ifdef CONFIG_HIGHMEM
76/* Map information from VAs to PAs */
77unsigned long pbase_map[1 << (32 - HPAGE_SHIFT)]
78  __write_once __attribute__((aligned(L2_CACHE_BYTES)));
79EXPORT_SYMBOL(pbase_map);
80
81/* Map information from PAs to VAs */
82void *vbase_map[NR_PA_HIGHBIT_VALUES]
83  __write_once __attribute__((aligned(L2_CACHE_BYTES)));
84EXPORT_SYMBOL(vbase_map);
85#endif
86
87/* Node number as a function of the high PA bits */
88int highbits_to_node[NR_PA_HIGHBIT_VALUES] __write_once;
89EXPORT_SYMBOL(highbits_to_node);
90
91static unsigned int __initdata maxmem_pfn = -1U;
92static unsigned int __initdata maxnodemem_pfn[MAX_NUMNODES] = {
93	[0 ... MAX_NUMNODES-1] = -1U
94};
95static nodemask_t __initdata isolnodes;
96
97#ifdef CONFIG_PCI
98enum { DEFAULT_PCI_RESERVE_MB = 64 };
99static unsigned int __initdata pci_reserve_mb = DEFAULT_PCI_RESERVE_MB;
100unsigned long __initdata pci_reserve_start_pfn = -1U;
101unsigned long __initdata pci_reserve_end_pfn = -1U;
102#endif
103
104static int __init setup_maxmem(char *str)
105{
106	unsigned long long maxmem;
107	if (str == NULL || (maxmem = memparse(str, NULL)) == 0)
108		return -EINVAL;
109
110	maxmem_pfn = (maxmem >> HPAGE_SHIFT) << (HPAGE_SHIFT - PAGE_SHIFT);
111	pr_info("Forcing RAM used to no more than %dMB\n",
112	       maxmem_pfn >> (20 - PAGE_SHIFT));
113	return 0;
114}
115early_param("maxmem", setup_maxmem);
116
117static int __init setup_maxnodemem(char *str)
118{
119	char *endp;
120	unsigned long long maxnodemem;
121	long node;
122
123	node = str ? simple_strtoul(str, &endp, 0) : INT_MAX;
124	if (node >= MAX_NUMNODES || *endp != ':')
125		return -EINVAL;
126
127	maxnodemem = memparse(endp+1, NULL);
128	maxnodemem_pfn[node] = (maxnodemem >> HPAGE_SHIFT) <<
129		(HPAGE_SHIFT - PAGE_SHIFT);
130	pr_info("Forcing RAM used on node %ld to no more than %dMB\n",
131	       node, maxnodemem_pfn[node] >> (20 - PAGE_SHIFT));
132	return 0;
133}
134early_param("maxnodemem", setup_maxnodemem);
135
136static int __init setup_isolnodes(char *str)
137{
138	char buf[MAX_NUMNODES * 5];
139	if (str == NULL || nodelist_parse(str, isolnodes) != 0)
140		return -EINVAL;
141
142	nodelist_scnprintf(buf, sizeof(buf), isolnodes);
143	pr_info("Set isolnodes value to '%s'\n", buf);
144	return 0;
145}
146early_param("isolnodes", setup_isolnodes);
147
148#ifdef CONFIG_PCI
149static int __init setup_pci_reserve(char* str)
150{
151	unsigned long mb;
152
153	if (str == NULL || strict_strtoul(str, 0, &mb) != 0 ||
154	    mb > 3 * 1024)
155		return -EINVAL;
156
157	pci_reserve_mb = mb;
158	pr_info("Reserving %dMB for PCIE root complex mappings\n",
159	       pci_reserve_mb);
160	return 0;
161}
162early_param("pci_reserve", setup_pci_reserve);
163#endif
164
165#ifndef __tilegx__
166/*
167 * vmalloc=size forces the vmalloc area to be exactly 'size' bytes.
168 * This can be used to increase (or decrease) the vmalloc area.
169 */
170static int __init parse_vmalloc(char *arg)
171{
172	if (!arg)
173		return -EINVAL;
174
175	VMALLOC_RESERVE = (memparse(arg, &arg) + PGDIR_SIZE - 1) & PGDIR_MASK;
176
177	/* See validate_va() for more on this test. */
178	if ((long)_VMALLOC_START >= 0)
179		early_panic("\"vmalloc=%#lx\" value too large: maximum %#lx\n",
180			    VMALLOC_RESERVE, _VMALLOC_END - 0x80000000UL);
181
182	return 0;
183}
184early_param("vmalloc", parse_vmalloc);
185#endif
186
187#ifdef CONFIG_HIGHMEM
188/*
189 * Determine for each controller where its lowmem is mapped and how much of
190 * it is mapped there.  On controller zero, the first few megabytes are
191 * already mapped in as code at MEM_SV_INTRPT, so in principle we could
192 * start our data mappings higher up, but for now we don't bother, to avoid
193 * additional confusion.
194 *
195 * One question is whether, on systems with more than 768 Mb and
196 * controllers of different sizes, to map in a proportionate amount of
197 * each one, or to try to map the same amount from each controller.
198 * (E.g. if we have three controllers with 256MB, 1GB, and 256MB
199 * respectively, do we map 256MB from each, or do we map 128 MB, 512
200 * MB, and 128 MB respectively?)  For now we use a proportionate
201 * solution like the latter.
202 *
203 * The VA/PA mapping demands that we align our decisions at 16 MB
204 * boundaries so that we can rapidly convert VA to PA.
205 */
206static void *__init setup_pa_va_mapping(void)
207{
208	unsigned long curr_pages = 0;
209	unsigned long vaddr = PAGE_OFFSET;
210	nodemask_t highonlynodes = isolnodes;
211	int i, j;
212
213	memset(pbase_map, -1, sizeof(pbase_map));
214	memset(vbase_map, -1, sizeof(vbase_map));
215
216	/* Node zero cannot be isolated for LOWMEM purposes. */
217	node_clear(0, highonlynodes);
218
219	/* Count up the number of pages on non-highonlynodes controllers. */
220	mappable_physpages = 0;
221	for_each_online_node(i) {
222		if (!node_isset(i, highonlynodes))
223			mappable_physpages +=
224				node_end_pfn[i] - node_start_pfn[i];
225	}
226
227	for_each_online_node(i) {
228		unsigned long start = node_start_pfn[i];
229		unsigned long end = node_end_pfn[i];
230		unsigned long size = end - start;
231		unsigned long vaddr_end;
232
233		if (node_isset(i, highonlynodes)) {
234			/* Mark this controller as having no lowmem. */
235			node_lowmem_end_pfn[i] = start;
236			continue;
237		}
238
239		curr_pages += size;
240		if (mappable_physpages > MAXMEM_PFN) {
241			vaddr_end = PAGE_OFFSET +
242				(((u64)curr_pages * MAXMEM_PFN /
243				  mappable_physpages)
244				 << PAGE_SHIFT);
245		} else {
246			vaddr_end = PAGE_OFFSET + (curr_pages << PAGE_SHIFT);
247		}
248		for (j = 0; vaddr < vaddr_end; vaddr += HPAGE_SIZE, ++j) {
249			unsigned long this_pfn =
250				start + (j << HUGETLB_PAGE_ORDER);
251			pbase_map[vaddr >> HPAGE_SHIFT] = this_pfn;
252			if (vbase_map[__pfn_to_highbits(this_pfn)] ==
253			    (void *)-1)
254				vbase_map[__pfn_to_highbits(this_pfn)] =
255					(void *)(vaddr & HPAGE_MASK);
256		}
257		node_lowmem_end_pfn[i] = start + (j << HUGETLB_PAGE_ORDER);
258		BUG_ON(node_lowmem_end_pfn[i] > end);
259	}
260
261	/* Return highest address of any mapped memory. */
262	return (void *)vaddr;
263}
264#endif /* CONFIG_HIGHMEM */
265
266/*
267 * Register our most important memory mappings with the debug stub.
