init_64.c revision 304e629bf4a3150a0bf6556fc45c52c5c082340f
1/*
2 *  linux/arch/x86_64/mm/init.c
3 *
4 *  Copyright (C) 1995  Linus Torvalds
5 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
6 *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7 */
8
9#include <linux/signal.h>
10#include <linux/sched.h>
11#include <linux/kernel.h>
12#include <linux/errno.h>
13#include <linux/string.h>
14#include <linux/types.h>
15#include <linux/ptrace.h>
16#include <linux/mman.h>
17#include <linux/mm.h>
18#include <linux/swap.h>
19#include <linux/smp.h>
20#include <linux/init.h>
21#include <linux/initrd.h>
22#include <linux/pagemap.h>
23#include <linux/bootmem.h>
24#include <linux/proc_fs.h>
25#include <linux/pci.h>
26#include <linux/pfn.h>
27#include <linux/poison.h>
28#include <linux/dma-mapping.h>
29#include <linux/module.h>
30#include <linux/memory_hotplug.h>
31#include <linux/nmi.h>
32
33#include <asm/processor.h>
34#include <asm/bios_ebda.h>
35#include <asm/system.h>
36#include <asm/uaccess.h>
37#include <asm/pgtable.h>
38#include <asm/pgalloc.h>
39#include <asm/dma.h>
40#include <asm/fixmap.h>
41#include <asm/e820.h>
42#include <asm/apic.h>
43#include <asm/tlb.h>
44#include <asm/mmu_context.h>
45#include <asm/proto.h>
46#include <asm/smp.h>
47#include <asm/sections.h>
48#include <asm/kdebug.h>
49#include <asm/numa.h>
50#include <asm/cacheflush.h>
51
52/*
53 * end_pfn only includes RAM, while max_pfn_mapped includes all e820 entries.
54 * The direct mapping extends to max_pfn_mapped, so that we can directly access
55 * apertures, ACPI and other tables without having to play with fixmaps.
56 */
57unsigned long max_low_pfn_mapped;
58unsigned long max_pfn_mapped;
59
60static unsigned long dma_reserve __initdata;
61
62DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
63
64int direct_gbpages
65#ifdef CONFIG_DIRECT_GBPAGES
66				= 1
67#endif
68;
69
70static int __init parse_direct_gbpages_off(char *arg)
71{
72	direct_gbpages = 0;
73	return 0;
74}
75early_param("nogbpages", parse_direct_gbpages_off);
76
77static int __init parse_direct_gbpages_on(char *arg)
78{
79	direct_gbpages = 1;
80	return 0;
81}
82early_param("gbpages", parse_direct_gbpages_on);
83
84/*
85 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
86 * physical space so we can cache the place of the first one and move
87 * around without checking the pgd every time.
88 */
89
90int after_bootmem;
91
92pteval_t __supported_pte_mask __read_mostly = ~_PAGE_IOMAP;
93EXPORT_SYMBOL_GPL(__supported_pte_mask);
94
95static int do_not_nx __cpuinitdata;
96
97/*
98 * noexec=on|off
99 * Control non-executable mappings for 64-bit processes.
100 *
101 * on	Enable (default)
102 * off	Disable
103 */
104static int __init nonx_setup(char *str)
105{
106	if (!str)
107		return -EINVAL;
108	if (!strncmp(str, "on", 2)) {
109		__supported_pte_mask |= _PAGE_NX;
110		do_not_nx = 0;
111	} else if (!strncmp(str, "off", 3)) {
112		do_not_nx = 1;
113		__supported_pte_mask &= ~_PAGE_NX;
114	}
115	return 0;
116}
117early_param("noexec", nonx_setup);
118
119void __cpuinit check_efer(void)
120{
121	unsigned long efer;
122
123	rdmsrl(MSR_EFER, efer);
124	if (!(efer & EFER_NX) || do_not_nx)
125		__supported_pte_mask &= ~_PAGE_NX;
126}
127
128int force_personality32;
129
130/*
131 * noexec32=on|off
132 * Control non executable heap for 32bit processes.
