process_32.c revision fb26132b441e75d6ba9996efc29b42081aee0abd
1/*
2 *  Copyright (C) 1995  Linus Torvalds
3 *
4 *  Pentium III FXSR, SSE support
5 *	Gareth Hughes <gareth@valinux.com>, May 2000
6 */
7
8/*
9 * This file handles the architecture-dependent parts of process handling..
10 */
11
12#include <stdarg.h>
13
14#include <linux/cpu.h>
15#include <linux/errno.h>
16#include <linux/sched.h>
17#include <linux/fs.h>
18#include <linux/kernel.h>
19#include <linux/mm.h>
20#include <linux/elfcore.h>
21#include <linux/smp.h>
22#include <linux/stddef.h>
23#include <linux/slab.h>
24#include <linux/vmalloc.h>
25#include <linux/user.h>
26#include <linux/interrupt.h>
27#include <linux/utsname.h>
28#include <linux/delay.h>
29#include <linux/reboot.h>
30#include <linux/init.h>
31#include <linux/mc146818rtc.h>
32#include <linux/module.h>
33#include <linux/kallsyms.h>
34#include <linux/ptrace.h>
35#include <linux/random.h>
36#include <linux/personality.h>
37#include <linux/tick.h>
38#include <linux/percpu.h>
39#include <linux/prctl.h>
40
41#include <asm/uaccess.h>
42#include <asm/pgtable.h>
43#include <asm/system.h>
44#include <asm/io.h>
45#include <asm/ldt.h>
46#include <asm/processor.h>
47#include <asm/i387.h>
48#include <asm/desc.h>
49#ifdef CONFIG_MATH_EMULATION
50#include <asm/math_emu.h>
51#endif
52
53#include <linux/err.h>
54
55#include <asm/tlbflush.h>
56#include <asm/cpu.h>
57#include <asm/kdebug.h>
58#include <asm/syscalls.h>
59#include <asm/smp.h>
60
61asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
62
63DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
64EXPORT_PER_CPU_SYMBOL(current_task);
65
66DEFINE_PER_CPU(int, cpu_number);
67EXPORT_PER_CPU_SYMBOL(cpu_number);
68
69/*
70 * Return saved PC of a blocked thread.
71 */
72unsigned long thread_saved_pc(struct task_struct *tsk)
73{
74	return ((unsigned long *)tsk->thread.sp)[3];
75}
76
77#ifdef CONFIG_HOTPLUG_CPU
78#include <asm/nmi.h>
79
80static void cpu_exit_clear(void)
81{
82	int cpu = raw_smp_processor_id();
83
84	idle_task_exit();
85
86	cpu_uninit();
87	irq_ctx_exit(cpu);
88
89	cpu_clear(cpu, cpu_callout_map);
90	cpu_clear(cpu, cpu_callin_map);
91
92	numa_remove_cpu(cpu);
93}
94
95/* We don't actually take CPU down, just spin without interrupts. */
96static inline void play_dead(void)
97{
98	/* This must be done before dead CPU ack */
99	cpu_exit_clear();
100	wbinvd();
101	mb();
102	/* Ack it */
103	__get_cpu_var(cpu_state) = CPU_DEAD;
104
105	/*
106	 * With physical CPU hotplug, we should halt the cpu
107	 */
108	local_irq_disable();
109	while (1)
110		halt();
111}
112#else
113static inline void play_dead(void)
114{
115	BUG();
116}
117#endif /* CONFIG_HOTPLUG_CPU */
118
119/*
120 * The idle thread. There's no useful work to be
121 * done, so just try to conserve power and have a
122 * low exit latency (ie sit in a loop waiting for
123 * somebody to say that they'd like to reschedule)
124 */
125void cpu_idle(void)
126{
127	int cpu = smp_processor_id();
128
129	current_thread_info()->status |= TS_POLLING;
130
131	/* endless idle loop with no priority at all */
132	while (1) {
133		tick_nohz_stop_sched_tick();
134		while (!need_resched()) {
135
136			check_pgt_cache();
137			rmb();
138