268 *
269 * This is up to 4 mappings for lowmem, one mapping per memory
270 * controller, plus one for our text segment.
271 */
272static void __cpuinit store_permanent_mappings(void)
273{
274	int i;
275
276	for_each_online_node(i) {
277		HV_PhysAddr pa = ((HV_PhysAddr)node_start_pfn[i]) << PAGE_SHIFT;
278#ifdef CONFIG_HIGHMEM
279		HV_PhysAddr high_mapped_pa = node_lowmem_end_pfn[i];
280#else
281		HV_PhysAddr high_mapped_pa = node_end_pfn[i];
282#endif
283
284		unsigned long pages = high_mapped_pa - node_start_pfn[i];
285		HV_VirtAddr addr = (HV_VirtAddr) __va(pa);
286		hv_store_mapping(addr, pages << PAGE_SHIFT, pa);
287	}
288
289	hv_store_mapping((HV_VirtAddr)_stext,
290			 (uint32_t)(_einittext - _stext), 0);
291}
292
293/*
294 * Use hv_inquire_physical() to populate node_{start,end}_pfn[]
295 * and node_online_map, doing suitable sanity-checking.
296 * Also set min_low_pfn, max_low_pfn, and max_pfn.
297 */
298static void __init setup_memory(void)
299{
300	int i, j;
301	int highbits_seen[NR_PA_HIGHBIT_VALUES] = { 0 };
302#ifdef CONFIG_HIGHMEM
303	long highmem_pages;
304#endif
305#ifndef __tilegx__
306	int cap;
307#endif
308#if defined(CONFIG_HIGHMEM) || defined(__tilegx__)
309	long lowmem_pages;
310#endif
311
312	/* We are using a char to hold the cpu_2_node[] mapping */
313	BUILD_BUG_ON(MAX_NUMNODES > 127);
314
315	/* Discover the ranges of memory available to us */
316	for (i = 0; ; ++i) {
317		unsigned long start, size, end, highbits;
318		HV_PhysAddrRange range = hv_inquire_physical(i);
319		if (range.size == 0)
320			break;
321#ifdef CONFIG_FLATMEM
322		if (i > 0) {
323			pr_err("Can't use discontiguous PAs: %#llx..%#llx\n",
324			       range.size, range.start + range.size);
325			continue;
326		}
327#endif
328#ifndef __tilegx__
329		if ((unsigned long)range.start) {
330			pr_err("Range not at 4GB multiple: %#llx..%#llx\n",
331			       range.start, range.start + range.size);
332			continue;
333		}
334#endif
335		if ((range.start & (HPAGE_SIZE-1)) != 0 ||
336		    (range.size & (HPAGE_SIZE-1)) != 0) {
337			unsigned long long start_pa = range.start;
338			unsigned long long orig_size = range.size;
339			range.start = (start_pa + HPAGE_SIZE - 1) & HPAGE_MASK;
340			range.size -= (range.start - start_pa);
341			range.size &= HPAGE_MASK;
342			pr_err("Range not hugepage-aligned: %#llx..%#llx:"
343			       " now %#llx-%#llx\n",
344			       start_pa, start_pa + orig_size,
345			       range.start, range.start + range.size);
346		}
347		highbits = __pa_to_highbits(range.start);
348		if (highbits >= NR_PA_HIGHBIT_VALUES) {
349			pr_err("PA high bits too high: %#llx..%#llx\n",
350			       range.start, range.start + range.size);
351			continue;
352		}
353		if (highbits_seen[highbits]) {
354			pr_err("Range overlaps in high bits: %#llx..%#llx\n",
355			       range.start, range.start + range.size);
356			continue;
357		}
358		highbits_seen[highbits] = 1;
359		if (PFN_DOWN(range.size) > maxnodemem_pfn[i]) {
360			int max_size = maxnodemem_pfn[i];
361			if (max_size > 0) {
362				pr_err("Maxnodemem reduced node %d to"
363				       " %d pages\n", i, max_size);
364				range.size = PFN_PHYS(max_size);
365			} else {
366				pr_err("Maxnodemem disabled node %d\n", i);
367				continue;
368			}
369		}
370		if (num_physpages + PFN_DOWN(range.size) > maxmem_pfn) {
371			int max_size = maxmem_pfn - num_physpages;
372			if (max_size > 0) {
373				pr_err("Maxmem reduced node %d to %d pages\n",
374				       i, max_size);
375				range.size = PFN_PHYS(max_size);
376			} else {
377				pr_err("Maxmem disabled node %d\n", i);
378				continue;
379			}
380		}
381		if (i >= MAX_NUMNODES) {
382			pr_err("Too many PA nodes (#%d): %#llx...%#llx\n",
383			       i, range.size, range.size + range.start);
384			continue;
385		}
386
387		start = range.start >> PAGE_SHIFT;
388		size = range.size >> PAGE_SHIFT;
389		end = start + size;
390
391#ifndef __tilegx__
392		if (((HV_PhysAddr)end << PAGE_SHIFT) !=
393		    (range.start + range.size)) {
394			pr_err("PAs too high to represent: %#llx..%#llx\n",
395			       range.start, range.start + range.size);
396			continue;
397		}
398#endif
399#ifdef CONFIG_PCI
400		/*
401		 * Blocks that overlap the pci reserved region must
402		 * have enough space to hold the maximum percpu data
403		 * region at the top of the range.  If there isn't
404		 * enough space above the reserved region, just
405		 * truncate the node.
406		 */
407		if (start <= pci_reserve_start_pfn &&
408		    end > pci_reserve_start_pfn) {
409			unsigned int per_cpu_size =
410				__per_cpu_end - __per_cpu_start;
411			unsigned int percpu_pages =
412				NR_CPUS * (PFN_UP(per_cpu_size) >> PAGE_SHIFT);
413			if (end < pci_reserve_end_pfn + percpu_pages) {
414				end = pci_reserve_start_pfn;
415				pr_err("PCI mapping region reduced node %d to"
416				       " %ld pages\n", i, end - start);
417			}
418		}
419#endif
420
421		for (j = __pfn_to_highbits(start);
422		     j <= __pfn_to_highbits(end - 1); j++)
423			highbits_to_node[j] = i;
424
425		node_start_pfn[i] = start;
426		node_end_pfn[i] = end;
427		node_controller[i] = range.controller;
428		num_physpages += size;
429		max_pfn = end;
430
431		/* Mark node as online */
432		node_set(i, node_online_map);
433		node_set(i, node_possible_map);
434	}
435
436#ifndef __tilegx__
437	/*
438	 * For 4KB pages, mem_map "struct page" data is 1% of the size
439	 * of the physical memory, so can be quite big (640 MB for
440	 * four 16G zones).  These structures must be mapped in
441	 * lowmem, and since we currently cap out at about 768 MB,
442	 * it's impractical to try to use this much address space.
