init_64.c revision 49a2bf7303b0dc5fccbb3ff7cf2e7751f0e3953d
1/*
2 *  linux/arch/x86_64/mm/init.c
3 *
4 *  Copyright (C) 1995  Linus Torvalds
5 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
6 *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7 */
8
9#include <linux/signal.h>
10#include <linux/sched.h>
11#include <linux/kernel.h>
12#include <linux/errno.h>
13#include <linux/string.h>
14#include <linux/types.h>
15#include <linux/ptrace.h>
16#include <linux/mman.h>
17#include <linux/mm.h>
18#include <linux/swap.h>
19#include <linux/smp.h>
20#include <linux/init.h>
21#include <linux/initrd.h>
22#include <linux/pagemap.h>
23#include <linux/bootmem.h>
24#include <linux/proc_fs.h>
25#include <linux/pci.h>
26#include <linux/pfn.h>
27#include <linux/poison.h>
28#include <linux/dma-mapping.h>
29#include <linux/module.h>
30#include <linux/memory_hotplug.h>
31#include <linux/nmi.h>
32
33#include <asm/processor.h>
34#include <asm/bios_ebda.h>
35#include <asm/system.h>
36#include <asm/uaccess.h>
37#include <asm/pgtable.h>
38#include <asm/pgalloc.h>
39#include <asm/dma.h>
40#include <asm/fixmap.h>
41#include <asm/e820.h>
42#include <asm/apic.h>
43#include <asm/tlb.h>
44#include <asm/mmu_context.h>
45#include <asm/proto.h>
46#include <asm/smp.h>
47#include <asm/sections.h>
48#include <asm/kdebug.h>
49#include <asm/numa.h>
50#include <asm/cacheflush.h>
51
52/*
53 * end_pfn only includes RAM, while max_pfn_mapped includes all e820 entries.
54 * The direct mapping extends to max_pfn_mapped, so that we can directly access
55 * apertures, ACPI and other tables without having to play with fixmaps.
56 */
57unsigned long max_low_pfn_mapped;
58unsigned long max_pfn_mapped;
59
60static unsigned long dma_reserve __initdata;
61
62DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
63
64int direct_gbpages
65#ifdef CONFIG_DIRECT_GBPAGES
66				= 1
67#endif
68;
69
70static int __init parse_direct_gbpages_off(char *arg)
71{
72	direct_gbpages = 0;
73	return 0;
74}
75early_param("nogbpages", parse_direct_gbpages_off);
76
77static int __init parse_direct_gbpages_on(char *arg)
78{
79	direct_gbpages = 1;
80	return 0;
81}
82early_param("gbpages", parse_direct_gbpages_on);
83
84/*
85 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
86 * physical space so we can cache the place of the first one and move
87 * around without checking the pgd every time.
88 */
89
90int after_bootmem;
91
92pteval_t __supported_pte_mask __read_mostly = ~_PAGE_IOMAP;
93EXPORT_SYMBOL_GPL(__supported_pte_mask);
94
95static int do_not_nx __cpuinitdata;
96
97/*
98 * noexec=on|off
99 * Control non-executable mappings for 64-bit processes.
100 *
101 * on	Enable (default)
102 * off	Disable
103 */
104static int __init nonx_setup(char *str)
105{
106	if (!str)
107		return -EINVAL;
108	if (!strncmp(str, "on", 2)) {
109		__supported_pte_mask |= _PAGE_NX;
110		do_not_nx = 0;
111	} else if (!strncmp(str, "off", 3)) {
112		do_not_nx = 1;
113		__supported_pte_mask &= ~_PAGE_NX;
114	}
115	return 0;
116}
117early_param("noexec", nonx_setup);
118
119void __cpuinit check_efer(void)
120{
121	unsigned long efer;
122
123	rdmsrl(MSR_EFER, efer);
124	if (!(efer & EFER_NX) || do_not_nx)
125		__supported_pte_mask &= ~_PAGE_NX;
126}
127
128int force_personality32;
129
130/*
131 * noexec32=on|off
132 * Control non executable heap for 32bit processes.
