init_64.c revision 1f067167a83d1c7f80437fd1d32b55508aaca009
1/*
2 *  linux/arch/x86_64/mm/init.c
3 *
4 *  Copyright (C) 1995  Linus Torvalds
5 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
6 *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7 */
8
9#include <linux/signal.h>
10#include <linux/sched.h>
11#include <linux/kernel.h>
12#include <linux/errno.h>
13#include <linux/string.h>
14#include <linux/types.h>
15#include <linux/ptrace.h>
16#include <linux/mman.h>
17#include <linux/mm.h>
18#include <linux/swap.h>
19#include <linux/smp.h>
20#include <linux/init.h>
21#include <linux/initrd.h>
22#include <linux/pagemap.h>
23#include <linux/bootmem.h>
24#include <linux/proc_fs.h>
25#include <linux/pci.h>
26#include <linux/pfn.h>
27#include <linux/poison.h>
28#include <linux/dma-mapping.h>
29#include <linux/module.h>
30#include <linux/memory_hotplug.h>
31#include <linux/nmi.h>
32
33#include <asm/processor.h>
34#include <asm/system.h>
35#include <asm/uaccess.h>
36#include <asm/pgtable.h>
37#include <asm/pgalloc.h>
38#include <asm/dma.h>
39#include <asm/fixmap.h>
40#include <asm/e820.h>
41#include <asm/apic.h>
42#include <asm/tlb.h>
43#include <asm/mmu_context.h>
44#include <asm/proto.h>
45#include <asm/smp.h>
46#include <asm/sections.h>
47#include <asm/kdebug.h>
48#include <asm/numa.h>
49#include <asm/cacheflush.h>
50
51/*
52 * end_pfn only includes RAM, while max_pfn_mapped includes all e820 entries.
53 * The direct mapping extends to max_pfn_mapped, so that we can directly access
54 * apertures, ACPI and other tables without having to play with fixmaps.
55 */
56unsigned long max_low_pfn_mapped;
57unsigned long max_pfn_mapped;
58
59static unsigned long dma_reserve __initdata;
60
61DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
62
63int direct_gbpages __meminitdata
64#ifdef CONFIG_DIRECT_GBPAGES
65				= 1
66#endif
67;
68
69static int __init parse_direct_gbpages_off(char *arg)
70{
71	direct_gbpages = 0;
72	return 0;
73}
74early_param("nogbpages", parse_direct_gbpages_off);
75
76static int __init parse_direct_gbpages_on(char *arg)
77{
78	direct_gbpages = 1;
79	return 0;
80}
81early_param("gbpages", parse_direct_gbpages_on);
82
83/*
84 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
85 * physical space so we can cache the place of the first one and move
86 * around without checking the pgd every time.
87 */
88
89void show_mem(void)
90{
91	long i, total = 0, reserved = 0;
92	long shared = 0, cached = 0;
93	struct page *page;
94	pg_data_t *pgdat;
95
96	printk(KERN_INFO "Mem-info:\n");
97	show_free_areas();
98	for_each_online_pgdat(pgdat) {
99		for (i = 0; i < pgdat->node_spanned_pages; ++i) {
100			/*
101			 * This loop can take a while with 256 GB and
102			 * 4k pages so defer the NMI watchdog:
103			 */
104			if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
105				touch_nmi_watchdog();
106
107			if (!pfn_valid(pgdat->node_start_pfn + i))
108				continue;
109
110			page = pfn_to_page(pgdat->node_start_pfn + i);
111			total++;
112			if (PageReserved(page))
113				reserved++;
114			else if (PageSwapCache(page))
115				cached++;
116			else if (page_count(page))
117				shared += page_count(page) - 1;
118		}
119	}
120	printk(KERN_INFO "%lu pages of RAM\n",		total);
121	printk(KERN_INFO "%lu reserved pages\n",	reserved);
122	printk(KERN_INFO "%lu pages shared\n",		shared);
123	printk(KERN_INFO "%lu pages swap cached\n",	cached);
124}
125
126int after_bootmem;
127
128static __init void *spp_getpage(void)
129{
130	void *ptr;
131
132	if (after_bootmem)
133		ptr = (void *) get_zeroed_page(GFP_ATOMIC);
134	else
135		ptr = alloc_bootmem_pages(PAGE_SIZE);
136
137	if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
138		panic("set_pte_phys: cannot allocate page data %s\n",
139			after_bootmem ? "after bootmem" : "");
140	}
141
142	pr_debug("spp_getpage %p\n", ptr);
143
144	return ptr;
145}
146
147void
148set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
149{
150	pud_t *pud;
151	pmd_t *pmd;
152	pte_t *pte;
153
154	pud = pud_page + pud_index(vaddr);
155	if (pud_none(*pud)) {
156		pmd = (pmd_t *) spp_getpage();
157		pud_populate(&init_mm, pud, pmd);
158		if (pmd != pmd_offset(pud, 0)) {
159			printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
160				pmd, pmd_offset(pud, 0));
161			return;
162		}
163	}
164	pmd = pmd_offset(pud, vaddr);
165	if (pmd_none(*pmd)) {
166		pte = (pte_t *) spp_getpage();
167		pmd_populate_kernel(&init_mm, pmd, pte);
168		if (pte != pte_offset_kernel(pmd, 0)) {
169			printk(KERN_ERR "PAGETABLE BUG #02!\n");
170			return;
171		}
172	}
173
174	pte = pte_offset_kernel(pmd, vaddr);
175	if (!pte_none(*pte) && pte_val(new_pte) &&
176	    pte_val(*pte) != (pte_val(new_pte) & __supported_pte_mask))
177		pte_ERROR(*pte);
178	set_pte(pte, new_pte);
179
180	/*
181	 * It's enough to flush this one mapping.