139			if (rcu_pending(cpu))
140				rcu_check_callbacks(cpu, 0);
141
142			if (cpu_is_offline(cpu))
143				play_dead();
144
145			local_irq_disable();
146			__get_cpu_var(irq_stat).idle_timestamp = jiffies;
147			/* Don't trace irqs off for idle */
148			stop_critical_timings();
149			pm_idle();
150			start_critical_timings();
151		}
152		tick_nohz_restart_sched_tick();
153		preempt_enable_no_resched();
154		schedule();
155		preempt_disable();
156	}
157}
158
159void __show_registers(struct pt_regs *regs, int all)
160{
161	unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
162	unsigned long d0, d1, d2, d3, d6, d7;
163	unsigned long sp;
164	unsigned short ss, gs;
165
166	if (user_mode_vm(regs)) {
167		sp = regs->sp;
168		ss = regs->ss & 0xffff;
169		savesegment(gs, gs);
170	} else {
171		sp = (unsigned long) (&regs->sp);
172		savesegment(ss, ss);
173		savesegment(gs, gs);
174	}
175
176	printk("\n");
177	printk("Pid: %d, comm: %s %s (%s %.*s)\n",
178			task_pid_nr(current), current->comm,
179			print_tainted(), init_utsname()->release,
180			(int)strcspn(init_utsname()->version, " "),
181			init_utsname()->version);
182
183	printk("EIP: %04x:[<%08lx>] EFLAGS: %08lx CPU: %d\n",
184			(u16)regs->cs, regs->ip, regs->flags,
185			smp_processor_id());
186	print_symbol("EIP is at %s\n", regs->ip);
187
188	printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
189		regs->ax, regs->bx, regs->cx, regs->dx);
190	printk("ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
191		regs->si, regs->di, regs->bp, sp);
192	printk(" DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n",
193	       (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss);
194
195	if (!all)
196		return;
197
198	cr0 = read_cr0();
199	cr2 = read_cr2();
200	cr3 = read_cr3();
201	cr4 = read_cr4_safe();
202	printk("CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
203			cr0, cr2, cr3, cr4);
204
205	get_debugreg(d0, 0);
206	get_debugreg(d1, 1);
207	get_debugreg(d2, 2);
208	get_debugreg(d3, 3);
209	printk("DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
210			d0, d1, d2, d3);
211
212	get_debugreg(d6, 6);
213	get_debugreg(d7, 7);
214	printk("DR6: %08lx DR7: %08lx\n",
215			d6, d7);
216}
217
218void show_regs(struct pt_regs *regs)
219{
220	__show_registers(regs, 1);
221	show_trace(NULL, regs, &regs->sp, regs->bp);
222}
223
224/*
225 * This gets run with %bx containing the
226 * function to call, and %dx containing
227 * the "args".
228 */
229extern void kernel_thread_helper(void);
230
231/*
232 * Create a kernel thread
233 */
234int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
235{
236	struct pt_regs regs;
237
238	memset(&regs, 0, sizeof(regs));
239
240	regs.bx = (unsigned long) fn;
241	regs.dx = (unsigned long) arg;
242
243	regs.ds = __USER_DS;
244	regs.es = __USER_DS;
245	regs.fs = __KERNEL_PERCPU;
246	regs.orig_ax = -1;
247	regs.ip = (unsigned long) kernel_thread_helper;
248	regs.cs = __KERNEL_CS | get_kernel_rpl();
249	regs.flags = X86_EFLAGS_IF | X86_EFLAGS_SF | X86_EFLAGS_PF | 0x2;
250
251	/* Ok, create the new process.. */
252	return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
253}
254EXPORT_SYMBOL(kernel_thread);
255
256/*
257 * Free current thread data structures etc..