133 * To control the stack too use noexec=off
134 *
135 * on	PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
136 * off	PROT_READ implies PROT_EXEC
137 */
138static int __init nonx32_setup(char *str)
139{
140	if (!strcmp(str, "on"))
141		force_personality32 &= ~READ_IMPLIES_EXEC;
142	else if (!strcmp(str, "off"))
143		force_personality32 |= READ_IMPLIES_EXEC;
144	return 1;
145}
146__setup("noexec32=", nonx32_setup);
147
148/*
149 * NOTE: This function is marked __ref because it calls __init function
150 * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
151 */
152static __ref void *spp_getpage(void)
153{
154	void *ptr;
155
156	if (after_bootmem)
157		ptr = (void *) get_zeroed_page(GFP_ATOMIC);
158	else
159		ptr = alloc_bootmem_pages(PAGE_SIZE);
160
161	if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
162		panic("set_pte_phys: cannot allocate page data %s\n",
163			after_bootmem ? "after bootmem" : "");
164	}
165
166	pr_debug("spp_getpage %p\n", ptr);
167
168	return ptr;
169}
170
171void
172set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
173{
174	pud_t *pud;
175	pmd_t *pmd;
176	pte_t *pte;
177
178	pud = pud_page + pud_index(vaddr);
179	if (pud_none(*pud)) {
180		pmd = (pmd_t *) spp_getpage();
181		pud_populate(&init_mm, pud, pmd);
182		if (pmd != pmd_offset(pud, 0)) {
183			printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
184				pmd, pmd_offset(pud, 0));
185			return;
186		}
187	}
188	pmd = pmd_offset(pud, vaddr);
189	if (pmd_none(*pmd)) {
190		pte = (pte_t *) spp_getpage();
191		pmd_populate_kernel(&init_mm, pmd, pte);
192		if (pte != pte_offset_kernel(pmd, 0)) {
193			printk(KERN_ERR "PAGETABLE BUG #02!\n");
194			return;
195		}
196	}
197
198	pte = pte_offset_kernel(pmd, vaddr);
199	set_pte(pte, new_pte);
200
201	/*
202	 * It's enough to flush this one mapping.
203	 * (PGE mappings get flushed as well)
204	 */
205	__flush_tlb_one(vaddr);
206}
207
208void
209set_pte_vaddr(unsigned long vaddr, pte_t pteval)
210{
211	pgd_t *pgd;
212	pud_t *pud_page;
213
214	pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
215
216	pgd = pgd_offset_k(vaddr);
217	if (pgd_none(*pgd)) {
218		printk(KERN_ERR
219			"PGD FIXMAP MISSING, it should be setup in head.S!\n");
220		return;
221	}
222	pud_page = (pud_t*)pgd_page_vaddr(*pgd);
223	set_pte_vaddr_pud(pud_page, vaddr, pteval);
224}
225
226/*
227 * Create large page table mappings for a range of physical addresses.
228 */
229static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
230						pgprot_t prot)
231{
232	pgd_t *pgd;
233	pud_t *pud;
234	pmd_t *pmd;
235
236	BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
237	for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
238		pgd = pgd_offset_k((unsigned long)__va(phys));
239		if (pgd_none(*pgd)) {
240			pud = (pud_t *) spp_getpage();
241			set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
242						_PAGE_USER));
243		}
244		pud = pud_offset(pgd, (unsigned long)__va(phys));
245		if (pud_none(*pud)) {
246			pmd = (pmd_t *) spp_getpage();
247			set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
248						_PAGE_USER));
249		}
250		pmd = pmd_offset(pud, phys);
251		BUG_ON(!pmd_none(*pmd));
252		set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
253	}
254}
255
256void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
257{
258	__init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
259}
260
261void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
262{
263	__init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
264}
265
266/*
267 * The head.S code sets up the kernel high mapping:
268 *
269 *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
270 *
271 * phys_addr holds the negative offset to the kernel, which is added
272 * to the compile time generated pmds. This results in invalid pmds up
273 * to the point where we hit the physaddr 0 mapping.
274 *
275 * We limit the mappings to the region from _text to _end.  _end is
276 * rounded up to the 2MB boundary. This catches the invalid pmds as
277 * well, as they are located before _text:
278 */
279void __init cleanup_highmap(void)
280{
281	unsigned long vaddr = __START_KERNEL_map;
282	unsigned long end = roundup((unsigned long)_end, PMD_SIZE) - 1;
283	pmd_t *pmd = level2_kernel_pgt;
284	pmd_t *last_pmd = pmd + PTRS_PER_PMD;
285
286	for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
287		if (pmd_none(*pmd))
288			continue;
289		if (vaddr < (unsigned long) _text || vaddr > end)
290			set_pmd(pmd, __pmd(0));
291	}
292}
293
294static unsigned long __initdata table_start;
295static unsigned long __meminitdata table_end;
296static unsigned long __meminitdata table_top;
297
298static __ref void *alloc_low_page(unsigned long *phys)
299{
300	unsigned long pfn = table_end++;
301	void *adr;
302
303	if (after_bootmem) {
304		adr = (void *)get_zeroed_page(GFP_ATOMIC);
305		*phys = __pa(adr);
306
307		return adr;
308	}
309
310	if (pfn >= table_top)
311		panic("alloc_low_page: ran out of memory");
312
313	adr = early_memremap(pfn * PAGE_SIZE, PAGE_SIZE);
314	memset(adr, 0, PAGE_SIZE);
315	*phys  = pfn * PAGE_SIZE;
316	return adr;
317}
318
319static __ref void unmap_low_page(void *adr)
320{
321	if (after_bootmem)
322		return;
323
324	early_iounmap(adr, PAGE_SIZE);
325}
326
327static unsigned long __meminit
328phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
329	      pgprot_t prot)
330{
331	unsigned pages = 0;
332	unsigned long last_map_addr = end;
333	int i;
334
335	pte_t *pte = pte_page + pte_index(addr);
336
337	for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) {
338
339		if (addr >= end) {
340			if (!after_bootmem) {
341				for(; i < PTRS_PER_PTE; i++, pte++)
342					set_pte(pte, __pte(0));
343			}
344			break;
345		}
346
347		/*
348		 * We will re-use the existing mapping.