443	 * For now, arbitrarily cap the amount of physical memory
444	 * we're willing to use at 8 million pages (32GB of 4KB pages).
445	 */
446	cap = 8 * 1024 * 1024;  /* 8 million pages */
447	if (num_physpages > cap) {
448		int num_nodes = num_online_nodes();
449		int cap_each = cap / num_nodes;
450		unsigned long dropped_pages = 0;
451		for (i = 0; i < num_nodes; ++i) {
452			int size = node_end_pfn[i] - node_start_pfn[i];
453			if (size > cap_each) {
454				dropped_pages += (size - cap_each);
455				node_end_pfn[i] = node_start_pfn[i] + cap_each;
456			}
457		}
458		num_physpages -= dropped_pages;
459		pr_warning("Only using %ldMB memory;"
460		       " ignoring %ldMB.\n",
461		       num_physpages >> (20 - PAGE_SHIFT),
462		       dropped_pages >> (20 - PAGE_SHIFT));
463		pr_warning("Consider using a larger page size.\n");
464	}
465#endif
466
467	/* Heap starts just above the last loaded address. */
468	min_low_pfn = PFN_UP((unsigned long)_end - PAGE_OFFSET);
469
470#ifdef CONFIG_HIGHMEM
471	/* Find where we map lowmem from each controller. */
472	high_memory = setup_pa_va_mapping();
473
474	/* Set max_low_pfn based on what node 0 can directly address. */
475	max_low_pfn = node_lowmem_end_pfn[0];
476
477	lowmem_pages = (mappable_physpages > MAXMEM_PFN) ?
478		MAXMEM_PFN : mappable_physpages;
479	highmem_pages = (long) (num_physpages - lowmem_pages);
480
481	pr_notice("%ldMB HIGHMEM available.\n",
482	       pages_to_mb(highmem_pages > 0 ? highmem_pages : 0));
483	pr_notice("%ldMB LOWMEM available.\n",
484			pages_to_mb(lowmem_pages));
485#else
486	/* Set max_low_pfn based on what node 0 can directly address. */
487	max_low_pfn = node_end_pfn[0];
488
489#ifndef __tilegx__
490	if (node_end_pfn[0] > MAXMEM_PFN) {
491		pr_warning("Only using %ldMB LOWMEM.\n",
492		       MAXMEM>>20);
493		pr_warning("Use a HIGHMEM enabled kernel.\n");
494		max_low_pfn = MAXMEM_PFN;
495		max_pfn = MAXMEM_PFN;
496		num_physpages = MAXMEM_PFN;
497		node_end_pfn[0] = MAXMEM_PFN;
498	} else {
499		pr_notice("%ldMB memory available.\n",
500		       pages_to_mb(node_end_pfn[0]));
501	}
502	for (i = 1; i < MAX_NUMNODES; ++i) {
503		node_start_pfn[i] = 0;
504		node_end_pfn[i] = 0;
505	}
506	high_memory = __va(node_end_pfn[0]);
507#else
508	lowmem_pages = 0;
509	for (i = 0; i < MAX_NUMNODES; ++i) {
510		int pages = node_end_pfn[i] - node_start_pfn[i];
511		lowmem_pages += pages;
512		if (pages)
513			high_memory = pfn_to_kaddr(node_end_pfn[i]);
514	}
515	pr_notice("%ldMB memory available.\n",
516	       pages_to_mb(lowmem_pages));
517#endif
518#endif
519}
520
521static void __init setup_bootmem_allocator(void)
522{
523	unsigned long bootmap_size, first_alloc_pfn, last_alloc_pfn;
524
525	/* Provide a node 0 bdata. */
526	NODE_DATA(0)->bdata = &node0_bdata;
527
528#ifdef CONFIG_PCI
529	/* Don't let boot memory alias the PCI region. */
530	last_alloc_pfn = min(max_low_pfn, pci_reserve_start_pfn);
531#else
532	last_alloc_pfn = max_low_pfn;
533#endif
534
535	/*
536	 * Initialize the boot-time allocator (with low memory only):
537	 * The first argument says where to put the bitmap, and the
538	 * second says where the end of allocatable memory is.
539	 */
540	bootmap_size = init_bootmem(min_low_pfn, last_alloc_pfn);
541
542	/*
543	 * Let the bootmem allocator use all the space we've given it
544	 * except for its own bitmap.
545	 */
546	first_alloc_pfn = min_low_pfn + PFN_UP(bootmap_size);
547	if (first_alloc_pfn >= last_alloc_pfn)
548		early_panic("Not enough memory on controller 0 for bootmem\n");
549
550	free_bootmem(PFN_PHYS(first_alloc_pfn),
551		     PFN_PHYS(last_alloc_pfn - first_alloc_pfn));
552
553#ifdef CONFIG_KEXEC
554	if (crashk_res.start != crashk_res.end)
555		reserve_bootmem(crashk_res.start, resource_size(&crashk_res), 0);
556#endif
557}
558
559void *__init alloc_remap(int nid, unsigned long size)
560{
561	int pages = node_end_pfn[nid] - node_start_pfn[nid];
562	void *map = pfn_to_kaddr(node_memmap_pfn[nid]);
563	BUG_ON(size != pages * sizeof(struct page));
564	memset(map, 0, size);
565	return map;
566}
567
568static int __init percpu_size(void)
569{
570	int size = __per_cpu_end - __per_cpu_start;
571	size += PERCPU_MODULE_RESERVE;
572	size += PERCPU_DYNAMIC_EARLY_SIZE;
573	if (size < PCPU_MIN_UNIT_SIZE)
574		size = PCPU_MIN_UNIT_SIZE;
575	size = roundup(size, PAGE_SIZE);
576
577	/* In several places we assume the per-cpu data fits on a huge page. */
578	BUG_ON(kdata_huge && size > HPAGE_SIZE);
579	return size;
580}
581
582static inline unsigned long alloc_bootmem_pfn(int size, unsigned long goal)
583{
584	void *kva = __alloc_bootmem(size, PAGE_SIZE, goal);
585	unsigned long pfn = kaddr_to_pfn(kva);
586	BUG_ON(goal && PFN_PHYS(pfn) != goal);
587	return pfn;
588}
589
590static void __init zone_sizes_init(void)
591{
592	unsigned long zones_size[MAX_NR_ZONES] = { 0 };
593	int size = percpu_size();
594	int num_cpus = smp_height * smp_width;
595	int i;
596
597	for (i = 0; i < num_cpus; ++i)
598		node_percpu[cpu_to_node(i)] += size;
599
600	for_each_online_node(i) {
601		unsigned long start = node_start_pfn[i];
602		unsigned long end = node_end_pfn[i];
603#ifdef CONFIG_HIGHMEM
604		unsigned long lowmem_end = node_lowmem_end_pfn[i];
605#else
606		unsigned long lowmem_end = end;
607#endif
608		int memmap_size = (end - start) * sizeof(struct page);
609		node_free_pfn[i] = start;
610
611		/*
612		 * Set aside pages for per-cpu data and the mem_map array.
613		 *
614		 * Since the per-cpu data requires special homecaching,
615		 * if we are in kdata_huge mode, we put it at the end of
616		 * the lowmem region.  If we're not in kdata_huge mode,
617		 * we take the per-cpu pages from the bottom of the
618		 * controller, since that avoids fragmenting a huge page
619		 * that users might want.  We always take the memmap
620		 * from the bottom of the controller, since with
621		 * kdata_huge that lets it be under a huge TLB entry.
