process_32.c revision a4928cffe6435caf427ae673131a633c1329dbf3
1/*
2 *  Copyright (C) 1995  Linus Torvalds
3 *
4 *  Pentium III FXSR, SSE support
5 *	Gareth Hughes <gareth@valinux.com>, May 2000
6 */
7
8/*
9 * This file handles the architecture-dependent parts of process handling..
10 */
11
12#include <stdarg.h>
13
14#include <linux/cpu.h>
15#include <linux/errno.h>
16#include <linux/sched.h>
17#include <linux/fs.h>
18#include <linux/kernel.h>
19#include <linux/mm.h>
20#include <linux/elfcore.h>
21#include <linux/smp.h>
22#include <linux/stddef.h>
23#include <linux/slab.h>
24#include <linux/vmalloc.h>
25#include <linux/user.h>
26#include <linux/interrupt.h>
27#include <linux/utsname.h>
28#include <linux/delay.h>
29#include <linux/reboot.h>
30#include <linux/init.h>
31#include <linux/mc146818rtc.h>
32#include <linux/module.h>
33#include <linux/kallsyms.h>
34#include <linux/ptrace.h>
35#include <linux/random.h>
36#include <linux/personality.h>
37#include <linux/tick.h>
38#include <linux/percpu.h>
39#include <linux/prctl.h>
40
41#include <asm/uaccess.h>
42#include <asm/pgtable.h>
43#include <asm/system.h>
44#include <asm/io.h>
45#include <asm/ldt.h>
46#include <asm/processor.h>
47#include <asm/i387.h>
48#include <asm/desc.h>
49#ifdef CONFIG_MATH_EMULATION
50#include <asm/math_emu.h>
51#endif
52
53#include <linux/err.h>
54
55#include <asm/tlbflush.h>
56#include <asm/cpu.h>
57#include <asm/kdebug.h>
58
59asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
60
61static int hlt_counter;
62
63unsigned long boot_option_idle_override = 0;
64EXPORT_SYMBOL(boot_option_idle_override);
65
66DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
67EXPORT_PER_CPU_SYMBOL(current_task);
68
69DEFINE_PER_CPU(int, cpu_number);
70EXPORT_PER_CPU_SYMBOL(cpu_number);
71
72/*
73 * Return saved PC of a blocked thread.
74 */
75unsigned long thread_saved_pc(struct task_struct *tsk)
76{
77	return ((unsigned long *)tsk->thread.sp)[3];
78}
79
80/*
81 * Powermanagement idle function, if any..
82 */
83void (*pm_idle)(void);
84EXPORT_SYMBOL(pm_idle);
85
86void disable_hlt(void)
87{
88	hlt_counter++;
89}
90
91EXPORT_SYMBOL(disable_hlt);
92
93void enable_hlt(void)
94{
95	hlt_counter--;
96}
97
98EXPORT_SYMBOL(enable_hlt);
99
100/*
101 * We use this if we don't have any better
102 * idle routine..
103 */
104void default_idle(void)
105{
106	if (!hlt_counter && boot_cpu_data.hlt_works_ok) {
107		current_thread_info()->status &= ~TS_POLLING;
108		/*
109		 * TS_POLLING-cleared state must be visible before we
110		 * test NEED_RESCHED:
111		 */
112		smp_mb();
113
114		local_irq_disable();
115		if (!need_resched()) {
116			safe_halt();	/* enables interrupts racelessly */
117			local_irq_disable();
118		}
119		local_irq_enable();
120		current_thread_info()->status |= TS_POLLING;
121	} else {
122		local_irq_enable();
123		/* loop is done by the caller */
124		cpu_relax();
125	}
126}
127#ifdef CONFIG_APM_MODULE
128EXPORT_SYMBOL(default_idle);
129#endif
130
131/*
132 * On SMP it's slightly faster (but much more power-consuming!)
