process_32.c revision 92bc2056855b3250bf6fd5849f05f88d85839efa
1/*
2 *  Copyright (C) 1995  Linus Torvalds
3 *
4 *  Pentium III FXSR, SSE support
5 *	Gareth Hughes <gareth@valinux.com>, May 2000
6 */
7
8/*
9 * This file handles the architecture-dependent parts of process handling..
10 */
11
12#include <stdarg.h>
13
14#include <linux/cpu.h>
15#include <linux/errno.h>
16#include <linux/sched.h>
17#include <linux/fs.h>
18#include <linux/kernel.h>
19#include <linux/mm.h>
20#include <linux/elfcore.h>
21#include <linux/smp.h>
22#include <linux/stddef.h>
23#include <linux/slab.h>
24#include <linux/vmalloc.h>
25#include <linux/user.h>
26#include <linux/interrupt.h>
27#include <linux/utsname.h>
28#include <linux/delay.h>
29#include <linux/reboot.h>
30#include <linux/init.h>
31#include <linux/mc146818rtc.h>
32#include <linux/module.h>
33#include <linux/kallsyms.h>
34#include <linux/ptrace.h>
35#include <linux/random.h>
36#include <linux/personality.h>
37#include <linux/tick.h>
38#include <linux/percpu.h>
39
40#include <asm/uaccess.h>
41#include <asm/pgtable.h>
42#include <asm/system.h>
43#include <asm/io.h>
44#include <asm/ldt.h>
45#include <asm/processor.h>
46#include <asm/i387.h>
47#include <asm/desc.h>
48#include <asm/vm86.h>
49#ifdef CONFIG_MATH_EMULATION
50#include <asm/math_emu.h>
51#endif
52
53#include <linux/err.h>
54
55#include <asm/tlbflush.h>
56#include <asm/cpu.h>
57#include <asm/kdebug.h>
58
59asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
60
61static int hlt_counter;
62
63unsigned long boot_option_idle_override = 0;
64EXPORT_SYMBOL(boot_option_idle_override);
65
66DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
67EXPORT_PER_CPU_SYMBOL(current_task);
68
69DEFINE_PER_CPU(int, cpu_number);
70EXPORT_PER_CPU_SYMBOL(cpu_number);
71
72/*
73 * Return saved PC of a blocked thread.
74 */
75unsigned long thread_saved_pc(struct task_struct *tsk)
76{
77	return ((unsigned long *)tsk->thread.sp)[3];
78}
79
80/*
81 * Powermanagement idle function, if any..
82 */
83void (*pm_idle)(void);
84EXPORT_SYMBOL(pm_idle);
85
86void disable_hlt(void)
87{
88	hlt_counter++;
89}
90
91EXPORT_SYMBOL(disable_hlt);
92
93void enable_hlt(void)
94{
95	hlt_counter--;
96}
97
98EXPORT_SYMBOL(enable_hlt);
99
100/*
101 * We use this if we don't have any better
102 * idle routine..
103 */
104void default_idle(void)
105{
106	if (!hlt_counter && boot_cpu_data.hlt_works_ok) {
107		current_thread_info()->status &= ~TS_POLLING;
108		/*
109		 * TS_POLLING-cleared state must be visible before we
110		 * test NEED_RESCHED:
111		 */
112		smp_mb();
113
114		local_irq_disable();
115		if (!need_resched()) {
116			ktime_t t0, t1;
117			u64 t0n, t1n;
118
119			t0 = ktime_get();
120			t0n = ktime_to_ns(t0);
121			safe_halt();	/* enables interrupts racelessly */
122			local_irq_disable();
123			t1 = ktime_get();
124			t1n = ktime_to_ns(t1);
125			sched_clock_idle_wakeup_event(t1n - t0n);
126		}
127		local_irq_enable();
128		current_thread_info()->status |= TS_POLLING;
129	} else {
130		/* loop is done by the caller */
131		cpu_relax();
132	}
133}
134#ifdef CONFIG_APM_MODULE
135EXPORT_SYMBOL(default_idle);
136#endif
137
138/*
139 * On SMP it's slightly faster (but much more power-consuming!)
140 * to poll the ->work.need_resched flag instead of waiting for the
141 * cross-CPU IPI to arrive. Use this option with caution.