622		 *
623		 * If the user has requested isolnodes for a controller,
624		 * though, there'll be no lowmem, so we just alloc_bootmem
625		 * the memmap.  There will be no percpu memory either.
626		 */
627		if (__pfn_to_highbits(start) == 0) {
628			/* In low PAs, allocate via bootmem. */
629			unsigned long goal = 0;
630			node_memmap_pfn[i] =
631				alloc_bootmem_pfn(memmap_size, goal);
632			if (kdata_huge)
633				goal = PFN_PHYS(lowmem_end) - node_percpu[i];
634			if (node_percpu[i])
635				node_percpu_pfn[i] =
636				    alloc_bootmem_pfn(node_percpu[i], goal);
637		} else if (cpu_isset(i, isolnodes)) {
638			node_memmap_pfn[i] = alloc_bootmem_pfn(memmap_size, 0);
639			BUG_ON(node_percpu[i] != 0);
640		} else {
641			/* In high PAs, just reserve some pages. */
642			node_memmap_pfn[i] = node_free_pfn[i];
643			node_free_pfn[i] += PFN_UP(memmap_size);
644			if (!kdata_huge) {
645				node_percpu_pfn[i] = node_free_pfn[i];
646				node_free_pfn[i] += PFN_UP(node_percpu[i]);
647			} else {
648				node_percpu_pfn[i] =
649					lowmem_end - PFN_UP(node_percpu[i]);
650			}
651		}
652
653#ifdef CONFIG_HIGHMEM
654		if (start > lowmem_end) {
655			zones_size[ZONE_NORMAL] = 0;
656			zones_size[ZONE_HIGHMEM] = end - start;
657		} else {
658			zones_size[ZONE_NORMAL] = lowmem_end - start;
659			zones_size[ZONE_HIGHMEM] = end - lowmem_end;
660		}
661#else
662		zones_size[ZONE_NORMAL] = end - start;
663#endif
664
665		/*
666		 * Everyone shares node 0's bootmem allocator, but
667		 * we use alloc_remap(), above, to put the actual
668		 * struct page array on the individual controllers,
669		 * which is most of the data that we actually care about.
670		 * We can't place bootmem allocators on the other
671		 * controllers since the bootmem allocator can only
672		 * operate on 32-bit physical addresses.
673		 */
674		NODE_DATA(i)->bdata = NODE_DATA(0)->bdata;
675
676		free_area_init_node(i, zones_size, start, NULL);
677		printk(KERN_DEBUG "  Normal zone: %ld per-cpu pages\n",
678		       PFN_UP(node_percpu[i]));
679
680		/* Track the type of memory on each node */
681		if (zones_size[ZONE_NORMAL])
682			node_set_state(i, N_NORMAL_MEMORY);
683#ifdef CONFIG_HIGHMEM
684		if (end != start)
685			node_set_state(i, N_HIGH_MEMORY);
686#endif
687
688		node_set_online(i);
689	}
690}
691
692#ifdef CONFIG_NUMA
693
694/* which logical CPUs are on which nodes */
695struct cpumask node_2_cpu_mask[MAX_NUMNODES] __write_once;
696EXPORT_SYMBOL(node_2_cpu_mask);
697
698/* which node each logical CPU is on */
699char cpu_2_node[NR_CPUS] __write_once __attribute__((aligned(L2_CACHE_BYTES)));
700EXPORT_SYMBOL(cpu_2_node);
701
702/* Return cpu_to_node() except for cpus not yet assigned, which return -1 */
703static int __init cpu_to_bound_node(int cpu, struct cpumask* unbound_cpus)
704{
705	if (!cpu_possible(cpu) || cpumask_test_cpu(cpu, unbound_cpus))
706		return -1;
707	else
708		return cpu_to_node(cpu);
709}
710
711/* Return number of immediately-adjacent tiles sharing the same NUMA node. */
712static int __init node_neighbors(int node, int cpu,
713				 struct cpumask *unbound_cpus)
714{
715	int neighbors = 0;
716	int w = smp_width;
717	int h = smp_height;
718	int x = cpu % w;
719	int y = cpu / w;
720	if (x > 0 && cpu_to_bound_node(cpu-1, unbound_cpus) == node)
721		++neighbors;
722	if (x < w-1 && cpu_to_bound_node(cpu+1, unbound_cpus) == node)
723		++neighbors;
724	if (y > 0 && cpu_to_bound_node(cpu-w, unbound_cpus) == node)
725		++neighbors;
726	if (y < h-1 && cpu_to_bound_node(cpu+w, unbound_cpus) == node)
727		++neighbors;
728	return neighbors;
729}
730
731static void __init setup_numa_mapping(void)
732{
733	int distance[MAX_NUMNODES][NR_CPUS];
734	HV_Coord coord;
735	int cpu, node, cpus, i, x, y;
736	int num_nodes = num_online_nodes();
737	struct cpumask unbound_cpus;
738	nodemask_t default_nodes;
739
740	cpumask_clear(&unbound_cpus);
741
742	/* Get set of nodes we will use for defaults */
743	nodes_andnot(default_nodes, node_online_map, isolnodes);
744	if (nodes_empty(default_nodes)) {
745		BUG_ON(!node_isset(0, node_online_map));
746		pr_err("Forcing NUMA node zero available as a default node\n");
747		node_set(0, default_nodes);
748	}
749
750	/* Populate the distance[] array */
751	memset(distance, -1, sizeof(distance));
752	cpu = 0;
753	for (coord.y = 0; coord.y < smp_height; ++coord.y) {
754		for (coord.x = 0; coord.x < smp_width;
755		     ++coord.x, ++cpu) {
756			BUG_ON(cpu >= nr_cpu_ids);
757			if (!cpu_possible(cpu)) {
758				cpu_2_node[cpu] = -1;
759				continue;
760			}
761			for_each_node_mask(node, default_nodes) {
762				HV_MemoryControllerInfo info =
763					hv_inquire_memory_controller(
764						coord, node_controller[node]);
765				distance[node][cpu] =
766					ABS(info.coord.x) + ABS(info.coord.y);
767			}
768			cpumask_set_cpu(cpu, &unbound_cpus);
769		}
770	}
771	cpus = cpu;
772
773	/*
774	 * Round-robin through the NUMA nodes until all the cpus are
775	 * assigned.  We could be more clever here (e.g. create four
776	 * sorted linked lists on the same set of cpu nodes, and pull
777	 * off them in round-robin sequence, removing from all four
778	 * lists each time) but given the relatively small numbers
779	 * involved, O(n^2) seem OK for a one-time cost.
780	 */
781	node = first_node(default_nodes);
782	while (!cpumask_empty(&unbound_cpus)) {
783		int best_cpu = -1;
784		int best_distance = INT_MAX;
785		for (cpu = 0; cpu < cpus; ++cpu) {
786			if (cpumask_test_cpu(cpu, &unbound_cpus)) {
787				/*
788				 * Compute metric, which is how much
789				 * closer the cpu is to this memory
790				 * controller than the others, shifted
791				 * up, and then the number of
792				 * neighbors already in the node as an
793				 * epsilon adjustment to try to keep
794				 * the nodes compact.
