kgdb.c revision a5d09d68335bb8422d5e7050c9f03f99ba6cfebd
1/*
2 * This program is free software; you can redistribute it and/or modify it
3 * under the terms of the GNU General Public License as published by the
4 * Free Software Foundation; either version 2, or (at your option) any
5 * later version.
6 *
7 * This program is distributed in the hope that it will be useful, but
8 * WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
10 * General Public License for more details.
11 *
12 */
13
14/*
15 * Copyright (C) 2004 Amit S. Kale <amitkale@linsyssoft.com>
16 * Copyright (C) 2000-2001 VERITAS Software Corporation.
17 * Copyright (C) 2002 Andi Kleen, SuSE Labs
18 * Copyright (C) 2004 LinSysSoft Technologies Pvt. Ltd.
19 * Copyright (C) 2007 MontaVista Software, Inc.
20 * Copyright (C) 2007-2008 Jason Wessel, Wind River Systems, Inc.
21 */
22/****************************************************************************
23 *  Contributor:     Lake Stevens Instrument Division$
24 *  Written by:      Glenn Engel $
25 *  Updated by:	     Amit Kale<akale@veritas.com>
26 *  Updated by:	     Tom Rini <trini@kernel.crashing.org>
27 *  Updated by:	     Jason Wessel <jason.wessel@windriver.com>
28 *  Modified for 386 by Jim Kingdon, Cygnus Support.
29 *  Origianl kgdb, compatibility with 2.1.xx kernel by
30 *  David Grothe <dave@gcom.com>
31 *  Integrated into 2.2.5 kernel by Tigran Aivazian <tigran@sco.com>
32 *  X86_64 changes from Andi Kleen's patch merged by Jim Houston
33 */
34#include <linux/spinlock.h>
35#include <linux/kdebug.h>
36#include <linux/string.h>
37#include <linux/kernel.h>
38#include <linux/ptrace.h>
39#include <linux/sched.h>
40#include <linux/delay.h>
41#include <linux/kgdb.h>
42#include <linux/init.h>
43#include <linux/smp.h>
44#include <linux/nmi.h>
45
46#include <asm/debugreg.h>
47#include <asm/apicdef.h>
48#include <asm/system.h>
49
50#include <asm/apic.h>
51
52/*
53 * Put the error code here just in case the user cares:
54 */
55static int gdb_x86errcode;
56
57/*
58 * Likewise, the vector number here (since GDB only gets the signal
59 * number through the usual means, and that's not very specific):
60 */
61static int gdb_x86vector = -1;
62
63/**
64 *	pt_regs_to_gdb_regs - Convert ptrace regs to GDB regs
65 *	@gdb_regs: A pointer to hold the registers in the order GDB wants.
66 *	@regs: The &struct pt_regs of the current process.
67 *
68 *	Convert the pt_regs in @regs into the format for registers that
69 *	GDB expects, stored in @gdb_regs.
70 */
71void pt_regs_to_gdb_regs(unsigned long *gdb_regs, struct pt_regs *regs)
72{
73#ifndef CONFIG_X86_32
74	u32 *gdb_regs32 = (u32 *)gdb_regs;
75#endif
76	gdb_regs[GDB_AX]	= regs->ax;
77	gdb_regs[GDB_BX]	= regs->bx;
78	gdb_regs[GDB_CX]	= regs->cx;
79	gdb_regs[GDB_DX]	= regs->dx;
80	gdb_regs[GDB_SI]	= regs->si;
81	gdb_regs[GDB_DI]	= regs->di;
82	gdb_regs[GDB_BP]	= regs->bp;
83	gdb_regs[GDB_PC]	= regs->ip;
84#ifdef CONFIG_X86_32
85	gdb_regs[GDB_PS]	= regs->flags;
86	gdb_regs[GDB_DS]	= regs->ds;
87	gdb_regs[GDB_ES]	= regs->es;
88	gdb_regs[GDB_CS]	= regs->cs;
89	gdb_regs[GDB_SS]	= __KERNEL_DS;
90	gdb_regs[GDB_FS]	= 0xFFFF;
91	gdb_regs[GDB_GS]	= 0xFFFF;
92#else
93	gdb_regs[GDB_R8]	= regs->r8;
94	gdb_regs[GDB_R9]	= regs->r9;
95	gdb_regs[GDB_R10]	= regs->r10;
96	gdb_regs[GDB_R11]	= regs->r11;
97	gdb_regs[GDB_R12]	= regs->r12;
98	gdb_regs[GDB_R13]	= regs->r13;
99	gdb_regs[GDB_R14]	= regs->r14;
100	gdb_regs[GDB_R15]	= regs->r15;
101	gdb_regs32[GDB_PS]	= regs->flags;
102	gdb_regs32[GDB_CS]	= regs->cs;
103	gdb_regs32[GDB_SS]	= regs->ss;
104#endif
105	gdb_regs[GDB_SP]	= kernel_stack_pointer(regs);
106}
107
108/**
109 *	sleeping_thread_to_gdb_regs - Convert ptrace regs to GDB regs
110 *	@gdb_regs: A pointer to hold the registers in the order GDB wants.