142 */
143static void poll_idle(void)
144{
145	cpu_relax();
146}
147
148#ifdef CONFIG_HOTPLUG_CPU
149#include <asm/nmi.h>
150/* We don't actually take CPU down, just spin without interrupts. */
151static inline void play_dead(void)
152{
153	/* This must be done before dead CPU ack */
154	cpu_exit_clear();
155	wbinvd();
156	mb();
157	/* Ack it */
158	__get_cpu_var(cpu_state) = CPU_DEAD;
159
160	/*
161	 * With physical CPU hotplug, we should halt the cpu
162	 */
163	local_irq_disable();
164	while (1)
165		halt();
166}
167#else
168static inline void play_dead(void)
169{
170	BUG();
171}
172#endif /* CONFIG_HOTPLUG_CPU */
173
174/*
175 * The idle thread. There's no useful work to be
176 * done, so just try to conserve power and have a
177 * low exit latency (ie sit in a loop waiting for
178 * somebody to say that they'd like to reschedule)
179 */
180void cpu_idle(void)
181{
182	int cpu = smp_processor_id();
183
184	current_thread_info()->status |= TS_POLLING;
185
186	/* endless idle loop with no priority at all */
187	while (1) {
188		tick_nohz_stop_sched_tick();
189		while (!need_resched()) {
190			void (*idle)(void);
191
192			check_pgt_cache();
193			rmb();
194			idle = pm_idle;
195
196			if (rcu_pending(cpu))
197				rcu_check_callbacks(cpu, 0);
198
199			if (!idle)
200				idle = default_idle;
201
202			if (cpu_is_offline(cpu))
203				play_dead();
204
205			__get_cpu_var(irq_stat).idle_timestamp = jiffies;
206			idle();
207		}
208		tick_nohz_restart_sched_tick();
209		preempt_enable_no_resched();
210		schedule();
211		preempt_disable();
212	}
213}
214
215static void do_nothing(void *unused)
216{
217}
218
219/*
220 * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
221 * pm_idle and update to new pm_idle value. Required while changing pm_idle
222 * handler on SMP systems.
223 *
224 * Caller must have changed pm_idle to the new value before the call. Old
225 * pm_idle value will not be used by any CPU after the return of this function.
226 */
227void cpu_idle_wait(void)
228{
229	smp_mb();
230	/* kick all the CPUs so that they exit out of pm_idle */
231	smp_call_function(do_nothing, NULL, 0, 1);
232}
233EXPORT_SYMBOL_GPL(cpu_idle_wait);
234
235/*
236 * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
237 * which can obviate IPI to trigger checking of need_resched.
238 * We execute MONITOR against need_resched and enter optimized wait state
239 * through MWAIT. Whenever someone changes need_resched, we would be woken
240 * up from MWAIT (without an IPI).
241 *
242 * New with Core Duo processors, MWAIT can take some hints based on CPU
243 * capability.
244 */
245void mwait_idle_with_hints(unsigned long ax, unsigned long cx)
246{
247	if (!need_resched()) {
248		__monitor((void *)&current_thread_info()->flags, 0, 0);
249		smp_mb();
250		if (!need_resched())
251			__mwait(ax, cx);
252	}
253}
254
255/* Default MONITOR/MWAIT with no hints, used for default C1 state */
256static void mwait_idle(void)
257{
258	local_irq_enable();
259	mwait_idle_with_hints(0, 0);
260}
261
262static int __cpuinit mwait_usable(const struct cpuinfo_x86 *c)
263{
264	if (force_mwait)
265		return 1;
266	/* Any C1 states supported? */
267	return c->cpuid_level >= 5 && ((cpuid_edx(5) >> 4) & 0xf) > 0;
268}
269
270void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
271{
272	static int selected;
273
274	if (selected)
275		return;
276#ifdef CONFIG_X86_SMP
277	if (pm_idle == poll_idle && smp_num_siblings > 1) {
278		printk(KERN_WARNING "WARNING: polling idle and HT enabled,"
279			" performance may degrade.\n");
280	}
281#endif
282	if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
283		/*
284		 * Skip, if setup has overridden idle.
