kgdb.c revision cf6f196d112a6f6757b1ca3cce0b576f7abee479
1/*
2 * This program is free software; you can redistribute it and/or modify it
3 * under the terms of the GNU General Public License as published by the
4 * Free Software Foundation; either version 2, or (at your option) any
5 * later version.
6 *
7 * This program is distributed in the hope that it will be useful, but
8 * WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
10 * General Public License for more details.
11 *
12 */
13
14/*
15 * Copyright (C) 2004 Amit S. Kale <amitkale@linsyssoft.com>
16 * Copyright (C) 2000-2001 VERITAS Software Corporation.
17 * Copyright (C) 2002 Andi Kleen, SuSE Labs
18 * Copyright (C) 2004 LinSysSoft Technologies Pvt. Ltd.
19 * Copyright (C) 2007 MontaVista Software, Inc.
20 * Copyright (C) 2007-2008 Jason Wessel, Wind River Systems, Inc.
21 */
22/****************************************************************************
23 *  Contributor:     Lake Stevens Instrument Division$
24 *  Written by:      Glenn Engel $
25 *  Updated by:	     Amit Kale<akale@veritas.com>
26 *  Updated by:	     Tom Rini <trini@kernel.crashing.org>
27 *  Updated by:	     Jason Wessel <jason.wessel@windriver.com>
28 *  Modified for 386 by Jim Kingdon, Cygnus Support.
29 *  Origianl kgdb, compatibility with 2.1.xx kernel by
30 *  David Grothe <dave@gcom.com>
31 *  Integrated into 2.2.5 kernel by Tigran Aivazian <tigran@sco.com>
32 *  X86_64 changes from Andi Kleen's patch merged by Jim Houston
33 */
34#include <linux/spinlock.h>
35#include <linux/kdebug.h>
36#include <linux/string.h>
37#include <linux/kernel.h>
38#include <linux/ptrace.h>
39#include <linux/sched.h>
40#include <linux/delay.h>
41#include <linux/kgdb.h>
42#include <linux/init.h>
43#include <linux/smp.h>
44#include <linux/nmi.h>
45
46#include <asm/debugreg.h>
47#include <asm/apicdef.h>
48#include <asm/system.h>
49
50#include <asm/apic.h>
51
52/*
53 * Put the error code here just in case the user cares:
54 */
55static int gdb_x86errcode;
56
57/*
58 * Likewise, the vector number here (since GDB only gets the signal
59 * number through the usual means, and that's not very specific):
60 */
61static int gdb_x86vector = -1;
62
63/**
64 *	pt_regs_to_gdb_regs - Convert ptrace regs to GDB regs
65 *	@gdb_regs: A pointer to hold the registers in the order GDB wants.
66 *	@regs: The &struct pt_regs of the current process.
67 *
68 *	Convert the pt_regs in @regs into the format for registers that
69 *	GDB expects, stored in @gdb_regs.
70 */
71void pt_regs_to_gdb_regs(unsigned long *gdb_regs, struct pt_regs *regs)
72{
73#ifndef CONFIG_X86_32
74	u32 *gdb_regs32 = (u32 *)gdb_regs;
75#endif
76	gdb_regs[GDB_AX]	= regs->ax;
77	gdb_regs[GDB_BX]	= regs->bx;
78	gdb_regs[GDB_CX]	= regs->cx;
79	gdb_regs[GDB_DX]	= regs->dx;
80	gdb_regs[GDB_SI]	= regs->si;
81	gdb_regs[GDB_DI]	= regs->di;
82	gdb_regs[GDB_BP]	= regs->bp;
83	gdb_regs[GDB_PC]	= regs->ip;
84#ifdef CONFIG_X86_32
85	gdb_regs[GDB_PS]	= regs->flags;
86	gdb_regs[GDB_DS]	= regs->ds;
87	gdb_regs[GDB_ES]	= regs->es;
88	gdb_regs[GDB_CS]	= regs->cs;
89	gdb_regs[GDB_FS]	= 0xFFFF;
90	gdb_regs[GDB_GS]	= 0xFFFF;
91	if (user_mode_vm(regs)) {
92		gdb_regs[GDB_SS] = regs->ss;
93		gdb_regs[GDB_SP] = regs->sp;
94	} else {
95		gdb_regs[GDB_SS] = __KERNEL_DS;
96		gdb_regs[GDB_SP] = kernel_stack_pointer(regs);
97	}
98#else
99	gdb_regs[GDB_R8]	= regs->r8;
100	gdb_regs[GDB_R9]	= regs->r9;
101	gdb_regs[GDB_R10]	= regs->r10;
102	gdb_regs[GDB_R11]	= regs->r11;
103	gdb_regs[GDB_R12]	= regs->r12;
104	gdb_regs[GDB_R13]	= regs->r13;
105	gdb_regs[GDB_R14]	= regs->r14;
106	gdb_regs[GDB_R15]	= regs->r15;
107	gdb_regs32[GDB_PS]	= regs->flags;
108	gdb_regs32[GDB_CS]	= regs->cs;
109	gdb_regs32[GDB_SS]	= regs->ss;
110	gdb_regs[GDB_SP]	= kernel_stack_pointer(regs);
111#endif
112}
113
114/**
115 *	sleeping_thread_to_gdb_regs - Convert ptrace regs to GDB regs
116 *	@gdb_regs: A pointer to hold the registers in the order GDB wants.