111 *	@p: The &struct task_struct of the desired process.
112 *
113 *	Convert the register values of the sleeping process in @p to
114 *	the format that GDB expects.
115 *	This function is called when kgdb does not have access to the
116 *	&struct pt_regs and therefore it should fill the gdb registers
117 *	@gdb_regs with what has	been saved in &struct thread_struct
118 *	thread field during switch_to.
119 */
120void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
121{
122#ifndef CONFIG_X86_32
123	u32 *gdb_regs32 = (u32 *)gdb_regs;
124#endif
125	gdb_regs[GDB_AX]	= 0;
126	gdb_regs[GDB_BX]	= 0;
127	gdb_regs[GDB_CX]	= 0;
128	gdb_regs[GDB_DX]	= 0;
129	gdb_regs[GDB_SI]	= 0;
130	gdb_regs[GDB_DI]	= 0;
131	gdb_regs[GDB_BP]	= *(unsigned long *)p->thread.sp;
132#ifdef CONFIG_X86_32
133	gdb_regs[GDB_DS]	= __KERNEL_DS;
134	gdb_regs[GDB_ES]	= __KERNEL_DS;
135	gdb_regs[GDB_PS]	= 0;
136	gdb_regs[GDB_CS]	= __KERNEL_CS;
137	gdb_regs[GDB_PC]	= p->thread.ip;
138	gdb_regs[GDB_SS]	= __KERNEL_DS;
139	gdb_regs[GDB_FS]	= 0xFFFF;
140	gdb_regs[GDB_GS]	= 0xFFFF;
141#else
142	gdb_regs32[GDB_PS]	= *(unsigned long *)(p->thread.sp + 8);
143	gdb_regs32[GDB_CS]	= __KERNEL_CS;
144	gdb_regs32[GDB_SS]	= __KERNEL_DS;
145	gdb_regs[GDB_PC]	= 0;
146	gdb_regs[GDB_R8]	= 0;
147	gdb_regs[GDB_R9]	= 0;
148	gdb_regs[GDB_R10]	= 0;
149	gdb_regs[GDB_R11]	= 0;
150	gdb_regs[GDB_R12]	= 0;
151	gdb_regs[GDB_R13]	= 0;
152	gdb_regs[GDB_R14]	= 0;
153	gdb_regs[GDB_R15]	= 0;
154#endif
155	gdb_regs[GDB_SP]	= p->thread.sp;
156}
157
158/**
159 *	gdb_regs_to_pt_regs - Convert GDB regs to ptrace regs.
160 *	@gdb_regs: A pointer to hold the registers we've received from GDB.
161 *	@regs: A pointer to a &struct pt_regs to hold these values in.
162 *
163 *	Convert the GDB regs in @gdb_regs into the pt_regs, and store them
164 *	in @regs.