133 * to poll the ->work.need_resched flag instead of waiting for the
134 * cross-CPU IPI to arrive. Use this option with caution.
135 */
136static void poll_idle(void)
137{
138	local_irq_enable();
139	cpu_relax();
140}
141
142#ifdef CONFIG_HOTPLUG_CPU
143#include <asm/nmi.h>
144/* We don't actually take CPU down, just spin without interrupts. */
145static inline void play_dead(void)
146{
147	/* This must be done before dead CPU ack */
148	cpu_exit_clear();
149	wbinvd();
150	mb();
151	/* Ack it */
152	__get_cpu_var(cpu_state) = CPU_DEAD;
153
154	/*
155	 * With physical CPU hotplug, we should halt the cpu
156	 */
157	local_irq_disable();
158	while (1)
159		halt();
160}
161#else
162static inline void play_dead(void)
163{
164	BUG();
165}
166#endif /* CONFIG_HOTPLUG_CPU */
167
168/*
169 * The idle thread. There's no useful work to be
170 * done, so just try to conserve power and have a
171 * low exit latency (ie sit in a loop waiting for
172 * somebody to say that they'd like to reschedule)
173 */
174void cpu_idle(void)
175{
176	int cpu = smp_processor_id();
177
178	current_thread_info()->status |= TS_POLLING;
179
180	/* endless idle loop with no priority at all */
181	while (1) {
182		tick_nohz_stop_sched_tick();
183		while (!need_resched()) {
184			void (*idle)(void);
185
186			check_pgt_cache();
187			rmb();
188			idle = pm_idle;
189
190			if (rcu_pending(cpu))
191				rcu_check_callbacks(cpu, 0);
192
193			if (!idle)
194				idle = default_idle;
195
196			if (cpu_is_offline(cpu))
197				play_dead();
198
199			__get_cpu_var(irq_stat).idle_timestamp = jiffies;
200			idle();
201		}
202		tick_nohz_restart_sched_tick();
203		preempt_enable_no_resched();
204		schedule();
205		preempt_disable();
206	}
207}
208
209static void do_nothing(void *unused)
210{
211}
212
213/*
214 * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
215 * pm_idle and update to new pm_idle value. Required while changing pm_idle
216 * handler on SMP systems.
217 *
218 * Caller must have changed pm_idle to the new value before the call. Old
219 * pm_idle value will not be used by any CPU after the return of this function.
220 */
221void cpu_idle_wait(void)
222{
223	smp_mb();
224	/* kick all the CPUs so that they exit out of pm_idle */
225	smp_call_function(do_nothing, NULL, 0, 1);
226}
227EXPORT_SYMBOL_GPL(cpu_idle_wait);
228
229/*
230 * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
231 * which can obviate IPI to trigger checking of need_resched.
232 * We execute MONITOR against need_resched and enter optimized wait state
233 * through MWAIT. Whenever someone changes need_resched, we would be woken
234 * up from MWAIT (without an IPI).
235 *
236 * New with Core Duo processors, MWAIT can take some hints based on CPU
237 * capability.
238 */
239void mwait_idle_with_hints(unsigned long ax, unsigned long cx)
240{
241	if (!need_resched()) {
242		__monitor((void *)&current_thread_info()->flags, 0, 0);
243		smp_mb();
244		if (!need_resched())
245			__sti_mwait(ax, cx);
246		else
247			local_irq_enable();
248	} else
249		local_irq_enable();
250}
251
252/* Default MONITOR/MWAIT with no hints, used for default C1 state */
253static void mwait_idle(void)
254{
255	local_irq_enable();
256	mwait_idle_with_hints(0, 0);
257}
258
259static int __cpuinit mwait_usable(const struct cpuinfo_x86 *c)
260{
261	if (force_mwait)
262		return 1;
263	/* Any C1 states supported? */
264	return c->cpuid_level >= 5 && ((cpuid_edx(5) >> 4) & 0xf) > 0;
265}
266
267void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
268{
269	static int selected;
270
271	if (selected)
272		return;
273#ifdef CONFIG_X86_SMP
274	if (pm_idle == poll_idle && smp_num_siblings > 1) {
275		printk(KERN_WARNING "WARNING: polling idle and HT enabled,"
276			" performance may degrade.\n");
277	}
278#endif
279	if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
280		/*
281		 * Skip, if setup has overridden idle.