117 *	@p: The &struct task_struct of the desired process.
118 *
119 *	Convert the register values of the sleeping process in @p to
120 *	the format that GDB expects.
121 *	This function is called when kgdb does not have access to the
122 *	&struct pt_regs and therefore it should fill the gdb registers
123 *	@gdb_regs with what has	been saved in &struct thread_struct
124 *	thread field during switch_to.
125 */
126void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
127{
128#ifndef CONFIG_X86_32
129	u32 *gdb_regs32 = (u32 *)gdb_regs;
130#endif
131	gdb_regs[GDB_AX]	= 0;
132	gdb_regs[GDB_BX]	= 0;
133	gdb_regs[GDB_CX]	= 0;
134	gdb_regs[GDB_DX]	= 0;
135	gdb_regs[GDB_SI]	= 0;
136	gdb_regs[GDB_DI]	= 0;
137	gdb_regs[GDB_BP]	= *(unsigned long *)p->thread.sp;
138#ifdef CONFIG_X86_32
139	gdb_regs[GDB_DS]	= __KERNEL_DS;
140	gdb_regs[GDB_ES]	= __KERNEL_DS;
141	gdb_regs[GDB_PS]	= 0;
142	gdb_regs[GDB_CS]	= __KERNEL_CS;
143	gdb_regs[GDB_PC]	= p->thread.ip;
144	gdb_regs[GDB_SS]	= __KERNEL_DS;
145	gdb_regs[GDB_FS]	= 0xFFFF;
146	gdb_regs[GDB_GS]	= 0xFFFF;
147#else
148	gdb_regs32[GDB_PS]	= *(unsigned long *)(p->thread.sp + 8);
149	gdb_regs32[GDB_CS]	= __KERNEL_CS;
150	gdb_regs32[GDB_SS]	= __KERNEL_DS;
151	gdb_regs[GDB_PC]	= 0;
152	gdb_regs[GDB_R8]	= 0;
153	gdb_regs[GDB_R9]	= 0;
154	gdb_regs[GDB_R10]	= 0;
155	gdb_regs[GDB_R11]	= 0;
156	gdb_regs[GDB_R12]	= 0;
157	gdb_regs[GDB_R13]	= 0;
158	gdb_regs[GDB_R14]	= 0;
159	gdb_regs[GDB_R15]	= 0;
160#endif
161	gdb_regs[GDB_SP]	= p->thread.sp;
162}
163
164/**
165 *	gdb_regs_to_pt_regs - Convert GDB regs to ptrace regs.
166 *	@gdb_regs: A pointer to hold the registers we've received from GDB.
167 *	@regs: A pointer to a &struct pt_regs to hold these values in.
168 *
169 *	Convert the GDB regs in @gdb_regs into the pt_regs, and store them
170 *	in @regs.