165 */
166void gdb_regs_to_pt_regs(unsigned long *gdb_regs, struct pt_regs *regs)
167{
168#ifndef CONFIG_X86_32
169	u32 *gdb_regs32 = (u32 *)gdb_regs;
170#endif
171	regs->ax		= gdb_regs[GDB_AX];
172	regs->bx		= gdb_regs[GDB_BX];
173	regs->cx		= gdb_regs[GDB_CX];
174	regs->dx		= gdb_regs[GDB_DX];
175	regs->si		= gdb_regs[GDB_SI];
176	regs->di		= gdb_regs[GDB_DI];
177	regs->bp		= gdb_regs[GDB_BP];
178	regs->ip		= gdb_regs[GDB_PC];
179#ifdef CONFIG_X86_32
180	regs->flags		= gdb_regs[GDB_PS];
181	regs->ds		= gdb_regs[GDB_DS];
182	regs->es		= gdb_regs[GDB_ES];
183	regs->cs		= gdb_regs[GDB_CS];
184#else
185	regs->r8		= gdb_regs[GDB_R8];
186	regs->r9		= gdb_regs[GDB_R9];
187	regs->r10		= gdb_regs[GDB_R10];
188	regs->r11		= gdb_regs[GDB_R11];
189	regs->r12		= gdb_regs[GDB_R12];
190	regs->r13		= gdb_regs[GDB_R13];
191	regs->r14		= gdb_regs[GDB_R14];
192	regs->r15		= gdb_regs[GDB_R15];
193	regs->flags		= gdb_regs32[GDB_PS];
194	regs->cs		= gdb_regs32[GDB_CS];
195	regs->ss		= gdb_regs32[GDB_SS];
196#endif
197}
198
199static struct hw_breakpoint {
200	unsigned		enabled;
201	unsigned		type;
202	unsigned		len;
203	unsigned long		addr;
204} breakinfo[4];
205
206static void kgdb_correct_hw_break(void)
207{
208	unsigned long dr7;
209	int correctit = 0;
210	int breakbit;
211	int breakno;
212
213	get_debugreg(dr7, 7);
214	for (breakno = 0; breakno < 4; breakno++) {
215		breakbit = 2 << (breakno << 1);
216		if (!(dr7 & breakbit) && breakinfo[breakno].enabled) {
217			correctit = 1;
218			dr7 |= breakbit;
219			dr7 &= ~(0xf0000 << (breakno << 2));
220			dr7 |= ((breakinfo[breakno].len << 2) |
221				 breakinfo[breakno].type) <<
222			       ((breakno << 2) + 16);
223			set_debugreg(breakinfo[breakno].addr, breakno);
224
225		} else {
226			if ((dr7 & breakbit) && !breakinfo[breakno].enabled) {
227				correctit = 1;
228				dr7 &= ~breakbit;
229				dr7 &= ~(0xf0000 << (breakno << 2));
230			}
231		}
232	}
233	if (correctit)
234		set_debugreg(dr7, 7);
235}
236
237static int
238kgdb_remove_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
239{
240	int i;
241
242	for (i = 0; i < 4; i++)
243		if (breakinfo[i].addr == addr && breakinfo[i].enabled)
244			break;
245	if (i == 4)
246		return -1;
247
248	breakinfo[i].enabled = 0;
249
250	return 0;
251}
252
253static void kgdb_remove_all_hw_break(void)
254{
255	int i;
256
257	for (i = 0; i < 4; i++)
258		memset(&breakinfo[i], 0, sizeof(struct hw_breakpoint));
259}
260
261static int
262kgdb_set_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
263{
264	unsigned type;
265	int i;
266
267	for (i = 0; i < 4; i++)
268		if (!breakinfo[i].enabled)
269			break;
270	if (i == 4)
271		return -1;
272
273	switch (bptype) {
274	case BP_HARDWARE_BREAKPOINT:
275		type = 0;
276		len  = 1;
277		break;
278	case BP_WRITE_WATCHPOINT:
279		type = 1;
280		break;
281	case BP_ACCESS_WATCHPOINT:
282		type = 3;
283		break;
284	default:
285		return -1;
286	}
287
288	if (len == 1 || len == 2 || len == 4)
289		breakinfo[i].len  = len - 1;
290	else
291		return -1;
292
293	breakinfo[i].enabled = 1;
294	breakinfo[i].addr = addr;
295	breakinfo[i].type = type;
296
297	return 0;
298}
299
300/**
301 *	kgdb_disable_hw_debug - Disable hardware debugging while we in kgdb.
302 *	@regs: Current &struct pt_regs.
303 *
304 *	This function will be called if the particular architecture must
305 *	disable hardware debugging while it is processing gdb packets or
306 *	handling exception.
307 */
308void kgdb_disable_hw_debug(struct pt_regs *regs)
309{
310	/* Disable hardware debugging while we are in kgdb: */
311	set_debugreg(0UL, 7);
312}
313
314/**
315 *	kgdb_post_primary_code - Save error vector/code numbers.
316 *	@regs: Original pt_regs.
317 *	@e_vector: Original error vector.
318 *	@err_code: Original error code.
319 *
320 *	This is needed on architectures which support SMP and KGDB.
321 *	This function is called after all the slave cpus have been put
322 *	to a know spin state and the primary CPU has control over KGDB.