795				 */
796				int d = distance[node][cpu] * num_nodes;
797				for_each_node_mask(i, default_nodes) {
798					if (i != node)
799						d -= distance[i][cpu];
800				}
801				d *= 8;  /* allow space for epsilon */
802				d -= node_neighbors(node, cpu, &unbound_cpus);
803				if (d < best_distance) {
804					best_cpu = cpu;
805					best_distance = d;
806				}
807			}
808		}
809		BUG_ON(best_cpu < 0);
810		cpumask_set_cpu(best_cpu, &node_2_cpu_mask[node]);
811		cpu_2_node[best_cpu] = node;
812		cpumask_clear_cpu(best_cpu, &unbound_cpus);
813		node = next_node(node, default_nodes);
814		if (node == MAX_NUMNODES)
815			node = first_node(default_nodes);
816	}
817
818	/* Print out node assignments and set defaults for disabled cpus */
819	cpu = 0;
820	for (y = 0; y < smp_height; ++y) {
821		printk(KERN_DEBUG "NUMA cpu-to-node row %d:", y);
822		for (x = 0; x < smp_width; ++x, ++cpu) {
823			if (cpu_to_node(cpu) < 0) {
824				pr_cont(" -");
825				cpu_2_node[cpu] = first_node(default_nodes);
826			} else {
827				pr_cont(" %d", cpu_to_node(cpu));
828			}
829		}
830		pr_cont("\n");
831	}
832}
833
834static struct cpu cpu_devices[NR_CPUS];
835
836static int __init topology_init(void)
837{
838	int i;
839
840	for_each_online_node(i)
841		register_one_node(i);
842
843	for (i = 0; i < smp_height * smp_width; ++i)
844		register_cpu(&cpu_devices[i], i);
845
846	return 0;
847}
848
849subsys_initcall(topology_init);
850
851#else /* !CONFIG_NUMA */
852
853#define setup_numa_mapping() do { } while (0)
854
855#endif /* CONFIG_NUMA */
856
857/**
858 * setup_cpu() - Do all necessary per-cpu, tile-specific initialization.
859 * @boot: Is this the boot cpu?
860 *
861 * Called from setup_arch() on the boot cpu, or online_secondary().
862 */
863void __cpuinit setup_cpu(int boot)
864{
865	/* The boot cpu sets up its permanent mappings much earlier. */
866	if (!boot)
867		store_permanent_mappings();
868
869	/* Allow asynchronous TLB interrupts. */
870#if CHIP_HAS_TILE_DMA()
871	arch_local_irq_unmask(INT_DMATLB_MISS);
872	arch_local_irq_unmask(INT_DMATLB_ACCESS);
873#endif
874#if CHIP_HAS_SN_PROC()
875	arch_local_irq_unmask(INT_SNITLB_MISS);
876#endif
877#ifdef __tilegx__
878	arch_local_irq_unmask(INT_SINGLE_STEP_K);
879#endif
880
881	/*
882	 * Allow user access to many generic SPRs, like the cycle
883	 * counter, PASS/FAIL/DONE, INTERRUPT_CRITICAL_SECTION, etc.
884	 */
885	__insn_mtspr(SPR_MPL_WORLD_ACCESS_SET_0, 1);
886
887#if CHIP_HAS_SN()
888	/* Static network is not restricted. */
889	__insn_mtspr(SPR_MPL_SN_ACCESS_SET_0, 1);
890#endif
891#if CHIP_HAS_SN_PROC()
892	__insn_mtspr(SPR_MPL_SN_NOTIFY_SET_0, 1);
893	__insn_mtspr(SPR_MPL_SN_CPL_SET_0, 1);
894#endif
895
896	/*
897	 * Set the MPL for interrupt control 0 & 1 to the corresponding
898	 * values.  This includes access to the SYSTEM_SAVE and EX_CONTEXT
899	 * SPRs, as well as the interrupt mask.
900	 */
901	__insn_mtspr(SPR_MPL_INTCTRL_0_SET_0, 1);
902	__insn_mtspr(SPR_MPL_INTCTRL_1_SET_1, 1);
903
904	/* Initialize IRQ support for this cpu. */
905	setup_irq_regs();
906
907#ifdef CONFIG_HARDWALL
908	/* Reset the network state on this cpu. */
909	reset_network_state();
910#endif
911}
912
913#ifdef CONFIG_BLK_DEV_INITRD
914
915/*
916 * Note that the kernel can potentially support other compression
917 * techniques than gz, though we don't do so by default.  If we ever
918 * decide to do so we can either look for other filename extensions,
919 * or just allow a file with this name to be compressed with an
920 * arbitrary compressor (somewhat counterintuitively).
921 */
922static int __initdata set_initramfs_file;
923static char __initdata initramfs_file[128] = "initramfs.cpio.gz";
924
925static int __init setup_initramfs_file(char *str)
926{
927	if (str == NULL)
928		return -EINVAL;
929	strncpy(initramfs_file, str, sizeof(initramfs_file) - 1);
930	set_initramfs_file = 1;
931
932	return 0;
933}
934early_param("initramfs_file", setup_initramfs_file);
935
936/*
937 * We look for an "initramfs.cpio.gz" file in the hvfs.
938 * If there is one, we allocate some memory for it and it will be
939 * unpacked to the initramfs.
940 */
941static void __init load_hv_initrd(void)
942{
943	HV_FS_StatInfo stat;
944	int fd, rc;
945	void *initrd;
946
947	fd = hv_fs_findfile((HV_VirtAddr) initramfs_file);
948	if (fd == HV_ENOENT) {
949		if (set_initramfs_file)
950			pr_warning("No such hvfs initramfs file '%s'\n",
951				   initramfs_file);
952		return;
953	}
954	BUG_ON(fd < 0);
955	stat = hv_fs_fstat(fd);
956	BUG_ON(stat.size < 0);
957	if (stat.flags & HV_FS_ISDIR) {
958		pr_warning("Ignoring hvfs file '%s': it's a directory.\n",
959			   initramfs_file);
960		return;
961	}
962	initrd = alloc_bootmem_pages(stat.size);
963	rc = hv_fs_pread(fd, (HV_VirtAddr) initrd, stat.size, 0);
964	if (rc != stat.size) {
965		pr_err("Error reading %d bytes from hvfs file '%s': %d\n",
966		       stat.size, initramfs_file, rc);
967		free_initrd_mem((unsigned long) initrd, stat.size);
968		return;
969	}
970	initrd_start = (unsigned long) initrd;
971	initrd_end = initrd_start + stat.size;
972}
973
974void __init free_initrd_mem(unsigned long begin, unsigned long end)
975{
976	free_bootmem(__pa(begin), end - begin);
977}
978
979#else
980static inline void load_hv_initrd(void) {}
981#endif /* CONFIG_BLK_DEV_INITRD */
982
983static void __init validate_hv(void)
984{
985	/*
986	 * It may already be too late, but let's check our built-in
987	 * configuration against what the hypervisor is providing.
