process_32.c revision 5c79d2a517a9905599d192db8ce77ab5f1a2faca
1/*
2 *  Copyright (C) 1995  Linus Torvalds
3 *
4 *  Pentium III FXSR, SSE support
5 *	Gareth Hughes <gareth@valinux.com>, May 2000
6 */
7
8/*
9 * This file handles the architecture-dependent parts of process handling..
10 */
11
12#include <stdarg.h>
13
14#include <linux/stackprotector.h>
15#include <linux/cpu.h>
16#include <linux/errno.h>
17#include <linux/sched.h>
18#include <linux/fs.h>
19#include <linux/kernel.h>
20#include <linux/mm.h>
21#include <linux/elfcore.h>
22#include <linux/smp.h>
23#include <linux/stddef.h>
24#include <linux/slab.h>
25#include <linux/vmalloc.h>
26#include <linux/user.h>
27#include <linux/interrupt.h>
28#include <linux/utsname.h>
29#include <linux/delay.h>
30#include <linux/reboot.h>
31#include <linux/init.h>
32#include <linux/mc146818rtc.h>
33#include <linux/module.h>
34#include <linux/kallsyms.h>
35#include <linux/ptrace.h>
36#include <linux/random.h>
37#include <linux/personality.h>
38#include <linux/tick.h>
39#include <linux/percpu.h>
40#include <linux/prctl.h>
41#include <linux/dmi.h>
42#include <linux/ftrace.h>
43#include <linux/uaccess.h>
44#include <linux/io.h>
45#include <linux/kdebug.h>
46
47#include <asm/pgtable.h>
48#include <asm/system.h>
49#include <asm/ldt.h>
50#include <asm/processor.h>
51#include <asm/i387.h>
52#include <asm/desc.h>
53#ifdef CONFIG_MATH_EMULATION
54#include <asm/math_emu.h>
55#endif
56
57#include <linux/err.h>
58
59#include <asm/tlbflush.h>
60#include <asm/cpu.h>
61#include <asm/idle.h>
62#include <asm/syscalls.h>
63#include <asm/ds.h>
64
65asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
66
67DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
68EXPORT_PER_CPU_SYMBOL(current_task);
69
70/*
71 * Return saved PC of a blocked thread.
72 */
73unsigned long thread_saved_pc(struct task_struct *tsk)
74{
75	return ((unsigned long *)tsk->thread.sp)[3];
76}
77
78#ifndef CONFIG_SMP
79static inline void play_dead(void)
80{
81	BUG();
82}
83#endif
84
85/*
86 * The idle thread. There's no useful work to be
87 * done, so just try to conserve power and have a
88 * low exit latency (ie sit in a loop waiting for
89 * somebody to say that they'd like to reschedule)
90 */
91void cpu_idle(void)
92{
93	int cpu = smp_processor_id();
94
95	/*
96	 * If we're the non-boot CPU, nothing set the stack canary up
97	 * for us.  CPU0 already has it initialized but no harm in
98	 * doing it again.  This is a good place for updating it, as
99	 * we wont ever return from this function (so the invalid
100	 * canaries already on the stack wont ever trigger).
101	 */
102	boot_init_stack_canary();
103
104	current_thread_info()->status |= TS_POLLING;
105
106	/* endless idle loop with no priority at all */
107	while (1) {
108		tick_nohz_stop_sched_tick(1);
109		while (!need_resched()) {
110
111			check_pgt_cache();
112			rmb();
113
114			if (rcu_pending(cpu))
115				rcu_check_callbacks(cpu, 0);
116
117			if (cpu_is_offline(cpu))
118				play_dead();
119
120			local_irq_disable();
121			/* Don't trace irqs off for idle */
122			stop_critical_timings();
123			pm_idle();
124			start_critical_timings();
125		}
126		tick_nohz_restart_sched_tick();
127		preempt_enable_no_resched();
128		schedule();
129		preempt_disable();
130	}
131}
132
133void __show_regs(struct pt_regs *regs, int all)
134{
135	unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
136	unsigned long d0, d1, d2, d3, d6, d7;
137	unsigned long sp;
138	unsigned short ss, gs;
139	const char *board;
140
141	if (user_mode_vm(regs)) {
142		sp = regs->sp;
143		ss = regs->ss & 0xffff;
144		gs = get_user_gs(regs);
145	} else {
146		sp = (unsigned long) (&regs->sp);
147		savesegment(ss, ss);
148		savesegment(gs, gs);
149	}
150
151	printk("\n");
152
153	board = dmi_get_system_info(DMI_PRODUCT_NAME);
154	if (!board)
155		board = "";