349		 * Xen for example has some special requirements, like mapping
350		 * pagetable pages as RO. So assume someone who pre-setup
351		 * these mappings are more intelligent.
352		 */
353		if (pte_val(*pte)) {
354			pages++;
355			continue;
356		}
357
358		if (0)
359			printk("   pte=%p addr=%lx pte=%016lx\n",
360			       pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
361		pages++;
362		set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
363		last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
364	}
365
366	update_page_count(PG_LEVEL_4K, pages);
367
368	return last_map_addr;
369}
370
371static unsigned long __meminit
372phys_pte_update(pmd_t *pmd, unsigned long address, unsigned long end,
373		pgprot_t prot)
374{
375	pte_t *pte = (pte_t *)pmd_page_vaddr(*pmd);
376
377	return phys_pte_init(pte, address, end, prot);
378}
379
380static unsigned long __meminit
381phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
382	      unsigned long page_size_mask, pgprot_t prot)
383{
384	unsigned long pages = 0;
385	unsigned long last_map_addr = end;
386
387	int i = pmd_index(address);
388
389	for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
390		unsigned long pte_phys;
391		pmd_t *pmd = pmd_page + pmd_index(address);
392		pte_t *pte;
393		pgprot_t new_prot = prot;
394
395		if (address >= end) {
396			if (!after_bootmem) {
397				for (; i < PTRS_PER_PMD; i++, pmd++)
398					set_pmd(pmd, __pmd(0));
399			}
400			break;
401		}
402
403		if (pmd_val(*pmd)) {
404			if (!pmd_large(*pmd)) {
405				spin_lock(&init_mm.page_table_lock);
406				last_map_addr = phys_pte_update(pmd, address,
407								end, prot);
408				spin_unlock(&init_mm.page_table_lock);
409				continue;
410			}
411			/*
412			 * If we are ok with PG_LEVEL_2M mapping, then we will
413			 * use the existing mapping,
414			 *
415			 * Otherwise, we will split the large page mapping but
416			 * use the same existing protection bits except for
417			 * large page, so that we don't violate Intel's TLB
418			 * Application note (317080) which says, while changing
419			 * the page sizes, new and old translations should
420			 * not differ with respect to page frame and
421			 * attributes.
422			 */
423			if (page_size_mask & (1 << PG_LEVEL_2M)) {
424				pages++;
425				continue;
426			}
427			new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
428		}
429
430		if (page_size_mask & (1<<PG_LEVEL_2M)) {
431			pages++;
432			spin_lock(&init_mm.page_table_lock);
433			set_pte((pte_t *)pmd,
434				pfn_pte(address >> PAGE_SHIFT,
435					__pgprot(pgprot_val(prot) | _PAGE_PSE)));
436			spin_unlock(&init_mm.page_table_lock);
437			last_map_addr = (address & PMD_MASK) + PMD_SIZE;
438			continue;
439		}
440
441		pte = alloc_low_page(&pte_phys);
442		last_map_addr = phys_pte_init(pte, address, end, new_prot);
443		unmap_low_page(pte);
444
445		spin_lock(&init_mm.page_table_lock);
446		pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
447		spin_unlock(&init_mm.page_table_lock);
448	}
449	update_page_count(PG_LEVEL_2M, pages);
450	return last_map_addr;
451}
452
453static unsigned long __meminit
454phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end,
455		unsigned long page_size_mask, pgprot_t prot)
456{
457	pmd_t *pmd = pmd_offset(pud, 0);
458	unsigned long last_map_addr;
459
460	last_map_addr = phys_pmd_init(pmd, address, end, page_size_mask, prot);
461	__flush_tlb_all();
462	return last_map_addr;
463}
464
465static unsigned long __meminit
466phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
467			 unsigned long page_size_mask)
468{
469	unsigned long pages = 0;
470	unsigned long last_map_addr = end;
471	int i = pud_index(addr);
472
473	for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
474		unsigned long pmd_phys;
475		pud_t *pud = pud_page + pud_index(addr);
476		pmd_t *pmd;
477		pgprot_t prot = PAGE_KERNEL;
478
479		if (addr >= end)
480			break;
481
482		if (!after_bootmem &&
483				!e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
484			set_pud(pud, __pud(0));
485			continue;
486		}
487
488		if (pud_val(*pud)) {
489			if (!pud_large(*pud)) {
490				last_map_addr = phys_pmd_update(pud, addr, end,
491							 page_size_mask, prot);
492				continue;
493			}
494			/*
495			 * If we are ok with PG_LEVEL_1G mapping, then we will
496			 * use the existing mapping.