282		 * One CPU supports mwait => All CPUs supports mwait
283		 */
284		if (!pm_idle) {
285			printk(KERN_INFO "using mwait in idle threads.\n");
286			pm_idle = mwait_idle;
287		}
288	}
289	selected = 1;
290}
291
292static int __init idle_setup(char *str)
293{
294	if (!strcmp(str, "poll")) {
295		printk("using polling idle threads.\n");
296		pm_idle = poll_idle;
297	} else if (!strcmp(str, "mwait"))
298		force_mwait = 1;
299	else
300		return -1;
301
302	boot_option_idle_override = 1;
303	return 0;
304}
305early_param("idle", idle_setup);
306
307void __show_registers(struct pt_regs *regs, int all)
308{
309	unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
310	unsigned long d0, d1, d2, d3, d6, d7;
311	unsigned long sp;
312	unsigned short ss, gs;
313
314	if (user_mode_vm(regs)) {
315		sp = regs->sp;
316		ss = regs->ss & 0xffff;
317		savesegment(gs, gs);
318	} else {
319		sp = (unsigned long) (&regs->sp);
320		savesegment(ss, ss);
321		savesegment(gs, gs);
322	}
323
324	printk("\n");
325	printk("Pid: %d, comm: %s %s (%s %.*s)\n",
326			task_pid_nr(current), current->comm,
327			print_tainted(), init_utsname()->release,
328			(int)strcspn(init_utsname()->version, " "),
329			init_utsname()->version);
330
331	printk("EIP: %04x:[<%08lx>] EFLAGS: %08lx CPU: %d\n",
332			(u16)regs->cs, regs->ip, regs->flags,
333			smp_processor_id());
334	print_symbol("EIP is at %s\n", regs->ip);
335
336	printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
337		regs->ax, regs->bx, regs->cx, regs->dx);
338	printk("ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
339		regs->si, regs->di, regs->bp, sp);
340	printk(" DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n",
341	       (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss);
342
343	if (!all)
344		return;
345
346	cr0 = read_cr0();
347	cr2 = read_cr2();
348	cr3 = read_cr3();
349	cr4 = read_cr4_safe();
350	printk("CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
351			cr0, cr2, cr3, cr4);
352
353	get_debugreg(d0, 0);
354	get_debugreg(d1, 1);
355	get_debugreg(d2, 2);
356	get_debugreg(d3, 3);
357	printk("DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
358			d0, d1, d2, d3);
359
360	get_debugreg(d6, 6);
361	get_debugreg(d7, 7);
362	printk("DR6: %08lx DR7: %08lx\n",
363			d6, d7);
364}
365
366void show_regs(struct pt_regs *regs)
367{
368	__show_registers(regs, 1);
369	show_trace(NULL, regs, &regs->sp, regs->bp);
370}
371
372/*
373 * This gets run with %bx containing the
374 * function to call, and %dx containing
375 * the "args".
376 */
377extern void kernel_thread_helper(void);
378
379/*
380 * Create a kernel thread
381 */
382int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
383{
384	struct pt_regs regs;
385
386	memset(&regs, 0, sizeof(regs));
387
388	regs.bx = (unsigned long) fn;
389	regs.dx = (unsigned long) arg;
390
391	regs.ds = __USER_DS;
392	regs.es = __USER_DS;
393	regs.fs = __KERNEL_PERCPU;
394	regs.orig_ax = -1;
395	regs.ip = (unsigned long) kernel_thread_helper;
396	regs.cs = __KERNEL_CS | get_kernel_rpl();
397	regs.flags = X86_EFLAGS_IF | X86_EFLAGS_SF | X86_EFLAGS_PF | 0x2;
398
399	/* Ok, create the new process.. */
400	return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
401}
402EXPORT_SYMBOL(kernel_thread);
403
404/*
405 * Free current thread data structures etc..