988	 */
989	unsigned long glue_size = hv_sysconf(HV_SYSCONF_GLUE_SIZE);
990	int hv_page_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_SMALL);
991	int hv_hpage_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_LARGE);
992	HV_ASIDRange asid_range;
993
994#ifndef CONFIG_SMP
995	HV_Topology topology = hv_inquire_topology();
996	BUG_ON(topology.coord.x != 0 || topology.coord.y != 0);
997	if (topology.width != 1 || topology.height != 1) {
998		pr_warning("Warning: booting UP kernel on %dx%d grid;"
999			   " will ignore all but first tile.\n",
1000			   topology.width, topology.height);
1001	}
1002#endif
1003
1004	if (PAGE_OFFSET + HV_GLUE_START_CPA + glue_size > (unsigned long)_text)
1005		early_panic("Hypervisor glue size %ld is too big!\n",
1006			    glue_size);
1007	if (hv_page_size != PAGE_SIZE)
1008		early_panic("Hypervisor page size %#x != our %#lx\n",
1009			    hv_page_size, PAGE_SIZE);
1010	if (hv_hpage_size != HPAGE_SIZE)
1011		early_panic("Hypervisor huge page size %#x != our %#lx\n",
1012			    hv_hpage_size, HPAGE_SIZE);
1013
1014#ifdef CONFIG_SMP
1015	/*
1016	 * Some hypervisor APIs take a pointer to a bitmap array
1017	 * whose size is at least the number of cpus on the chip.
1018	 * We use a struct cpumask for this, so it must be big enough.
1019	 */
1020	if ((smp_height * smp_width) > nr_cpu_ids)
1021		early_panic("Hypervisor %d x %d grid too big for Linux"
1022			    " NR_CPUS %d\n", smp_height, smp_width,
1023			    nr_cpu_ids);
1024#endif
1025
1026	/*
1027	 * Check that we're using allowed ASIDs, and initialize the
1028	 * various asid variables to their appropriate initial states.
1029	 */
1030	asid_range = hv_inquire_asid(0);
1031	__get_cpu_var(current_asid) = min_asid = asid_range.start;
1032	max_asid = asid_range.start + asid_range.size - 1;
1033
1034	if (hv_confstr(HV_CONFSTR_CHIP_MODEL, (HV_VirtAddr)chip_model,
1035		       sizeof(chip_model)) < 0) {
1036		pr_err("Warning: HV_CONFSTR_CHIP_MODEL not available\n");
1037		strlcpy(chip_model, "unknown", sizeof(chip_model));
1038	}
1039}
1040
1041static void __init validate_va(void)
1042{
1043#ifndef __tilegx__   /* FIXME: GX: probably some validation relevant here */
1044	/*
1045	 * Similarly, make sure we're only using allowed VAs.
1046	 * We assume we can contiguously use MEM_USER_INTRPT .. MEM_HV_INTRPT,
1047	 * and 0 .. KERNEL_HIGH_VADDR.
1048	 * In addition, make sure we CAN'T use the end of memory, since
1049	 * we use the last chunk of each pgd for the pgd_list.
1050	 */
1051	int i, user_kernel_ok = 0;
1052	unsigned long max_va = 0;
1053	unsigned long list_va =
1054		((PGD_LIST_OFFSET / sizeof(pgd_t)) << PGDIR_SHIFT);
1055
1056	for (i = 0; ; ++i) {
1057		HV_VirtAddrRange range = hv_inquire_virtual(i);
1058		if (range.size == 0)
1059			break;
1060		if (range.start <= MEM_USER_INTRPT &&
1061		    range.start + range.size >= MEM_HV_INTRPT)
1062			user_kernel_ok = 1;
1063		if (range.start == 0)
1064			max_va = range.size;
1065		BUG_ON(range.start + range.size > list_va);
1066	}
1067	if (!user_kernel_ok)
1068		early_panic("Hypervisor not configured for user/kernel VAs\n");
1069	if (max_va == 0)
1070		early_panic("Hypervisor not configured for low VAs\n");
1071	if (max_va < KERNEL_HIGH_VADDR)
1072		early_panic("Hypervisor max VA %#lx smaller than %#lx\n",
1073			    max_va, KERNEL_HIGH_VADDR);
1074
1075	/* Kernel PCs must have their high bit set; see intvec.S. */
1076	if ((long)VMALLOC_START >= 0)
1077		early_panic(
1078			"Linux VMALLOC region below the 2GB line (%#lx)!\n"
1079			"Reconfigure the kernel with fewer NR_HUGE_VMAPS\n"
1080			"or smaller VMALLOC_RESERVE.\n",
1081			VMALLOC_START);
1082#endif
1083}
1084
1085/*
1086 * cpu_lotar_map lists all the cpus that are valid for the supervisor
1087 * to cache data on at a page level, i.e. what cpus can be placed in
1088 * the LOTAR field of a PTE.  It is equivalent to the set of possible
1089 * cpus plus any other cpus that are willing to share their cache.
1090 * It is set by hv_inquire_tiles(HV_INQ_TILES_LOTAR).
1091 */
1092struct cpumask __write_once cpu_lotar_map;
1093EXPORT_SYMBOL(cpu_lotar_map);
1094
1095#if CHIP_HAS_CBOX_HOME_MAP()
1096/*
1097 * hash_for_home_map lists all the tiles that hash-for-home data
1098 * will be cached on.  Note that this may includes tiles that are not
1099 * valid for this supervisor to use otherwise (e.g. if a hypervisor
1100 * device is being shared between multiple supervisors).
1101 * It is set by hv_inquire_tiles(HV_INQ_TILES_HFH_CACHE).
1102 */
1103struct cpumask hash_for_home_map;
1104EXPORT_SYMBOL(hash_for_home_map);
1105#endif
1106
1107/*
1108 * cpu_cacheable_map lists all the cpus whose caches the hypervisor can
1109 * flush on our behalf.  It is set to cpu_possible_map OR'ed with
1110 * hash_for_home_map, and it is what should be passed to
1111 * hv_flush_remote() to flush all caches.  Note that if there are
1112 * dedicated hypervisor driver tiles that have authorized use of their
1113 * cache, those tiles will only appear in cpu_lotar_map, NOT in
1114 * cpu_cacheable_map, as they are a special case.
1115 */
1116struct cpumask __write_once cpu_cacheable_map;
1117EXPORT_SYMBOL(cpu_cacheable_map);
1118
1119static __initdata struct cpumask disabled_map;
1120
1121static int __init disabled_cpus(char *str)
1122{
1123	int boot_cpu = smp_processor_id();
1124
1125	if (str == NULL || cpulist_parse_crop(str, &disabled_map) != 0)
1126		return -EINVAL;
1127	if (cpumask_test_cpu(boot_cpu, &disabled_map)) {
1128		pr_err("disabled_cpus: can't disable boot cpu %d\n", boot_cpu);
1129		cpumask_clear_cpu(boot_cpu, &disabled_map);
1130	}
1131	return 0;
1132}
1133
1134early_param("disabled_cpus", disabled_cpus);
1135
1136void __init print_disabled_cpus(void)
1137{
1138	if (!cpumask_empty(&disabled_map)) {
1139		char buf[100];
1140		cpulist_scnprintf(buf, sizeof(buf), &disabled_map);
1141		pr_info("CPUs not available for Linux: %s\n", buf);
1142	}
1143}
1144
1145static void __init setup_cpu_maps(void)
1146{
1147	struct cpumask hv_disabled_map, cpu_possible_init;
1148	int boot_cpu = smp_processor_id();
1149	int cpus, i, rc;
1150
1151	/* Learn which cpus are allowed by the hypervisor. */
1152	rc = hv_inquire_tiles(HV_INQ_TILES_AVAIL,
1153			      (HV_VirtAddr) cpumask_bits(&cpu_possible_init),
1154			      sizeof(cpu_cacheable_map));
1155	if (rc < 0)
1156		early_panic("hv_inquire_tiles(AVAIL) failed: rc %d\n", rc);
1157	if (!cpumask_test_cpu(boot_cpu, &cpu_possible_init))
1158		early_panic("Boot CPU %d disabled by hypervisor!\n", boot_cpu);
1159
1160	/* Compute the cpus disabled by the hvconfig file. */
1161	cpumask_complement(&hv_disabled_map, &cpu_possible_init);
1162
1163	/* Include them with the cpus disabled by "disabled_cpus". */
1164	cpumask_or(&disabled_map, &disabled_map, &hv_disabled_map);
1165
1166	/*
1167	 * Disable every cpu after "setup_max_cpus".  But don't mark
1168	 * as disabled the cpus that are outside of our initial rectangle,
1169	 * since that turns out to be confusing.