497			 *
498			 * Otherwise, we will split the gbpage mapping but use
499			 * the same existing protection  bits except for large
500			 * page, so that we don't violate Intel's TLB
501			 * Application note (317080) which says, while changing
502			 * the page sizes, new and old translations should
503			 * not differ with respect to page frame and
504			 * attributes.
505			 */
506			if (page_size_mask & (1 << PG_LEVEL_1G)) {
507				pages++;
508				continue;
509			}
510			prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
511		}
512
513		if (page_size_mask & (1<<PG_LEVEL_1G)) {
514			pages++;
515			spin_lock(&init_mm.page_table_lock);
516			set_pte((pte_t *)pud,
517				pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
518			spin_unlock(&init_mm.page_table_lock);
519			last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
520			continue;
521		}
522
523		pmd = alloc_low_page(&pmd_phys);
524		last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
525					      prot);
526		unmap_low_page(pmd);
527
528		spin_lock(&init_mm.page_table_lock);
529		pud_populate(&init_mm, pud, __va(pmd_phys));
530		spin_unlock(&init_mm.page_table_lock);
531	}
532	__flush_tlb_all();
533
534	update_page_count(PG_LEVEL_1G, pages);
535
536	return last_map_addr;
537}
538
539static unsigned long __meminit
540phys_pud_update(pgd_t *pgd, unsigned long addr, unsigned long end,
541		 unsigned long page_size_mask)
542{
543	pud_t *pud;
544
545	pud = (pud_t *)pgd_page_vaddr(*pgd);
546
547	return phys_pud_init(pud, addr, end, page_size_mask);
548}
549
550static void __init find_early_table_space(unsigned long end, int use_pse,
551					  int use_gbpages)
552{
553	unsigned long puds, pmds, ptes, tables, start;
554
555	puds = (end + PUD_SIZE - 1) >> PUD_SHIFT;
556	tables = roundup(puds * sizeof(pud_t), PAGE_SIZE);
557
558	if (use_gbpages) {
559		unsigned long extra;
560
561		extra = end - ((end>>PUD_SHIFT) << PUD_SHIFT);
562		pmds = (extra + PMD_SIZE - 1) >> PMD_SHIFT;
563	} else
564		pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT;
565
566	tables += roundup(pmds * sizeof(pmd_t), PAGE_SIZE);
567
568	if (use_pse) {
569		unsigned long extra;
570
571		extra = end - ((end>>PMD_SHIFT) << PMD_SHIFT);
572#ifdef CONFIG_X86_32
573		extra += PMD_SIZE;
574#endif
575		ptes = (extra + PAGE_SIZE - 1) >> PAGE_SHIFT;
576	} else
577		ptes = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
578
579	tables += roundup(ptes * sizeof(pte_t), PAGE_SIZE);
580
581#ifdef CONFIG_X86_32
582	/* for fixmap */
583	tables += roundup(__end_of_fixed_addresses * sizeof(pte_t), PAGE_SIZE);
584#endif
585
586	/*
587	 * RED-PEN putting page tables only on node 0 could
588	 * cause a hotspot and fill up ZONE_DMA. The page tables
589	 * need roughly 0.5KB per GB.