285		 * One CPU supports mwait => All CPUs supports mwait
286		 */
287		if (!pm_idle) {
288			printk(KERN_INFO "using mwait in idle threads.\n");
289			pm_idle = mwait_idle;
290		}
291	}
292	selected = 1;
293}
294
295static int __init idle_setup(char *str)
296{
297	if (!strcmp(str, "poll")) {
298		printk("using polling idle threads.\n");
299		pm_idle = poll_idle;
300	} else if (!strcmp(str, "mwait"))
301		force_mwait = 1;
302	else
303		return -1;
304
305	boot_option_idle_override = 1;
306	return 0;
307}
308early_param("idle", idle_setup);
309
310void __show_registers(struct pt_regs *regs, int all)
311{
312	unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
313	unsigned long d0, d1, d2, d3, d6, d7;
314	unsigned long sp;
315	unsigned short ss, gs;
316
317	if (user_mode_vm(regs)) {
318		sp = regs->sp;
319		ss = regs->ss & 0xffff;
320		savesegment(gs, gs);
321	} else {
322		sp = (unsigned long) (&regs->sp);
323		savesegment(ss, ss);
324		savesegment(gs, gs);
325	}
326
327	printk("\n");
328	printk("Pid: %d, comm: %s %s (%s %.*s)\n",
329			task_pid_nr(current), current->comm,
330			print_tainted(), init_utsname()->release,
331			(int)strcspn(init_utsname()->version, " "),
332			init_utsname()->version);
333
334	printk("EIP: %04x:[<%08lx>] EFLAGS: %08lx CPU: %d\n",
335			(u16)regs->cs, regs->ip, regs->flags,
336			smp_processor_id());
337	print_symbol("EIP is at %s\n", regs->ip);
338
339	printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
340		regs->ax, regs->bx, regs->cx, regs->dx);
341	printk("ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
342		regs->si, regs->di, regs->bp, sp);
343	printk(" DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n",
344	       (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss);
345
346	if (!all)
347		return;
348
349	cr0 = read_cr0();
350	cr2 = read_cr2();
351	cr3 = read_cr3();
352	cr4 = read_cr4_safe();
353	printk("CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
354			cr0, cr2, cr3, cr4);
355
356	get_debugreg(d0, 0);
357	get_debugreg(d1, 1);
358	get_debugreg(d2, 2);
359	get_debugreg(d3, 3);
360	printk("DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
361			d0, d1, d2, d3);
362
363	get_debugreg(d6, 6);
364	get_debugreg(d7, 7);
365	printk("DR6: %08lx DR7: %08lx\n",
366			d6, d7);
367}
368
369void show_regs(struct pt_regs *regs)
370{
371	__show_registers(regs, 1);
372	show_trace(NULL, regs, &regs->sp, regs->bp);
373}
374
375/*
376 * This gets run with %bx containing the
377 * function to call, and %dx containing
378 * the "args".
379 */
380extern void kernel_thread_helper(void);
381
382/*
383 * Create a kernel thread
384 */
385int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
386{
387	struct pt_regs regs;
388
389	memset(&regs, 0, sizeof(regs));
390
391	regs.bx = (unsigned long) fn;
392	regs.dx = (unsigned long) arg;
393
394	regs.ds = __USER_DS;
395	regs.es = __USER_DS;
396	regs.fs = __KERNEL_PERCPU;
397	regs.orig_ax = -1;
398	regs.ip = (unsigned long) kernel_thread_helper;
399	regs.cs = __KERNEL_CS | get_kernel_rpl();
400	regs.flags = X86_EFLAGS_IF | X86_EFLAGS_SF | X86_EFLAGS_PF | 0x2;
401
402	/* Ok, create the new process.. */
403	return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
404}
405EXPORT_SYMBOL(kernel_thread);
406
407/*
408 * Free current thread data structures etc..
409 */
410void exit_thread(void)
411{
412	/* The process may have allocated an io port bitmap... nuke it. */
413	if (unlikely(test_thread_flag(TIF_IO_BITMAP))) {
414		struct task_struct *tsk = current;
415		struct thread_struct *t = &tsk->thread;
416		int cpu = get_cpu();
417		struct tss_struct *tss = &per_cpu(init_tss, cpu);
418
419		kfree(t->io_bitmap_ptr);
420		t->io_bitmap_ptr = NULL;
421		clear_thread_flag(TIF_IO_BITMAP);
422		/*
423		 * Careful, clear this in the TSS too:
424		 */
425		memset(tss->io_bitmap, 0xff, tss->io_bitmap_max);
426		t->io_bitmap_max = 0;
427		tss->io_bitmap_owner = NULL;
428		tss->io_bitmap_max = 0;
429		tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
430		put_cpu();
431	}
432}
433
434void flush_thread(void)
435{
436	struct task_struct *tsk = current;
437
438	tsk->thread.debugreg0 = 0;
439	tsk->thread.debugreg1 = 0;
440	tsk->thread.debugreg2 = 0;
441	tsk->thread.debugreg3 = 0;
442	tsk->thread.debugreg6 = 0;
443	tsk->thread.debugreg7 = 0;
444	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
445	clear_tsk_thread_flag(tsk, TIF_DEBUG);
446	/*
447	 * Forget coprocessor state..
