kgdb.c revision 0b4b3827db386ec6034a5aba1261025b039440c2
1/*
2 * This program is free software; you can redistribute it and/or modify it
3 * under the terms of the GNU General Public License as published by the
4 * Free Software Foundation; either version 2, or (at your option) any
5 * later version.
6 *
7 * This program is distributed in the hope that it will be useful, but
8 * WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
10 * General Public License for more details.
11 *
12 */
13
14/*
15 * Copyright (C) 2004 Amit S. Kale <amitkale@linsyssoft.com>
16 * Copyright (C) 2000-2001 VERITAS Software Corporation.
17 * Copyright (C) 2002 Andi Kleen, SuSE Labs
18 * Copyright (C) 2004 LinSysSoft Technologies Pvt. Ltd.
19 * Copyright (C) 2007 MontaVista Software, Inc.
20 * Copyright (C) 2007-2008 Jason Wessel, Wind River Systems, Inc.
21 */
22/****************************************************************************
23 *  Contributor:     Lake Stevens Instrument Division$
24 *  Written by:      Glenn Engel $
25 *  Updated by:	     Amit Kale<akale@veritas.com>
26 *  Updated by:	     Tom Rini <trini@kernel.crashing.org>
27 *  Updated by:	     Jason Wessel <jason.wessel@windriver.com>
28 *  Modified for 386 by Jim Kingdon, Cygnus Support.
29 *  Origianl kgdb, compatibility with 2.1.xx kernel by
30 *  David Grothe <dave@gcom.com>
31 *  Integrated into 2.2.5 kernel by Tigran Aivazian <tigran@sco.com>
32 *  X86_64 changes from Andi Kleen's patch merged by Jim Houston
33 */
34#include <linux/spinlock.h>
35#include <linux/kdebug.h>
36#include <linux/string.h>
37#include <linux/kernel.h>
38#include <linux/ptrace.h>
39#include <linux/sched.h>
40#include <linux/delay.h>
41#include <linux/kgdb.h>
42#include <linux/init.h>
43#include <linux/smp.h>
44#include <linux/nmi.h>
45#include <linux/hw_breakpoint.h>
46
47#include <asm/debugreg.h>
48#include <asm/apicdef.h>
49#include <asm/system.h>
50#include <asm/apic.h>
51
52/**
53 *	pt_regs_to_gdb_regs - Convert ptrace regs to GDB regs
54 *	@gdb_regs: A pointer to hold the registers in the order GDB wants.
55 *	@regs: The &struct pt_regs of the current process.
56 *
57 *	Convert the pt_regs in @regs into the format for registers that
58 *	GDB expects, stored in @gdb_regs.
59 */
60void pt_regs_to_gdb_regs(unsigned long *gdb_regs, struct pt_regs *regs)
61{
62#ifndef CONFIG_X86_32
63	u32 *gdb_regs32 = (u32 *)gdb_regs;
64#endif
65	gdb_regs[GDB_AX]	= regs->ax;
66	gdb_regs[GDB_BX]	= regs->bx;
67	gdb_regs[GDB_CX]	= regs->cx;
68	gdb_regs[GDB_DX]	= regs->dx;
69	gdb_regs[GDB_SI]	= regs->si;
70	gdb_regs[GDB_DI]	= regs->di;
71	gdb_regs[GDB_BP]	= regs->bp;
72	gdb_regs[GDB_PC]	= regs->ip;
73#ifdef CONFIG_X86_32
74	gdb_regs[GDB_PS]	= regs->flags;
75	gdb_regs[GDB_DS]	= regs->ds;
76	gdb_regs[GDB_ES]	= regs->es;
77	gdb_regs[GDB_CS]	= regs->cs;
78	gdb_regs[GDB_FS]	= 0xFFFF;
79	gdb_regs[GDB_GS]	= 0xFFFF;
80	if (user_mode_vm(regs)) {
81		gdb_regs[GDB_SS] = regs->ss;
82		gdb_regs[GDB_SP] = regs->sp;
83	} else {
84		gdb_regs[GDB_SS] = __KERNEL_DS;
85		gdb_regs[GDB_SP] = kernel_stack_pointer(regs);
86	}
87#else
88	gdb_regs[GDB_R8]	= regs->r8;
89	gdb_regs[GDB_R9]	= regs->r9;
90	gdb_regs[GDB_R10]	= regs->r10;
91	gdb_regs[GDB_R11]	= regs->r11;
92	gdb_regs[GDB_R12]	= regs->r12;
93	gdb_regs[GDB_R13]	= regs->r13;
94	gdb_regs[GDB_R14]	= regs->r14;
95	gdb_regs[GDB_R15]	= regs->r15;
96	gdb_regs32[GDB_PS]	= regs->flags;
97	gdb_regs32[GDB_CS]	= regs->cs;
98	gdb_regs32[GDB_SS]	= regs->ss;
99	gdb_regs[GDB_SP]	= kernel_stack_pointer(regs);
100#endif
101}
102
103/**
104 *	sleeping_thread_to_gdb_regs - Convert ptrace regs to GDB regs
105 *	@gdb_regs: A pointer to hold the registers in the order GDB wants.