323 */
324void kgdb_post_primary_code(struct pt_regs *regs, int e_vector, int err_code)
325{
326	/* primary processor is completely in the debugger */
327	gdb_x86vector = e_vector;
328	gdb_x86errcode = err_code;
329}
330
331#ifdef CONFIG_SMP
332/**
333 *	kgdb_roundup_cpus - Get other CPUs into a holding pattern
334 *	@flags: Current IRQ state
335 *
336 *	On SMP systems, we need to get the attention of the other CPUs
337 *	and get them be in a known state.  This should do what is needed
338 *	to get the other CPUs to call kgdb_wait(). Note that on some arches,
339 *	the NMI approach is not used for rounding up all the CPUs. For example,
340 *	in case of MIPS, smp_call_function() is used to roundup CPUs. In
341 *	this case, we have to make sure that interrupts are enabled before
342 *	calling smp_call_function(). The argument to this function is
343 *	the flags that will be used when restoring the interrupts. There is
344 *	local_irq_save() call before kgdb_roundup_cpus().
345 *
346 *	On non-SMP systems, this is not called.
347 */
348void kgdb_roundup_cpus(unsigned long flags)
349{
350	apic->send_IPI_allbutself(APIC_DM_NMI);
351}
352#endif
353
354/**
355 *	kgdb_arch_handle_exception - Handle architecture specific GDB packets.
356 *	@vector: The error vector of the exception that happened.
357 *	@signo: The signal number of the exception that happened.
358 *	@err_code: The error code of the exception that happened.
359 *	@remcom_in_buffer: The buffer of the packet we have read.
360 *	@remcom_out_buffer: The buffer of %BUFMAX bytes to write a packet into.
361 *	@regs: The &struct pt_regs of the current process.
362 *
363 *	This function MUST handle the 'c' and 's' command packets,
364 *	as well packets to set / remove a hardware breakpoint, if used.
365 *	If there are additional packets which the hardware needs to handle,
366 *	they are handled here.  The code should return -1 if it wants to
367 *	process more packets, and a %0 or %1 if it wants to exit from the
368 *	kgdb callback.
369 */
370int kgdb_arch_handle_exception(int e_vector, int signo, int err_code,
371			       char *remcomInBuffer, char *remcomOutBuffer,
372			       struct pt_regs *linux_regs)
373{
374	unsigned long addr;
375	unsigned long dr6;
376	char *ptr;
377	int newPC;
378
379	switch (remcomInBuffer[0]) {
380	case 'c':
381	case 's':
382		/* try to read optional parameter, pc unchanged if no parm */
383		ptr = &remcomInBuffer[1];
384		if (kgdb_hex2long(&ptr, &addr))
385			linux_regs->ip = addr;
386	case 'D':
387	case 'k':
388		newPC = linux_regs->ip;
389
390		/* clear the trace bit */
391		linux_regs->flags &= ~X86_EFLAGS_TF;
392		atomic_set(&kgdb_cpu_doing_single_step, -1);
393
394		/* set the trace bit if we're stepping */
395		if (remcomInBuffer[0] == 's') {
396			linux_regs->flags |= X86_EFLAGS_TF;
397			kgdb_single_step = 1;
398			atomic_set(&kgdb_cpu_doing_single_step,
399				   raw_smp_processor_id());
400		}
401
402		get_debugreg(dr6, 6);
403		if (!(dr6 & 0x4000)) {
404			int breakno;
405
406			for (breakno = 0; breakno < 4; breakno++) {
407				if (dr6 & (1 << breakno) &&
408				    breakinfo[breakno].type == 0) {
409					/* Set restore flag: */
410					linux_regs->flags |= X86_EFLAGS_RF;
411					break;
412				}
413			}
414		}
415		set_debugreg(0UL, 6);
416		kgdb_correct_hw_break();
417
418		return 0;
419	}
420
421	/* this means that we do not want to exit from the handler: */
422	return -1;
423}
424
425static inline int
426single_step_cont(struct pt_regs *regs, struct die_args *args)
427{
428	/*
429	 * Single step exception from kernel space to user space so
430	 * eat the exception and continue the process:
431	 */
432	printk(KERN_ERR "KGDB: trap/step from kernel to user space, "
433			"resuming...\n");
434	kgdb_arch_handle_exception(args->trapnr, args->signr,
435				   args->err, "c", "", regs);
436	/*
437	 * Reset the BS bit in dr6 (pointed by args->err) to
438	 * denote completion of processing
439	 */
440	(*(unsigned long *)ERR_PTR(args->err)) &= ~DR_STEP;