448	 */
449	clear_fpu(tsk);
450	clear_used_math();
451}
452
453void release_thread(struct task_struct *dead_task)
454{
455	BUG_ON(dead_task->mm);
456	release_vm86_irqs(dead_task);
457}
458
459/*
460 * This gets called before we allocate a new thread and copy
461 * the current task into it.
462 */
463void prepare_to_copy(struct task_struct *tsk)
464{
465	unlazy_fpu(tsk);
466}
467
468int copy_thread(int nr, unsigned long clone_flags, unsigned long sp,
469	unsigned long unused,
470	struct task_struct * p, struct pt_regs * regs)
471{
472	struct pt_regs * childregs;
473	struct task_struct *tsk;
474	int err;
475
476	childregs = task_pt_regs(p);
477	*childregs = *regs;
478	childregs->ax = 0;
479	childregs->sp = sp;
480
481	p->thread.sp = (unsigned long) childregs;
482	p->thread.sp0 = (unsigned long) (childregs+1);
483
484	p->thread.ip = (unsigned long) ret_from_fork;
485
486	savesegment(gs, p->thread.gs);
487
488	tsk = current;
489	if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
490		p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
491						IO_BITMAP_BYTES, GFP_KERNEL);
492		if (!p->thread.io_bitmap_ptr) {
493			p->thread.io_bitmap_max = 0;
494			return -ENOMEM;
495		}
496		set_tsk_thread_flag(p, TIF_IO_BITMAP);
497	}
498
499	err = 0;
500
501	/*
502	 * Set a new TLS for the child thread?
503	 */
504	if (clone_flags & CLONE_SETTLS)
505		err = do_set_thread_area(p, -1,
506			(struct user_desc __user *)childregs->si, 0);
507
508	if (err && p->thread.io_bitmap_ptr) {
509		kfree(p->thread.io_bitmap_ptr);
510		p->thread.io_bitmap_max = 0;
511	}
512	return err;
513}
514
515#ifdef CONFIG_SECCOMP
516static void hard_disable_TSC(void)
517{
518	write_cr4(read_cr4() | X86_CR4_TSD);
519}
520void disable_TSC(void)
521{
522	preempt_disable();
523	if (!test_and_set_thread_flag(TIF_NOTSC))
524		/*
525		 * Must flip the CPU state synchronously with
526		 * TIF_NOTSC in the current running context.
527		 */
528		hard_disable_TSC();
529	preempt_enable();
530}
531static void hard_enable_TSC(void)
532{
533	write_cr4(read_cr4() & ~X86_CR4_TSD);
534}
535#endif /* CONFIG_SECCOMP */
536
537static noinline void
538__switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
539		 struct tss_struct *tss)
540{
541	struct thread_struct *prev, *next;
542	unsigned long debugctl;
543
544	prev = &prev_p->thread;
545	next = &next_p->thread;
546
547	debugctl = prev->debugctlmsr;
548	if (next->ds_area_msr != prev->ds_area_msr) {
549		/* we clear debugctl to make sure DS
550		 * is not in use when we change it */
551		debugctl = 0;
552		wrmsrl(MSR_IA32_DEBUGCTLMSR, 0);
553		wrmsr(MSR_IA32_DS_AREA, next->ds_area_msr, 0);
554	}
555
556	if (next->debugctlmsr != debugctl)
557		wrmsr(MSR_IA32_DEBUGCTLMSR, next->debugctlmsr, 0);
558
559	if (test_tsk_thread_flag(next_p, TIF_DEBUG)) {
560		set_debugreg(next->debugreg0, 0);
561		set_debugreg(next->debugreg1, 1);
562		set_debugreg(next->debugreg2, 2);
563		set_debugreg(next->debugreg3, 3);
564		/* no 4 and 5 */
565		set_debugreg(next->debugreg6, 6);
566		set_debugreg(next->debugreg7, 7);
567	}
568
569#ifdef CONFIG_SECCOMP
570	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
571	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
572		/* prev and next are different */
573		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
574			hard_disable_TSC();
575		else
576			hard_enable_TSC();
577	}
578#endif
579
580#ifdef X86_BTS
581	if (test_tsk_thread_flag(prev_p, TIF_BTS_TRACE_TS))
582		ptrace_bts_take_timestamp(prev_p, BTS_TASK_DEPARTS);
583
584	if (test_tsk_thread_flag(next_p, TIF_BTS_TRACE_TS))
585		ptrace_bts_take_timestamp(next_p, BTS_TASK_ARRIVES);
586#endif
587
588
589	if (!test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
590		/*
591		 * Disable the bitmap via an invalid offset. We still cache