133 * To control the stack too use noexec=off
134 *
135 * on	PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
136 * off	PROT_READ implies PROT_EXEC
137 */
138static int __init nonx32_setup(char *str)
139{
140	if (!strcmp(str, "on"))
141		force_personality32 &= ~READ_IMPLIES_EXEC;
142	else if (!strcmp(str, "off"))
143		force_personality32 |= READ_IMPLIES_EXEC;
144	return 1;
145}
146__setup("noexec32=", nonx32_setup);
147
148/*
149 * NOTE: This function is marked __ref because it calls __init function
150 * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
151 */
152static __ref void *spp_getpage(void)
153{
154	void *ptr;
155
156	if (after_bootmem)
157		ptr = (void *) get_zeroed_page(GFP_ATOMIC);
158	else
159		ptr = alloc_bootmem_pages(PAGE_SIZE);
160
161	if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
162		panic("set_pte_phys: cannot allocate page data %s\n",
163			after_bootmem ? "after bootmem" : "");
164	}
165
166	pr_debug("spp_getpage %p\n", ptr);
167
168	return ptr;
169}
170
171void
172set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
173{
174	pud_t *pud;
175	pmd_t *pmd;
176	pte_t *pte;
177
178	pud = pud_page + pud_index(vaddr);
179	if (pud_none(*pud)) {
180		pmd = (pmd_t *) spp_getpage();
181		pud_populate(&init_mm, pud, pmd);
182		if (pmd != pmd_offset(pud, 0)) {
183			printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
184				pmd, pmd_offset(pud, 0));
185			return;
186		}
187	}
188	pmd = pmd_offset(pud, vaddr);
189	if (pmd_none(*pmd)) {
190		pte = (pte_t *) spp_getpage();
191		pmd_populate_kernel(&init_mm, pmd, pte);
192		if (pte != pte_offset_kernel(pmd, 0)) {
193			printk(KERN_ERR "PAGETABLE BUG #02!\n");
194			return;
195		}
196	}
197
198	pte = pte_offset_kernel(pmd, vaddr);
199	set_pte(pte, new_pte);
200
201	/*
202	 * It's enough to flush this one mapping.
203	 * (PGE mappings get flushed as well)
204	 */
205	__flush_tlb_one(vaddr);
206}
207
208void
209set_pte_vaddr(unsigned long vaddr, pte_t pteval)
210{
211	pgd_t *pgd;
212	pud_t *pud_page;
213
214	pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
215
216	pgd = pgd_offset_k(vaddr);
217	if (pgd_none(*pgd)) {
218		printk(KERN_ERR
219			"PGD FIXMAP MISSING, it should be setup in head.S!\n");
220		return;
221	}
222	pud_page = (pud_t*)pgd_page_vaddr(*pgd);
223	set_pte_vaddr_pud(pud_page, vaddr, pteval);
224}
225
226/*
227 * Create large page table mappings for a range of physical addresses.
228 */
229static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
230						pgprot_t prot)
231{
232	pgd_t *pgd;
233	pud_t *pud;
234	pmd_t *pmd;
235
236	BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
237	for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
238		pgd = pgd_offset_k((unsigned long)__va(phys));
239		if (pgd_none(*pgd)) {
240			pud = (pud_t *) spp_getpage();
241			set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
242						_PAGE_USER));
243		}
244		pud = pud_offset(pgd, (unsigned long)__va(phys));
245		if (pud_none(*pud)) {
246			pmd = (pmd_t *) spp_getpage();
247			set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
248						_PAGE_USER));
249		}
250		pmd = pmd_offset(pud, phys);
251		BUG_ON(!pmd_none(*pmd));
252		set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
253	}
254}
255
256void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
257{
258	__init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
259}
260
261void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
262{
263	__init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
264}
265
266/*
267 * The head.S code sets up the kernel high mapping:
268 *
269 *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
270 *
271 * phys_addr holds the negative offset to the kernel, which is added
272 * to the compile time generated pmds. This results in invalid pmds up
273 * to the point where we hit the physaddr 0 mapping.
274 *
275 * We limit the mappings to the region from _text to _end.  _end is
276 * rounded up to the 2MB boundary. This catches the invalid pmds as
277 * well, as they are located before _text:
278 */
279void __init cleanup_highmap(void)
280{
281	unsigned long vaddr = __START_KERNEL_map;
282	unsigned long end = roundup((unsigned long)_end, PMD_SIZE) - 1;
283	pmd_t *pmd = level2_kernel_pgt;
284	pmd_t *last_pmd = pmd + PTRS_PER_PMD;
285
286	for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
287		if (pmd_none(*pmd))
288			continue;
289		if (vaddr < (unsigned long) _text || vaddr > end)
290			set_pmd(pmd, __pmd(0));
291	}
292}
293
294static unsigned long __initdata table_start;
295static unsigned long __meminitdata table_end;
296static unsigned long __meminitdata table_top;
297
298static __ref void *alloc_low_page(unsigned long *phys)
299{
300	unsigned long pfn = table_end++;
301	void *adr;
302
303	if (after_bootmem) {
304		adr = (void *)get_zeroed_page(GFP_ATOMIC);
305		*phys = __pa(adr);
306
307		return adr;
308	}
309
310	if (pfn >= table_top)
311		panic("alloc_low_page: ran out of memory");
312
313	adr = early_memremap(pfn * PAGE_SIZE, PAGE_SIZE);
314	memset(adr, 0, PAGE_SIZE);
315	*phys  = pfn * PAGE_SIZE;
316	return adr;
317}
318
319static __ref void unmap_low_page(void *adr)
320{
321	if (after_bootmem)
322		return;
323
324	early_iounmap(adr, PAGE_SIZE);
325}
326
327static unsigned long __meminit
328phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
329	      pgprot_t prot)
330{
331	unsigned pages = 0;
332	unsigned long last_map_addr = end;
333	int i;
334
335	pte_t *pte = pte_page + pte_index(addr);
336
337	for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) {
338
339		if (addr >= end) {
340			if (!after_bootmem) {
341				for(; i < PTRS_PER_PTE; i++, pte++)
342					set_pte(pte, __pte(0));
343			}
344			break;
345		}
346
347		/*
348		 * We will re-use the existing mapping.