1170	 */
1171	cpus = 1;                          /* this cpu */
1172	cpumask_set_cpu(boot_cpu, &disabled_map);   /* ignore this cpu */
1173	for (i = 0; cpus < setup_max_cpus; ++i)
1174		if (!cpumask_test_cpu(i, &disabled_map))
1175			++cpus;
1176	for (; i < smp_height * smp_width; ++i)
1177		cpumask_set_cpu(i, &disabled_map);
1178	cpumask_clear_cpu(boot_cpu, &disabled_map); /* reset this cpu */
1179	for (i = smp_height * smp_width; i < NR_CPUS; ++i)
1180		cpumask_clear_cpu(i, &disabled_map);
1181
1182	/*
1183	 * Setup cpu_possible map as every cpu allocated to us, minus
1184	 * the results of any "disabled_cpus" settings.
1185	 */
1186	cpumask_andnot(&cpu_possible_init, &cpu_possible_init, &disabled_map);
1187	init_cpu_possible(&cpu_possible_init);
1188
1189	/* Learn which cpus are valid for LOTAR caching. */
1190	rc = hv_inquire_tiles(HV_INQ_TILES_LOTAR,
1191			      (HV_VirtAddr) cpumask_bits(&cpu_lotar_map),
1192			      sizeof(cpu_lotar_map));
1193	if (rc < 0) {
1194		pr_err("warning: no HV_INQ_TILES_LOTAR; using AVAIL\n");
1195		cpu_lotar_map = cpu_possible_map;
1196	}
1197
1198#if CHIP_HAS_CBOX_HOME_MAP()
1199	/* Retrieve set of CPUs used for hash-for-home caching */
1200	rc = hv_inquire_tiles(HV_INQ_TILES_HFH_CACHE,
1201			      (HV_VirtAddr) hash_for_home_map.bits,
1202			      sizeof(hash_for_home_map));
1203	if (rc < 0)
1204		early_panic("hv_inquire_tiles(HFH_CACHE) failed: rc %d\n", rc);
1205	cpumask_or(&cpu_cacheable_map, &cpu_possible_map, &hash_for_home_map);
1206#else
1207	cpu_cacheable_map = cpu_possible_map;
1208#endif
1209}
1210
1211
1212static int __init dataplane(char *str)
1213{
1214	pr_warning("WARNING: dataplane support disabled in this kernel\n");
1215	return 0;
1216}
1217
1218early_param("dataplane", dataplane);
1219
1220#ifdef CONFIG_CMDLINE_BOOL
1221static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
1222#endif
1223
1224void __init setup_arch(char **cmdline_p)
1225{
1226	int len;
1227
1228#if defined(CONFIG_CMDLINE_BOOL) && defined(CONFIG_CMDLINE_OVERRIDE)
1229	len = hv_get_command_line((HV_VirtAddr) boot_command_line,
1230				  COMMAND_LINE_SIZE);
1231	if (boot_command_line[0])
1232		pr_warning("WARNING: ignoring dynamic command line \"%s\"\n",
1233			   boot_command_line);
1234	strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
1235#else
1236	char *hv_cmdline;
1237#if defined(CONFIG_CMDLINE_BOOL)
1238	if (builtin_cmdline[0]) {
1239		int builtin_len = strlcpy(boot_command_line, builtin_cmdline,
1240					  COMMAND_LINE_SIZE);
1241		if (builtin_len < COMMAND_LINE_SIZE-1)
1242			boot_command_line[builtin_len++] = ' ';
1243		hv_cmdline = &boot_command_line[builtin_len];
1244		len = COMMAND_LINE_SIZE - builtin_len;
1245	} else
1246#endif
1247	{
1248		hv_cmdline = boot_command_line;
1249		len = COMMAND_LINE_SIZE;
1250	}
1251	len = hv_get_command_line((HV_VirtAddr) hv_cmdline, len);
1252	if (len < 0 || len > COMMAND_LINE_SIZE)
1253		early_panic("hv_get_command_line failed: %d\n", len);
1254#endif
1255
1256	*cmdline_p = boot_command_line;
1257
1258	/* Set disabled_map and setup_max_cpus very early */
1259	parse_early_param();
1260
1261	/* Make sure the kernel is compatible with the hypervisor. */
1262	validate_hv();
1263	validate_va();
1264
1265	setup_cpu_maps();
1266
1267
1268#ifdef CONFIG_PCI
1269	/*
1270	 * Initialize the PCI structures.  This is done before memory
1271	 * setup so that we know whether or not a pci_reserve region
1272	 * is necessary.
1273	 */
1274	if (tile_pci_init() == 0)
1275		pci_reserve_mb = 0;
1276
1277	/* PCI systems reserve a region just below 4GB for mapping iomem. */
1278	pci_reserve_end_pfn  = (1 << (32 - PAGE_SHIFT));
1279	pci_reserve_start_pfn = pci_reserve_end_pfn -
1280		(pci_reserve_mb << (20 - PAGE_SHIFT));
1281#endif
1282
1283	init_mm.start_code = (unsigned long) _text;
1284	init_mm.end_code = (unsigned long) _etext;
1285	init_mm.end_data = (unsigned long) _edata;
1286	init_mm.brk = (unsigned long) _end;
1287
1288	setup_memory();
1289	store_permanent_mappings();
1290	setup_bootmem_allocator();
1291
1292	/*
1293	 * NOTE: before this point _nobody_ is allowed to allocate
1294	 * any memory using the bootmem allocator.
1295	 */
1296
1297	paging_init();
1298	setup_numa_mapping();
1299	zone_sizes_init();
1300	set_page_homes();
1301	setup_cpu(1);
1302	setup_clock();
1303	load_hv_initrd();
1304}
1305
1306
1307/*
1308 * Set up per-cpu memory.
1309 */
1310
1311unsigned long __per_cpu_offset[NR_CPUS] __write_once;
1312EXPORT_SYMBOL(__per_cpu_offset);
1313
1314static size_t __initdata pfn_offset[MAX_NUMNODES] = { 0 };
1315static unsigned long __initdata percpu_pfn[NR_CPUS] = { 0 };
1316
1317/*
1318 * As the percpu code allocates pages, we return the pages from the
1319 * end of the node for the specified cpu.
1320 */
1321static void *__init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
1322{
1323	int nid = cpu_to_node(cpu);
1324	unsigned long pfn = node_percpu_pfn[nid] + pfn_offset[nid];
1325
1326	BUG_ON(size % PAGE_SIZE != 0);
1327	pfn_offset[nid] += size / PAGE_SIZE;
1328	BUG_ON(node_percpu[nid] < size);
1329	node_percpu[nid] -= size;
1330	if (percpu_pfn[cpu] == 0)
1331		percpu_pfn[cpu] = pfn;
1332	return pfn_to_kaddr(pfn);
1333}
1334
1335/*
1336 * Pages reserved for percpu memory are not freeable, and in any case we are
1337 * on a short path to panic() in setup_per_cpu_area() at this point anyway.