592		 * the previous bitmap owner and the IO bitmap contents:
593		 */
594		tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
595		return;
596	}
597
598	if (likely(next == tss->io_bitmap_owner)) {
599		/*
600		 * Previous owner of the bitmap (hence the bitmap content)
601		 * matches the next task, we dont have to do anything but
602		 * to set a valid offset in the TSS:
603		 */
604		tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
605		return;
606	}
607	/*
608	 * Lazy TSS's I/O bitmap copy. We set an invalid offset here
609	 * and we let the task to get a GPF in case an I/O instruction
610	 * is performed.  The handler of the GPF will verify that the
611	 * faulting task has a valid I/O bitmap and, it true, does the
612	 * real copy and restart the instruction.  This will save us
613	 * redundant copies when the currently switched task does not
614	 * perform any I/O during its timeslice.
615	 */
616	tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET_LAZY;
617}
618
619/*
620 *	switch_to(x,yn) should switch tasks from x to y.
621 *
622 * We fsave/fwait so that an exception goes off at the right time
623 * (as a call from the fsave or fwait in effect) rather than to
624 * the wrong process. Lazy FP saving no longer makes any sense
625 * with modern CPU's, and this simplifies a lot of things (SMP
626 * and UP become the same).
627 *
628 * NOTE! We used to use the x86 hardware context switching. The
629 * reason for not using it any more becomes apparent when you
630 * try to recover gracefully from saved state that is no longer
631 * valid (stale segment register values in particular). With the
632 * hardware task-switch, there is no way to fix up bad state in
633 * a reasonable manner.
634 *
635 * The fact that Intel documents the hardware task-switching to
636 * be slow is a fairly red herring - this code is not noticeably
637 * faster. However, there _is_ some room for improvement here,
638 * so the performance issues may eventually be a valid point.
639 * More important, however, is the fact that this allows us much
640 * more flexibility.
641 *
642 * The return value (in %ax) will be the "prev" task after
643 * the task-switch, and shows up in ret_from_fork in entry.S,
644 * for example.
645 */
646struct task_struct * __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
647{
648	struct thread_struct *prev = &prev_p->thread,
649				 *next = &next_p->thread;
650	int cpu = smp_processor_id();
651	struct tss_struct *tss = &per_cpu(init_tss, cpu);
652
653	/* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
654
655	__unlazy_fpu(prev_p);
656
657
658	/* we're going to use this soon, after a few expensive things */
659	if (next_p->fpu_counter > 5)
660		prefetch(&next->i387.fxsave);
661
662	/*
663	 * Reload esp0.
664	 */
665	load_sp0(tss, next);
666
667	/*
668	 * Save away %gs. No need to save %fs, as it was saved on the
669	 * stack on entry.  No need to save %es and %ds, as those are
670	 * always kernel segments while inside the kernel.  Doing this
671	 * before setting the new TLS descriptors avoids the situation
672	 * where we temporarily have non-reloadable segments in %fs
673	 * and %gs.  This could be an issue if the NMI handler ever
674	 * used %fs or %gs (it does not today), or if the kernel is
675	 * running inside of a hypervisor layer.
676	 */
677	savesegment(gs, prev->gs);
678
679	/*
680	 * Load the per-thread Thread-Local Storage descriptor.
681	 */
682	load_TLS(next, cpu);
683
684	/*
685	 * Restore IOPL if needed.  In normal use, the flags restore
686	 * in the switch assembly will handle this.  But if the kernel
687	 * is running virtualized at a non-zero CPL, the popf will
688	 * not restore flags, so it must be done in a separate step.