441
442	return NOTIFY_STOP;
443}
444
445static int was_in_debug_nmi[NR_CPUS];
446
447static int __kgdb_notify(struct die_args *args, unsigned long cmd)
448{
449	struct pt_regs *regs = args->regs;
450
451	switch (cmd) {
452	case DIE_NMI:
453		if (atomic_read(&kgdb_active) != -1) {
454			/* KGDB CPU roundup */
455			kgdb_nmicallback(raw_smp_processor_id(), regs);
456			was_in_debug_nmi[raw_smp_processor_id()] = 1;
457			touch_nmi_watchdog();
458			return NOTIFY_STOP;
459		}
460		return NOTIFY_DONE;
461
462	case DIE_NMI_IPI:
463		/* Just ignore, we will handle the roundup on DIE_NMI. */
464		return NOTIFY_DONE;
465
466	case DIE_NMIUNKNOWN:
467		if (was_in_debug_nmi[raw_smp_processor_id()]) {
468			was_in_debug_nmi[raw_smp_processor_id()] = 0;
469			return NOTIFY_STOP;
470		}
471		return NOTIFY_DONE;
472
473	case DIE_NMIWATCHDOG:
474		if (atomic_read(&kgdb_active) != -1) {
475			/* KGDB CPU roundup: */
476			kgdb_nmicallback(raw_smp_processor_id(), regs);
477			return NOTIFY_STOP;
478		}
479		/* Enter debugger: */
480		break;
481
482	case DIE_DEBUG:
483		if (atomic_read(&kgdb_cpu_doing_single_step) ==
484		    raw_smp_processor_id()) {
485			if (user_mode(regs))
486				return single_step_cont(regs, args);
487			break;
488		} else if (test_thread_flag(TIF_SINGLESTEP))
489			/* This means a user thread is single stepping
490			 * a system call which should be ignored
491			 */
492			return NOTIFY_DONE;
493		/* fall through */
494	default:
495		if (user_mode(regs))
496			return NOTIFY_DONE;
497	}
498
499	if (kgdb_handle_exception(args->trapnr, args->signr, args->err, regs))
500		return NOTIFY_DONE;
501
502	/* Must touch watchdog before return to normal operation */
503	touch_nmi_watchdog();
504	return NOTIFY_STOP;
505}
506
507static int
508kgdb_notify(struct notifier_block *self, unsigned long cmd, void *ptr)
509{
510	unsigned long flags;
511	int ret;
512
513	local_irq_save(flags);
514	ret = __kgdb_notify(ptr, cmd);
515	local_irq_restore(flags);
516
517	return ret;
518}
519
520static struct notifier_block kgdb_notifier = {
521	.notifier_call	= kgdb_notify,
522
523	/*
524	 * Lowest-prio notifier priority, we want to be notified last:
525	 */
526	.priority	= -INT_MAX,
527};
528
529/**
530 *	kgdb_arch_init - Perform any architecture specific initalization.
531 *
532 *	This function will handle the initalization of any architecture
533 *	specific callbacks.
534 */
535int kgdb_arch_init(void)
536{
537	return register_die_notifier(&kgdb_notifier);
538}
539
540/**
541 *	kgdb_arch_exit - Perform any architecture specific uninitalization.
542 *
543 *	This function will handle the uninitalization of any architecture
544 *	specific callbacks, for dynamic registration and unregistration.
545 */
546void kgdb_arch_exit(void)
547{
548	unregister_die_notifier(&kgdb_notifier);
549}
550
551/**
552 *
553 *	kgdb_skipexception - Bail out of KGDB when we've been triggered.
554 *	@exception: Exception vector number
555 *	@regs: Current &struct pt_regs.
556 *
557 *	On some architectures we need to skip a breakpoint exception when
558 *	it occurs after a breakpoint has been removed.
559 *
560 * Skip an int3 exception when it occurs after a breakpoint has been
561 * removed. Backtrack eip by 1 since the int3 would have caused it to
562 * increment by 1.
563 */
564int kgdb_skipexception(int exception, struct pt_regs *regs)
565{
566	if (exception == 3 && kgdb_isremovedbreak(regs->ip - 1)) {
567		regs->ip -= 1;
568		return 1;
569	}
570	return 0;
571}
572
573unsigned long kgdb_arch_pc(int exception, struct pt_regs *regs)
574{
575	if (exception == 3)
576		return instruction_pointer(regs) - 1;
577	return instruction_pointer(regs);
578}
579
580struct kgdb_arch arch_kgdb_ops = {
581	/* Breakpoint instruction: */
582	.gdb_bpt_instr		= { 0xcc },
583	.flags			= KGDB_HW_BREAKPOINT,
584	.set_hw_breakpoint	= kgdb_set_hw_break,
585	.remove_hw_breakpoint	= kgdb_remove_hw_break,
586	.remove_all_hw_break	= kgdb_remove_all_hw_break,
587	.correct_hw_break	= kgdb_correct_hw_break,
588};
589