349		 * Xen for example has some special requirements, like mapping
350		 * pagetable pages as RO. So assume someone who pre-setup
351		 * these mappings are more intelligent.
352		 */
353		if (pte_val(*pte))
354			continue;
355
356		if (0)
357			printk("   pte=%p addr=%lx pte=%016lx\n",
358			       pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
359		pages++;
360		set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
361		last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
362	}
363
364	update_page_count(PG_LEVEL_4K, pages);
365
366	return last_map_addr;
367}
368
369static unsigned long __meminit
370phys_pte_update(pmd_t *pmd, unsigned long address, unsigned long end,
371		pgprot_t prot)
372{
373	pte_t *pte = (pte_t *)pmd_page_vaddr(*pmd);
374
375	return phys_pte_init(pte, address, end, prot);
376}
377
378static unsigned long __meminit
379phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
380	      unsigned long page_size_mask, pgprot_t prot)
381{
382	unsigned long pages = 0;
383	unsigned long last_map_addr = end;
384
385	int i = pmd_index(address);
386
387	for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
388		unsigned long pte_phys;
389		pmd_t *pmd = pmd_page + pmd_index(address);
390		pte_t *pte;
391		pgprot_t new_prot = prot;
392
393		if (address >= end) {
394			if (!after_bootmem) {
395				for (; i < PTRS_PER_PMD; i++, pmd++)
396					set_pmd(pmd, __pmd(0));
397			}
398			break;
399		}
400
401		if (pmd_val(*pmd)) {
402			if (!pmd_large(*pmd)) {
403				spin_lock(&init_mm.page_table_lock);
404				last_map_addr = phys_pte_update(pmd, address,
405								end, prot);
406				spin_unlock(&init_mm.page_table_lock);
407				continue;
408			}
409			/*
410			 * If we are ok with PG_LEVEL_2M mapping, then we will
411			 * use the existing mapping,
412			 *
413			 * Otherwise, we will split the large page mapping but
414			 * use the same existing protection bits except for
415			 * large page, so that we don't violate Intel's TLB
416			 * Application note (317080) which says, while changing
417			 * the page sizes, new and old translations should
418			 * not differ with respect to page frame and
419			 * attributes.
420			 */
421			if (page_size_mask & (1 << PG_LEVEL_2M))
422				continue;
423			new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
424		}
425
426		if (page_size_mask & (1<<PG_LEVEL_2M)) {
427			pages++;
428			spin_lock(&init_mm.page_table_lock);
429			set_pte((pte_t *)pmd,
430				pfn_pte(address >> PAGE_SHIFT,
431					__pgprot(pgprot_val(prot) | _PAGE_PSE)));
432			spin_unlock(&init_mm.page_table_lock);
433			last_map_addr = (address & PMD_MASK) + PMD_SIZE;
434			continue;
435		}
436
437		pte = alloc_low_page(&pte_phys);
438		last_map_addr = phys_pte_init(pte, address, end, new_prot);
439		unmap_low_page(pte);
440
441		spin_lock(&init_mm.page_table_lock);
442		pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
443		spin_unlock(&init_mm.page_table_lock);
444	}
445	update_page_count(PG_LEVEL_2M, pages);
446	return last_map_addr;
447}
448
449static unsigned long __meminit
450phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end,
451		unsigned long page_size_mask, pgprot_t prot)
452{
453	pmd_t *pmd = pmd_offset(pud, 0);
454	unsigned long last_map_addr;
455
456	last_map_addr = phys_pmd_init(pmd, address, end, page_size_mask, prot);
457	__flush_tlb_all();
458	return last_map_addr;
459}
460
461static unsigned long __meminit
462phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
463			 unsigned long page_size_mask)
464{
465	unsigned long pages = 0;
466	unsigned long last_map_addr = end;
467	int i = pud_index(addr);
468
469	for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
470		unsigned long pmd_phys;
471		pud_t *pud = pud_page + pud_index(addr);
472		pmd_t *pmd;
473		pgprot_t prot = PAGE_KERNEL;
474
475		if (addr >= end)
476			break;
477
478		if (!after_bootmem &&
479				!e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
480			set_pud(pud, __pud(0));
481			continue;
482		}
483
484		if (pud_val(*pud)) {
485			if (!pud_large(*pud)) {
486				last_map_addr = phys_pmd_update(pud, addr, end,
487							 page_size_mask, prot);
488				continue;
489			}
490			/*
491			 * If we are ok with PG_LEVEL_1G mapping, then we will
492			 * use the existing mapping.