406 */
407void exit_thread(void)
408{
409	/* The process may have allocated an io port bitmap... nuke it. */
410	if (unlikely(test_thread_flag(TIF_IO_BITMAP))) {
411		struct task_struct *tsk = current;
412		struct thread_struct *t = &tsk->thread;
413		int cpu = get_cpu();
414		struct tss_struct *tss = &per_cpu(init_tss, cpu);
415
416		kfree(t->io_bitmap_ptr);
417		t->io_bitmap_ptr = NULL;
418		clear_thread_flag(TIF_IO_BITMAP);
419		/*
420		 * Careful, clear this in the TSS too:
421		 */
422		memset(tss->io_bitmap, 0xff, tss->io_bitmap_max);
423		t->io_bitmap_max = 0;
424		tss->io_bitmap_owner = NULL;
425		tss->io_bitmap_max = 0;
426		tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
427		put_cpu();
428	}
429}
430
431void flush_thread(void)
432{
433	struct task_struct *tsk = current;
434
435	tsk->thread.debugreg0 = 0;
436	tsk->thread.debugreg1 = 0;
437	tsk->thread.debugreg2 = 0;
438	tsk->thread.debugreg3 = 0;
439	tsk->thread.debugreg6 = 0;
440	tsk->thread.debugreg7 = 0;
441	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
442	clear_tsk_thread_flag(tsk, TIF_DEBUG);
443	/*
444	 * Forget coprocessor state..
445	 */
446	clear_fpu(tsk);
447	clear_used_math();
448}
449
450void release_thread(struct task_struct *dead_task)
451{
452	BUG_ON(dead_task->mm);
453	release_vm86_irqs(dead_task);
454}
455
456/*
457 * This gets called before we allocate a new thread and copy
458 * the current task into it.
459 */
460void prepare_to_copy(struct task_struct *tsk)
461{
462	unlazy_fpu(tsk);
463}
464
465int copy_thread(int nr, unsigned long clone_flags, unsigned long sp,
466	unsigned long unused,
467	struct task_struct * p, struct pt_regs * regs)
468{
469	struct pt_regs * childregs;
470	struct task_struct *tsk;
471	int err;
472
473	childregs = task_pt_regs(p);
474	*childregs = *regs;
475	childregs->ax = 0;
476	childregs->sp = sp;
477
478	p->thread.sp = (unsigned long) childregs;
479	p->thread.sp0 = (unsigned long) (childregs+1);
480
481	p->thread.ip = (unsigned long) ret_from_fork;
482
483	savesegment(gs, p->thread.gs);
484
485	tsk = current;
486	if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
487		p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
488						IO_BITMAP_BYTES, GFP_KERNEL);
489		if (!p->thread.io_bitmap_ptr) {
490			p->thread.io_bitmap_max = 0;
491			return -ENOMEM;
492		}
493		set_tsk_thread_flag(p, TIF_IO_BITMAP);
494	}
495
496	err = 0;
497
498	/*
499	 * Set a new TLS for the child thread?