590	 */
591#ifdef CONFIG_X86_32
592	start = 0x7000;
593	table_start = find_e820_area(start, max_pfn_mapped<<PAGE_SHIFT,
594					tables, PAGE_SIZE);
595#else /* CONFIG_X86_64 */
596	start = 0x8000;
597	table_start = find_e820_area(start, end, tables, PAGE_SIZE);
598#endif
599	if (table_start == -1UL)
600		panic("Cannot find space for the kernel page tables");
601
602	table_start >>= PAGE_SHIFT;
603	table_end = table_start;
604	table_top = table_start + (tables >> PAGE_SHIFT);
605
606	printk(KERN_DEBUG "kernel direct mapping tables up to %lx @ %lx-%lx\n",
607		end, table_start << PAGE_SHIFT, table_top << PAGE_SHIFT);
608}
609
610static void __init init_gbpages(void)
611{
612	if (direct_gbpages && cpu_has_gbpages)
613		printk(KERN_INFO "Using GB pages for direct mapping\n");
614	else
615		direct_gbpages = 0;
616}
617
618static unsigned long __meminit kernel_physical_mapping_init(unsigned long start,
619						unsigned long end,
620						unsigned long page_size_mask)
621{
622
623	unsigned long next, last_map_addr = end;
624
625	start = (unsigned long)__va(start);
626	end = (unsigned long)__va(end);
627
628	for (; start < end; start = next) {
629		pgd_t *pgd = pgd_offset_k(start);
630		unsigned long pud_phys;
631		pud_t *pud;
632
633		next = (start + PGDIR_SIZE) & PGDIR_MASK;
634		if (next > end)
635			next = end;
636
637		if (pgd_val(*pgd)) {
638			last_map_addr = phys_pud_update(pgd, __pa(start),
639						 __pa(end), page_size_mask);
640			continue;
641		}
642
643		pud = alloc_low_page(&pud_phys);
644		last_map_addr = phys_pud_init(pud, __pa(start), __pa(next),
645						 page_size_mask);
646		unmap_low_page(pud);
647
648		spin_lock(&init_mm.page_table_lock);
649		pgd_populate(&init_mm, pgd, __va(pud_phys));
650		spin_unlock(&init_mm.page_table_lock);
651	}
652	__flush_tlb_all();
653
654	return last_map_addr;
655}
656
657struct map_range {
658	unsigned long start;
659	unsigned long end;
660	unsigned page_size_mask;
661};
662
663#define NR_RANGE_MR 5
664
665static int save_mr(struct map_range *mr, int nr_range,
666		   unsigned long start_pfn, unsigned long end_pfn,
667		   unsigned long page_size_mask)
668{
669	if (start_pfn < end_pfn) {
670		if (nr_range >= NR_RANGE_MR)
671			panic("run out of range for init_memory_mapping\n");
672		mr[nr_range].start = start_pfn<<PAGE_SHIFT;
673		mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
674		mr[nr_range].page_size_mask = page_size_mask;
675		nr_range++;
676	}
677
678	return nr_range;
679}
680
681/*
682 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
683 * This runs before bootmem is initialized and gets pages directly from
684 * the physical memory. To access them they are temporarily mapped.
685 */
686unsigned long __init_refok init_memory_mapping(unsigned long start,
687					       unsigned long end)
688{
689	unsigned long last_map_addr = 0;
690	unsigned long page_size_mask = 0;
691	unsigned long start_pfn, end_pfn;
692	unsigned long pos;
693
694	struct map_range mr[NR_RANGE_MR];
695	int nr_range, i;
696	int use_pse, use_gbpages;
697
698	printk(KERN_INFO "init_memory_mapping: %016lx-%016lx\n", start, end);
699
700	if (!after_bootmem)
701		init_gbpages();
702
703#ifdef CONFIG_DEBUG_PAGEALLOC
704	/*
705	 * For CONFIG_DEBUG_PAGEALLOC, identity mapping will use small pages.
706	 * This will simplify cpa(), which otherwise needs to support splitting
707	 * large pages into small in interrupt context, etc.
708	 */
709	use_pse = use_gbpages = 0;
710#else
711	use_pse = cpu_has_pse;
712	use_gbpages = direct_gbpages;
713#endif
714
715	if (use_gbpages)
716		page_size_mask |= 1 << PG_LEVEL_1G;
717	if (use_pse)
718		page_size_mask |= 1 << PG_LEVEL_2M;
719
720	memset(mr, 0, sizeof(mr));
721	nr_range = 0;
722
723	/* head if not big page alignment ? */
724	start_pfn = start >> PAGE_SHIFT;
725	pos = start_pfn << PAGE_SHIFT;
726	end_pfn = ((pos + (PMD_SIZE - 1)) >> PMD_SHIFT)
727			<< (PMD_SHIFT - PAGE_SHIFT);
728	if (end_pfn > (end >> PAGE_SHIFT))
729		end_pfn = end >> PAGE_SHIFT;
730	if (start_pfn < end_pfn) {
731		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
732		pos = end_pfn << PAGE_SHIFT;
733	}
734
735	/* big page (2M) range */
736	start_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT)
737			 << (PMD_SHIFT - PAGE_SHIFT);
738	end_pfn = ((pos + (PUD_SIZE - 1))>>PUD_SHIFT)