493			 *
494			 * Otherwise, we will split the gbpage mapping but use
495			 * the same existing protection  bits except for large
496			 * page, so that we don't violate Intel's TLB
497			 * Application note (317080) which says, while changing
498			 * the page sizes, new and old translations should
499			 * not differ with respect to page frame and
500			 * attributes.
501			 */
502			if (page_size_mask & (1 << PG_LEVEL_1G))
503				continue;
504			prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
505		}
506
507		if (page_size_mask & (1<<PG_LEVEL_1G)) {
508			pages++;
509			spin_lock(&init_mm.page_table_lock);
510			set_pte((pte_t *)pud,
511				pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
512			spin_unlock(&init_mm.page_table_lock);
513			last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
514			continue;
515		}
516
517		pmd = alloc_low_page(&pmd_phys);
518		last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
519					      prot);
520		unmap_low_page(pmd);
521
522		spin_lock(&init_mm.page_table_lock);
523		pud_populate(&init_mm, pud, __va(pmd_phys));
524		spin_unlock(&init_mm.page_table_lock);
525	}
526	__flush_tlb_all();
527
528	update_page_count(PG_LEVEL_1G, pages);
529
530	return last_map_addr;
531}
532
533static unsigned long __meminit
534phys_pud_update(pgd_t *pgd, unsigned long addr, unsigned long end,
535		 unsigned long page_size_mask)
536{
537	pud_t *pud;
538
539	pud = (pud_t *)pgd_page_vaddr(*pgd);
540
541	return phys_pud_init(pud, addr, end, page_size_mask);
542}
543
544static void __init find_early_table_space(unsigned long end, int use_pse,
545					  int use_gbpages)
546{
547	unsigned long puds, pmds, ptes, tables, start;
548
549	puds = (end + PUD_SIZE - 1) >> PUD_SHIFT;
550	tables = roundup(puds * sizeof(pud_t), PAGE_SIZE);
551	if (use_gbpages) {
552		unsigned long extra;
553		extra = end - ((end>>PUD_SHIFT) << PUD_SHIFT);
554		pmds = (extra + PMD_SIZE - 1) >> PMD_SHIFT;
555	} else
556		pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT;
557	tables += roundup(pmds * sizeof(pmd_t), PAGE_SIZE);
558
559	if (use_pse) {
560		unsigned long extra;
561		extra = end - ((end>>PMD_SHIFT) << PMD_SHIFT);
562		ptes = (extra + PAGE_SIZE - 1) >> PAGE_SHIFT;
563	} else
564		ptes = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
565	tables += roundup(ptes * sizeof(pte_t), PAGE_SIZE);
566
567	/*
568	 * RED-PEN putting page tables only on node 0 could
569	 * cause a hotspot and fill up ZONE_DMA. The page tables
570	 * need roughly 0.5KB per GB.
571	 */
572	start = 0x8000;
573	table_start = find_e820_area(start, end, tables, PAGE_SIZE);
574	if (table_start == -1UL)
575		panic("Cannot find space for the kernel page tables");
576
577	table_start >>= PAGE_SHIFT;
578	table_end = table_start;
579	table_top = table_start + (tables >> PAGE_SHIFT);
580
581	printk(KERN_DEBUG "kernel direct mapping tables up to %lx @ %lx-%lx\n",
582		end, table_start << PAGE_SHIFT, table_top << PAGE_SHIFT);
583}
584
585static void __init init_gbpages(void)
586{
587	if (direct_gbpages && cpu_has_gbpages)
588		printk(KERN_INFO "Using GB pages for direct mapping\n");
589	else
590		direct_gbpages = 0;
591}
592
593static unsigned long __init kernel_physical_mapping_init(unsigned long start,
594						unsigned long end,
595						unsigned long page_size_mask)
596{
597
598	unsigned long next, last_map_addr = end;
599
600	start = (unsigned long)__va(start);
601	end = (unsigned long)__va(end);
602
603	for (; start < end; start = next) {
604		pgd_t *pgd = pgd_offset_k(start);
605		unsigned long pud_phys;
606		pud_t *pud;
607
608		next = (start + PGDIR_SIZE) & PGDIR_MASK;
609		if (next > end)
610			next = end;
611
612		if (pgd_val(*pgd)) {
613			last_map_addr = phys_pud_update(pgd, __pa(start),
614						 __pa(end), page_size_mask);
615			continue;
616		}
617
618		pud = alloc_low_page(&pud_phys);
619		last_map_addr = phys_pud_init(pud, __pa(start), __pa(next),
620						 page_size_mask);
621		unmap_low_page(pud);
622
623		spin_lock(&init_mm.page_table_lock);
624		pgd_populate(&init_mm, pgd, __va(pud_phys));
625		spin_unlock(&init_mm.page_table_lock);
626	}
627	__flush_tlb_all();
628
629	return last_map_addr;
630}
631
632struct map_range {
633	unsigned long start;
634	unsigned long end;
635	unsigned page_size_mask;
636};
637
638#define NR_RANGE_MR 5
639
640static int save_mr(struct map_range *mr, int nr_range,
641		   unsigned long start_pfn, unsigned long end_pfn,
642		   unsigned long page_size_mask)
643{
644
645	if (start_pfn < end_pfn) {
646		if (nr_range >= NR_RANGE_MR)
647			panic("run out of range for init_memory_mapping\n");
648		mr[nr_range].start = start_pfn<<PAGE_SHIFT;
649		mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
650		mr[nr_range].page_size_mask = page_size_mask;
651		nr_range++;
652	}
653
654	return nr_range;
655}
656
657/*
658 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
659 * This runs before bootmem is initialized and gets pages directly from
660 * the physical memory. To access them they are temporarily mapped.