182	 * (PGE mappings get flushed as well)
183	 */
184	__flush_tlb_one(vaddr);
185}
186
187void
188set_pte_vaddr(unsigned long vaddr, pte_t pteval)
189{
190	pgd_t *pgd;
191	pud_t *pud_page;
192
193	pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
194
195	pgd = pgd_offset_k(vaddr);
196	if (pgd_none(*pgd)) {
197		printk(KERN_ERR
198			"PGD FIXMAP MISSING, it should be setup in head.S!\n");
199		return;
200	}
201	pud_page = (pud_t*)pgd_page_vaddr(*pgd);
202	set_pte_vaddr_pud(pud_page, vaddr, pteval);
203}
204
205/*
206 * Create large page table mappings for a range of physical addresses.
207 */
208static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
209						pgprot_t prot)
210{
211	pgd_t *pgd;
212	pud_t *pud;
213	pmd_t *pmd;
214
215	BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
216	for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
217		pgd = pgd_offset_k((unsigned long)__va(phys));
218		if (pgd_none(*pgd)) {
219			pud = (pud_t *) spp_getpage();
220			set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
221						_PAGE_USER));
222		}
223		pud = pud_offset(pgd, (unsigned long)__va(phys));
224		if (pud_none(*pud)) {
225			pmd = (pmd_t *) spp_getpage();
226			set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
227						_PAGE_USER));
228		}
229		pmd = pmd_offset(pud, phys);
230		BUG_ON(!pmd_none(*pmd));
231		set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
232	}
233}
234
235void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
236{
237	__init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
238}
239
240void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
241{
242	__init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
243}
244
245/*
246 * The head.S code sets up the kernel high mapping:
247 *
248 *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
249 *
250 * phys_addr holds the negative offset to the kernel, which is added
251 * to the compile time generated pmds. This results in invalid pmds up
252 * to the point where we hit the physaddr 0 mapping.