739			 << (PUD_SHIFT - PAGE_SHIFT);
740	if (end_pfn > ((end>>PMD_SHIFT)<<(PMD_SHIFT - PAGE_SHIFT)))
741		end_pfn = ((end>>PMD_SHIFT)<<(PMD_SHIFT - PAGE_SHIFT));
742	if (start_pfn < end_pfn) {
743		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
744				page_size_mask & (1<<PG_LEVEL_2M));
745		pos = end_pfn << PAGE_SHIFT;
746	}
747
748	/* big page (1G) range */
749	start_pfn = ((pos + (PUD_SIZE - 1))>>PUD_SHIFT)
750			 << (PUD_SHIFT - PAGE_SHIFT);
751	end_pfn = (end >> PUD_SHIFT) << (PUD_SHIFT - PAGE_SHIFT);
752	if (start_pfn < end_pfn) {
753		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
754				page_size_mask &
755				 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
756		pos = end_pfn << PAGE_SHIFT;
757	}
758
759	/* tail is not big page (1G) alignment */
760	start_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT)
761			 << (PMD_SHIFT - PAGE_SHIFT);
762	end_pfn = (end >> PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT);
763	if (start_pfn < end_pfn) {
764		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
765				page_size_mask & (1<<PG_LEVEL_2M));
766		pos = end_pfn << PAGE_SHIFT;
767	}
768
769	/* tail is not big page (2M) alignment */
770	start_pfn = pos>>PAGE_SHIFT;
771	end_pfn = end>>PAGE_SHIFT;
772	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
773
774	/* try to merge same page size and continuous */
775	for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
776		unsigned long old_start;
777		if (mr[i].end != mr[i+1].start ||
778		    mr[i].page_size_mask != mr[i+1].page_size_mask)
779			continue;
780		/* move it */
781		old_start = mr[i].start;
782		memmove(&mr[i], &mr[i+1],
783			(nr_range - 1 - i) * sizeof(struct map_range));
784		mr[i--].start = old_start;
785		nr_range--;
786	}
787
788	for (i = 0; i < nr_range; i++)
789		printk(KERN_DEBUG " %010lx - %010lx page %s\n",
790				mr[i].start, mr[i].end,
791			(mr[i].page_size_mask & (1<<PG_LEVEL_1G))?"1G":(
792			 (mr[i].page_size_mask & (1<<PG_LEVEL_2M))?"2M":"4k"));
793
794	/*
795	 * Find space for the kernel direct mapping tables.
796	 *
797	 * Later we should allocate these tables in the local node of the
798	 * memory mapped. Unfortunately this is done currently before the
799	 * nodes are discovered.
800	 */
801	if (!after_bootmem)
802		find_early_table_space(end, use_pse, use_gbpages);
803
804	for (i = 0; i < nr_range; i++)
805		last_map_addr = kernel_physical_mapping_init(
806					mr[i].start, mr[i].end,
807					mr[i].page_size_mask);
808
809	if (!after_bootmem)
810		mmu_cr4_features = read_cr4();
811	__flush_tlb_all();
812
813	if (!after_bootmem && table_end > table_start)
814		reserve_early(table_start << PAGE_SHIFT,
815				 table_end << PAGE_SHIFT, "PGTABLE");
816
817	printk(KERN_INFO "last_map_addr: %lx end: %lx\n",
818			 last_map_addr, end);
819
820	if (!after_bootmem)
821		early_memtest(start, end);
822
823	return last_map_addr >> PAGE_SHIFT;
824}
825
826#ifndef CONFIG_NUMA
827void __init initmem_init(unsigned long start_pfn, unsigned long end_pfn)
828{
829	unsigned long bootmap_size, bootmap;
830
831	bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
832	bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size,
833				 PAGE_SIZE);
834	if (bootmap == -1L)
835		panic("Cannot find bootmem map of size %ld\n", bootmap_size);
836	/* don't touch min_low_pfn */
837	bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap >> PAGE_SHIFT,
838					 0, end_pfn);
839	e820_register_active_regions(0, start_pfn, end_pfn);
840	free_bootmem_with_active_regions(0, end_pfn);
841	early_res_to_bootmem(0, end_pfn<<PAGE_SHIFT);
842	reserve_bootmem(bootmap, bootmap_size, BOOTMEM_DEFAULT);
843}
844
845void __init paging_init(void)
846{
847	unsigned long max_zone_pfns[MAX_NR_ZONES];
848
849	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
850	max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
851	max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
852	max_zone_pfns[ZONE_NORMAL] = max_pfn;
853
854	memory_present(0, 0, max_pfn);
855	sparse_init();
856	free_area_init_nodes(max_zone_pfns);
857}
858#endif
859
860/*
861 * Memory hotplug specific functions
862 */
863#ifdef CONFIG_MEMORY_HOTPLUG
864/*
865 * Memory is added always to NORMAL zone. This means you will never get
866 * additional DMA/DMA32 memory.