156	printk("Pid: %d, comm: %s %s (%s %.*s) %s\n",
157			task_pid_nr(current), current->comm,
158			print_tainted(), init_utsname()->release,
159			(int)strcspn(init_utsname()->version, " "),
160			init_utsname()->version, board);
161
162	printk("EIP: %04x:[<%08lx>] EFLAGS: %08lx CPU: %d\n",
163			(u16)regs->cs, regs->ip, regs->flags,
164			smp_processor_id());
165	print_symbol("EIP is at %s\n", regs->ip);
166
167	printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
168		regs->ax, regs->bx, regs->cx, regs->dx);
169	printk("ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
170		regs->si, regs->di, regs->bp, sp);
171	printk(" DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n",
172	       (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss);
173
174	if (!all)
175		return;
176
177	cr0 = read_cr0();
178	cr2 = read_cr2();
179	cr3 = read_cr3();
180	cr4 = read_cr4_safe();
181	printk("CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
182			cr0, cr2, cr3, cr4);
183
184	get_debugreg(d0, 0);
185	get_debugreg(d1, 1);
186	get_debugreg(d2, 2);
187	get_debugreg(d3, 3);
188	printk("DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
189			d0, d1, d2, d3);
190
191	get_debugreg(d6, 6);
192	get_debugreg(d7, 7);
193	printk("DR6: %08lx DR7: %08lx\n",
194			d6, d7);
195}
196
197void show_regs(struct pt_regs *regs)
198{
199	__show_regs(regs, 1);
200	show_trace(NULL, regs, &regs->sp, regs->bp);
201}
202
203/*
204 * This gets run with %bx containing the
205 * function to call, and %dx containing
206 * the "args".
207 */
208extern void kernel_thread_helper(void);
209
210/*
211 * Create a kernel thread
212 */
213int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
214{
215	struct pt_regs regs;
216
217	memset(&regs, 0, sizeof(regs));
218
219	regs.bx = (unsigned long) fn;
220	regs.dx = (unsigned long) arg;
221
222	regs.ds = __USER_DS;
223	regs.es = __USER_DS;
224	regs.fs = __KERNEL_PERCPU;
225	regs.gs = __KERNEL_STACK_CANARY;
226	regs.orig_ax = -1;
227	regs.ip = (unsigned long) kernel_thread_helper;
228	regs.cs = __KERNEL_CS | get_kernel_rpl();
229	regs.flags = X86_EFLAGS_IF | X86_EFLAGS_SF | X86_EFLAGS_PF | 0x2;
230
231	/* Ok, create the new process.. */
232	return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
233}
234EXPORT_SYMBOL(kernel_thread);
235
236/*
237 * Free current thread data structures etc..
238 */
239void exit_thread(void)
240{
241	/* The process may have allocated an io port bitmap... nuke it. */
242	if (unlikely(test_thread_flag(TIF_IO_BITMAP))) {
243		struct task_struct *tsk = current;
244		struct thread_struct *t = &tsk->thread;
245		int cpu = get_cpu();
246		struct tss_struct *tss = &per_cpu(init_tss, cpu);
247
248		kfree(t->io_bitmap_ptr);
249		t->io_bitmap_ptr = NULL;
250		clear_thread_flag(TIF_IO_BITMAP);
251		/*
252		 * Careful, clear this in the TSS too:
253		 */
254		memset(tss->io_bitmap, 0xff, tss->io_bitmap_max);
255		t->io_bitmap_max = 0;
256		tss->io_bitmap_owner = NULL;
257		tss->io_bitmap_max = 0;
258		tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
259		put_cpu();
260	}
261
262	ds_exit_thread(current);
263}
264
265void flush_thread(void)
266{
267	struct task_struct *tsk = current;
268
269	tsk->thread.debugreg0 = 0;
270	tsk->thread.debugreg1 = 0;
271	tsk->thread.debugreg2 = 0;
272	tsk->thread.debugreg3 = 0;
273	tsk->thread.debugreg6 = 0;
274	tsk->thread.debugreg7 = 0;
275	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
276	clear_tsk_thread_flag(tsk, TIF_DEBUG);
277	/*
278	 * Forget coprocessor state..
279	 */
280	tsk->fpu_counter = 0;
281	clear_fpu(tsk);
282	clear_used_math();
283}
284
285void release_thread(struct task_struct *dead_task)
286{
287	BUG_ON(dead_task->mm);
288	release_vm86_irqs(dead_task);
289}
290
291/*
292 * This gets called before we allocate a new thread and copy
293 * the current task into it.