661 */
662unsigned long __init_refok init_memory_mapping(unsigned long start,
663					       unsigned long end)
664{
665	unsigned long last_map_addr = 0;
666	unsigned long page_size_mask = 0;
667	unsigned long start_pfn, end_pfn;
668
669	struct map_range mr[NR_RANGE_MR];
670	int nr_range, i;
671	int use_pse, use_gbpages;
672
673	printk(KERN_INFO "init_memory_mapping\n");
674
675	/*
676	 * Find space for the kernel direct mapping tables.
677	 *
678	 * Later we should allocate these tables in the local node of the
679	 * memory mapped. Unfortunately this is done currently before the
680	 * nodes are discovered.
681	 */
682	if (!after_bootmem)
683		init_gbpages();
684
685#ifdef CONFIG_DEBUG_PAGEALLOC
686	/*
687	 * For CONFIG_DEBUG_PAGEALLOC, identity mapping will use small pages.
688	 * This will simplify cpa(), which otherwise needs to support splitting
689	 * large pages into small in interrupt context, etc.
690	 */
691	use_pse = use_gbpages = 0;
692#else
693	use_pse = cpu_has_pse;
694	use_gbpages = direct_gbpages;
695#endif
696
697	if (use_gbpages)
698		page_size_mask |= 1 << PG_LEVEL_1G;
699	if (use_pse)
700		page_size_mask |= 1 << PG_LEVEL_2M;
701
702	memset(mr, 0, sizeof(mr));
703	nr_range = 0;
704
705	/* head if not big page alignment ?*/
706	start_pfn = start >> PAGE_SHIFT;
707	end_pfn = ((start + (PMD_SIZE - 1)) >> PMD_SHIFT)
708			<< (PMD_SHIFT - PAGE_SHIFT);
709	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
710
711	/* big page (2M) range*/
712	start_pfn = ((start + (PMD_SIZE - 1))>>PMD_SHIFT)
713			 << (PMD_SHIFT - PAGE_SHIFT);
714	end_pfn = ((start + (PUD_SIZE - 1))>>PUD_SHIFT)
715			 << (PUD_SHIFT - PAGE_SHIFT);
716	if (end_pfn > ((end>>PUD_SHIFT)<<(PUD_SHIFT - PAGE_SHIFT)))
717		end_pfn = ((end>>PUD_SHIFT)<<(PUD_SHIFT - PAGE_SHIFT));
718	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
719			page_size_mask & (1<<PG_LEVEL_2M));
720
721	/* big page (1G) range */
722	start_pfn = end_pfn;
723	end_pfn = (end>>PUD_SHIFT) << (PUD_SHIFT - PAGE_SHIFT);
724	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
725				page_size_mask &
726				 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
727
728	/* tail is not big page (1G) alignment */
729	start_pfn = end_pfn;
730	end_pfn = (end>>PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT);
731	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
732			page_size_mask & (1<<PG_LEVEL_2M));
733
734	/* tail is not big page (2M) alignment */
735	start_pfn = end_pfn;
736	end_pfn = end>>PAGE_SHIFT;
737	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
738
739	/* try to merge same page size and continuous */
740	for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
741		unsigned long old_start;
742		if (mr[i].end != mr[i+1].start ||
743		    mr[i].page_size_mask != mr[i+1].page_size_mask)
744			continue;
745		/* move it */
746		old_start = mr[i].start;
747		memmove(&mr[i], &mr[i+1],
748			 (nr_range - 1 - i) * sizeof (struct map_range));
749		mr[i--].start = old_start;
750		nr_range--;
751	}
752
753	for (i = 0; i < nr_range; i++)
754		printk(KERN_DEBUG " %010lx - %010lx page %s\n",
755				mr[i].start, mr[i].end,
756			(mr[i].page_size_mask & (1<<PG_LEVEL_1G))?"1G":(
757			 (mr[i].page_size_mask & (1<<PG_LEVEL_2M))?"2M":"4k"));
758
759	if (!after_bootmem)
