kgdb.c revision 5ca6c0ca5dbf105d7b0ffdae2289519982189730
1/*
2 * This program is free software; you can redistribute it and/or modify it
3 * under the terms of the GNU General Public License as published by the
4 * Free Software Foundation; either version 2, or (at your option) any
5 * later version.
6 *
7 * This program is distributed in the hope that it will be useful, but
8 * WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
10 * General Public License for more details.
11 *
12 */
13
14/*
15 * Copyright (C) 2004 Amit S. Kale <amitkale@linsyssoft.com>
16 * Copyright (C) 2000-2001 VERITAS Software Corporation.
17 * Copyright (C) 2002 Andi Kleen, SuSE Labs
18 * Copyright (C) 2004 LinSysSoft Technologies Pvt. Ltd.
19 * Copyright (C) 2007 MontaVista Software, Inc.
20 * Copyright (C) 2007-2008 Jason Wessel, Wind River Systems, Inc.
21 */
22/****************************************************************************
23 *  Contributor:     Lake Stevens Instrument Division$
24 *  Written by:      Glenn Engel $
25 *  Updated by:	     Amit Kale<akale@veritas.com>
26 *  Updated by:	     Tom Rini <trini@kernel.crashing.org>
27 *  Updated by:	     Jason Wessel <jason.wessel@windriver.com>
28 *  Modified for 386 by Jim Kingdon, Cygnus Support.
29 *  Origianl kgdb, compatibility with 2.1.xx kernel by
30 *  David Grothe <dave@gcom.com>
31 *  Integrated into 2.2.5 kernel by Tigran Aivazian <tigran@sco.com>
32 *  X86_64 changes from Andi Kleen's patch merged by Jim Houston
33 */
34#include <linux/spinlock.h>
35#include <linux/kdebug.h>
36#include <linux/string.h>
37#include <linux/kernel.h>
38#include <linux/ptrace.h>
39#include <linux/sched.h>
40#include <linux/delay.h>
41#include <linux/kgdb.h>
42#include <linux/init.h>
43#include <linux/smp.h>
44#include <linux/nmi.h>
45
46#include <asm/apicdef.h>
47#include <asm/system.h>
48
49#include <asm/apic.h>
50
51/*
52 * Put the error code here just in case the user cares:
53 */
54static int gdb_x86errcode;
55
56/*
57 * Likewise, the vector number here (since GDB only gets the signal
58 * number through the usual means, and that's not very specific):
59 */
60static int gdb_x86vector = -1;
61
62/**
63 *	pt_regs_to_gdb_regs - Convert ptrace regs to GDB regs
64 *	@gdb_regs: A pointer to hold the registers in the order GDB wants.
65 *	@regs: The &struct pt_regs of the current process.
66 *
67 *	Convert the pt_regs in @regs into the format for registers that
68 *	GDB expects, stored in @gdb_regs.
69 */
70void pt_regs_to_gdb_regs(unsigned long *gdb_regs, struct pt_regs *regs)
71{
72#ifndef CONFIG_X86_32
73	u32 *gdb_regs32 = (u32 *)gdb_regs;
74#endif
75	gdb_regs[GDB_AX]	= regs->ax;
76	gdb_regs[GDB_BX]	= regs->bx;
77	gdb_regs[GDB_CX]	= regs->cx;
78	gdb_regs[GDB_DX]	= regs->dx;
79	gdb_regs[GDB_SI]	= regs->si;
80	gdb_regs[GDB_DI]	= regs->di;
81	gdb_regs[GDB_BP]	= regs->bp;
82	gdb_regs[GDB_PC]	= regs->ip;
83#ifdef CONFIG_X86_32
84	gdb_regs[GDB_PS]	= regs->flags;
85	gdb_regs[GDB_DS]	= regs->ds;
86	gdb_regs[GDB_ES]	= regs->es;
87	gdb_regs[GDB_CS]	= regs->cs;
88	gdb_regs[GDB_SS]	= __KERNEL_DS;
89	gdb_regs[GDB_FS]	= 0xFFFF;
90	gdb_regs[GDB_GS]	= 0xFFFF;
91#else
92	gdb_regs[GDB_R8]	= regs->r8;
93	gdb_regs[GDB_R9]	= regs->r9;
94	gdb_regs[GDB_R10]	= regs->r10;
95	gdb_regs[GDB_R11]	= regs->r11;
96	gdb_regs[GDB_R12]	= regs->r12;
97	gdb_regs[GDB_R13]	= regs->r13;
98	gdb_regs[GDB_R14]	= regs->r14;
99	gdb_regs[GDB_R15]	= regs->r15;
100	gdb_regs32[GDB_PS]	= regs->flags;
101	gdb_regs32[GDB_CS]	= regs->cs;
102	gdb_regs32[GDB_SS]	= regs->ss;
103#endif
104	gdb_regs[GDB_SP]	= kernel_stack_pointer(regs);
105}
106
107/**
108 *	sleeping_thread_to_gdb_regs - Convert ptrace regs to GDB regs
109 *	@gdb_regs: A pointer to hold the registers in the order GDB wants.