106 *	@p: The &struct task_struct of the desired process.
107 *
108 *	Convert the register values of the sleeping process in @p to
109 *	the format that GDB expects.
110 *	This function is called when kgdb does not have access to the
111 *	&struct pt_regs and therefore it should fill the gdb registers
112 *	@gdb_regs with what has	been saved in &struct thread_struct
113 *	thread field during switch_to.
114 */
115void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
116{
117#ifndef CONFIG_X86_32
118	u32 *gdb_regs32 = (u32 *)gdb_regs;
119#endif
120	gdb_regs[GDB_AX]	= 0;
121	gdb_regs[GDB_BX]	= 0;
122	gdb_regs[GDB_CX]	= 0;
123	gdb_regs[GDB_DX]	= 0;
124	gdb_regs[GDB_SI]	= 0;
125	gdb_regs[GDB_DI]	= 0;
126	gdb_regs[GDB_BP]	= *(unsigned long *)p->thread.sp;
127#ifdef CONFIG_X86_32
128	gdb_regs[GDB_DS]	= __KERNEL_DS;
129	gdb_regs[GDB_ES]	= __KERNEL_DS;
130	gdb_regs[GDB_PS]	= 0;
131	gdb_regs[GDB_CS]	= __KERNEL_CS;
132	gdb_regs[GDB_PC]	= p->thread.ip;
133	gdb_regs[GDB_SS]	= __KERNEL_DS;
134	gdb_regs[GDB_FS]	= 0xFFFF;
135	gdb_regs[GDB_GS]	= 0xFFFF;
136#else
137	gdb_regs32[GDB_PS]	= *(unsigned long *)(p->thread.sp + 8);
138	gdb_regs32[GDB_CS]	= __KERNEL_CS;
139	gdb_regs32[GDB_SS]	= __KERNEL_DS;
140	gdb_regs[GDB_PC]	= 0;
141	gdb_regs[GDB_R8]	= 0;
142	gdb_regs[GDB_R9]	= 0;
143	gdb_regs[GDB_R10]	= 0;
144	gdb_regs[GDB_R11]	= 0;
145	gdb_regs[GDB_R12]	= 0;
146	gdb_regs[GDB_R13]	= 0;
147	gdb_regs[GDB_R14]	= 0;
148	gdb_regs[GDB_R15]	= 0;
149#endif
150	gdb_regs[GDB_SP]	= p->thread.sp;
151}
152
153/**
154 *	gdb_regs_to_pt_regs - Convert GDB regs to ptrace regs.
155 *	@gdb_regs: A pointer to hold the registers we've received from GDB.
156 *	@regs: A pointer to a &struct pt_regs to hold these values in.
157 *
158 *	Convert the GDB regs in @gdb_regs into the pt_regs, and store them
159 *	in @regs.