500	 */
501	if (clone_flags & CLONE_SETTLS)
502		err = do_set_thread_area(p, -1,
503			(struct user_desc __user *)childregs->si, 0);
504
505	if (err && p->thread.io_bitmap_ptr) {
506		kfree(p->thread.io_bitmap_ptr);
507		p->thread.io_bitmap_max = 0;
508	}
509	return err;
510}
511
512void
513start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
514{
515	__asm__("movl %0, %%gs" :: "r"(0));
516	regs->fs		= 0;
517	set_fs(USER_DS);
518	regs->ds		= __USER_DS;
519	regs->es		= __USER_DS;
520	regs->ss		= __USER_DS;
521	regs->cs		= __USER_CS;
522	regs->ip		= new_ip;
523	regs->sp		= new_sp;
524	/*
525	 * Free the old FP and other extended state
526	 */
527	free_thread_xstate(current);
528}
529EXPORT_SYMBOL_GPL(start_thread);
530
531static void hard_disable_TSC(void)
532{
533	write_cr4(read_cr4() | X86_CR4_TSD);
534}
535
536void disable_TSC(void)
537{
538	preempt_disable();
539	if (!test_and_set_thread_flag(TIF_NOTSC))
540		/*
541		 * Must flip the CPU state synchronously with
542		 * TIF_NOTSC in the current running context.
543		 */
544		hard_disable_TSC();
545	preempt_enable();
546}
547
548static void hard_enable_TSC(void)
549{
550	write_cr4(read_cr4() & ~X86_CR4_TSD);
551}
552
553static void enable_TSC(void)
554{
555	preempt_disable();
556	if (test_and_clear_thread_flag(TIF_NOTSC))
557		/*
558		 * Must flip the CPU state synchronously with
559		 * TIF_NOTSC in the current running context.
560		 */
561		hard_enable_TSC();
562	preempt_enable();
563}
564
565int get_tsc_mode(unsigned long adr)
566{
567	unsigned int val;
568
569	if (test_thread_flag(TIF_NOTSC))
570		val = PR_TSC_SIGSEGV;
571	else
572		val = PR_TSC_ENABLE;
573
574	return put_user(val, (unsigned int __user *)adr);
575}
576
577int set_tsc_mode(unsigned int val)
578{
579	if (val == PR_TSC_SIGSEGV)
580		disable_TSC();
581	else if (val == PR_TSC_ENABLE)
582		enable_TSC();
583	else
584		return -EINVAL;
585
586	return 0;
587}
588
589static noinline void
590__switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
591		 struct tss_struct *tss)
592{
593	struct thread_struct *prev, *next;
594	unsigned long debugctl;
595
596	prev = &prev_p->thread;
597	next = &next_p->thread;
598
599	debugctl = prev->debugctlmsr;
600	if (next->ds_area_msr != prev->ds_area_msr) {
601		/* we clear debugctl to make sure DS
602		 * is not in use when we change it */
603		debugctl = 0;
604		update_debugctlmsr(0);
605		wrmsr(MSR_IA32_DS_AREA, next->ds_area_msr, 0);
606	}
607
608	if (next->debugctlmsr != debugctl)
609		update_debugctlmsr(next->debugctlmsr);
610
611	if (test_tsk_thread_flag(next_p, TIF_DEBUG)) {
612		set_debugreg(next->debugreg0, 0);
613		set_debugreg(next->debugreg1, 1);
614		set_debugreg(next->debugreg2, 2);
615		set_debugreg(next->debugreg3, 3);
616		/* no 4 and 5 */
617		set_debugreg(next->debugreg6, 6);
618		set_debugreg(next->debugreg7, 7);
619	}
620
621	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
622	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
623		/* prev and next are different */
624		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
625			hard_disable_TSC();
626		else
627			hard_enable_TSC();
628	}
629
630#ifdef X86_BTS
631	if (test_tsk_thread_flag(prev_p, TIF_BTS_TRACE_TS))
632		ptrace_bts_take_timestamp(prev_p, BTS_TASK_DEPARTS);
633
634	if (test_tsk_thread_flag(next_p, TIF_BTS_TRACE_TS))
635		ptrace_bts_take_timestamp(next_p, BTS_TASK_ARRIVES);
636#endif
637
638
639	if (!test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
640		/*
641		 * Disable the bitmap via an invalid offset. We still cache
642		 * the previous bitmap owner and the IO bitmap contents:
643		 */
644		tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
645		return;
646	}
647
648	if (likely(next == tss->io_bitmap_owner)) {
649		/*
650		 * Previous owner of the bitmap (hence the bitmap content)
651		 * matches the next task, we dont have to do anything but
652		 * to set a valid offset in the TSS:
653		 */
654		tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
655		return;
656	}
657	/*
658	 * Lazy TSS's I/O bitmap copy. We set an invalid offset here
659	 * and we let the task to get a GPF in case an I/O instruction
660	 * is performed.  The handler of the GPF will verify that the
661	 * faulting task has a valid I/O bitmap and, it true, does the
662	 * real copy and restart the instruction.  This will save us
663	 * redundant copies when the currently switched task does not
664	 * perform any I/O during its timeslice.