253 *
254 * We limit the mappings to the region from _text to _end.  _end is
255 * rounded up to the 2MB boundary. This catches the invalid pmds as
256 * well, as they are located before _text:
257 */
258void __init cleanup_highmap(void)
259{
260	unsigned long vaddr = __START_KERNEL_map;
261	unsigned long end = round_up((unsigned long)_end, PMD_SIZE) - 1;
262	pmd_t *pmd = level2_kernel_pgt;
263	pmd_t *last_pmd = pmd + PTRS_PER_PMD;
264
265	for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
266		if (pmd_none(*pmd))
267			continue;
268		if (vaddr < (unsigned long) _text || vaddr > end)
269			set_pmd(pmd, __pmd(0));
270	}
271}
272
273static unsigned long __initdata table_start;
274static unsigned long __meminitdata table_end;
275static unsigned long __meminitdata table_top;
276
277static __meminit void *alloc_low_page(unsigned long *phys)
278{
279	unsigned long pfn = table_end++;
280	void *adr;
281
282	if (after_bootmem) {
283		adr = (void *)get_zeroed_page(GFP_ATOMIC);
284		*phys = __pa(adr);
285
286		return adr;
287	}
288
289	if (pfn >= table_top)
290		panic("alloc_low_page: ran out of memory");
291
292	adr = early_ioremap(pfn * PAGE_SIZE, PAGE_SIZE);
293	memset(adr, 0, PAGE_SIZE);
294	*phys  = pfn * PAGE_SIZE;
295	return adr;
296}
297
298static __meminit void unmap_low_page(void *adr)
299{
300	if (after_bootmem)
301		return;
302
303	early_iounmap(adr, PAGE_SIZE);
304}
305
306static unsigned long __meminit
307phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end)
308{
309	unsigned pages = 0;
310	unsigned long last_map_addr = end;
311	int i;
312
313	pte_t *pte = pte_page + pte_index(addr);
314
315	for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) {
316
317		if (addr >= end) {
318			if (!after_bootmem) {
319				for(; i < PTRS_PER_PTE; i++, pte++)
320					set_pte(pte, __pte(0));
321			}
322			break;
323		}
324
325		if (pte_val(*pte))
326			continue;
327
328		if (0)
329			printk("   pte=%p addr=%lx pte=%016lx\n",
330			       pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
331		set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL));
332		last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
333		pages++;
334	}
335	update_page_count(PG_LEVEL_4K, pages);
336
337	return last_map_addr;
338}
339
340static unsigned long __meminit
341phys_pte_update(pmd_t *pmd, unsigned long address, unsigned long end)
342{
343	pte_t *pte = (pte_t *)pmd_page_vaddr(*pmd);
344
345	return phys_pte_init(pte, address, end);
346}
347
348static unsigned long __meminit
349phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
350			 unsigned long page_size_mask)
351{
352	unsigned long pages = 0;
353	unsigned long last_map_addr = end;
354
355	int i = pmd_index(address);
356
357	for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
358		unsigned long pte_phys;
359		pmd_t *pmd = pmd_page + pmd_index(address);
360		pte_t *pte;
361
362		if (address >= end) {
363			if (!after_bootmem) {
364				for (; i < PTRS_PER_PMD; i++, pmd++)
365					set_pmd(pmd, __pmd(0));
366			}
367			break;
368		}
369
370		if (pmd_val(*pmd)) {
371			if (!pmd_large(*pmd))
372				last_map_addr = phys_pte_update(pmd, address,
373								 end);
374			continue;
375		}
376
377		if (page_size_mask & (1<<PG_LEVEL_2M)) {
378			pages++;
379			set_pte((pte_t *)pmd,
380				pfn_pte(address >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
381			last_map_addr = (address & PMD_MASK) + PMD_SIZE;
382			continue;
383		}
384
385		pte = alloc_low_page(&pte_phys);
386		last_map_addr = phys_pte_init(pte, address, end);
387		unmap_low_page(pte);
388
389		pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
390	}
391	update_page_count(PG_LEVEL_2M, pages);
392	return last_map_addr;
393}
394
395static unsigned long __meminit
396phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end,
397			 unsigned long page_size_mask)
398{
399	pmd_t *pmd = pmd_offset(pud, 0);
400	unsigned long last_map_addr;
401
402	spin_lock(&init_mm.page_table_lock);
403	last_map_addr = phys_pmd_init(pmd, address, end, page_size_mask);
404	spin_unlock(&init_mm.page_table_lock);
405	__flush_tlb_all();
406	return last_map_addr;
407}
408
409static unsigned long __meminit
410phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
411			 unsigned long page_size_mask)
412{
413	unsigned long pages = 0;
414	unsigned long last_map_addr = end;
415	int i = pud_index(addr);
416
417	for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
418		unsigned long pmd_phys;
419		pud_t *pud = pud_page + pud_index(addr);
420		pmd_t *pmd;
421
422		if (addr >= end)
423			break;
424
425		if (!after_bootmem &&
426				!e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