160 */
161void gdb_regs_to_pt_regs(unsigned long *gdb_regs, struct pt_regs *regs)
162{
163#ifndef CONFIG_X86_32
164	u32 *gdb_regs32 = (u32 *)gdb_regs;
165#endif
166	regs->ax		= gdb_regs[GDB_AX];
167	regs->bx		= gdb_regs[GDB_BX];
168	regs->cx		= gdb_regs[GDB_CX];
169	regs->dx		= gdb_regs[GDB_DX];
170	regs->si		= gdb_regs[GDB_SI];
171	regs->di		= gdb_regs[GDB_DI];
172	regs->bp		= gdb_regs[GDB_BP];
173	regs->ip		= gdb_regs[GDB_PC];
174#ifdef CONFIG_X86_32
175	regs->flags		= gdb_regs[GDB_PS];
176	regs->ds		= gdb_regs[GDB_DS];
177	regs->es		= gdb_regs[GDB_ES];
178	regs->cs		= gdb_regs[GDB_CS];
179#else
180	regs->r8		= gdb_regs[GDB_R8];
181	regs->r9		= gdb_regs[GDB_R9];
182	regs->r10		= gdb_regs[GDB_R10];
183	regs->r11		= gdb_regs[GDB_R11];
184	regs->r12		= gdb_regs[GDB_R12];
185	regs->r13		= gdb_regs[GDB_R13];
186	regs->r14		= gdb_regs[GDB_R14];
187	regs->r15		= gdb_regs[GDB_R15];
188	regs->flags		= gdb_regs32[GDB_PS];
189	regs->cs		= gdb_regs32[GDB_CS];
190	regs->ss		= gdb_regs32[GDB_SS];
191#endif
192}
193
194static struct hw_breakpoint {
195	unsigned		enabled;
196	unsigned long		addr;
197	int			len;
198	int			type;
199	struct perf_event	**pev;
200} breakinfo[4];
201
202static void kgdb_correct_hw_break(void)
203{
204	int breakno;
205
206	for (breakno = 0; breakno < 4; breakno++) {
207		struct perf_event *bp;
208		struct arch_hw_breakpoint *info;
209		int val;
210		int cpu = raw_smp_processor_id();
211		if (!breakinfo[breakno].enabled)
212			continue;
213		bp = *per_cpu_ptr(breakinfo[breakno].pev, cpu);
214		info = counter_arch_bp(bp);
215		if (bp->attr.disabled != 1)
216			continue;
217		bp->attr.bp_addr = breakinfo[breakno].addr;
218		bp->attr.bp_len = breakinfo[breakno].len;
219		bp->attr.bp_type = breakinfo[breakno].type;
220		info->address = breakinfo[breakno].addr;
221		info->len = breakinfo[breakno].len;
222		info->type = breakinfo[breakno].type;
223		val = arch_install_hw_breakpoint(bp);
224		if (!val)
225			bp->attr.disabled = 0;
226	}
227	hw_breakpoint_restore();
228}
229
230static int hw_break_reserve_slot(int breakno)
231{
232	int cpu;
233	int cnt = 0;
234	struct perf_event **pevent;
235
236	for_each_online_cpu(cpu) {
237		cnt++;
238		pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
239		if (dbg_reserve_bp_slot(*pevent))
240			goto fail;
241	}
242
243	return 0;
244
245fail:
246	for_each_online_cpu(cpu) {
247		cnt--;
248		if (!cnt)
249			break;
250		pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
251		dbg_release_bp_slot(*pevent);
252	}
253	return -1;
254}
255
256static int hw_break_release_slot(int breakno)
257{
258	struct perf_event **pevent;
259	int cpu;
260
261	for_each_online_cpu(cpu) {
262		pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
263		if (dbg_release_bp_slot(*pevent))
264			/*
265			 * The debugger is responisble for handing the retry on
266			 * remove failure.
267			 */
268			return -1;
269	}
270	return 0;
271}
272
273static int
274kgdb_remove_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
275{
276	int i;
277
278	for (i = 0; i < 4; i++)
279		if (breakinfo[i].addr == addr && breakinfo[i].enabled)
280			break;
281	if (i == 4)
282		return -1;
283
284	if (hw_break_release_slot(i)) {
285		printk(KERN_ERR "Cannot remove hw breakpoint at %lx\n", addr);
286		return -1;
287	}
288	breakinfo[i].enabled = 0;
289
290	return 0;
291}
292
293static void kgdb_remove_all_hw_break(void)
294{
295	int i;
296	int cpu = raw_smp_processor_id();
297	struct perf_event *bp;
298
299	for (i = 0; i < 4; i++) {
300		if (!breakinfo[i].enabled)
301			continue;
302		bp = *per_cpu_ptr(breakinfo[i].pev, cpu);
303		if (bp->attr.disabled == 1)
304			continue;
305		arch_uninstall_hw_breakpoint(bp);
306		bp->attr.disabled = 1;
307	}
308}
309
310static int
311kgdb_set_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
312{
313	int i;
314
315	for (i = 0; i < 4; i++)
316		if (!breakinfo[i].enabled)
317			break;
318	if (i == 4)
319		return -1;
320
321	switch (bptype) {
322	case BP_HARDWARE_BREAKPOINT:
323		len = 1;
324		breakinfo[i].type = X86_BREAKPOINT_EXECUTE;
325		break;
326	case BP_WRITE_WATCHPOINT:
327		breakinfo[i].type = X86_BREAKPOINT_WRITE;
328		break;
329	case BP_ACCESS_WATCHPOINT:
330		breakinfo[i].type = X86_BREAKPOINT_RW;
331		break;
332	default:
333		return -1;
334	}
335	switch (len) {
336	case 1:
337		breakinfo[i].len = X86_BREAKPOINT_LEN_1;
338		break;
339	case 2:
340		breakinfo[i].len = X86_BREAKPOINT_LEN_2;
341		break;
342	case 4:
343		breakinfo[i].len = X86_BREAKPOINT_LEN_4;
344		break;
345#ifdef CONFIG_X86_64
346	case 8:
347		breakinfo[i].len = X86_BREAKPOINT_LEN_8;
348		break;
349#endif
350	default:
351		return -1;
352	}
353	breakinfo[i].addr = addr;
354	if (hw_break_reserve_slot(i)) {
355		breakinfo[i].addr = 0;
356		return -1;
357	}
358	breakinfo[i].enabled = 1;
359
360	return 0;
361}
362
363/**
364 *	kgdb_disable_hw_debug - Disable hardware debugging while we in kgdb.