258 */
259void exit_thread(void)
260{
261	/* The process may have allocated an io port bitmap... nuke it. */
262	if (unlikely(test_thread_flag(TIF_IO_BITMAP))) {
263		struct task_struct *tsk = current;
264		struct thread_struct *t = &tsk->thread;
265		int cpu = get_cpu();
266		struct tss_struct *tss = &per_cpu(init_tss, cpu);
267
268		kfree(t->io_bitmap_ptr);
269		t->io_bitmap_ptr = NULL;
270		clear_thread_flag(TIF_IO_BITMAP);
271		/*
272		 * Careful, clear this in the TSS too:
273		 */
274		memset(tss->io_bitmap, 0xff, tss->io_bitmap_max);
275		t->io_bitmap_max = 0;
276		tss->io_bitmap_owner = NULL;
277		tss->io_bitmap_max = 0;
278		tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
279		put_cpu();
280	}
281}
282
283void flush_thread(void)
284{
285	struct task_struct *tsk = current;
286
287	tsk->thread.debugreg0 = 0;
288	tsk->thread.debugreg1 = 0;
289	tsk->thread.debugreg2 = 0;
290	tsk->thread.debugreg3 = 0;
291	tsk->thread.debugreg6 = 0;
292	tsk->thread.debugreg7 = 0;
293	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
294	clear_tsk_thread_flag(tsk, TIF_DEBUG);
295	/*
296	 * Forget coprocessor state..
297	 */
298	tsk->fpu_counter = 0;
299	clear_fpu(tsk);
300	clear_used_math();
301}
302
303void release_thread(struct task_struct *dead_task)
304{
305	BUG_ON(dead_task->mm);
306	release_vm86_irqs(dead_task);
307}
308
309/*
310 * This gets called before we allocate a new thread and copy
311 * the current task into it.
312 */
313void prepare_to_copy(struct task_struct *tsk)
314{
315	unlazy_fpu(tsk);
316}
317
318int copy_thread(int nr, unsigned long clone_flags, unsigned long sp,
319	unsigned long unused,
320	struct task_struct * p, struct pt_regs * regs)
321{
322	struct pt_regs * childregs;
323	struct task_struct *tsk;
324	int err;
325
326	childregs = task_pt_regs(p);
327	*childregs = *regs;
328	childregs->ax = 0;
329	childregs->sp = sp;
330
331	p->thread.sp = (unsigned long) childregs;
332	p->thread.sp0 = (unsigned long) (childregs+1);
333
334	p->thread.ip = (unsigned long) ret_from_fork;
335
336	savesegment(gs, p->thread.gs);
337
338	tsk = current;
339	if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
340		p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
341						IO_BITMAP_BYTES, GFP_KERNEL);
342		if (!p->thread.io_bitmap_ptr) {
343			p->thread.io_bitmap_max = 0;
344			return -ENOMEM;
345		}
346		set_tsk_thread_flag(p, TIF_IO_BITMAP);
347	}
348
349	err = 0;
350
351	/*
352	 * Set a new TLS for the child thread?
353	 */
354	if (clone_flags & CLONE_SETTLS)
355		err = do_set_thread_area(p, -1,
356			(struct user_desc __user *)childregs->si, 0);
357
358	if (err && p->thread.io_bitmap_ptr) {
359		kfree(p->thread.io_bitmap_ptr);
360		p->thread.io_bitmap_max = 0;
361	}
362	return err;
363}
364
365void
366start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
367{
368	__asm__("movl %0, %%gs" :: "r"(0));
369	regs->fs		= 0;
370	set_fs(USER_DS);
371	regs->ds		= __USER_DS;
372	regs->es		= __USER_DS;
373	regs->ss		= __USER_DS;
374	regs->cs		= __USER_CS;
375	regs->ip		= new_ip;
376	regs->sp		= new_sp;
377	/*
378	 * Free the old FP and other extended state
379	 */
380	free_thread_xstate(current);
381}
382EXPORT_SYMBOL_GPL(start_thread);
383
384static void hard_disable_TSC(void)
385{
386	write_cr4(read_cr4() | X86_CR4_TSD);
387}
388
389void disable_TSC(void)
390{
391	preempt_disable();
392	if (!test_and_set_thread_flag(TIF_NOTSC))
393		/*
394		 * Must flip the CPU state synchronously with
395		 * TIF_NOTSC in the current running context.