427			set_pud(pud, __pud(0));
428			continue;
429		}
430
431		if (pud_val(*pud)) {
432			if (!pud_large(*pud))
433				last_map_addr = phys_pmd_update(pud, addr, end,
434							 page_size_mask);
435			continue;
436		}
437
438		if (page_size_mask & (1<<PG_LEVEL_1G)) {
439			pages++;
440			set_pte((pte_t *)pud,
441				pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
442			last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
443			continue;
444		}
445
446		pmd = alloc_low_page(&pmd_phys);
447
448		spin_lock(&init_mm.page_table_lock);
449		last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask);
450		unmap_low_page(pmd);
451		pud_populate(&init_mm, pud, __va(pmd_phys));
452		spin_unlock(&init_mm.page_table_lock);
453
454	}
455	__flush_tlb_all();
456	update_page_count(PG_LEVEL_1G, pages);
457
458	return last_map_addr;
459}
460
461static unsigned long __meminit
462phys_pud_update(pgd_t *pgd, unsigned long addr, unsigned long end,
463		 unsigned long page_size_mask)
464{
465	pud_t *pud;
466
467	pud = (pud_t *)pgd_page_vaddr(*pgd);
468
469	return phys_pud_init(pud, addr, end, page_size_mask);
470}
471
472static void __init find_early_table_space(unsigned long end)
473{
474	unsigned long puds, pmds, ptes, tables, start;
475
476	puds = (end + PUD_SIZE - 1) >> PUD_SHIFT;
477	tables = round_up(puds * sizeof(pud_t), PAGE_SIZE);
478	if (direct_gbpages) {
479		unsigned long extra;
480		extra = end - ((end>>PUD_SHIFT) << PUD_SHIFT);
481		pmds = (extra + PMD_SIZE - 1) >> PMD_SHIFT;
482	} else
483		pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT;
484	tables += round_up(pmds * sizeof(pmd_t), PAGE_SIZE);
485
486	if (cpu_has_pse) {
487		unsigned long extra;
488		extra = end - ((end>>PMD_SHIFT) << PMD_SHIFT);
489		ptes = (extra + PAGE_SIZE - 1) >> PAGE_SHIFT;
490	} else
491		ptes = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
492	tables += round_up(ptes * sizeof(pte_t), PAGE_SIZE);
493
494	/*
495	 * RED-PEN putting page tables only on node 0 could
496	 * cause a hotspot and fill up ZONE_DMA. The page tables
497	 * need roughly 0.5KB per GB.
498	 */
499	start = 0x8000;
500	table_start = find_e820_area(start, end, tables, PAGE_SIZE);
501	if (table_start == -1UL)
502		panic("Cannot find space for the kernel page tables");
503
504	table_start >>= PAGE_SHIFT;
505	table_end = table_start;
506	table_top = table_start + (tables >> PAGE_SHIFT);
507
508	printk(KERN_DEBUG "kernel direct mapping tables up to %lx @ %lx-%lx\n",
509		end, table_start << PAGE_SHIFT, table_top << PAGE_SHIFT);
510}
511
512static void __init init_gbpages(void)
513{
514	if (direct_gbpages && cpu_has_gbpages)
515		printk(KERN_INFO "Using GB pages for direct mapping\n");
516	else
517		direct_gbpages = 0;
518}
519
520static unsigned long __init kernel_physical_mapping_init(unsigned long start,
521						unsigned long end,
522						unsigned long page_size_mask)
523{
524
525	unsigned long next, last_map_addr = end;
526
527	start = (unsigned long)__va(start);
528	end = (unsigned long)__va(end);
529
530	for (; start < end; start = next) {
531		pgd_t *pgd = pgd_offset_k(start);
532		unsigned long pud_phys;
533		pud_t *pud;
534
535		next = (start + PGDIR_SIZE) & PGDIR_MASK;
536		if (next > end)
537			next = end;
538
539		if (pgd_val(*pgd)) {
540			last_map_addr = phys_pud_update(pgd, __pa(start),
541						 __pa(end), page_size_mask);
542			continue;
543		}
544
545		if (after_bootmem)
546			pud = pud_offset(pgd, start & PGDIR_MASK);
547		else
548			pud = alloc_low_page(&pud_phys);
549
550		last_map_addr = phys_pud_init(pud, __pa(start), __pa(next),
551						 page_size_mask);
552		unmap_low_page(pud);
553		pgd_populate(&init_mm, pgd_offset_k(start),
554			     __va(pud_phys));
555	}
556
557	return last_map_addr;
558}
559
560struct map_range {
561	unsigned long start;
562	unsigned long end;
563	unsigned page_size_mask;
564};
565
566#define NR_RANGE_MR 5
567
568static int save_mr(struct map_range *mr, int nr_range,
569		   unsigned long start_pfn, unsigned long end_pfn,
570		   unsigned long page_size_mask)
571{
572
573	if (start_pfn < end_pfn) {
574		if (nr_range >= NR_RANGE_MR)
575			panic("run out of range for init_memory_mapping\n");
576		mr[nr_range].start = start_pfn<<PAGE_SHIFT;
577		mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
578		mr[nr_range].page_size_mask = page_size_mask;
579		nr_range++;
580	}
581
582	return nr_range;
583}
584
585/*
586 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
587 * This runs before bootmem is initialized and gets pages directly from
588 * the physical memory. To access them they are temporarily mapped.