760		find_early_table_space(end, use_pse, use_gbpages);
761
762	for (i = 0; i < nr_range; i++)
763		last_map_addr = kernel_physical_mapping_init(
764					mr[i].start, mr[i].end,
765					mr[i].page_size_mask);
766
767	if (!after_bootmem)
768		mmu_cr4_features = read_cr4();
769	__flush_tlb_all();
770
771	if (!after_bootmem && table_end > table_start)
772		reserve_early(table_start << PAGE_SHIFT,
773				 table_end << PAGE_SHIFT, "PGTABLE");
774
775	printk(KERN_INFO "last_map_addr: %lx end: %lx\n",
776			 last_map_addr, end);
777
778	if (!after_bootmem)
779		early_memtest(start, end);
780
781	return last_map_addr >> PAGE_SHIFT;
782}
783
784#ifndef CONFIG_NUMA
785void __init initmem_init(unsigned long start_pfn, unsigned long end_pfn)
786{
787	unsigned long bootmap_size, bootmap;
788
789	bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
790	bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size,
791				 PAGE_SIZE);
792	if (bootmap == -1L)
793		panic("Cannot find bootmem map of size %ld\n", bootmap_size);
794	/* don't touch min_low_pfn */
795	bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap >> PAGE_SHIFT,
796					 0, end_pfn);
797	e820_register_active_regions(0, start_pfn, end_pfn);
798	free_bootmem_with_active_regions(0, end_pfn);
799	early_res_to_bootmem(0, end_pfn<<PAGE_SHIFT);
800	reserve_bootmem(bootmap, bootmap_size, BOOTMEM_DEFAULT);
801}
802
803void __init paging_init(void)
804{
805	unsigned long max_zone_pfns[MAX_NR_ZONES];
806
807	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
808	max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
809	max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
810	max_zone_pfns[ZONE_NORMAL] = max_pfn;
811
812	memory_present(0, 0, max_pfn);
813	sparse_init();
814	free_area_init_nodes(max_zone_pfns);
815}
816#endif
817
818/*
819 * Memory hotplug specific functions
820 */
821#ifdef CONFIG_MEMORY_HOTPLUG
822/*
823 * Memory is added always to NORMAL zone. This means you will never get
824 * additional DMA/DMA32 memory.
825 */
826int arch_add_memory(int nid, u64 start, u64 size)
827{
828	struct pglist_data *pgdat = NODE_DATA(nid);
829	struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
830	unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
831	unsigned long nr_pages = size >> PAGE_SHIFT;
832	int ret;
833
834	last_mapped_pfn = init_memory_mapping(start, start + size-1);
835	if (last_mapped_pfn > max_pfn_mapped)
836		max_pfn_mapped = last_mapped_pfn;
837
838	ret = __add_pages(zone, start_pfn, nr_pages);
839	WARN_ON(1);
840
841	return ret;
842}
843EXPORT_SYMBOL_GPL(arch_add_memory);
844
845#if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
846int memory_add_physaddr_to_nid(u64 start)
847{
848	return 0;
849}
850EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
851#endif
852
853#endif /* CONFIG_MEMORY_HOTPLUG */
854
855/*
856 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
857 * is valid. The argument is a physical page number.
858 *
859 *
860 * On x86, access has to be given to the first megabyte of ram because that area
861 * contains bios code and data regions used by X and dosemu and similar apps.
862 * Access has to be given to non-kernel-ram areas as well, these contain the PCI
863 * mmio resources as well as potential bios/acpi data regions.