110 *	@p: The &struct task_struct of the desired process.
111 *
112 *	Convert the register values of the sleeping process in @p to
113 *	the format that GDB expects.
114 *	This function is called when kgdb does not have access to the
115 *	&struct pt_regs and therefore it should fill the gdb registers
116 *	@gdb_regs with what has	been saved in &struct thread_struct
117 *	thread field during switch_to.
118 */
119void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
120{
121#ifndef CONFIG_X86_32
122	u32 *gdb_regs32 = (u32 *)gdb_regs;
123#endif
124	gdb_regs[GDB_AX]	= 0;
125	gdb_regs[GDB_BX]	= 0;
126	gdb_regs[GDB_CX]	= 0;
127	gdb_regs[GDB_DX]	= 0;
128	gdb_regs[GDB_SI]	= 0;
129	gdb_regs[GDB_DI]	= 0;
130	gdb_regs[GDB_BP]	= *(unsigned long *)p->thread.sp;
131#ifdef CONFIG_X86_32
132	gdb_regs[GDB_DS]	= __KERNEL_DS;
133	gdb_regs[GDB_ES]	= __KERNEL_DS;
134	gdb_regs[GDB_PS]	= 0;
135	gdb_regs[GDB_CS]	= __KERNEL_CS;
136	gdb_regs[GDB_PC]	= p->thread.ip;
137	gdb_regs[GDB_SS]	= __KERNEL_DS;
138	gdb_regs[GDB_FS]	= 0xFFFF;
139	gdb_regs[GDB_GS]	= 0xFFFF;
140#else
141	gdb_regs32[GDB_PS]	= *(unsigned long *)(p->thread.sp + 8);
142	gdb_regs32[GDB_CS]	= __KERNEL_CS;
143	gdb_regs32[GDB_SS]	= __KERNEL_DS;
144	gdb_regs[GDB_PC]	= 0;
145	gdb_regs[GDB_R8]	= 0;
146	gdb_regs[GDB_R9]	= 0;
147	gdb_regs[GDB_R10]	= 0;
148	gdb_regs[GDB_R11]	= 0;
149	gdb_regs[GDB_R12]	= 0;
150	gdb_regs[GDB_R13]	= 0;
151	gdb_regs[GDB_R14]	= 0;
152	gdb_regs[GDB_R15]	= 0;
153#endif
154	gdb_regs[GDB_SP]	= p->thread.sp;
155}
156
157/**
158 *	gdb_regs_to_pt_regs - Convert GDB regs to ptrace regs.
159 *	@gdb_regs: A pointer to hold the registers we've received from GDB.
160 *	@regs: A pointer to a &struct pt_regs to hold these values in.
161 *
162 *	Convert the GDB regs in @gdb_regs into the pt_regs, and store them
163 *	in @regs.