867 */
868int arch_add_memory(int nid, u64 start, u64 size)
869{
870	struct pglist_data *pgdat = NODE_DATA(nid);
871	struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
872	unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
873	unsigned long nr_pages = size >> PAGE_SHIFT;
874	int ret;
875
876	last_mapped_pfn = init_memory_mapping(start, start + size);
877	if (last_mapped_pfn > max_pfn_mapped)
878		max_pfn_mapped = last_mapped_pfn;
879
880	ret = __add_pages(nid, zone, start_pfn, nr_pages);
881	WARN_ON_ONCE(ret);
882
883	return ret;
884}
885EXPORT_SYMBOL_GPL(arch_add_memory);
886
887#if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
888int memory_add_physaddr_to_nid(u64 start)
889{
890	return 0;
891}
892EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
893#endif
894
895#endif /* CONFIG_MEMORY_HOTPLUG */
896
897static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel,
898			 kcore_modules, kcore_vsyscall;
899
900void __init mem_init(void)
901{
902	long codesize, reservedpages, datasize, initsize;
903	unsigned long absent_pages;
904
905	pci_iommu_alloc();
906
907	/* clear_bss() already clear the empty_zero_page */
908
909	reservedpages = 0;
910
911	/* this will put all low memory onto the freelists */
912#ifdef CONFIG_NUMA
913	totalram_pages = numa_free_all_bootmem();
914#else
915	totalram_pages = free_all_bootmem();
916#endif
917
918	absent_pages = absent_pages_in_range(0, max_pfn);
919	reservedpages = max_pfn - totalram_pages - absent_pages;
920	after_bootmem = 1;
921
922	codesize =  (unsigned long) &_etext - (unsigned long) &_text;
923	datasize =  (unsigned long) &_edata - (unsigned long) &_etext;
924	initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin;
925
926	/* Register memory areas for /proc/kcore */
927	kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
928	kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
929		   VMALLOC_END-VMALLOC_START);
930	kclist_add(&kcore_kernel, &_stext, _end - _stext);
931	kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
932	kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
933				 VSYSCALL_END - VSYSCALL_START);
934
935	printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
936			 "%ldk absent, %ldk reserved, %ldk data, %ldk init)\n",
937		(unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
938		max_pfn << (PAGE_SHIFT-10),
939		codesize >> 10,
940		absent_pages << (PAGE_SHIFT-10),
941		reservedpages << (PAGE_SHIFT-10),
942		datasize >> 10,
943		initsize >> 10);
944}
945
946#ifdef CONFIG_DEBUG_RODATA
947const int rodata_test_data = 0xC3;
948EXPORT_SYMBOL_GPL(rodata_test_data);
949
950void mark_rodata_ro(void)
951{
952	unsigned long start = PFN_ALIGN(_stext), end = PFN_ALIGN(__end_rodata);
953	unsigned long rodata_start =
954		((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
955
956#ifdef CONFIG_DYNAMIC_FTRACE
957	/* Dynamic tracing modifies the kernel text section */
958	start = rodata_start;
959#endif
960
961	printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
962	       (end - start) >> 10);
963	set_memory_ro(start, (end - start) >> PAGE_SHIFT);
964
965	/*
966	 * The rodata section (but not the kernel text!) should also be
967	 * not-executable.
968	 */
969	set_memory_nx(rodata_start, (end - rodata_start) >> PAGE_SHIFT);
970
971	rodata_test();
972
973#ifdef CONFIG_CPA_DEBUG
974	printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
975	set_memory_rw(start, (end-start) >> PAGE_SHIFT);
976
977	printk(KERN_INFO "Testing CPA: again\n");
978	set_memory_ro(start, (end-start) >> PAGE_SHIFT);
979#endif
980}
981
982#endif
983
984int __init reserve_bootmem_generic(unsigned long phys, unsigned long len,
985				   int flags)
986{
987#ifdef CONFIG_NUMA
988	int nid, next_nid;
989	int ret;
990#endif
991	unsigned long pfn = phys >> PAGE_SHIFT;
992
993	if (pfn >= max_pfn) {
994		/*
995		 * This can happen with kdump kernels when accessing
996		 * firmware tables:
997		 */
998		if (pfn < max_pfn_mapped)
999			return -EFAULT;
1000
1001		printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %lu\n",
1002				phys, len);
1003		return -EFAULT;
1004	}
1005
1006	/* Should check here against the e820 map to avoid double free */
1007#ifdef CONFIG_NUMA
1008	nid = phys_to_nid(phys);
1009	next_nid = phys_to_nid(phys + len - 1);
1010	if (nid == next_nid)
1011		ret = reserve_bootmem_node(NODE_DATA(nid), phys, len, flags);
1012	else
1013		ret = reserve_bootmem(phys, len, flags);
1014
1015	if (ret != 0)
1016		return ret;
1017
1018#else
1019	reserve_bootmem(phys, len, BOOTMEM_DEFAULT);
1020#endif
1021
1022	if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