396		 */
397		hard_disable_TSC();
398	preempt_enable();
399}
400
401static void hard_enable_TSC(void)
402{
403	write_cr4(read_cr4() & ~X86_CR4_TSD);
404}
405
406static void enable_TSC(void)
407{
408	preempt_disable();
409	if (test_and_clear_thread_flag(TIF_NOTSC))
410		/*
411		 * Must flip the CPU state synchronously with
412		 * TIF_NOTSC in the current running context.
413		 */
414		hard_enable_TSC();
415	preempt_enable();
416}
417
418int get_tsc_mode(unsigned long adr)
419{
420	unsigned int val;
421
422	if (test_thread_flag(TIF_NOTSC))
423		val = PR_TSC_SIGSEGV;
424	else
425		val = PR_TSC_ENABLE;
426
427	return put_user(val, (unsigned int __user *)adr);
428}
429
430int set_tsc_mode(unsigned int val)
431{
432	if (val == PR_TSC_SIGSEGV)
433		disable_TSC();
434	else if (val == PR_TSC_ENABLE)
435		enable_TSC();
436	else
437		return -EINVAL;
438
439	return 0;
440}
441
442static noinline void
443__switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
444		 struct tss_struct *tss)
445{
446	struct thread_struct *prev, *next;
447	unsigned long debugctl;
448
449	prev = &prev_p->thread;
450	next = &next_p->thread;
451
452	debugctl = prev->debugctlmsr;
453	if (next->ds_area_msr != prev->ds_area_msr) {
454		/* we clear debugctl to make sure DS
455		 * is not in use when we change it */
456		debugctl = 0;
457		update_debugctlmsr(0);
458		wrmsr(MSR_IA32_DS_AREA, next->ds_area_msr, 0);
459	}
460
461	if (next->debugctlmsr != debugctl)
462		update_debugctlmsr(next->debugctlmsr);
463
464	if (test_tsk_thread_flag(next_p, TIF_DEBUG)) {
465		set_debugreg(next->debugreg0, 0);
466		set_debugreg(next->debugreg1, 1);
467		set_debugreg(next->debugreg2, 2);
468		set_debugreg(next->debugreg3, 3);
469		/* no 4 and 5 */
470		set_debugreg(next->debugreg6, 6);
471		set_debugreg(next->debugreg7, 7);
472	}
473
474	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
475	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
476		/* prev and next are different */
477		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
478			hard_disable_TSC();
479		else
480			hard_enable_TSC();
481	}
482
483#ifdef X86_BTS
484	if (test_tsk_thread_flag(prev_p, TIF_BTS_TRACE_TS))
485		ptrace_bts_take_timestamp(prev_p, BTS_TASK_DEPARTS);
486
487	if (test_tsk_thread_flag(next_p, TIF_BTS_TRACE_TS))
488		ptrace_bts_take_timestamp(next_p, BTS_TASK_ARRIVES);
489#endif
490
491
492	if (!test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
493		/*
494		 * Disable the bitmap via an invalid offset. We still cache
495		 * the previous bitmap owner and the IO bitmap contents:
496		 */
497		tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
498		return;
499	}
500
501	if (likely(next == tss->io_bitmap_owner)) {
502		/*
503		 * Previous owner of the bitmap (hence the bitmap content)
504		 * matches the next task, we dont have to do anything but
505		 * to set a valid offset in the TSS:
506		 */
507		tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
508		return;
509	}
510	/*
511	 * Lazy TSS's I/O bitmap copy. We set an invalid offset here
512	 * and we let the task to get a GPF in case an I/O instruction
513	 * is performed.  The handler of the GPF will verify that the
514	 * faulting task has a valid I/O bitmap and, it true, does the
515	 * real copy and restart the instruction.  This will save us
516	 * redundant copies when the currently switched task does not
517	 * perform any I/O during its timeslice.