665	 */
666	tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET_LAZY;
667}
668
669/*
670 *	switch_to(x,yn) should switch tasks from x to y.
671 *
672 * We fsave/fwait so that an exception goes off at the right time
673 * (as a call from the fsave or fwait in effect) rather than to
674 * the wrong process. Lazy FP saving no longer makes any sense
675 * with modern CPU's, and this simplifies a lot of things (SMP
676 * and UP become the same).
677 *
678 * NOTE! We used to use the x86 hardware context switching. The
679 * reason for not using it any more becomes apparent when you
680 * try to recover gracefully from saved state that is no longer
681 * valid (stale segment register values in particular). With the
682 * hardware task-switch, there is no way to fix up bad state in
683 * a reasonable manner.
684 *
685 * The fact that Intel documents the hardware task-switching to
686 * be slow is a fairly red herring - this code is not noticeably
687 * faster. However, there _is_ some room for improvement here,
688 * so the performance issues may eventually be a valid point.
689 * More important, however, is the fact that this allows us much
690 * more flexibility.
691 *
692 * The return value (in %ax) will be the "prev" task after
693 * the task-switch, and shows up in ret_from_fork in entry.S,
694 * for example.
695 */
696struct task_struct * __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
697{
698	struct thread_struct *prev = &prev_p->thread,
699				 *next = &next_p->thread;
700	int cpu = smp_processor_id();
701	struct tss_struct *tss = &per_cpu(init_tss, cpu);
702
703	/* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
704
705	__unlazy_fpu(prev_p);
706
707
708	/* we're going to use this soon, after a few expensive things */
709	if (next_p->fpu_counter > 5)
710		prefetch(next->xstate);
711
712	/*
713	 * Reload esp0.
714	 */
715	load_sp0(tss, next);
716
717	/*
718	 * Save away %gs. No need to save %fs, as it was saved on the
719	 * stack on entry.  No need to save %es and %ds, as those are
720	 * always kernel segments while inside the kernel.  Doing this
721	 * before setting the new TLS descriptors avoids the situation
722	 * where we temporarily have non-reloadable segments in %fs
723	 * and %gs.  This could be an issue if the NMI handler ever
724	 * used %fs or %gs (it does not today), or if the kernel is
725	 * running inside of a hypervisor layer.
726	 */
727	savesegment(gs, prev->gs);
728
729	/*
730	 * Load the per-thread Thread-Local Storage descriptor.
731	 */
732	load_TLS(next, cpu);
733
734	/*
735	 * Restore IOPL if needed.  In normal use, the flags restore
736	 * in the switch assembly will handle this.  But if the kernel
737	 * is running virtualized at a non-zero CPL, the popf will
738	 * not restore flags, so it must be done in a separate step.
739	 */
740	if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
741		set_iopl_mask(next->iopl);
742
743	/*
744	 * Now maybe handle debug registers and/or IO bitmaps
745	 */
746	if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV ||
747		     task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
748		__switch_to_xtra(prev_p, next_p, tss);
749
750	/*
751	 * Leave lazy mode, flushing any hypercalls made here.
752	 * This must be done before restoring TLS segments so
753	 * the GDT and LDT are properly updated, and must be
754	 * done before math_state_restore, so the TS bit is up
755	 * to date.