171 */
172void gdb_regs_to_pt_regs(unsigned long *gdb_regs, struct pt_regs *regs)
173{
174#ifndef CONFIG_X86_32
175	u32 *gdb_regs32 = (u32 *)gdb_regs;
176#endif
177	regs->ax		= gdb_regs[GDB_AX];
178	regs->bx		= gdb_regs[GDB_BX];
179	regs->cx		= gdb_regs[GDB_CX];
180	regs->dx		= gdb_regs[GDB_DX];
181	regs->si		= gdb_regs[GDB_SI];
182	regs->di		= gdb_regs[GDB_DI];
183	regs->bp		= gdb_regs[GDB_BP];
184	regs->ip		= gdb_regs[GDB_PC];
185#ifdef CONFIG_X86_32
186	regs->flags		= gdb_regs[GDB_PS];
187	regs->ds		= gdb_regs[GDB_DS];
188	regs->es		= gdb_regs[GDB_ES];
189	regs->cs		= gdb_regs[GDB_CS];
190#else
191	regs->r8		= gdb_regs[GDB_R8];
192	regs->r9		= gdb_regs[GDB_R9];
193	regs->r10		= gdb_regs[GDB_R10];
194	regs->r11		= gdb_regs[GDB_R11];
195	regs->r12		= gdb_regs[GDB_R12];
196	regs->r13		= gdb_regs[GDB_R13];
197	regs->r14		= gdb_regs[GDB_R14];
198	regs->r15		= gdb_regs[GDB_R15];
199	regs->flags		= gdb_regs32[GDB_PS];
200	regs->cs		= gdb_regs32[GDB_CS];
201	regs->ss		= gdb_regs32[GDB_SS];
202#endif
203}
204
205static struct hw_breakpoint {
206	unsigned		enabled;
207	unsigned		type;
208	unsigned		len;
209	unsigned long		addr;
210} breakinfo[4];
211
212static void kgdb_correct_hw_break(void)
213{
214	unsigned long dr7;
215	int correctit = 0;
216	int breakbit;
217	int breakno;
218
219	get_debugreg(dr7, 7);
220	for (breakno = 0; breakno < 4; breakno++) {
221		breakbit = 2 << (breakno << 1);
222		if (!(dr7 & breakbit) && breakinfo[breakno].enabled) {
223			correctit = 1;
224			dr7 |= breakbit;
225			dr7 &= ~(0xf0000 << (breakno << 2));
226			dr7 |= ((breakinfo[breakno].len << 2) |
227				 breakinfo[breakno].type) <<
228			       ((breakno << 2) + 16);
229			set_debugreg(breakinfo[breakno].addr, breakno);
230
231		} else {
232			if ((dr7 & breakbit) && !breakinfo[breakno].enabled) {
233				correctit = 1;
234				dr7 &= ~breakbit;
235				dr7 &= ~(0xf0000 << (breakno << 2));
236			}
237		}
238	}
239	if (correctit)
240		set_debugreg(dr7, 7);
241}
242
243static int
244kgdb_remove_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
245{
246	int i;
247
248	for (i = 0; i < 4; i++)
249		if (breakinfo[i].addr == addr && breakinfo[i].enabled)
250			break;
251	if (i == 4)
252		return -1;
253
254	breakinfo[i].enabled = 0;
255
256	return 0;
257}
258
259static void kgdb_remove_all_hw_break(void)
260{
261	int i;
262
263	for (i = 0; i < 4; i++)
264		memset(&breakinfo[i], 0, sizeof(struct hw_breakpoint));
265}
266
267static int
268kgdb_set_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
269{
270	unsigned type;
271	int i;
272
273	for (i = 0; i < 4; i++)
274		if (!breakinfo[i].enabled)
275			break;
276	if (i == 4)
277		return -1;
278
279	switch (bptype) {
280	case BP_HARDWARE_BREAKPOINT:
281		type = 0;
282		len  = 1;
283		break;
284	case BP_WRITE_WATCHPOINT:
285		type = 1;
286		break;
287	case BP_ACCESS_WATCHPOINT:
288		type = 3;
289		break;
290	default:
291		return -1;
292	}
293
294	if (len == 1 || len == 2 || len == 4)
295		breakinfo[i].len  = len - 1;
296	else
297		return -1;
298
299	breakinfo[i].enabled = 1;
300	breakinfo[i].addr = addr;
301	breakinfo[i].type = type;
302
303	return 0;
304}
305
306/**
307 *	kgdb_disable_hw_debug - Disable hardware debugging while we in kgdb.
308 *	@regs: Current &struct pt_regs.
309 *
310 *	This function will be called if the particular architecture must
311 *	disable hardware debugging while it is processing gdb packets or
312 *	handling exception.
313 */
314void kgdb_disable_hw_debug(struct pt_regs *regs)
315{
316	/* Disable hardware debugging while we are in kgdb: */
317	set_debugreg(0UL, 7);
318}
319
320/**
321 *	kgdb_post_primary_code - Save error vector/code numbers.
322 *	@regs: Original pt_regs.
323 *	@e_vector: Original error vector.
324 *	@err_code: Original error code.
325 *
326 *	This is needed on architectures which support SMP and KGDB.
327 *	This function is called after all the slave cpus have been put
328 *	to a know spin state and the primary CPU has control over KGDB.
