init_64.c revision 774ea0bcb27f57b6fd521b3b6c43237782fed4b9
1/*
2 *  linux/arch/x86_64/mm/init.c
3 *
4 *  Copyright (C) 1995  Linus Torvalds
5 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
6 *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7 */
8
9#include <linux/signal.h>
10#include <linux/sched.h>
11#include <linux/kernel.h>
12#include <linux/errno.h>
13#include <linux/string.h>
14#include <linux/types.h>
15#include <linux/ptrace.h>
16#include <linux/mman.h>
17#include <linux/mm.h>
18#include <linux/swap.h>
19#include <linux/smp.h>
20#include <linux/init.h>
21#include <linux/initrd.h>
22#include <linux/pagemap.h>
23#include <linux/bootmem.h>
24#include <linux/memblock.h>
25#include <linux/proc_fs.h>
26#include <linux/pci.h>
27#include <linux/pfn.h>
28#include <linux/poison.h>
29#include <linux/dma-mapping.h>
30#include <linux/module.h>
31#include <linux/memory_hotplug.h>
32#include <linux/nmi.h>
33#include <linux/gfp.h>
34
35#include <asm/processor.h>
36#include <asm/bios_ebda.h>
37#include <asm/system.h>
38#include <asm/uaccess.h>
39#include <asm/pgtable.h>
40#include <asm/pgalloc.h>
41#include <asm/dma.h>
42#include <asm/fixmap.h>
43#include <asm/e820.h>
44#include <asm/apic.h>
45#include <asm/tlb.h>
46#include <asm/mmu_context.h>
47#include <asm/proto.h>
48#include <asm/smp.h>
49#include <asm/sections.h>
50#include <asm/kdebug.h>
51#include <asm/numa.h>
52#include <asm/cacheflush.h>
53#include <asm/init.h>
54#include <linux/bootmem.h>
55
56static int __init parse_direct_gbpages_off(char *arg)
57{
58	direct_gbpages = 0;
59	return 0;
60}
61early_param("nogbpages", parse_direct_gbpages_off);
62
63static int __init parse_direct_gbpages_on(char *arg)
64{
65	direct_gbpages = 1;
66	return 0;
67}
68early_param("gbpages", parse_direct_gbpages_on);
69
70/*
71 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
72 * physical space so we can cache the place of the first one and move
73 * around without checking the pgd every time.
74 */
75
76pteval_t __supported_pte_mask __read_mostly = ~_PAGE_IOMAP;
77EXPORT_SYMBOL_GPL(__supported_pte_mask);
78
79int force_personality32;
80
81/*
82 * noexec32=on|off
83 * Control non executable heap for 32bit processes.
84 * To control the stack too use noexec=off
85 *
86 * on	PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
87 * off	PROT_READ implies PROT_EXEC
88 */
89static int __init nonx32_setup(char *str)
90{
91	if (!strcmp(str, "on"))
92		force_personality32 &= ~READ_IMPLIES_EXEC;
93	else if (!strcmp(str, "off"))
94		force_personality32 |= READ_IMPLIES_EXEC;
95	return 1;
96}
97__setup("noexec32=", nonx32_setup);
98
99/*
100 * NOTE: This function is marked __ref because it calls __init function
101 * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
102 */
103static __ref void *spp_getpage(void)
104{
105	void *ptr;
106
107	if (after_bootmem)
108		ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
109	else
110		ptr = alloc_bootmem_pages(PAGE_SIZE);
111
112	if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
113		panic("set_pte_phys: cannot allocate page data %s\n",
114			after_bootmem ? "after bootmem" : "");
115	}
116
117	pr_debug("spp_getpage %p\n", ptr);
118
119	return ptr;
120}
121
122static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
123{
124	if (pgd_none(*pgd)) {
125		pud_t *pud = (pud_t *)spp_getpage();
126		pgd_populate(&init_mm, pgd, pud);
127		if (pud != pud_offset(pgd, 0))
128			printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
129			       pud, pud_offset(pgd, 0));
130	}
131	return pud_offset(pgd, vaddr);
132}
133
134static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
135{
136	if (pud_none(*pud)) {
137		pmd_t *pmd = (pmd_t *) spp_getpage();
138		pud_populate(&init_mm, pud, pmd);
139		if (pmd != pmd_offset(pud, 0))
140			printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
141			       pmd, pmd_offset(pud, 0));
142	}
143	return pmd_offset(pud, vaddr);
144}
145
146static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
147{
148	if (pmd_none(*pmd)) {
149		pte_t *pte = (pte_t *) spp_getpage();
150		pmd_populate_kernel(&init_mm, pmd, pte);
151		if (pte != pte_offset_kernel(pmd, 0))
152			printk(KERN_ERR "PAGETABLE BUG #02!\n");
153	}
154	return pte_offset_kernel(pmd, vaddr);
155}
156
157void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
158{
159	pud_t *pud;
160	pmd_t *pmd;
161	pte_t *pte;
162
163	pud = pud_page + pud_index(vaddr);
164	pmd = fill_pmd(pud, vaddr);
165	pte = fill_pte(pmd, vaddr);
166
167	set_pte(pte, new_pte);
168
169	/*
170	 * It's enough to flush this one mapping.