1023		dma_reserve += len / PAGE_SIZE;
1024		set_dma_reserve(dma_reserve);
1025	}
1026
1027	return 0;
1028}
1029
1030int kern_addr_valid(unsigned long addr)
1031{
1032	unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
1033	pgd_t *pgd;
1034	pud_t *pud;
1035	pmd_t *pmd;
1036	pte_t *pte;
1037
1038	if (above != 0 && above != -1UL)
1039		return 0;
1040
1041	pgd = pgd_offset_k(addr);
1042	if (pgd_none(*pgd))
1043		return 0;
1044
1045	pud = pud_offset(pgd, addr);
1046	if (pud_none(*pud))
1047		return 0;
1048
1049	pmd = pmd_offset(pud, addr);
1050	if (pmd_none(*pmd))
1051		return 0;
1052
1053	if (pmd_large(*pmd))
1054		return pfn_valid(pmd_pfn(*pmd));
1055
1056	pte = pte_offset_kernel(pmd, addr);
1057	if (pte_none(*pte))
1058		return 0;
1059
1060	return pfn_valid(pte_pfn(*pte));
1061}
1062
1063/*
1064 * A pseudo VMA to allow ptrace access for the vsyscall page.  This only
1065 * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
1066 * not need special handling anymore:
1067 */
1068static struct vm_area_struct gate_vma = {
1069	.vm_start	= VSYSCALL_START,
1070	.vm_end		= VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
1071	.vm_page_prot	= PAGE_READONLY_EXEC,
1072	.vm_flags	= VM_READ | VM_EXEC
1073};
1074
1075struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
1076{
1077#ifdef CONFIG_IA32_EMULATION
1078	if (test_tsk_thread_flag(tsk, TIF_IA32))
1079		return NULL;
1080#endif
1081	return &gate_vma;
1082}
1083
1084int in_gate_area(struct task_struct *task, unsigned long addr)
1085{
1086	struct vm_area_struct *vma = get_gate_vma(task);
1087
1088	if (!vma)
1089		return 0;
1090
1091	return (addr >= vma->vm_start) && (addr < vma->vm_end);
1092}
1093
1094/*
1095 * Use this when you have no reliable task/vma, typically from interrupt
1096 * context. It is less reliable than using the task's vma and may give
1097 * false positives:
1098 */
1099int in_gate_area_no_task(unsigned long addr)
1100{
1101	return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
1102}
1103
1104const char *arch_vma_name(struct vm_area_struct *vma)
1105{
1106	if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
1107		return "[vdso]";
1108	if (vma == &gate_vma)
1109		return "[vsyscall]";
1110	return NULL;
1111}
1112
1113#ifdef CONFIG_SPARSEMEM_VMEMMAP
1114/*
1115 * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1116 */
1117static long __meminitdata addr_start, addr_end;
1118static void __meminitdata *p_start, *p_end;
1119static int __meminitdata node_start;
1120
1121int __meminit
1122vmemmap_populate(struct page *start_page, unsigned long size, int node)
1123{
1124	unsigned long addr = (unsigned long)start_page;
1125	unsigned long end = (unsigned long)(start_page + size);
1126	unsigned long next;
1127	pgd_t *pgd;
1128	pud_t *pud;
1129	pmd_t *pmd;
1130
1131	for (; addr < end; addr = next) {
1132		void *p = NULL;
1133
1134		pgd = vmemmap_pgd_populate(addr, node);
1135		if (!pgd)
1136			return -ENOMEM;
1137
1138		pud = vmemmap_pud_populate(pgd, addr, node);
1139		if (!pud)
1140			return -ENOMEM;
1141
1142		if (!cpu_has_pse) {
1143			next = (addr + PAGE_SIZE) & PAGE_MASK;
1144			pmd = vmemmap_pmd_populate(pud, addr, node);
1145
1146			if (!pmd)
1147				return -ENOMEM;
1148
1149			p = vmemmap_pte_populate(pmd, addr, node);
1150
1151			if (!p)
1152				return -ENOMEM;
1153
1154			addr_end = addr + PAGE_SIZE;
1155			p_end = p + PAGE_SIZE;
1156		} else {
1157			next = pmd_addr_end(addr, end);
1158
1159			pmd = pmd_offset(pud, addr);
1160			if (pmd_none(*pmd)) {
1161				pte_t entry;
1162
1163				p = vmemmap_alloc_block(PMD_SIZE, node);
1164				if (!p)
1165					return -ENOMEM;
1166
1167				entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1168						PAGE_KERNEL_LARGE);
1169				set_pmd(pmd, __pmd(pte_val(entry)));
1170
1171				/* check to see if we have contiguous blocks */
1172				if (p_end != p || node_start != node) {
1173					if (p_start)
1174						printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1175						       addr_start, addr_end-1, p_start, p_end-1, node_start);
1176					addr_start = addr;
1177					node_start = node;
1178					p_start = p;
1179				}
1180
1181				addr_end = addr + PMD_SIZE;
1182				p_end = p + PMD_SIZE;
1183			} else
1184				vmemmap_verify((pte_t *)pmd, node, addr, next);
1185		}
1186
1187	}
1188	return 0;
1189}
1190
1191void __meminit vmemmap_populate_print_last(void)
1192{
1193	if (p_start) {
1194		printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1195			addr_start, addr_end-1, p_start, p_end-1, node_start);
1196		p_start = NULL;
1197		p_end = NULL;
1198		node_start = 0;
1199	}
1200}
1201#endif
1202