689	 */
690	if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
691		set_iopl_mask(next->iopl);
692
693	/*
694	 * Now maybe handle debug registers and/or IO bitmaps
695	 */
696	if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV ||
697		     task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
698		__switch_to_xtra(prev_p, next_p, tss);
699
700	/*
701	 * Leave lazy mode, flushing any hypercalls made here.
702	 * This must be done before restoring TLS segments so
703	 * the GDT and LDT are properly updated, and must be
704	 * done before math_state_restore, so the TS bit is up
705	 * to date.
706	 */
707	arch_leave_lazy_cpu_mode();
708
709	/* If the task has used fpu the last 5 timeslices, just do a full
710	 * restore of the math state immediately to avoid the trap; the
711	 * chances of needing FPU soon are obviously high now
712	 */
713	if (next_p->fpu_counter > 5)
714		math_state_restore();
715
716	/*
717	 * Restore %gs if needed (which is common)
718	 */
719	if (prev->gs | next->gs)
720		loadsegment(gs, next->gs);
721
722	x86_write_percpu(current_task, next_p);
723
724	return prev_p;
725}
726
727asmlinkage int sys_fork(struct pt_regs regs)
728{
729	return do_fork(SIGCHLD, regs.sp, &regs, 0, NULL, NULL);
730}
731
732asmlinkage int sys_clone(struct pt_regs regs)
733{
734	unsigned long clone_flags;
735	unsigned long newsp;
736	int __user *parent_tidptr, *child_tidptr;
737
738	clone_flags = regs.bx;
739	newsp = regs.cx;
740	parent_tidptr = (int __user *)regs.dx;
741	child_tidptr = (int __user *)regs.di;
742	if (!newsp)
743		newsp = regs.sp;
744	return do_fork(clone_flags, newsp, &regs, 0, parent_tidptr, child_tidptr);
745}
746
747/*
748 * This is trivial, and on the face of it looks like it
749 * could equally well be done in user mode.
750 *
751 * Not so, for quite unobvious reasons - register pressure.
752 * In user mode vfork() cannot have a stack frame, and if
753 * done by calling the "clone()" system call directly, you
754 * do not have enough call-clobbered registers to hold all
755 * the information you need.
756 */
757asmlinkage int sys_vfork(struct pt_regs regs)
758{
759	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.sp, &regs, 0, NULL, NULL);
760}
761
762/*
763 * sys_execve() executes a new program.
764 */
765asmlinkage int sys_execve(struct pt_regs regs)
766{
767	int error;
768	char * filename;
769
770	filename = getname((char __user *) regs.bx);
771	error = PTR_ERR(filename);
772	if (IS_ERR(filename))
773		goto out;
774	error = do_execve(filename,
775			(char __user * __user *) regs.cx,
776			(char __user * __user *) regs.dx,
777			&regs);
778	if (error == 0) {
779		/* Make sure we don't return using sysenter.. */
780		set_thread_flag(TIF_IRET);
781	}
782	putname(filename);
783out:
784	return error;
785}
786
787#define top_esp                (THREAD_SIZE - sizeof(unsigned long))
788#define top_ebp                (THREAD_SIZE - 2*sizeof(unsigned long))
789
790unsigned long get_wchan(struct task_struct *p)
791{
792	unsigned long bp, sp, ip;
793	unsigned long stack_page;
794	int count = 0;
795	if (!p || p == current || p->state == TASK_RUNNING)
796		return 0;
797	stack_page = (unsigned long)task_stack_page(p);
798	sp = p->thread.sp;
799	if (!stack_page || sp < stack_page || sp > top_esp+stack_page)
800		return 0;
801	/* include/asm-i386/system.h:switch_to() pushes bp last. */
802	bp = *(unsigned long *) sp;
803	do {
804		if (bp < stack_page || bp > top_ebp+stack_page)
805			return 0;
806		ip = *(unsigned long *) (bp+4);
807		if (!in_sched_functions(ip))
808			return ip;
809		bp = *(unsigned long *) bp;
810	} while (count++ < 16);
811	return 0;
812}
813
814unsigned long arch_align_stack(unsigned long sp)
815{
816	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
817		sp -= get_random_int() % 8192;
818	return sp & ~0xf;
819}
820
821unsigned long arch_randomize_brk(struct mm_struct *mm)
822{
823	unsigned long range_end = mm->brk + 0x02000000;
824	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
825}
826