171	 * (PGE mappings get flushed as well)
172	 */
173	__flush_tlb_one(vaddr);
174}
175
176void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
177{
178	pgd_t *pgd;
179	pud_t *pud_page;
180
181	pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
182
183	pgd = pgd_offset_k(vaddr);
184	if (pgd_none(*pgd)) {
185		printk(KERN_ERR
186			"PGD FIXMAP MISSING, it should be setup in head.S!\n");
187		return;
188	}
189	pud_page = (pud_t*)pgd_page_vaddr(*pgd);
190	set_pte_vaddr_pud(pud_page, vaddr, pteval);
191}
192
193pmd_t * __init populate_extra_pmd(unsigned long vaddr)
194{
195	pgd_t *pgd;
196	pud_t *pud;
197
198	pgd = pgd_offset_k(vaddr);
199	pud = fill_pud(pgd, vaddr);
200	return fill_pmd(pud, vaddr);
201}
202
203pte_t * __init populate_extra_pte(unsigned long vaddr)
204{
205	pmd_t *pmd;
206
207	pmd = populate_extra_pmd(vaddr);
208	return fill_pte(pmd, vaddr);
209}
210
211/*
212 * Create large page table mappings for a range of physical addresses.
213 */
214static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
215						pgprot_t prot)
216{
217	pgd_t *pgd;
218	pud_t *pud;
219	pmd_t *pmd;
220
221	BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
222	for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
223		pgd = pgd_offset_k((unsigned long)__va(phys));
224		if (pgd_none(*pgd)) {
225			pud = (pud_t *) spp_getpage();
226			set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
227						_PAGE_USER));
228		}
229		pud = pud_offset(pgd, (unsigned long)__va(phys));
230		if (pud_none(*pud)) {
231			pmd = (pmd_t *) spp_getpage();
232			set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
233						_PAGE_USER));
234		}
235		pmd = pmd_offset(pud, phys);
236		BUG_ON(!pmd_none(*pmd));
237		set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
238	}
239}
240
241void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
242{
243	__init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
244}
245
246void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
247{
248	__init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
249}
250
251/*
252 * The head.S code sets up the kernel high mapping:
253 *
254 *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
255 *
256 * phys_addr holds the negative offset to the kernel, which is added
257 * to the compile time generated pmds. This results in invalid pmds up
258 * to the point where we hit the physaddr 0 mapping.