164 */
165void gdb_regs_to_pt_regs(unsigned long *gdb_regs, struct pt_regs *regs)
166{
167#ifndef CONFIG_X86_32
168	u32 *gdb_regs32 = (u32 *)gdb_regs;
169#endif
170	regs->ax		= gdb_regs[GDB_AX];
171	regs->bx		= gdb_regs[GDB_BX];
172	regs->cx		= gdb_regs[GDB_CX];
173	regs->dx		= gdb_regs[GDB_DX];
174	regs->si		= gdb_regs[GDB_SI];
175	regs->di		= gdb_regs[GDB_DI];
176	regs->bp		= gdb_regs[GDB_BP];
177	regs->ip		= gdb_regs[GDB_PC];
178#ifdef CONFIG_X86_32
179	regs->flags		= gdb_regs[GDB_PS];
180	regs->ds		= gdb_regs[GDB_DS];
181	regs->es		= gdb_regs[GDB_ES];
182	regs->cs		= gdb_regs[GDB_CS];
183#else
184	regs->r8		= gdb_regs[GDB_R8];
185	regs->r9		= gdb_regs[GDB_R9];
186	regs->r10		= gdb_regs[GDB_R10];
187	regs->r11		= gdb_regs[GDB_R11];
188	regs->r12		= gdb_regs[GDB_R12];
189	regs->r13		= gdb_regs[GDB_R13];
190	regs->r14		= gdb_regs[GDB_R14];
191	regs->r15		= gdb_regs[GDB_R15];
192	regs->flags		= gdb_regs32[GDB_PS];
193	regs->cs		= gdb_regs32[GDB_CS];
194	regs->ss		= gdb_regs32[GDB_SS];
195#endif
196}
197
198static struct hw_breakpoint {
199	unsigned		enabled;
200	unsigned		type;
201	unsigned		len;
202	unsigned long		addr;
203} breakinfo[4];
204
205static void kgdb_correct_hw_break(void)
206{
207	unsigned long dr7;
208	int correctit = 0;
209	int breakbit;
210	int breakno;
211
212	get_debugreg(dr7, 7);
213	for (breakno = 0; breakno < 4; breakno++) {
214		breakbit = 2 << (breakno << 1);
215		if (!(dr7 & breakbit) && breakinfo[breakno].enabled) {
216			correctit = 1;
217			dr7 |= breakbit;
218			dr7 &= ~(0xf0000 << (breakno << 2));
219			dr7 |= ((breakinfo[breakno].len << 2) |
220				 breakinfo[breakno].type) <<
221			       ((breakno << 2) + 16);
222			if (breakno >= 0 && breakno <= 3)
223				set_debugreg(breakinfo[breakno].addr, breakno);
224
225		} else {
226			if ((dr7 & breakbit) && !breakinfo[breakno].enabled) {
227				correctit = 1;
228				dr7 &= ~breakbit;
229				dr7 &= ~(0xf0000 << (breakno << 2));
230			}
231		}
232	}
233	if (correctit)
234		set_debugreg(dr7, 7);
235}
236
237static int
238kgdb_remove_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
239{
240	int i;
241
242	for (i = 0; i < 4; i++)
243		if (breakinfo[i].addr == addr && breakinfo[i].enabled)
244			break;
245	if (i == 4)
246		return -1;
247
248	breakinfo[i].enabled = 0;
249
250	return 0;
251}
252
253static void kgdb_remove_all_hw_break(void)
254{
255	int i;
256
257	for (i = 0; i < 4; i++)
258		memset(&breakinfo[i], 0, sizeof(struct hw_breakpoint));
259}
260
261static int
262kgdb_set_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
263{
264	unsigned type;
265	int i;
266
267	for (i = 0; i < 4; i++)
268		if (!breakinfo[i].enabled)
269			break;
270	if (i == 4)
271		return -1;
272
273	switch (bptype) {
274	case BP_HARDWARE_BREAKPOINT:
275		type = 0;
276		len  = 1;
277		break;
278	case BP_WRITE_WATCHPOINT:
279		type = 1;
280		break;
281	case BP_ACCESS_WATCHPOINT:
282		type = 3;
283		break;
284	default:
285		return -1;
286	}
287
288	if (len == 1 || len == 2 || len == 4)
289		breakinfo[i].len  = len - 1;
290	else
291		return -1;
292
293	breakinfo[i].enabled = 1;
294	breakinfo[i].addr = addr;
295	breakinfo[i].type = type;
296
297	return 0;
298}
299
300/**
301 *	kgdb_disable_hw_debug - Disable hardware debugging while we in kgdb.
302 *	@regs: Current &struct pt_regs.
303 *
304 *	This function will be called if the particular architecture must
305 *	disable hardware debugging while it is processing gdb packets or
306 *	handling exception.
307 */
308void kgdb_disable_hw_debug(struct pt_regs *regs)
309{
310	/* Disable hardware debugging while we are in kgdb: */
311	set_debugreg(0UL, 7);
312}
313
314/**
315 *	kgdb_post_primary_code - Save error vector/code numbers.
316 *	@regs: Original pt_regs.
317 *	@e_vector: Original error vector.
318 *	@err_code: Original error code.
319 *
320 *	This is needed on architectures which support SMP and KGDB.
321 *	This function is called after all the slave cpus have been put
322 *	to a know spin state and the primary CPU has control over KGDB.