756	 */
757	arch_leave_lazy_cpu_mode();
758
759	/* If the task has used fpu the last 5 timeslices, just do a full
760	 * restore of the math state immediately to avoid the trap; the
761	 * chances of needing FPU soon are obviously high now
762	 */
763	if (next_p->fpu_counter > 5)
764		math_state_restore();
765
766	/*
767	 * Restore %gs if needed (which is common)
768	 */
769	if (prev->gs | next->gs)
770		loadsegment(gs, next->gs);
771
772	x86_write_percpu(current_task, next_p);
773
774	return prev_p;
775}
776
777asmlinkage int sys_fork(struct pt_regs regs)
778{
779	return do_fork(SIGCHLD, regs.sp, &regs, 0, NULL, NULL);
780}
781
782asmlinkage int sys_clone(struct pt_regs regs)
783{
784	unsigned long clone_flags;
785	unsigned long newsp;
786	int __user *parent_tidptr, *child_tidptr;
787
788	clone_flags = regs.bx;
789	newsp = regs.cx;
790	parent_tidptr = (int __user *)regs.dx;
791	child_tidptr = (int __user *)regs.di;
792	if (!newsp)
793		newsp = regs.sp;
794	return do_fork(clone_flags, newsp, &regs, 0, parent_tidptr, child_tidptr);
795}
796
797/*
798 * This is trivial, and on the face of it looks like it
799 * could equally well be done in user mode.
800 *
801 * Not so, for quite unobvious reasons - register pressure.
802 * In user mode vfork() cannot have a stack frame, and if
803 * done by calling the "clone()" system call directly, you
804 * do not have enough call-clobbered registers to hold all
805 * the information you need.
806 */
807asmlinkage int sys_vfork(struct pt_regs regs)
808{
809	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.sp, &regs, 0, NULL, NULL);
810}
811
812/*
813 * sys_execve() executes a new program.
814 */
815asmlinkage int sys_execve(struct pt_regs regs)
816{
817	int error;
818	char * filename;
819
820	filename = getname((char __user *) regs.bx);
821	error = PTR_ERR(filename);
822	if (IS_ERR(filename))
823		goto out;
824	error = do_execve(filename,
825			(char __user * __user *) regs.cx,
826			(char __user * __user *) regs.dx,
827			&regs);
828	if (error == 0) {
829		/* Make sure we don't return using sysenter.. */
830		set_thread_flag(TIF_IRET);
831	}
832	putname(filename);
833out:
834	return error;
835}
836
837#define top_esp                (THREAD_SIZE - sizeof(unsigned long))
838#define top_ebp                (THREAD_SIZE - 2*sizeof(unsigned long))
839
840unsigned long get_wchan(struct task_struct *p)
841{
842	unsigned long bp, sp, ip;
843	unsigned long stack_page;
844	int count = 0;
845	if (!p || p == current || p->state == TASK_RUNNING)
846		return 0;
847	stack_page = (unsigned long)task_stack_page(p);
848	sp = p->thread.sp;
849	if (!stack_page || sp < stack_page || sp > top_esp+stack_page)
850		return 0;
851	/* include/asm-i386/system.h:switch_to() pushes bp last. */
852	bp = *(unsigned long *) sp;
853	do {
854		if (bp < stack_page || bp > top_ebp+stack_page)
855			return 0;
856		ip = *(unsigned long *) (bp+4);
857		if (!in_sched_functions(ip))
858			return ip;
859		bp = *(unsigned long *) bp;
860	} while (count++ < 16);
861	return 0;
862}
863
864unsigned long arch_align_stack(unsigned long sp)
865{
866	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
867		sp -= get_random_int() % 8192;
868	return sp & ~0xf;
869}
870
871unsigned long arch_randomize_brk(struct mm_struct *mm)
872{
873	unsigned long range_end = mm->brk + 0x02000000;
874	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
875}
876