259 *
260 * We limit the mappings to the region from _text to _end.  _end is
261 * rounded up to the 2MB boundary. This catches the invalid pmds as
262 * well, as they are located before _text:
263 */
264void __init cleanup_highmap(void)
265{
266	unsigned long vaddr = __START_KERNEL_map;
267	unsigned long end = roundup((unsigned long)_end, PMD_SIZE) - 1;
268	pmd_t *pmd = level2_kernel_pgt;
269	pmd_t *last_pmd = pmd + PTRS_PER_PMD;
270
271	for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
272		if (pmd_none(*pmd))
273			continue;
274		if (vaddr < (unsigned long) _text || vaddr > end)
275			set_pmd(pmd, __pmd(0));
276	}
277}
278
279static __ref void *alloc_low_page(unsigned long *phys)
280{
281	unsigned long pfn = e820_table_end++;
282	void *adr;
283
284	if (after_bootmem) {
285		adr = (void *)get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
286		*phys = __pa(adr);
287
288		return adr;
289	}
290
291	if (pfn >= e820_table_top)
292		panic("alloc_low_page: ran out of memory");
293
294	adr = early_memremap(pfn * PAGE_SIZE, PAGE_SIZE);
295	memset(adr, 0, PAGE_SIZE);
296	*phys  = pfn * PAGE_SIZE;
297	return adr;
298}
299
300static __ref void unmap_low_page(void *adr)
301{
302	if (after_bootmem)
303		return;
304
305	early_iounmap(adr, PAGE_SIZE);
306}
307
308static unsigned long __meminit
309phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
310	      pgprot_t prot)
311{
312	unsigned pages = 0;
313	unsigned long last_map_addr = end;
314	int i;
315
316	pte_t *pte = pte_page + pte_index(addr);
317
318	for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) {
319
320		if (addr >= end) {
321			if (!after_bootmem) {
322				for(; i < PTRS_PER_PTE; i++, pte++)
323					set_pte(pte, __pte(0));
324			}
325			break;
326		}
327
328		/*
329		 * We will re-use the existing mapping.
330		 * Xen for example has some special requirements, like mapping
331		 * pagetable pages as RO. So assume someone who pre-setup
332		 * these mappings are more intelligent.
333		 */
334		if (pte_val(*pte)) {
335			pages++;
336			continue;
337		}
338
339		if (0)
340			printk("   pte=%p addr=%lx pte=%016lx\n",
341			       pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
342		pages++;
343		set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
344		last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
345	}
346
347	update_page_count(PG_LEVEL_4K, pages);
348
349	return last_map_addr;
350}
351
352static unsigned long __meminit
353phys_pte_update(pmd_t *pmd, unsigned long address, unsigned long end,
354		pgprot_t prot)
355{
356	pte_t *pte = (pte_t *)pmd_page_vaddr(*pmd);
357
358	return phys_pte_init(pte, address, end, prot);
359}
360
361static unsigned long __meminit
362phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
363	      unsigned long page_size_mask, pgprot_t prot)
364{
365	unsigned long pages = 0;
366	unsigned long last_map_addr = end;
367
368	int i = pmd_index(address);
369
370	for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
371		unsigned long pte_phys;
372		pmd_t *pmd = pmd_page + pmd_index(address);
373		pte_t *pte;
374		pgprot_t new_prot = prot;
375
376		if (address >= end) {
377			if (!after_bootmem) {
378				for (; i < PTRS_PER_PMD; i++, pmd++)
379					set_pmd(pmd, __pmd(0));
380			}
381			break;
382		}
383
384		if (pmd_val(*pmd)) {
385			if (!pmd_large(*pmd)) {
386				spin_lock(&init_mm.page_table_lock);
387				last_map_addr = phys_pte_update(pmd, address,
388								end, prot);
389				spin_unlock(&init_mm.page_table_lock);
390				continue;
391			}
392			/*
393			 * If we are ok with PG_LEVEL_2M mapping, then we will
394			 * use the existing mapping,
395			 *
396			 * Otherwise, we will split the large page mapping but
397			 * use the same existing protection bits except for
398			 * large page, so that we don't violate Intel's TLB
399			 * Application note (317080) which says, while changing
400			 * the page sizes, new and old translations should
401			 * not differ with respect to page frame and
402			 * attributes.