294 */
295void prepare_to_copy(struct task_struct *tsk)
296{
297	unlazy_fpu(tsk);
298}
299
300int copy_thread(int nr, unsigned long clone_flags, unsigned long sp,
301	unsigned long unused,
302	struct task_struct *p, struct pt_regs *regs)
303{
304	struct pt_regs *childregs;
305	struct task_struct *tsk;
306	int err;
307
308	childregs = task_pt_regs(p);
309	*childregs = *regs;
310	childregs->ax = 0;
311	childregs->sp = sp;
312
313	p->thread.sp = (unsigned long) childregs;
314	p->thread.sp0 = (unsigned long) (childregs+1);
315
316	p->thread.ip = (unsigned long) ret_from_fork;
317
318	task_user_gs(p) = get_user_gs(regs);
319
320	tsk = current;
321	if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
322		p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
323						IO_BITMAP_BYTES, GFP_KERNEL);
324		if (!p->thread.io_bitmap_ptr) {
325			p->thread.io_bitmap_max = 0;
326			return -ENOMEM;
327		}
328		set_tsk_thread_flag(p, TIF_IO_BITMAP);
329	}
330
331	err = 0;
332
333	/*
334	 * Set a new TLS for the child thread?
335	 */
336	if (clone_flags & CLONE_SETTLS)
337		err = do_set_thread_area(p, -1,
338			(struct user_desc __user *)childregs->si, 0);
339
340	if (err && p->thread.io_bitmap_ptr) {
341		kfree(p->thread.io_bitmap_ptr);
342		p->thread.io_bitmap_max = 0;
343	}
344
345	ds_copy_thread(p, current);
346
347	clear_tsk_thread_flag(p, TIF_DEBUGCTLMSR);
348	p->thread.debugctlmsr = 0;
349
350	return err;
351}
352
353void
354start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
355{
356	set_user_gs(regs, 0);
357	regs->fs		= 0;
358	set_fs(USER_DS);
359	regs->ds		= __USER_DS;
360	regs->es		= __USER_DS;
361	regs->ss		= __USER_DS;
362	regs->cs		= __USER_CS;
363	regs->ip		= new_ip;
364	regs->sp		= new_sp;
365	/*
366	 * Free the old FP and other extended state
367	 */
368	free_thread_xstate(current);
369}
370EXPORT_SYMBOL_GPL(start_thread);
371
372static void hard_disable_TSC(void)
373{
374	write_cr4(read_cr4() | X86_CR4_TSD);
375}
376
377void disable_TSC(void)
378{
379	preempt_disable();
380	if (!test_and_set_thread_flag(TIF_NOTSC))
381		/*
382		 * Must flip the CPU state synchronously with
383		 * TIF_NOTSC in the current running context.
384		 */
385		hard_disable_TSC();
386	preempt_enable();
387}
388
389static void hard_enable_TSC(void)
390{
391	write_cr4(read_cr4() & ~X86_CR4_TSD);
392}
393
394static void enable_TSC(void)
395{
396	preempt_disable();
397	if (test_and_clear_thread_flag(TIF_NOTSC))
398		/*
399		 * Must flip the CPU state synchronously with
400		 * TIF_NOTSC in the current running context.