589 */
590unsigned long __init_refok init_memory_mapping(unsigned long start,
591					       unsigned long end)
592{
593	unsigned long last_map_addr = 0;
594	unsigned long page_size_mask = 0;
595	unsigned long start_pfn, end_pfn;
596
597	struct map_range mr[NR_RANGE_MR];
598	int nr_range, i;
599
600	printk(KERN_INFO "init_memory_mapping\n");
601
602	/*
603	 * Find space for the kernel direct mapping tables.
604	 *
605	 * Later we should allocate these tables in the local node of the
606	 * memory mapped. Unfortunately this is done currently before the
607	 * nodes are discovered.
608	 */
609	if (!after_bootmem)
610		init_gbpages();
611
612	if (direct_gbpages)
613		page_size_mask |= 1 << PG_LEVEL_1G;
614	if (cpu_has_pse)
615		page_size_mask |= 1 << PG_LEVEL_2M;
616
617	memset(mr, 0, sizeof(mr));
618	nr_range = 0;
619
620	/* head if not big page alignment ?*/
621	start_pfn = start >> PAGE_SHIFT;
622	end_pfn = ((start + (PMD_SIZE - 1)) >> PMD_SHIFT)
623			<< (PMD_SHIFT - PAGE_SHIFT);
624	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
625
626	/* big page (2M) range*/
627	start_pfn = ((start + (PMD_SIZE - 1))>>PMD_SHIFT)
628			 << (PMD_SHIFT - PAGE_SHIFT);
629	end_pfn = ((start + (PUD_SIZE - 1))>>PUD_SHIFT)
630			 << (PUD_SHIFT - PAGE_SHIFT);
631	if (end_pfn > ((end>>PUD_SHIFT)<<(PUD_SHIFT - PAGE_SHIFT)))
632		end_pfn = ((end>>PUD_SHIFT)<<(PUD_SHIFT - PAGE_SHIFT));
633	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
634			page_size_mask & (1<<PG_LEVEL_2M));
635
636	/* big page (1G) range */
637	start_pfn = end_pfn;
638	end_pfn = (end>>PUD_SHIFT) << (PUD_SHIFT - PAGE_SHIFT);
639	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
640				page_size_mask &
641				 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
642
643	/* tail is not big page (1G) alignment */
644	start_pfn = end_pfn;
645	end_pfn = (end>>PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT);
646	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
647			page_size_mask & (1<<PG_LEVEL_2M));
648
649	/* tail is not big page (2M) alignment */
650	start_pfn = end_pfn;
651	end_pfn = end>>PAGE_SHIFT;
652	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
653
654	/* try to merge same page size and continuous */
655	for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
656		unsigned long old_start;
657		if (mr[i].end != mr[i+1].start ||
658		    mr[i].page_size_mask != mr[i+1].page_size_mask)
659			continue;
660		/* move it */
661		old_start = mr[i].start;
662		memmove(&mr[i], &mr[i+1],
663			 (nr_range - 1 - i) * sizeof (struct map_range));
664		mr[i].start = old_start;
665		nr_range--;
666	}
667
668	for (i = 0; i < nr_range; i++)
669		printk(KERN_DEBUG " %010lx - %010lx page %s\n",
670				mr[i].start, mr[i].end,
671			(mr[i].page_size_mask & (1<<PG_LEVEL_1G))?"1G":(
672			 (mr[i].page_size_mask & (1<<PG_LEVEL_2M))?"2M":"4k"));
673
674	if (!after_bootmem)
675		find_early_table_space(end);
676
677	for (i = 0; i < nr_range; i++)
678		last_map_addr = kernel_physical_mapping_init(
679					mr[i].start, mr[i].end,
680					mr[i].page_size_mask);
681
682	if (!after_bootmem)
683		mmu_cr4_features = read_cr4();
684	__flush_tlb_all();
685
686	if (!after_bootmem && table_end > table_start)
687		reserve_early(table_start << PAGE_SHIFT,
688				 table_end << PAGE_SHIFT, "PGTABLE");
689
690	printk(KERN_INFO "last_map_addr: %lx end: %lx\n",
691			 last_map_addr, end);
692
693	if (!after_bootmem)
694		early_memtest(start, end);
695
696	return last_map_addr >> PAGE_SHIFT;
697}
698
699#ifndef CONFIG_NUMA
700void __init initmem_init(unsigned long start_pfn, unsigned long end_pfn)
701{
702	unsigned long bootmap_size, bootmap;
703
704	bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
705	bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size,
706				 PAGE_SIZE);
707	if (bootmap == -1L)
708		panic("Cannot find bootmem map of size %ld\n", bootmap_size);
709	/* don't touch min_low_pfn */
710	bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap >> PAGE_SHIFT,
711					 0, end_pfn);
712	e820_register_active_regions(0, start_pfn, end_pfn);
713	free_bootmem_with_active_regions(0, end_pfn);
714	early_res_to_bootmem(0, end_pfn<<PAGE_SHIFT);
715	reserve_bootmem(bootmap, bootmap_size, BOOTMEM_DEFAULT);
716}
717
718void __init paging_init(void)
719{
720	unsigned long max_zone_pfns[MAX_NR_ZONES];
721
722	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
723	max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
724	max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
725	max_zone_pfns[ZONE_NORMAL] = max_pfn;
726
727	memory_present(0, 0, max_pfn);
728	sparse_init();
729	free_area_init_nodes(max_zone_pfns);
730}
731#endif
732
733/*
734 * Memory hotplug specific functions
735 */
736#ifdef CONFIG_MEMORY_HOTPLUG
737/*
738 * Memory is added always to NORMAL zone. This means you will never get
739 * additional DMA/DMA32 memory.