403			 */
404			if (page_size_mask & (1 << PG_LEVEL_2M)) {
405				pages++;
406				continue;
407			}
408			new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
409		}
410
411		if (page_size_mask & (1<<PG_LEVEL_2M)) {
412			pages++;
413			spin_lock(&init_mm.page_table_lock);
414			set_pte((pte_t *)pmd,
415				pfn_pte(address >> PAGE_SHIFT,
416					__pgprot(pgprot_val(prot) | _PAGE_PSE)));
417			spin_unlock(&init_mm.page_table_lock);
418			last_map_addr = (address & PMD_MASK) + PMD_SIZE;
419			continue;
420		}
421
422		pte = alloc_low_page(&pte_phys);
423		last_map_addr = phys_pte_init(pte, address, end, new_prot);
424		unmap_low_page(pte);
425
426		spin_lock(&init_mm.page_table_lock);
427		pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
428		spin_unlock(&init_mm.page_table_lock);
429	}
430	update_page_count(PG_LEVEL_2M, pages);
431	return last_map_addr;
432}
433
434static unsigned long __meminit
435phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end,
436		unsigned long page_size_mask, pgprot_t prot)
437{
438	pmd_t *pmd = pmd_offset(pud, 0);
439	unsigned long last_map_addr;
440
441	last_map_addr = phys_pmd_init(pmd, address, end, page_size_mask, prot);
442	__flush_tlb_all();
443	return last_map_addr;
444}
445
446static unsigned long __meminit
447phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
448			 unsigned long page_size_mask)
449{
450	unsigned long pages = 0;
451	unsigned long last_map_addr = end;
452	int i = pud_index(addr);
453
454	for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
455		unsigned long pmd_phys;
456		pud_t *pud = pud_page + pud_index(addr);
457		pmd_t *pmd;
458		pgprot_t prot = PAGE_KERNEL;
459
460		if (addr >= end)
461			break;
462
463		if (!after_bootmem &&
464				!e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
465			set_pud(pud, __pud(0));
466			continue;
467		}
468
469		if (pud_val(*pud)) {
470			if (!pud_large(*pud)) {
471				last_map_addr = phys_pmd_update(pud, addr, end,
472							 page_size_mask, prot);
473				continue;
474			}
475			/*
476			 * If we are ok with PG_LEVEL_1G mapping, then we will
477			 * use the existing mapping.
478			 *
479			 * Otherwise, we will split the gbpage mapping but use
480			 * the same existing protection  bits except for large
481			 * page, so that we don't violate Intel's TLB
482			 * Application note (317080) which says, while changing
483			 * the page sizes, new and old translations should
484			 * not differ with respect to page frame and
485			 * attributes.
486			 */
487			if (page_size_mask & (1 << PG_LEVEL_1G)) {
488				pages++;
489				continue;
490			}
491			prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
492		}
493
494		if (page_size_mask & (1<<PG_LEVEL_1G)) {
495			pages++;
496			spin_lock(&init_mm.page_table_lock);
497			set_pte((pte_t *)pud,
498				pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
499			spin_unlock(&init_mm.page_table_lock);
500			last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
501			continue;
502		}
503
504		pmd = alloc_low_page(&pmd_phys);
505		last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
506					      prot);
507		unmap_low_page(pmd);
508
509		spin_lock(&init_mm.page_table_lock);
510		pud_populate(&init_mm, pud, __va(pmd_phys));
511		spin_unlock(&init_mm.page_table_lock);
512	}
513	__flush_tlb_all();
514
515	update_page_count(PG_LEVEL_1G, pages);
516
517	return last_map_addr;
518}
519
520static unsigned long __meminit
521phys_pud_update(pgd_t *pgd, unsigned long addr, unsigned long end,
522		 unsigned long page_size_mask)
523{
524	pud_t *pud;
525
526	pud = (pud_t *)pgd_page_vaddr(*pgd);
527
528	return phys_pud_init(pud, addr, end, page_size_mask);
529}
530
531unsigned long __meminit
532kernel_physical_mapping_init(unsigned long start,
533			     unsigned long end,