518	 */
519	tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET_LAZY;
520}
521
522/*
523 *	switch_to(x,yn) should switch tasks from x to y.
524 *
525 * We fsave/fwait so that an exception goes off at the right time
526 * (as a call from the fsave or fwait in effect) rather than to
527 * the wrong process. Lazy FP saving no longer makes any sense
528 * with modern CPU's, and this simplifies a lot of things (SMP
529 * and UP become the same).
530 *
531 * NOTE! We used to use the x86 hardware context switching. The
532 * reason for not using it any more becomes apparent when you
533 * try to recover gracefully from saved state that is no longer
534 * valid (stale segment register values in particular). With the
535 * hardware task-switch, there is no way to fix up bad state in
536 * a reasonable manner.
537 *
538 * The fact that Intel documents the hardware task-switching to
539 * be slow is a fairly red herring - this code is not noticeably
540 * faster. However, there _is_ some room for improvement here,
541 * so the performance issues may eventually be a valid point.
542 * More important, however, is the fact that this allows us much
543 * more flexibility.
544 *
545 * The return value (in %ax) will be the "prev" task after
546 * the task-switch, and shows up in ret_from_fork in entry.S,
547 * for example.
548 */
549struct task_struct * __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
550{
551	struct thread_struct *prev = &prev_p->thread,
552				 *next = &next_p->thread;
553	int cpu = smp_processor_id();
554	struct tss_struct *tss = &per_cpu(init_tss, cpu);
555
556	/* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
557
558	__unlazy_fpu(prev_p);
559
560
561	/* we're going to use this soon, after a few expensive things */
562	if (next_p->fpu_counter > 5)
563		prefetch(next->xstate);
564
565	/*
566	 * Reload esp0.
567	 */
568	load_sp0(tss, next);
569
570	/*
571	 * Save away %gs. No need to save %fs, as it was saved on the
572	 * stack on entry.  No need to save %es and %ds, as those are
573	 * always kernel segments while inside the kernel.  Doing this
574	 * before setting the new TLS descriptors avoids the situation
575	 * where we temporarily have non-reloadable segments in %fs
576	 * and %gs.  This could be an issue if the NMI handler ever
577	 * used %fs or %gs (it does not today), or if the kernel is
578	 * running inside of a hypervisor layer.
579	 */
580	savesegment(gs, prev->gs);
581
582	/*
583	 * Load the per-thread Thread-Local Storage descriptor.
584	 */
585	load_TLS(next, cpu);
586
587	/*
588	 * Restore IOPL if needed.  In normal use, the flags restore
589	 * in the switch assembly will handle this.  But if the kernel
590	 * is running virtualized at a non-zero CPL, the popf will
591	 * not restore flags, so it must be done in a separate step.
592	 */
593	if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
594		set_iopl_mask(next->iopl);
595
596	/*
597	 * Now maybe handle debug registers and/or IO bitmaps
598	 */
599	if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV ||
600		     task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
601		__switch_to_xtra(prev_p, next_p, tss);
602
603	/*
604	 * Leave lazy mode, flushing any hypercalls made here.
605	 * This must be done before restoring TLS segments so
606	 * the GDT and LDT are properly updated, and must be
607	 * done before math_state_restore, so the TS bit is up
608	 * to date.