401		 */
402		hard_enable_TSC();
403	preempt_enable();
404}
405
406int get_tsc_mode(unsigned long adr)
407{
408	unsigned int val;
409
410	if (test_thread_flag(TIF_NOTSC))
411		val = PR_TSC_SIGSEGV;
412	else
413		val = PR_TSC_ENABLE;
414
415	return put_user(val, (unsigned int __user *)adr);
416}
417
418int set_tsc_mode(unsigned int val)
419{
420	if (val == PR_TSC_SIGSEGV)
421		disable_TSC();
422	else if (val == PR_TSC_ENABLE)
423		enable_TSC();
424	else
425		return -EINVAL;
426
427	return 0;
428}
429
430static noinline void
431__switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
432		 struct tss_struct *tss)
433{
434	struct thread_struct *prev, *next;
435
436	prev = &prev_p->thread;
437	next = &next_p->thread;
438
439	if (test_tsk_thread_flag(next_p, TIF_DS_AREA_MSR) ||
440	    test_tsk_thread_flag(prev_p, TIF_DS_AREA_MSR))
441		ds_switch_to(prev_p, next_p);
442	else if (next->debugctlmsr != prev->debugctlmsr)
443		update_debugctlmsr(next->debugctlmsr);
444
445	if (test_tsk_thread_flag(next_p, TIF_DEBUG)) {
446		set_debugreg(next->debugreg0, 0);
447		set_debugreg(next->debugreg1, 1);
448		set_debugreg(next->debugreg2, 2);
449		set_debugreg(next->debugreg3, 3);
450		/* no 4 and 5 */
451		set_debugreg(next->debugreg6, 6);
452		set_debugreg(next->debugreg7, 7);
453	}
454
455	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
456	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
457		/* prev and next are different */
458		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
459			hard_disable_TSC();
460		else
461			hard_enable_TSC();
462	}
463
464	if (!test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
465		/*
466		 * Disable the bitmap via an invalid offset. We still cache
467		 * the previous bitmap owner and the IO bitmap contents:
468		 */
469		tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
470		return;
471	}
472
473	if (likely(next == tss->io_bitmap_owner)) {
474		/*
475		 * Previous owner of the bitmap (hence the bitmap content)
476		 * matches the next task, we dont have to do anything but
477		 * to set a valid offset in the TSS:
478		 */
479		tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
480		return;
481	}
482	/*
483	 * Lazy TSS's I/O bitmap copy. We set an invalid offset here
484	 * and we let the task to get a GPF in case an I/O instruction
485	 * is performed.  The handler of the GPF will verify that the
486	 * faulting task has a valid I/O bitmap and, it true, does the
487	 * real copy and restart the instruction.  This will save us
488	 * redundant copies when the currently switched task does not
489	 * perform any I/O during its timeslice.
490	 */
491	tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET_LAZY;
492}
493
494/*
495 *	switch_to(x,yn) should switch tasks from x to y.
496 *
497 * We fsave/fwait so that an exception goes off at the right time
498 * (as a call from the fsave or fwait in effect) rather than to
499 * the wrong process. Lazy FP saving no longer makes any sense
500 * with modern CPU's, and this simplifies a lot of things (SMP
501 * and UP become the same).
502 *
503 * NOTE! We used to use the x86 hardware context switching. The
504 * reason for not using it any more becomes apparent when you
505 * try to recover gracefully from saved state that is no longer
506 * valid (stale segment register values in particular). With the
507 * hardware task-switch, there is no way to fix up bad state in
508 * a reasonable manner.
509 *
510 * The fact that Intel documents the hardware task-switching to
511 * be slow is a fairly red herring - this code is not noticeably
512 * faster. However, there _is_ some room for improvement here,
513 * so the performance issues may eventually be a valid point.
514 * More important, however, is the fact that this allows us much
515 * more flexibility.
516 *
517 * The return value (in %ax) will be the "prev" task after
518 * the task-switch, and shows up in ret_from_fork in entry.S,
519 * for example.
520 */
521__notrace_funcgraph struct task_struct *
522__switch_to(struct task_struct *prev_p, struct task_struct *next_p)
523{
524	struct thread_struct *prev = &prev_p->thread,
525				 *next = &next_p->thread;
526	int cpu = smp_processor_id();
527	struct tss_struct *tss = &per_cpu(init_tss, cpu);
528
529	/* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
530
531	__unlazy_fpu(prev_p);
532
533
534	/* we're going to use this soon, after a few expensive things */
535	if (next_p->fpu_counter > 5)
536		prefetch(next->xstate);
537
538	/*
539	 * Reload esp0.
540	 */
541	load_sp0(tss, next);
542
543	/*
544	 * Save away %gs. No need to save %fs, as it was saved on the
545	 * stack on entry.  No need to save %es and %ds, as those are
546	 * always kernel segments while inside the kernel.  Doing this
547	 * before setting the new TLS descriptors avoids the situation
548	 * where we temporarily have non-reloadable segments in %fs
549	 * and %gs.  This could be an issue if the NMI handler ever
550	 * used %fs or %gs (it does not today), or if the kernel is
551	 * running inside of a hypervisor layer.
552	 */
553	lazy_save_gs(prev->gs);
554
555	/*
556	 * Load the per-thread Thread-Local Storage descriptor.
557	 */
558	load_TLS(next, cpu);
559
560	/*
561	 * Restore IOPL if needed.  In normal use, the flags restore
562	 * in the switch assembly will handle this.  But if the kernel
563	 * is running virtualized at a non-zero CPL, the popf will
564	 * not restore flags, so it must be done in a separate step.