329 */
330void kgdb_post_primary_code(struct pt_regs *regs, int e_vector, int err_code)
331{
332	/* primary processor is completely in the debugger */
333	gdb_x86vector = e_vector;
334	gdb_x86errcode = err_code;
335}
336
337#ifdef CONFIG_SMP
338/**
339 *	kgdb_roundup_cpus - Get other CPUs into a holding pattern
340 *	@flags: Current IRQ state
341 *
342 *	On SMP systems, we need to get the attention of the other CPUs
343 *	and get them be in a known state.  This should do what is needed
344 *	to get the other CPUs to call kgdb_wait(). Note that on some arches,
345 *	the NMI approach is not used for rounding up all the CPUs. For example,
346 *	in case of MIPS, smp_call_function() is used to roundup CPUs. In
347 *	this case, we have to make sure that interrupts are enabled before
348 *	calling smp_call_function(). The argument to this function is
349 *	the flags that will be used when restoring the interrupts. There is
350 *	local_irq_save() call before kgdb_roundup_cpus().
351 *
352 *	On non-SMP systems, this is not called.
353 */
354void kgdb_roundup_cpus(unsigned long flags)
355{
356	apic->send_IPI_allbutself(APIC_DM_NMI);
357}
358#endif
359
360/**
361 *	kgdb_arch_handle_exception - Handle architecture specific GDB packets.
362 *	@vector: The error vector of the exception that happened.
363 *	@signo: The signal number of the exception that happened.
364 *	@err_code: The error code of the exception that happened.
365 *	@remcom_in_buffer: The buffer of the packet we have read.
366 *	@remcom_out_buffer: The buffer of %BUFMAX bytes to write a packet into.
367 *	@regs: The &struct pt_regs of the current process.
368 *
369 *	This function MUST handle the 'c' and 's' command packets,
370 *	as well packets to set / remove a hardware breakpoint, if used.
371 *	If there are additional packets which the hardware needs to handle,
372 *	they are handled here.  The code should return -1 if it wants to
373 *	process more packets, and a %0 or %1 if it wants to exit from the
374 *	kgdb callback.
375 */
376int kgdb_arch_handle_exception(int e_vector, int signo, int err_code,
377			       char *remcomInBuffer, char *remcomOutBuffer,
378			       struct pt_regs *linux_regs)
379{
380	unsigned long addr;
381	unsigned long dr6;
382	char *ptr;
383	int newPC;
384
385	switch (remcomInBuffer[0]) {
386	case 'c':
387	case 's':
388		/* try to read optional parameter, pc unchanged if no parm */
389		ptr = &remcomInBuffer[1];
390		if (kgdb_hex2long(&ptr, &addr))
391			linux_regs->ip = addr;
392	case 'D':
393	case 'k':
394		newPC = linux_regs->ip;
395
396		/* clear the trace bit */
397		linux_regs->flags &= ~X86_EFLAGS_TF;
398		atomic_set(&kgdb_cpu_doing_single_step, -1);
399
400		/* set the trace bit if we're stepping */
401		if (remcomInBuffer[0] == 's') {
402			linux_regs->flags |= X86_EFLAGS_TF;
403			kgdb_single_step = 1;
404			atomic_set(&kgdb_cpu_doing_single_step,
405				   raw_smp_processor_id());
406		}
407
408		get_debugreg(dr6, 6);
409		if (!(dr6 & 0x4000)) {
410			int breakno;
411
412			for (breakno = 0; breakno < 4; breakno++) {
413				if (dr6 & (1 << breakno) &&
414				    breakinfo[breakno].type == 0) {
415					/* Set restore flag: */
416					linux_regs->flags |= X86_EFLAGS_RF;
417					break;
418				}
419			}
420		}
421		set_debugreg(0UL, 6);
422		kgdb_correct_hw_break();
423
424		return 0;
425	}
426
427	/* this means that we do not want to exit from the handler: */
428	return -1;
429}
430
431static inline int
432single_step_cont(struct pt_regs *regs, struct die_args *args)
433{
434	/*
435	 * Single step exception from kernel space to user space so
436	 * eat the exception and continue the process:
437	 */
438	printk(KERN_ERR "KGDB: trap/step from kernel to user space, "
439			"resuming...\n");
440	kgdb_arch_handle_exception(args->trapnr, args->signr,
441				   args->err, "c", "", regs);
442	/*
443	 * Reset the BS bit in dr6 (pointed by args->err) to
444	 * denote completion of processing
445	 */
446	(*(unsigned long *)ERR_PTR(args->err)) &= ~DR_STEP;