1338 */
1339static void __init pcpu_fc_free(void *ptr, size_t size)
1340{
1341}
1342
1343/*
1344 * Set up vmalloc page tables using bootmem for the percpu code.
1345 */
1346static void __init pcpu_fc_populate_pte(unsigned long addr)
1347{
1348	pgd_t *pgd;
1349	pud_t *pud;
1350	pmd_t *pmd;
1351	pte_t *pte;
1352
1353	BUG_ON(pgd_addr_invalid(addr));
1354	if (addr < VMALLOC_START || addr >= VMALLOC_END)
1355		panic("PCPU addr %#lx outside vmalloc range %#lx..%#lx;"
1356		      " try increasing CONFIG_VMALLOC_RESERVE\n",
1357		      addr, VMALLOC_START, VMALLOC_END);
1358
1359	pgd = swapper_pg_dir + pgd_index(addr);
1360	pud = pud_offset(pgd, addr);
1361	BUG_ON(!pud_present(*pud));
1362	pmd = pmd_offset(pud, addr);
1363	if (pmd_present(*pmd)) {
1364		BUG_ON(pmd_huge_page(*pmd));
1365	} else {
1366		pte = __alloc_bootmem(L2_KERNEL_PGTABLE_SIZE,
1367				      HV_PAGE_TABLE_ALIGN, 0);
1368		pmd_populate_kernel(&init_mm, pmd, pte);
1369	}
1370}
1371
1372void __init setup_per_cpu_areas(void)
1373{
1374	struct page *pg;
1375	unsigned long delta, pfn, lowmem_va;
1376	unsigned long size = percpu_size();
1377	char *ptr;
1378	int rc, cpu, i;
1379
1380	rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE, pcpu_fc_alloc,
1381				   pcpu_fc_free, pcpu_fc_populate_pte);
1382	if (rc < 0)
1383		panic("Cannot initialize percpu area (err=%d)", rc);
1384
1385	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1386	for_each_possible_cpu(cpu) {
1387		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
1388
1389		/* finv the copy out of cache so we can change homecache */
1390		ptr = pcpu_base_addr + pcpu_unit_offsets[cpu];
1391		__finv_buffer(ptr, size);
1392		pfn = percpu_pfn[cpu];
1393
1394		/* Rewrite the page tables to cache on that cpu */
1395		pg = pfn_to_page(pfn);
1396		for (i = 0; i < size; i += PAGE_SIZE, ++pfn, ++pg) {
1397
1398			/* Update the vmalloc mapping and page home. */
1399			pte_t *ptep =
1400				virt_to_pte(NULL, (unsigned long)ptr + i);
1401			pte_t pte = *ptep;
1402			BUG_ON(pfn != pte_pfn(pte));
1403			pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_TILE_L3);
1404			pte = set_remote_cache_cpu(pte, cpu);
1405			set_pte(ptep, pte);
1406
1407			/* Update the lowmem mapping for consistency. */
1408			lowmem_va = (unsigned long)pfn_to_kaddr(pfn);
1409			ptep = virt_to_pte(NULL, lowmem_va);
1410			if (pte_huge(*ptep)) {
1411				printk(KERN_DEBUG "early shatter of huge page"
1412				       " at %#lx\n", lowmem_va);
1413				shatter_pmd((pmd_t *)ptep);
1414				ptep = virt_to_pte(NULL, lowmem_va);
1415				BUG_ON(pte_huge(*ptep));
1416			}
1417			BUG_ON(pfn != pte_pfn(*ptep));
1418			set_pte(ptep, pte);
1419		}
1420	}
1421
1422	/* Set our thread pointer appropriately. */
1423	set_my_cpu_offset(__per_cpu_offset[smp_processor_id()]);
1424
1425	/* Make sure the finv's have completed. */
1426	mb_incoherent();
1427
1428	/* Flush the TLB so we reference it properly from here on out. */
1429	local_flush_tlb_all();
1430}
1431
1432static struct resource data_resource = {
1433	.name	= "Kernel data",
1434	.start	= 0,
1435	.end	= 0,
1436	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
1437};
1438
1439static struct resource code_resource = {
1440	.name	= "Kernel code",
1441	.start	= 0,
1442	.end	= 0,
1443	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
1444};
1445
1446/*
1447 * We reserve all resources above 4GB so that PCI won't try to put
1448 * mappings above 4GB; the standard allows that for some devices but
1449 * the probing code trunates values to 32 bits.
1450 */
1451#ifdef CONFIG_PCI
1452static struct resource* __init
1453insert_non_bus_resource(void)
1454{
1455	struct resource *res =
1456		kzalloc(sizeof(struct resource), GFP_ATOMIC);
1457	res->name = "Non-Bus Physical Address Space";
1458	res->start = (1ULL << 32);
1459	res->end = -1LL;
1460	res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
1461	if (insert_resource(&iomem_resource, res)) {
1462		kfree(res);
1463		return NULL;
1464	}
1465	return res;
1466}
1467#endif
1468
1469static struct resource* __init
1470insert_ram_resource(u64 start_pfn, u64 end_pfn)
1471{
1472	struct resource *res =
1473		kzalloc(sizeof(struct resource), GFP_ATOMIC);
1474	res->name = "System RAM";
1475	res->start = start_pfn << PAGE_SHIFT;
1476	res->end = (end_pfn << PAGE_SHIFT) - 1;
1477	res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
1478	if (insert_resource(&iomem_resource, res)) {
1479		kfree(res);
1480		return NULL;
1481	}
1482	return res;
1483}
1484
1485/*
1486 * Request address space for all standard resources
1487 *
1488 * If the system includes PCI root complex drivers, we need to create
1489 * a window just below 4GB where PCI BARs can be mapped.
1490 */
1491static int __init request_standard_resources(void)
1492{
1493	int i;
1494	enum { CODE_DELTA = MEM_SV_INTRPT - PAGE_OFFSET };
1495
1496	iomem_resource.end = -1LL;
1497#ifdef CONFIG_PCI
1498	insert_non_bus_resource();
1499#endif
1500
1501	for_each_online_node(i) {
1502		u64 start_pfn = node_start_pfn[i];
1503		u64 end_pfn = node_end_pfn[i];
1504
1505#ifdef CONFIG_PCI
1506		if (start_pfn <= pci_reserve_start_pfn &&
1507		    end_pfn > pci_reserve_start_pfn) {
1508			if (end_pfn > pci_reserve_end_pfn)
1509				insert_ram_resource(pci_reserve_end_pfn,
1510						     end_pfn);
1511			end_pfn = pci_reserve_start_pfn;
1512		}
1513#endif
1514		insert_ram_resource(start_pfn, end_pfn);
1515	}
1516
1517	code_resource.start = __pa(_text - CODE_DELTA);
1518	code_resource.end = __pa(_etext - CODE_DELTA)-1;
1519	data_resource.start = __pa(_sdata);
1520	data_resource.end = __pa(_end)-1;
1521
1522	insert_resource(&iomem_resource, &code_resource);
1523	insert_resource(&iomem_resource, &data_resource);
1524
1525#ifdef CONFIG_KEXEC
1526	insert_resource(&iomem_resource, &crashk_res);
1527#endif
1528
1529	return 0;
1530}
1531
1532subsys_initcall(request_standard_resources);
1533