740 */
741int arch_add_memory(int nid, u64 start, u64 size)
742{
743	struct pglist_data *pgdat = NODE_DATA(nid);
744	struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
745	unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
746	unsigned long nr_pages = size >> PAGE_SHIFT;
747	int ret;
748
749	last_mapped_pfn = init_memory_mapping(start, start + size-1);
750	if (last_mapped_pfn > max_pfn_mapped)
751		max_pfn_mapped = last_mapped_pfn;
752
753	ret = __add_pages(zone, start_pfn, nr_pages);
754	WARN_ON(1);
755
756	return ret;
757}
758EXPORT_SYMBOL_GPL(arch_add_memory);
759
760#if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
761int memory_add_physaddr_to_nid(u64 start)
762{
763	return 0;
764}
765EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
766#endif
767
768#endif /* CONFIG_MEMORY_HOTPLUG */
769
770/*
771 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
772 * is valid. The argument is a physical page number.
773 *
774 *
775 * On x86, access has to be given to the first megabyte of ram because that area
776 * contains bios code and data regions used by X and dosemu and similar apps.
777 * Access has to be given to non-kernel-ram areas as well, these contain the PCI
778 * mmio resources as well as potential bios/acpi data regions.
779 */
780int devmem_is_allowed(unsigned long pagenr)
781{
782	if (pagenr <= 256)
783		return 1;
784	if (!page_is_ram(pagenr))
785		return 1;
786	return 0;
787}
788
789
790static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel,
791			 kcore_modules, kcore_vsyscall;
792
793void __init mem_init(void)
794{
795	long codesize, reservedpages, datasize, initsize;
796
797	pci_iommu_alloc();
798
799	/* clear_bss() already clear the empty_zero_page */
800
801	reservedpages = 0;
802
803	/* this will put all low memory onto the freelists */
804#ifdef CONFIG_NUMA
805	totalram_pages = numa_free_all_bootmem();
806#else
807	totalram_pages = free_all_bootmem();
808#endif
809	reservedpages = max_pfn - totalram_pages -
810					absent_pages_in_range(0, max_pfn);
811	after_bootmem = 1;
812
813	codesize =  (unsigned long) &_etext - (unsigned long) &_text;
814	datasize =  (unsigned long) &_edata - (unsigned long) &_etext;
815	initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin;
816
817	/* Register memory areas for /proc/kcore */
818	kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
819	kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
820		   VMALLOC_END-VMALLOC_START);
821	kclist_add(&kcore_kernel, &_stext, _end - _stext);
822	kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
823	kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
824				 VSYSCALL_END - VSYSCALL_START);
825
826	printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
827				"%ldk reserved, %ldk data, %ldk init)\n",
828		(unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
829		max_pfn << (PAGE_SHIFT-10),
830		codesize >> 10,
831		reservedpages << (PAGE_SHIFT-10),
832		datasize >> 10,
833		initsize >> 10);
834
835	cpa_init();
836}
837
838void free_init_pages(char *what, unsigned long begin, unsigned long end)
839{
840	unsigned long addr = begin;
841
842	if (addr >= end)
843		return;
844
845	/*
846	 * If debugging page accesses then do not free this memory but
847	 * mark them not present - any buggy init-section access will
848	 * create a kernel page fault:
849	 */
850#ifdef CONFIG_DEBUG_PAGEALLOC
851	printk(KERN_INFO "debug: unmapping init memory %08lx..%08lx\n",
852		begin, PAGE_ALIGN(end));
853	set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
854#else
855	printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
856