864 */
865int devmem_is_allowed(unsigned long pagenr)
866{
867	if (pagenr <= 256)
868		return 1;
869	if (!page_is_ram(pagenr))
870		return 1;
871	return 0;
872}
873
874
875static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel,
876			 kcore_modules, kcore_vsyscall;
877
878void __init mem_init(void)
879{
880	long codesize, reservedpages, datasize, initsize;
881
882	pci_iommu_alloc();
883
884	/* clear_bss() already clear the empty_zero_page */
885
886	reservedpages = 0;
887
888	/* this will put all low memory onto the freelists */
889#ifdef CONFIG_NUMA
890	totalram_pages = numa_free_all_bootmem();
891#else
892	totalram_pages = free_all_bootmem();
893#endif
894	reservedpages = max_pfn - totalram_pages -
895					absent_pages_in_range(0, max_pfn);
896	after_bootmem = 1;
897
898	codesize =  (unsigned long) &_etext - (unsigned long) &_text;
899	datasize =  (unsigned long) &_edata - (unsigned long) &_etext;
900	initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin;
901
902	/* Register memory areas for /proc/kcore */
903	kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
904	kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
905		   VMALLOC_END-VMALLOC_START);
906	kclist_add(&kcore_kernel, &_stext, _end - _stext);
907	kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
908	kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
909				 VSYSCALL_END - VSYSCALL_START);
910
911	printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
912				"%ldk reserved, %ldk data, %ldk init)\n",
913		(unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
914		max_pfn << (PAGE_SHIFT-10),
915		codesize >> 10,
916		reservedpages << (PAGE_SHIFT-10),
917		datasize >> 10,
918		initsize >> 10);
919}
920
921void free_init_pages(char *what, unsigned long begin, unsigned long end)
922{
923	unsigned long addr = begin;
924
925	if (addr >= end)
926		return;
927
928	/*
929	 * If debugging page accesses then do not free this memory but
930	 * mark them not present - any buggy init-section access will
931	 * create a kernel page fault:
932	 */
933#ifdef CONFIG_DEBUG_PAGEALLOC
934	printk(KERN_INFO "debug: unmapping init memory %08lx..%08lx\n",
935		begin, PAGE_ALIGN(end));
936	set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
937#else
938	printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
939
940	for (; addr < end; addr += PAGE_SIZE) {
941		ClearPageReserved(virt_to_page(addr));
942		init_page_count(virt_to_page(addr));
943		memset((void *)(addr & ~(PAGE_SIZE-1)),
944			POISON_FREE_INITMEM, PAGE_SIZE);
945		free_page(addr);
946		totalram_pages++;
947	}
948#endif
949}
950
951void free_initmem(void)
952{
953	free_init_pages("unused kernel memory",
954			(unsigned long)(&__init_begin),
955			(unsigned long)(&__init_end));
956}
957
958#ifdef CONFIG_DEBUG_RODATA
959const int rodata_test_data = 0xC3;
960EXPORT_SYMBOL_GPL(rodata_test_data);
961
962void mark_rodata_ro(void)
963{
964	unsigned long start = PFN_ALIGN(_stext), end = PFN_ALIGN(__end_rodata);
965	unsigned long rodata_start =
966		((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
967
968#ifdef CONFIG_DYNAMIC_FTRACE
969	/* Dynamic tracing modifies the kernel text section */
970	start = rodata_start;
971#endif
972
973	printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
974	       (end - start) >> 10);
975	set_memory_ro(start, (end - start) >> PAGE_SHIFT);
976
977	/*
978	 * The rodata section (but not the kernel text!) should also be
979	 * not-executable.
980	 */
981	set_memory_nx(rodata_start, (end - rodata_start) >> PAGE_SHIFT);
982
983	rodata_test();
984
985#ifdef CONFIG_CPA_DEBUG
986	printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
987	set_memory_rw(start, (end-start) >> PAGE_SHIFT);
988
989	printk(KERN_INFO "Testing CPA: again\n");
990	set_memory_ro(start, (end-start) >> PAGE_SHIFT);
991#endif
992}
993
994#endif
995
996#ifdef CONFIG_BLK_DEV_INITRD
997void free_initrd_mem(unsigned long start, unsigned long end)
998{
999	free_init_pages("initrd memory", start, end);
1000}
1001#endif
1002
1003int __init reserve_bootmem_generic(unsigned long phys, unsigned long len,
1004				   int flags)
1005{
1006#ifdef CONFIG_NUMA
1007	int nid, next_nid;
1008	int ret;
1009#endif
1010	unsigned long pfn = phys >> PAGE_SHIFT;
1011
1012	if (pfn >= max_pfn) {
1013		/*
1014		 * This can happen with kdump kernels when accessing
1015		 * firmware tables:
1016		 */
1017		if (pfn < max_pfn_mapped)
1018			return -EFAULT;
1019
1020		printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %lu\n",
1021				phys, len);
1022		return -EFAULT;
1023	}
1024
1025	/* Should check here against the e820 map to avoid double free */
1026#ifdef CONFIG_NUMA
1027	nid = phys_to_nid(phys);
1028	next_nid = phys_to_nid(phys + len - 1);
1029	if (nid == next_nid)
1030		ret = reserve_bootmem_node(NODE_DATA(nid), phys, len, flags);