565	 */
566	if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
567		set_iopl_mask(next->iopl);
568
569	/*
570	 * Now maybe handle debug registers and/or IO bitmaps
571	 */
572	if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV ||
573		     task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
574		__switch_to_xtra(prev_p, next_p, tss);
575
576	/*
577	 * Leave lazy mode, flushing any hypercalls made here.
578	 * This must be done before restoring TLS segments so
579	 * the GDT and LDT are properly updated, and must be
580	 * done before math_state_restore, so the TS bit is up
581	 * to date.
582	 */
583	arch_leave_lazy_cpu_mode();
584
585	/* If the task has used fpu the last 5 timeslices, just do a full
586	 * restore of the math state immediately to avoid the trap; the
587	 * chances of needing FPU soon are obviously high now
588	 *
589	 * tsk_used_math() checks prevent calling math_state_restore(),
590	 * which can sleep in the case of !tsk_used_math()
591	 */
592	if (tsk_used_math(next_p) && next_p->fpu_counter > 5)
593		math_state_restore();
594
595	/*
596	 * Restore %gs if needed (which is common)
597	 */
598	if (prev->gs | next->gs)
599		lazy_load_gs(next->gs);
600
601	percpu_write(current_task, next_p);
602
603	return prev_p;
604}
605
606asmlinkage int sys_fork(struct pt_regs regs)
607{
608	return do_fork(SIGCHLD, regs.sp, &regs, 0, NULL, NULL);
609}
610
611asmlinkage int sys_clone(struct pt_regs regs)
612{
613	unsigned long clone_flags;
614	unsigned long newsp;
615	int __user *parent_tidptr, *child_tidptr;
616
617	clone_flags = regs.bx;
618	newsp = regs.cx;
619	parent_tidptr = (int __user *)regs.dx;
620	child_tidptr = (int __user *)regs.di;
621	if (!newsp)
622		newsp = regs.sp;
623	return do_fork(clone_flags, newsp, &regs, 0, parent_tidptr, child_tidptr);
624}
625
626/*
627 * This is trivial, and on the face of it looks like it
628 * could equally well be done in user mode.
629 *
630 * Not so, for quite unobvious reasons - register pressure.
631 * In user mode vfork() cannot have a stack frame, and if
632 * done by calling the "clone()" system call directly, you
633 * do not have enough call-clobbered registers to hold all
634 * the information you need.
635 */
636asmlinkage int sys_vfork(struct pt_regs regs)
637{
638	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.sp, &regs, 0, NULL, NULL);
639}
640
641/*
642 * sys_execve() executes a new program.
643 */
644asmlinkage int sys_execve(struct pt_regs regs)
645{
646	int error;
647	char *filename;
648
649	filename = getname((char __user *) regs.bx);
650	error = PTR_ERR(filename);
651	if (IS_ERR(filename))
652		goto out;
653	error = do_execve(filename,
654			(char __user * __user *) regs.cx,
655			(char __user * __user *) regs.dx,
656			&regs);
657	if (error == 0) {
658		/* Make sure we don't return using sysenter.. */
659		set_thread_flag(TIF_IRET);
660	}
661	putname(filename);
662out:
663	return error;
664}
665
666#define top_esp                (THREAD_SIZE - sizeof(unsigned long))
667#define top_ebp                (THREAD_SIZE - 2*sizeof(unsigned long))
668
669unsigned long get_wchan(struct task_struct *p)
670{
671	unsigned long bp, sp, ip;
672	unsigned long stack_page;
673	int count = 0;
674	if (!p || p == current || p->state == TASK_RUNNING)
675		return 0;
676	stack_page = (unsigned long)task_stack_page(p);
677	sp = p->thread.sp;
678	if (!stack_page || sp < stack_page || sp > top_esp+stack_page)
679		return 0;
680	/* include/asm-i386/system.h:switch_to() pushes bp last. */
681	bp = *(unsigned long *) sp;
682	do {
683		if (bp < stack_page || bp > top_ebp+stack_page)
684			return 0;
685		ip = *(unsigned long *) (bp+4);
686		if (!in_sched_functions(ip))
687			return ip;
688		bp = *(unsigned long *) bp;
689	} while (count++ < 16);
690	return 0;
691}
692
693unsigned long arch_align_stack(unsigned long sp)
694{
695	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
696		sp -= get_random_int() % 8192;
697	return sp & ~0xf;
698}
699
700unsigned long arch_randomize_brk(struct mm_struct *mm)
701{
702	unsigned long range_end = mm->brk + 0x02000000;
703	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
704}
705