323 */
324void kgdb_post_primary_code(struct pt_regs *regs, int e_vector, int err_code)
325{
326	/* primary processor is completely in the debugger */
327	gdb_x86vector = e_vector;
328	gdb_x86errcode = err_code;
329}
330
331#ifdef CONFIG_SMP
332/**
333 *	kgdb_roundup_cpus - Get other CPUs into a holding pattern
334 *	@flags: Current IRQ state
335 *
336 *	On SMP systems, we need to get the attention of the other CPUs
337 *	and get them be in a known state.  This should do what is needed
338 *	to get the other CPUs to call kgdb_wait(). Note that on some arches,
339 *	the NMI approach is not used for rounding up all the CPUs. For example,
340 *	in case of MIPS, smp_call_function() is used to roundup CPUs. In
341 *	this case, we have to make sure that interrupts are enabled before
342 *	calling smp_call_function(). The argument to this function is
343 *	the flags that will be used when restoring the interrupts. There is
344 *	local_irq_save() call before kgdb_roundup_cpus().
345 *
346 *	On non-SMP systems, this is not called.
347 */
348void kgdb_roundup_cpus(unsigned long flags)
349{
350	apic->send_IPI_allbutself(APIC_DM_NMI);
351}
352#endif
353
354/**
355 *	kgdb_arch_handle_exception - Handle architecture specific GDB packets.
356 *	@vector: The error vector of the exception that happened.
357 *	@signo: The signal number of the exception that happened.
358 *	@err_code: The error code of the exception that happened.
359 *	@remcom_in_buffer: The buffer of the packet we have read.
360 *	@remcom_out_buffer: The buffer of %BUFMAX bytes to write a packet into.
361 *	@regs: The &struct pt_regs of the current process.
362 *
363 *	This function MUST handle the 'c' and 's' command packets,
364 *	as well packets to set / remove a hardware breakpoint, if used.
365 *	If there are additional packets which the hardware needs to handle,
366 *	they are handled here.  The code should return -1 if it wants to
367 *	process more packets, and a %0 or %1 if it wants to exit from the
368 *	kgdb callback.
369 */
370int kgdb_arch_handle_exception(int e_vector, int signo, int err_code,
371			       char *remcomInBuffer, char *remcomOutBuffer,
372			       struct pt_regs *linux_regs)
373{
374	unsigned long addr;
375	unsigned long dr6;
376	char *ptr;
377	int newPC;
378
379	switch (remcomInBuffer[0]) {
380	case 'c':
381	case 's':
382		/* try to read optional parameter, pc unchanged if no parm */
383		ptr = &remcomInBuffer[1];
384		if (kgdb_hex2long(&ptr, &addr))
385			linux_regs->ip = addr;
386	case 'D':
387	case 'k':
388		newPC = linux_regs->ip;
389
390		/* clear the trace bit */
391		linux_regs->flags &= ~X86_EFLAGS_TF;
392		atomic_set(&kgdb_cpu_doing_single_step, -1);
393
394		/* set the trace bit if we're stepping */
395		if (remcomInBuffer[0] == 's') {
396			linux_regs->flags |= X86_EFLAGS_TF;
397			kgdb_single_step = 1;
398			atomic_set(&kgdb_cpu_doing_single_step,
399				   raw_smp_processor_id());
400		}
401
402		get_debugreg(dr6, 6);
403		if (!(dr6 & 0x4000)) {
404			int breakno;
405
406			for (breakno = 0; breakno < 4; breakno++) {
407				if (dr6 & (1 << breakno) &&
408				    breakinfo[breakno].type == 0) {
409					/* Set restore flag: */
410					linux_regs->flags |= X86_EFLAGS_RF;
411					break;
412				}
413			}
414		}
415		set_debugreg(0UL, 6);
416		kgdb_correct_hw_break();
417
418		return 0;
419	}
420
421	/* this means that we do not want to exit from the handler: */
422	return -1;
423}
424
425static inline int
426single_step_cont(struct pt_regs *regs, struct die_args *args)
427{
428	/*
429	 * Single step exception from kernel space to user space so
430	 * eat the exception and continue the process:
431	 */
432	printk(KERN_ERR "KGDB: trap/step from kernel to user space, "
433			"resuming...\n");
434	kgdb_arch_handle_exception(args->trapnr, args->signr,
435				   args->err, "c", "", regs);
436
437	return NOTIFY_STOP;
438}
439
440static int was_in_debug_nmi[NR_CPUS];
441