365 *	@regs: Current &struct pt_regs.
366 *
367 *	This function will be called if the particular architecture must
368 *	disable hardware debugging while it is processing gdb packets or
369 *	handling exception.
370 */
371void kgdb_disable_hw_debug(struct pt_regs *regs)
372{
373	int i;
374	int cpu = raw_smp_processor_id();
375	struct perf_event *bp;
376
377	/* Disable hardware debugging while we are in kgdb: */
378	set_debugreg(0UL, 7);
379	for (i = 0; i < 4; i++) {
380		if (!breakinfo[i].enabled)
381			continue;
382		bp = *per_cpu_ptr(breakinfo[i].pev, cpu);
383		if (bp->attr.disabled == 1)
384			continue;
385		arch_uninstall_hw_breakpoint(bp);
386		bp->attr.disabled = 1;
387	}
388}
389
390#ifdef CONFIG_SMP
391/**
392 *	kgdb_roundup_cpus - Get other CPUs into a holding pattern
393 *	@flags: Current IRQ state
394 *
395 *	On SMP systems, we need to get the attention of the other CPUs
396 *	and get them be in a known state.  This should do what is needed
397 *	to get the other CPUs to call kgdb_wait(). Note that on some arches,
398 *	the NMI approach is not used for rounding up all the CPUs. For example,
399 *	in case of MIPS, smp_call_function() is used to roundup CPUs. In
400 *	this case, we have to make sure that interrupts are enabled before
401 *	calling smp_call_function(). The argument to this function is
402 *	the flags that will be used when restoring the interrupts. There is
403 *	local_irq_save() call before kgdb_roundup_cpus().
404 *
405 *	On non-SMP systems, this is not called.
406 */
407void kgdb_roundup_cpus(unsigned long flags)
408{
409	apic->send_IPI_allbutself(APIC_DM_NMI);
410}
411#endif
412
413/**
414 *	kgdb_arch_handle_exception - Handle architecture specific GDB packets.
415 *	@vector: The error vector of the exception that happened.
416 *	@signo: The signal number of the exception that happened.
417 *	@err_code: The error code of the exception that happened.
418 *	@remcom_in_buffer: The buffer of the packet we have read.
419 *	@remcom_out_buffer: The buffer of %BUFMAX bytes to write a packet into.
420 *	@regs: The &struct pt_regs of the current process.
421 *
422 *	This function MUST handle the 'c' and 's' command packets,
423 *	as well packets to set / remove a hardware breakpoint, if used.
424 *	If there are additional packets which the hardware needs to handle,
425 *	they are handled here.  The code should return -1 if it wants to
426 *	process more packets, and a %0 or %1 if it wants to exit from the
427 *	kgdb callback.