1031	else
1032		ret = reserve_bootmem(phys, len, flags);
1033
1034	if (ret != 0)
1035		return ret;
1036
1037#else
1038	reserve_bootmem(phys, len, BOOTMEM_DEFAULT);
1039#endif
1040
1041	if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
1042		dma_reserve += len / PAGE_SIZE;
1043		set_dma_reserve(dma_reserve);
1044	}
1045
1046	return 0;
1047}
1048
1049int kern_addr_valid(unsigned long addr)
1050{
1051	unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
1052	pgd_t *pgd;
1053	pud_t *pud;
1054	pmd_t *pmd;
1055	pte_t *pte;
1056
1057	if (above != 0 && above != -1UL)
1058		return 0;
1059
1060	pgd = pgd_offset_k(addr);
1061	if (pgd_none(*pgd))
1062		return 0;
1063
1064	pud = pud_offset(pgd, addr);
1065	if (pud_none(*pud))
1066		return 0;
1067
1068	pmd = pmd_offset(pud, addr);
1069	if (pmd_none(*pmd))
1070		return 0;
1071
1072	if (pmd_large(*pmd))
1073		return pfn_valid(pmd_pfn(*pmd));
1074
1075	pte = pte_offset_kernel(pmd, addr);
1076	if (pte_none(*pte))
1077		return 0;
1078
1079	return pfn_valid(pte_pfn(*pte));
1080}
1081
1082/*
1083 * A pseudo VMA to allow ptrace access for the vsyscall page.  This only
1084 * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
1085 * not need special handling anymore:
1086 */
1087static struct vm_area_struct gate_vma = {
1088	.vm_start	= VSYSCALL_START,
1089	.vm_end		= VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
1090	.vm_page_prot	= PAGE_READONLY_EXEC,
1091	.vm_flags	= VM_READ | VM_EXEC
1092};
1093
1094struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
1095{
1096#ifdef CONFIG_IA32_EMULATION
1097	if (test_tsk_thread_flag(tsk, TIF_IA32))
1098		return NULL;
1099#endif
1100	return &gate_vma;
1101}
1102
1103int in_gate_area(struct task_struct *task, unsigned long addr)
1104{
1105	struct vm_area_struct *vma = get_gate_vma(task);
1106
1107	if (!vma)
1108		return 0;
1109
1110	return (addr >= vma->vm_start) && (addr < vma->vm_end);
1111}
1112
1113/*
1114 * Use this when you have no reliable task/vma, typically from interrupt
1115 * context. It is less reliable than using the task's vma and may give
1116 * false positives:
1117 */
1118int in_gate_area_no_task(unsigned long addr)
1119{
1120	return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
1121}
1122
1123const char *arch_vma_name(struct vm_area_struct *vma)
1124{
1125	if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
1126		return "[vdso]";
1127	if (vma == &gate_vma)
1128		return "[vsyscall]";
1129	return NULL;
1130}
1131
1132#ifdef CONFIG_SPARSEMEM_VMEMMAP
1133/*
1134 * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1135 */
1136static long __meminitdata addr_start, addr_end;
1137static void __meminitdata *p_start, *p_end;
1138static int __meminitdata node_start;
1139
1140int __meminit
1141vmemmap_populate(struct page *start_page, unsigned long size, int node)
1142{
1143	unsigned long addr = (unsigned long)start_page;
1144	unsigned long end = (unsigned long)(start_page + size);
1145	unsigned long next;
1146	pgd_t *pgd;
1147	pud_t *pud;
1148	pmd_t *pmd;
1149
1150	for (; addr < end; addr = next) {
1151		void *p = NULL;
1152
1153		pgd = vmemmap_pgd_populate(addr, node);
1154		if (!pgd)
1155			return -ENOMEM;
1156
1157		pud = vmemmap_pud_populate(pgd, addr, node);
1158		if (!pud)
1159			return -ENOMEM;
1160
1161		if (!cpu_has_pse) {
1162			next = (addr + PAGE_SIZE) & PAGE_MASK;
1163			pmd = vmemmap_pmd_populate(pud, addr, node);
1164
1165			if (!pmd)
1166				return -ENOMEM;
1167
1168			p = vmemmap_pte_populate(pmd, addr, node);
1169
1170			if (!p)
1171				return -ENOMEM;
1172
1173			addr_end = addr + PAGE_SIZE;
1174			p_end = p + PAGE_SIZE;
1175		} else {
1176			next = pmd_addr_end(addr, end);
1177
1178			pmd = pmd_offset(pud, addr);
1179			if (pmd_none(*pmd)) {
1180				pte_t entry;
1181
1182				p = vmemmap_alloc_block(PMD_SIZE, node);
1183				if (!p)
1184					return -ENOMEM;
1185
1186				entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1187						PAGE_KERNEL_LARGE);
1188				set_pmd(pmd, __pmd(pte_val(entry)));
1189
1190				/* check to see if we have contiguous blocks */
1191				if (p_end != p || node_start != node) {
1192					if (p_start)
1193						printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1194						       addr_start, addr_end-1, p_start, p_end-1, node_start);
1195					addr_start = addr;
1196					node_start = node;
1197					p_start = p;
1198				}
1199
1200				addr_end = addr + PMD_SIZE;
1201				p_end = p + PMD_SIZE;
1202			} else
1203				vmemmap_verify((pte_t *)pmd, node, addr, next);
1204		}
1205
1206	}
1207	return 0;
1208}
1209
1210void __meminit vmemmap_populate_print_last(void)
1211{
1212	if (p_start) {
1213		printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1214			addr_start, addr_end-1, p_start, p_end-1, node_start);
1215		p_start = NULL;
1216		p_end = NULL;
1217		node_start = 0;
1218	}
1219}
1220#endif
1221