857	for (; addr < end; addr += PAGE_SIZE) {
858		ClearPageReserved(virt_to_page(addr));
859		init_page_count(virt_to_page(addr));
860		memset((void *)(addr & ~(PAGE_SIZE-1)),
861			POISON_FREE_INITMEM, PAGE_SIZE);
862		free_page(addr);
863		totalram_pages++;
864	}
865#endif
866}
867
868void free_initmem(void)
869{
870	free_init_pages("unused kernel memory",
871			(unsigned long)(&__init_begin),
872			(unsigned long)(&__init_end));
873}
874
875#ifdef CONFIG_DEBUG_RODATA
876const int rodata_test_data = 0xC3;
877EXPORT_SYMBOL_GPL(rodata_test_data);
878
879void mark_rodata_ro(void)
880{
881	unsigned long start = PFN_ALIGN(_stext), end = PFN_ALIGN(__end_rodata);
882	unsigned long rodata_start =
883		((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
884
885#ifdef CONFIG_DYNAMIC_FTRACE
886	/* Dynamic tracing modifies the kernel text section */
887	start = rodata_start;
888#endif
889
890	printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
891	       (end - start) >> 10);
892	set_memory_ro(start, (end - start) >> PAGE_SHIFT);
893
894	/*
895	 * The rodata section (but not the kernel text!) should also be
896	 * not-executable.
897	 */
898	set_memory_nx(rodata_start, (end - rodata_start) >> PAGE_SHIFT);
899
900	rodata_test();
901
902#ifdef CONFIG_CPA_DEBUG
903	printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
904	set_memory_rw(start, (end-start) >> PAGE_SHIFT);
905
906	printk(KERN_INFO "Testing CPA: again\n");
907	set_memory_ro(start, (end-start) >> PAGE_SHIFT);
908#endif
909}
910
911#endif
912
913#ifdef CONFIG_BLK_DEV_INITRD
914void free_initrd_mem(unsigned long start, unsigned long end)
915{
916	free_init_pages("initrd memory", start, end);
917}
918#endif
919
920int __init reserve_bootmem_generic(unsigned long phys, unsigned long len,
921				   int flags)
922{
923#ifdef CONFIG_NUMA
924	int nid, next_nid;
925	int ret;
926#endif
927	unsigned long pfn = phys >> PAGE_SHIFT;
928
929	if (pfn >= max_pfn) {
930		/*
931		 * This can happen with kdump kernels when accessing
932		 * firmware tables:
933		 */
934		if (pfn < max_pfn_mapped)
935			return -EFAULT;
936
937		printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %lu\n",
938				phys, len);
939		return -EFAULT;
940	}
941
942	/* Should check here against the e820 map to avoid double free */
943#ifdef CONFIG_NUMA
944	nid = phys_to_nid(phys);
945	next_nid = phys_to_nid(phys + len - 1);
946	if (nid == next_nid)
947		ret = reserve_bootmem_node(NODE_DATA(nid), phys, len, flags);
948	else
949		ret = reserve_bootmem(phys, len, flags);
950
951	if (ret != 0)
952		return ret;
953
954#else
955	reserve_bootmem(phys, len, BOOTMEM_DEFAULT);
956#endif
957
958	if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
959		dma_reserve += len / PAGE_SIZE;
960		set_dma_reserve(dma_reserve);
961	}
962
963	return 0;
964}
965
966int kern_addr_valid(unsigned long addr)
967{
968	unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
969	pgd_t *pgd;
970	pud_t *pud;
971	pmd_t *pmd;
972	pte_t *pte;
973
974	if (above != 0 && above != -1UL)
975		return 0;
976
977	pgd = pgd_offset_k(addr);
978	if (pgd_none(*pgd))
979		return 0;
980
981	pud = pud_offset(pgd, addr);
982	if (pud_none(*pud))
983		return 0;
984
985	pmd = pmd_offset(pud, addr);
986	if (pmd_none(*pmd))
987		return 0;
988
989	if (pmd_large(*pmd))
990		return pfn_valid(pmd_pfn(*pmd));
991
992	pte = pte_offset_kernel(pmd, addr);
993	if (pte_none(*pte))
994		return 0;
995
996	return pfn_valid(pte_pfn(*pte));
997}
998
999/*
1000 * A pseudo VMA to allow ptrace access for the vsyscall page.  This only
1001 * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
1002 * not need special handling anymore:
1003 */
1004static struct vm_area_struct gate_vma = {
1005	.vm_start	= VSYSCALL_START,
1006	.vm_end		= VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
1007	.vm_page_prot	= PAGE_READONLY_EXEC,
1008	.vm_flags	= VM_READ | VM_EXEC
1009};
1010
1011struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
1012{
1013#ifdef CONFIG_IA32_EMULATION
1014	if (test_tsk_thread_flag(tsk, TIF_IA32))
1015		return NULL;
1016#endif
1017	return &gate_vma;
1018}
1019
1020int in_gate_area(struct task_struct *task, unsigned long addr)
1021{
1022	struct vm_area_struct *vma = get_gate_vma(task);
1023
1024	if (!vma)
1025		return 0;
1026
1027	return (addr >= vma->vm_start) && (addr < vma->vm_end);
1028}
1029
1030/*
1031 * Use this when you have no reliable task/vma, typically from interrupt
1032 * context. It is less reliable than using the task's vma and may give
1033 * false positives:
1034 */
1035int in_gate_area_no_task(unsigned long addr)
1036{
1037	return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
1038}
1039
1040const char *arch_vma_name(struct vm_area_struct *vma)
1041{
1042	if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
1043		return "[vdso]";
1044	if (vma == &gate_vma)
1045		return "[vsyscall]";
1046	return NULL;
1047}
1048
1049#ifdef CONFIG_SPARSEMEM_VMEMMAP
1050/*
1051 * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1052 */
1053static long __meminitdata addr_start, addr_end;
1054static void __meminitdata *p_start, *p_end;
1055static int __meminitdata node_start;
1056
1057int __meminit
1058vmemmap_populate(struct page *start_page, unsigned long size, int node)
1059{
1060	unsigned long addr = (unsigned long)start_page;
1061	unsigned long end = (unsigned long)(start_page + size);
1062	unsigned long next;
1063	pgd_t *pgd;
1064	pud_t *pud;
1065	pmd_t *pmd;
1066
1067	for (; addr < end; addr = next) {
1068		void *p = NULL;
1069
1070		pgd = vmemmap_pgd_populate(addr, node);
1071		if (!pgd)
1072			return -ENOMEM;
1073
1074		pud = vmemmap_pud_populate(pgd, addr, node);
1075		if (!pud)
1076			return -ENOMEM;
1077
1078		if (!cpu_has_pse) {
1079			next = (addr + PAGE_SIZE) & PAGE_MASK;
1080			pmd = vmemmap_pmd_populate(pud, addr, node);
1081
1082			if (!pmd)
1083				return -ENOMEM;
1084
1085			p = vmemmap_pte_populate(pmd, addr, node);
1086
1087			if (!p)
1088				return -ENOMEM;
1089
1090			addr_end = addr + PAGE_SIZE;
1091			p_end = p + PAGE_SIZE;
1092		} else {
1093			next = pmd_addr_end(addr, end);
1094
1095			pmd = pmd_offset(pud, addr);
1096			if (pmd_none(*pmd)) {
1097				pte_t entry;
1098
1099				p = vmemmap_alloc_block(PMD_SIZE, node);
1100				if (!p)
1101					return -ENOMEM;
1102
1103				entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1104						PAGE_KERNEL_LARGE);
1105				set_pmd(pmd, __pmd(pte_val(entry)));
1106
1107				/* check to see if we have contiguous blocks */
1108				if (p_end != p || node_start != node) {
1109					if (p_start)
1110						printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1111						       addr_start, addr_end-1, p_start, p_end-1, node_start);
1112					addr_start = addr;
1113					node_start = node;
1114					p_start = p;
1115				}
1116
1117				addr_end = addr + PMD_SIZE;
1118				p_end = p + PMD_SIZE;
1119			} else
1120				vmemmap_verify((pte_t *)pmd, node, addr, next);
1121		}
1122
1123	}
1124	return 0;
1125}
1126
1127void __meminit vmemmap_populate_print_last(void)
1128{
1129	if (p_start) {
1130		printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1131			addr_start, addr_end-1, p_start, p_end-1, node_start);
1132		p_start = NULL;
1133		p_end = NULL;
1134		node_start = 0;
1135	}
1136}
1137#endif
1138