609	 */
610	arch_leave_lazy_cpu_mode();
611
612	/* If the task has used fpu the last 5 timeslices, just do a full
613	 * restore of the math state immediately to avoid the trap; the
614	 * chances of needing FPU soon are obviously high now
615	 *
616	 * tsk_used_math() checks prevent calling math_state_restore(),
617	 * which can sleep in the case of !tsk_used_math()
618	 */
619	if (tsk_used_math(next_p) && next_p->fpu_counter > 5)
620		math_state_restore();
621
622	/*
623	 * Restore %gs if needed (which is common)
624	 */
625	if (prev->gs | next->gs)
626		loadsegment(gs, next->gs);
627
628	x86_write_percpu(current_task, next_p);
629
630	return prev_p;
631}
632
633asmlinkage int sys_fork(struct pt_regs regs)
634{
635	return do_fork(SIGCHLD, regs.sp, &regs, 0, NULL, NULL);
636}
637
638asmlinkage int sys_clone(struct pt_regs regs)
639{
640	unsigned long clone_flags;
641	unsigned long newsp;
642	int __user *parent_tidptr, *child_tidptr;
643
644	clone_flags = regs.bx;
645	newsp = regs.cx;
646	parent_tidptr = (int __user *)regs.dx;
647	child_tidptr = (int __user *)regs.di;
648	if (!newsp)
649		newsp = regs.sp;
650	return do_fork(clone_flags, newsp, &regs, 0, parent_tidptr, child_tidptr);
651}
652
653/*
654 * This is trivial, and on the face of it looks like it
655 * could equally well be done in user mode.
656 *
657 * Not so, for quite unobvious reasons - register pressure.
658 * In user mode vfork() cannot have a stack frame, and if
659 * done by calling the "clone()" system call directly, you
660 * do not have enough call-clobbered registers to hold all
661 * the information you need.
662 */
663asmlinkage int sys_vfork(struct pt_regs regs)
664{
665	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.sp, &regs, 0, NULL, NULL);
666}
667
668/*
669 * sys_execve() executes a new program.
670 */
671asmlinkage int sys_execve(struct pt_regs regs)
672{
673	int error;
674	char * filename;
675
676	filename = getname((char __user *) regs.bx);
677	error = PTR_ERR(filename);
678	if (IS_ERR(filename))
679		goto out;
680	error = do_execve(filename,
681			(char __user * __user *) regs.cx,
682			(char __user * __user *) regs.dx,
683			&regs);
684	if (error == 0) {
685		/* Make sure we don't return using sysenter.. */
686		set_thread_flag(TIF_IRET);
687	}
688	putname(filename);
689out:
690	return error;
691}
692
693#define top_esp                (THREAD_SIZE - sizeof(unsigned long))
694#define top_ebp                (THREAD_SIZE - 2*sizeof(unsigned long))
695
696unsigned long get_wchan(struct task_struct *p)
697{
698	unsigned long bp, sp, ip;
699	unsigned long stack_page;
700	int count = 0;
701	if (!p || p == current || p->state == TASK_RUNNING)
702		return 0;
703	stack_page = (unsigned long)task_stack_page(p);
704	sp = p->thread.sp;
705	if (!stack_page || sp < stack_page || sp > top_esp+stack_page)
706		return 0;
707	/* include/asm-i386/system.h:switch_to() pushes bp last. */
708	bp = *(unsigned long *) sp;
709	do {
710		if (bp < stack_page || bp > top_ebp+stack_page)
711			return 0;
712		ip = *(unsigned long *) (bp+4);
713		if (!in_sched_functions(ip))
714			return ip;
715		bp = *(unsigned long *) bp;
716	} while (count++ < 16);
717	return 0;
718}
719
720unsigned long arch_align_stack(unsigned long sp)
721{
722	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
723		sp -= get_random_int() % 8192;
724	return sp & ~0xf;
725}
726
727unsigned long arch_randomize_brk(struct mm_struct *mm)
728{
729	unsigned long range_end = mm->brk + 0x02000000;
730	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
731}
732