428 */
429int kgdb_arch_handle_exception(int e_vector, int signo, int err_code,
430			       char *remcomInBuffer, char *remcomOutBuffer,
431			       struct pt_regs *linux_regs)
432{
433	unsigned long addr;
434	char *ptr;
435	int newPC;
436
437	switch (remcomInBuffer[0]) {
438	case 'c':
439	case 's':
440		/* try to read optional parameter, pc unchanged if no parm */
441		ptr = &remcomInBuffer[1];
442		if (kgdb_hex2long(&ptr, &addr))
443			linux_regs->ip = addr;
444	case 'D':
445	case 'k':
446		newPC = linux_regs->ip;
447
448		/* clear the trace bit */
449		linux_regs->flags &= ~X86_EFLAGS_TF;
450		atomic_set(&kgdb_cpu_doing_single_step, -1);
451
452		/* set the trace bit if we're stepping */
453		if (remcomInBuffer[0] == 's') {
454			linux_regs->flags |= X86_EFLAGS_TF;
455			atomic_set(&kgdb_cpu_doing_single_step,
456				   raw_smp_processor_id());
457		}
458
459		kgdb_correct_hw_break();
460
461		return 0;
462	}
463
464	/* this means that we do not want to exit from the handler: */
465	return -1;
466}
467
468static inline int
469single_step_cont(struct pt_regs *regs, struct die_args *args)
470{
471	/*
472	 * Single step exception from kernel space to user space so
473	 * eat the exception and continue the process:
474	 */
475	printk(KERN_ERR "KGDB: trap/step from kernel to user space, "
476			"resuming...\n");
477	kgdb_arch_handle_exception(args->trapnr, args->signr,
478				   args->err, "c", "", regs);
479	/*
480	 * Reset the BS bit in dr6 (pointed by args->err) to
481	 * denote completion of processing
482	 */
483	(*(unsigned long *)ERR_PTR(args->err)) &= ~DR_STEP;
484
485	return NOTIFY_STOP;
486}
487
488static int was_in_debug_nmi[NR_CPUS];
489
490static int __kgdb_notify(struct die_args *args, unsigned long cmd)
491{
492	struct pt_regs *regs = args->regs;
493
494	switch (cmd) {
495	case DIE_NMI:
496		if (atomic_read(&kgdb_active) != -1) {
497			/* KGDB CPU roundup */
498			kgdb_nmicallback(raw_smp_processor_id(), regs);
499			was_in_debug_nmi[raw_smp_processor_id()] = 1;
500			touch_nmi_watchdog();
501			return NOTIFY_STOP;
502		}
503		return NOTIFY_DONE;
504
505	case DIE_NMI_IPI:
506		/* Just ignore, we will handle the roundup on DIE_NMI. */
507		return NOTIFY_DONE;
508
509	case DIE_NMIUNKNOWN:
510		if (was_in_debug_nmi[raw_smp_processor_id()]) {
511			was_in_debug_nmi[raw_smp_processor_id()] = 0;
512			return NOTIFY_STOP;
513		}
514		return NOTIFY_DONE;
515
516	case DIE_NMIWATCHDOG:
517		if (atomic_read(&kgdb_active) != -1) {
518			/* KGDB CPU roundup: */
519			kgdb_nmicallback(raw_smp_processor_id(), regs);
520			return NOTIFY_STOP;
521		}
522		/* Enter debugger: */
523		break;
524
525	case DIE_DEBUG:
526		if (atomic_read(&kgdb_cpu_doing_single_step) != -1) {
527			if (user_mode(regs))
528				return single_step_cont(regs, args);
529			break;
530		} else if (test_thread_flag(TIF_SINGLESTEP))
531			/* This means a user thread is single stepping
532			 * a system call which should be ignored
533			 */
534			return NOTIFY_DONE;
535		/* fall through */
536	default:
537		if (user_mode(regs))
538			return NOTIFY_DONE;
539	}
540
541	if (kgdb_handle_exception(args->trapnr, args->signr, cmd, regs))
542		return NOTIFY_DONE;
543
544	/* Must touch watchdog before return to normal operation */
545	touch_nmi_watchdog();
546	return NOTIFY_STOP;
547}
548
549#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
550int kgdb_ll_trap(int cmd, const char *str,
551		 struct pt_regs *regs, long err, int trap, int sig)
552{
553	struct die_args args = {
554		.regs	= regs,
555		.str	= str,
556		.err	= err,
557		.trapnr	= trap,
558		.signr	= sig,
559
560	};
561
562	if (!kgdb_io_module_registered)
563		return NOTIFY_DONE;
564
565	return __kgdb_notify(&args, cmd);
566}
567#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
568
569static int
570kgdb_notify(struct notifier_block *self, unsigned long cmd, void *ptr)
571{
572	unsigned long flags;
573	int ret;
574
575	local_irq_save(flags);
576	ret = __kgdb_notify(ptr, cmd);
577	local_irq_restore(flags);
578
579	return ret;
580}
581
582static struct notifier_block kgdb_notifier = {
583	.notifier_call	= kgdb_notify,
584
585	/*
586	 * Lowest-prio notifier priority, we want to be notified last:
587	 */
588	.priority	= -INT_MAX,
589};
590
591/**
592 *	kgdb_arch_init - Perform any architecture specific initalization.