447
448	return NOTIFY_STOP;
449}
450
451static int was_in_debug_nmi[NR_CPUS];
452
453static int __kgdb_notify(struct die_args *args, unsigned long cmd)
454{
455	struct pt_regs *regs = args->regs;
456
457	switch (cmd) {
458	case DIE_NMI:
459		if (atomic_read(&kgdb_active) != -1) {
460			/* KGDB CPU roundup */
461			kgdb_nmicallback(raw_smp_processor_id(), regs);
462			was_in_debug_nmi[raw_smp_processor_id()] = 1;
463			touch_nmi_watchdog();
464			return NOTIFY_STOP;
465		}
466		return NOTIFY_DONE;
467
468	case DIE_NMI_IPI:
469		/* Just ignore, we will handle the roundup on DIE_NMI. */
470		return NOTIFY_DONE;
471
472	case DIE_NMIUNKNOWN:
473		if (was_in_debug_nmi[raw_smp_processor_id()]) {
474			was_in_debug_nmi[raw_smp_processor_id()] = 0;
475			return NOTIFY_STOP;
476		}
477		return NOTIFY_DONE;
478
479	case DIE_NMIWATCHDOG:
480		if (atomic_read(&kgdb_active) != -1) {
481			/* KGDB CPU roundup: */
482			kgdb_nmicallback(raw_smp_processor_id(), regs);
483			return NOTIFY_STOP;
484		}
485		/* Enter debugger: */
486		break;
487
488	case DIE_DEBUG:
489		if (atomic_read(&kgdb_cpu_doing_single_step) ==
490		    raw_smp_processor_id()) {
491			if (user_mode(regs))
492				return single_step_cont(regs, args);
493			break;
494		} else if (test_thread_flag(TIF_SINGLESTEP))
495			/* This means a user thread is single stepping
496			 * a system call which should be ignored
497			 */
498			return NOTIFY_DONE;
499		/* fall through */
500	default:
501		if (user_mode(regs))
502			return NOTIFY_DONE;
503	}
504
505	if (kgdb_handle_exception(args->trapnr, args->signr, args->err, regs))
506		return NOTIFY_DONE;
507
508	/* Must touch watchdog before return to normal operation */
509	touch_nmi_watchdog();
510	return NOTIFY_STOP;
511}
512
513static int
514kgdb_notify(struct notifier_block *self, unsigned long cmd, void *ptr)
515{
516	unsigned long flags;
517	int ret;
518
519	local_irq_save(flags);
520	ret = __kgdb_notify(ptr, cmd);
521	local_irq_restore(flags);
522
523	return ret;
524}
525
526static struct notifier_block kgdb_notifier = {
527	.notifier_call	= kgdb_notify,
528
529	/*
530	 * Lowest-prio notifier priority, we want to be notified last:
531	 */
532	.priority	= -INT_MAX,
533};
534
535/**
536 *	kgdb_arch_init - Perform any architecture specific initalization.
537 *
538 *	This function will handle the initalization of any architecture
539 *	specific callbacks.
540 */
541int kgdb_arch_init(void)
542{
543	return register_die_notifier(&kgdb_notifier);
544}
545
546/**
547 *	kgdb_arch_exit - Perform any architecture specific uninitalization.
548 *
549 *	This function will handle the uninitalization of any architecture
550 *	specific callbacks, for dynamic registration and unregistration.
551 */
552void kgdb_arch_exit(void)
553{
554	unregister_die_notifier(&kgdb_notifier);
555}
556
557/**
558 *
559 *	kgdb_skipexception - Bail out of KGDB when we've been triggered.
560 *	@exception: Exception vector number
561 *	@regs: Current &struct pt_regs.
562 *
563 *	On some architectures we need to skip a breakpoint exception when
564 *	it occurs after a breakpoint has been removed.
565 *
566 * Skip an int3 exception when it occurs after a breakpoint has been
567 * removed. Backtrack eip by 1 since the int3 would have caused it to
568 * increment by 1.
569 */
570int kgdb_skipexception(int exception, struct pt_regs *regs)
571{
572	if (exception == 3 && kgdb_isremovedbreak(regs->ip - 1)) {
573		regs->ip -= 1;
574		return 1;
575	}
576	return 0;
577}
578
579unsigned long kgdb_arch_pc(int exception, struct pt_regs *regs)
580{
581	if (exception == 3)
582		return instruction_pointer(regs) - 1;
583	return instruction_pointer(regs);
584}
585
586struct kgdb_arch arch_kgdb_ops = {
587	/* Breakpoint instruction: */
588	.gdb_bpt_instr		= { 0xcc },
589	.flags			= KGDB_HW_BREAKPOINT,
590	.set_hw_breakpoint	= kgdb_set_hw_break,
591	.remove_hw_breakpoint	= kgdb_remove_hw_break,
592	.remove_all_hw_break	= kgdb_remove_all_hw_break,
593	.correct_hw_break	= kgdb_correct_hw_break,
594};
595