442static int __kgdb_notify(struct die_args *args, unsigned long cmd)
443{
444	struct pt_regs *regs = args->regs;
445
446	switch (cmd) {
447	case DIE_NMI:
448		if (atomic_read(&kgdb_active) != -1) {
449			/* KGDB CPU roundup */
450			kgdb_nmicallback(raw_smp_processor_id(), regs);
451			was_in_debug_nmi[raw_smp_processor_id()] = 1;
452			touch_nmi_watchdog();
453			return NOTIFY_STOP;
454		}
455		return NOTIFY_DONE;
456
457	case DIE_NMI_IPI:
458		/* Just ignore, we will handle the roundup on DIE_NMI. */
459		return NOTIFY_DONE;
460
461	case DIE_NMIUNKNOWN:
462		if (was_in_debug_nmi[raw_smp_processor_id()]) {
463			was_in_debug_nmi[raw_smp_processor_id()] = 0;
464			return NOTIFY_STOP;
465		}
466		return NOTIFY_DONE;
467
468	case DIE_NMIWATCHDOG:
469		if (atomic_read(&kgdb_active) != -1) {
470			/* KGDB CPU roundup: */
471			kgdb_nmicallback(raw_smp_processor_id(), regs);
472			return NOTIFY_STOP;
473		}
474		/* Enter debugger: */
475		break;
476
477	case DIE_DEBUG:
478		if (atomic_read(&kgdb_cpu_doing_single_step) ==
479		    raw_smp_processor_id()) {
480			if (user_mode(regs))
481				return single_step_cont(regs, args);
482			break;
483		} else if (test_thread_flag(TIF_SINGLESTEP))
484			/* This means a user thread is single stepping
485			 * a system call which should be ignored
486			 */
487			return NOTIFY_DONE;
488		/* fall through */
489	default:
490		if (user_mode(regs))
491			return NOTIFY_DONE;
492	}
493
494	if (kgdb_handle_exception(args->trapnr, args->signr, args->err, regs))
495		return NOTIFY_DONE;
496
497	/* Must touch watchdog before return to normal operation */
498	touch_nmi_watchdog();
499	return NOTIFY_STOP;
500}
501
502static int
503kgdb_notify(struct notifier_block *self, unsigned long cmd, void *ptr)
504{
505	unsigned long flags;
506	int ret;
507
508	local_irq_save(flags);
509	ret = __kgdb_notify(ptr, cmd);
510	local_irq_restore(flags);
511
512	return ret;
513}
514
515static struct notifier_block kgdb_notifier = {
516	.notifier_call	= kgdb_notify,
517
518	/*
519	 * Lowest-prio notifier priority, we want to be notified last:
520	 */
521	.priority	= -INT_MAX,
522};
523
524/**
525 *	kgdb_arch_init - Perform any architecture specific initalization.
526 *
527 *	This function will handle the initalization of any architecture
528 *	specific callbacks.
529 */
530int kgdb_arch_init(void)
531{
532	return register_die_notifier(&kgdb_notifier);
533}
534
535/**
536 *	kgdb_arch_exit - Perform any architecture specific uninitalization.
537 *
538 *	This function will handle the uninitalization of any architecture
539 *	specific callbacks, for dynamic registration and unregistration.
540 */
541void kgdb_arch_exit(void)
542{
543	unregister_die_notifier(&kgdb_notifier);
544}
545
546/**
547 *
548 *	kgdb_skipexception - Bail out of KGDB when we've been triggered.
549 *	@exception: Exception vector number
550 *	@regs: Current &struct pt_regs.
551 *
552 *	On some architectures we need to skip a breakpoint exception when
553 *	it occurs after a breakpoint has been removed.
554 *
555 * Skip an int3 exception when it occurs after a breakpoint has been
556 * removed. Backtrack eip by 1 since the int3 would have caused it to
557 * increment by 1.
558 */
559int kgdb_skipexception(int exception, struct pt_regs *regs)
560{
561	if (exception == 3 && kgdb_isremovedbreak(regs->ip - 1)) {
562		regs->ip -= 1;
563		return 1;
564	}
565	return 0;
566}
567
568unsigned long kgdb_arch_pc(int exception, struct pt_regs *regs)
569{
570	if (exception == 3)
571		return instruction_pointer(regs) - 1;
572	return instruction_pointer(regs);
573}
574
575struct kgdb_arch arch_kgdb_ops = {
576	/* Breakpoint instruction: */
577	.gdb_bpt_instr		= { 0xcc },
578	.flags			= KGDB_HW_BREAKPOINT,
579	.set_hw_breakpoint	= kgdb_set_hw_break,
580	.remove_hw_breakpoint	= kgdb_remove_hw_break,
581	.remove_all_hw_break	= kgdb_remove_all_hw_break,
582	.correct_hw_break	= kgdb_correct_hw_break,
583};
584