593 *
594 *	This function will handle the initalization of any architecture
595 *	specific callbacks.
596 */
597int kgdb_arch_init(void)
598{
599	return register_die_notifier(&kgdb_notifier);
600}
601
602void kgdb_arch_late(void)
603{
604	int i, cpu;
605	struct perf_event_attr attr;
606	struct perf_event **pevent;
607
608	/*
609	 * Pre-allocate the hw breakpoint structions in the non-atomic
610	 * portion of kgdb because this operation requires mutexs to
611	 * complete.
612	 */
613	hw_breakpoint_init(&attr);
614	attr.bp_addr = (unsigned long)kgdb_arch_init;
615	attr.bp_len = HW_BREAKPOINT_LEN_1;
616	attr.bp_type = HW_BREAKPOINT_W;
617	attr.disabled = 1;
618	for (i = 0; i < 4; i++) {
619		if (breakinfo[i].pev)
620			continue;
621		breakinfo[i].pev = register_wide_hw_breakpoint(&attr, NULL);
622		if (IS_ERR(breakinfo[i].pev)) {
623			printk(KERN_ERR "kgdb: Could not allocate hw"
624			       "breakpoints\nDisabling the kernel debugger\n");
625			breakinfo[i].pev = NULL;
626			kgdb_arch_exit();
627			return;
628		}
629		for_each_online_cpu(cpu) {
630			pevent = per_cpu_ptr(breakinfo[i].pev, cpu);
631			pevent[0]->hw.sample_period = 1;
632			if (pevent[0]->destroy != NULL) {
633				pevent[0]->destroy = NULL;
634				release_bp_slot(*pevent);
635			}
636		}
637	}
638}
639
640/**
641 *	kgdb_arch_exit - Perform any architecture specific uninitalization.
642 *
643 *	This function will handle the uninitalization of any architecture
644 *	specific callbacks, for dynamic registration and unregistration.
645 */
646void kgdb_arch_exit(void)
647{
648	int i;
649	for (i = 0; i < 4; i++) {
650		if (breakinfo[i].pev) {
651			unregister_wide_hw_breakpoint(breakinfo[i].pev);
652			breakinfo[i].pev = NULL;
653		}
654	}
655	unregister_die_notifier(&kgdb_notifier);
656}
657
658/**
659 *
660 *	kgdb_skipexception - Bail out of KGDB when we've been triggered.
661 *	@exception: Exception vector number
662 *	@regs: Current &struct pt_regs.
663 *
664 *	On some architectures we need to skip a breakpoint exception when
665 *	it occurs after a breakpoint has been removed.
666 *
667 * Skip an int3 exception when it occurs after a breakpoint has been
668 * removed. Backtrack eip by 1 since the int3 would have caused it to
669 * increment by 1.
670 */
671int kgdb_skipexception(int exception, struct pt_regs *regs)
672{
673	if (exception == 3 && kgdb_isremovedbreak(regs->ip - 1)) {
674		regs->ip -= 1;
675		return 1;
676	}
677	return 0;
678}
679
680unsigned long kgdb_arch_pc(int exception, struct pt_regs *regs)
681{
682	if (exception == 3)
683		return instruction_pointer(regs) - 1;
684	return instruction_pointer(regs);
685}
686
687void kgdb_arch_set_pc(struct pt_regs *regs, unsigned long ip)
688{
689	regs->ip = ip;
690}
691
692struct kgdb_arch arch_kgdb_ops = {
693	/* Breakpoint instruction: */
694	.gdb_bpt_instr		= { 0xcc },
695	.flags			= KGDB_HW_BREAKPOINT,
696	.set_hw_breakpoint	= kgdb_set_hw_break,
697	.remove_hw_breakpoint	= kgdb_remove_hw_break,
698	.remove_all_hw_break	= kgdb_remove_all_hw_break,
699	.correct_hw_break	= kgdb_correct_hw_break,
700};
701