534			     unsigned long page_size_mask)
535{
536
537	unsigned long next, last_map_addr = end;
538
539	start = (unsigned long)__va(start);
540	end = (unsigned long)__va(end);
541
542	for (; start < end; start = next) {
543		pgd_t *pgd = pgd_offset_k(start);
544		unsigned long pud_phys;
545		pud_t *pud;
546
547		next = (start + PGDIR_SIZE) & PGDIR_MASK;
548		if (next > end)
549			next = end;
550
551		if (pgd_val(*pgd)) {
552			last_map_addr = phys_pud_update(pgd, __pa(start),
553						 __pa(end), page_size_mask);
554			continue;
555		}
556
557		pud = alloc_low_page(&pud_phys);
558		last_map_addr = phys_pud_init(pud, __pa(start), __pa(next),
559						 page_size_mask);
560		unmap_low_page(pud);
561
562		spin_lock(&init_mm.page_table_lock);
563		pgd_populate(&init_mm, pgd, __va(pud_phys));
564		spin_unlock(&init_mm.page_table_lock);
565	}
566	__flush_tlb_all();
567
568	return last_map_addr;
569}
570
571#ifndef CONFIG_NUMA
572void __init initmem_init(unsigned long start_pfn, unsigned long end_pfn,
573				int acpi, int k8)
574{
575	memblock_x86_register_active_regions(0, start_pfn, end_pfn);
576}
577#endif
578
579void __init paging_init(void)
580{
581	unsigned long max_zone_pfns[MAX_NR_ZONES];
582
583	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
584	max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
585	max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
586	max_zone_pfns[ZONE_NORMAL] = max_pfn;
587
588	sparse_memory_present_with_active_regions(MAX_NUMNODES);
589	sparse_init();
590
591	/*
592	 * clear the default setting with node 0
593	 * note: don't use nodes_clear here, that is really clearing when
594	 *	 numa support is not compiled in, and later node_set_state
595	 *	 will not set it back.
596	 */
597	node_clear_state(0, N_NORMAL_MEMORY);
598
599	free_area_init_nodes(max_zone_pfns);
600}
601
602/*
603 * Memory hotplug specific functions
604 */
605#ifdef CONFIG_MEMORY_HOTPLUG
606/*
607 * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
608 * updating.
609 */
610static void  update_end_of_memory_vars(u64 start, u64 size)
611{
612	unsigned long end_pfn = PFN_UP(start + size);
613
614	if (end_pfn > max_pfn) {
615		max_pfn = end_pfn;
616		max_low_pfn = end_pfn;
617		high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
618	}
619}
620
621/*
622 * Memory is added always to NORMAL zone. This means you will never get
623 * additional DMA/DMA32 memory.
624 */
625int arch_add_memory(int nid, u64 start, u64 size)
626{
627	struct pglist_data *pgdat = NODE_DATA(nid);
628	struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
629	unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
630	unsigned long nr_pages = size >> PAGE_SHIFT;
631	int ret;
632
633	last_mapped_pfn = init_memory_mapping(start, start + size);
634	if (last_mapped_pfn > max_pfn_mapped)
635		max_pfn_mapped = last_mapped_pfn;
636
637	ret = __add_pages(nid, zone, start_pfn, nr_pages);
638	WARN_ON_ONCE(ret);
639
640	/* update max_pfn, max_low_pfn and high_memory */
641	update_end_of_memory_vars(start, size);
642
643	return ret;
644}
645EXPORT_SYMBOL_GPL(arch_add_memory);
646
647#if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
648int memory_add_physaddr_to_nid(u64 start)
649{
650	return 0;
651}
652EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
653#endif
654
655#endif /* CONFIG_MEMORY_HOTPLUG */
656
657static struct kcore_list kcore_vsyscall;
658
659void __init mem_init(void)
660{
661	long codesize, reservedpages, datasize, initsize;
662	unsigned long absent_pages;
663
664	pci_iommu_alloc();
665
666	/* clear_bss() already clear the empty_zero_page */
667
668	reservedpages = 0;
669
670	/* this will put all low memory onto the freelists */
671#ifdef CONFIG_NUMA
672	totalram_pages = numa_free_all_bootmem();
673#else
674	totalram_pages = free_all_bootmem();
675#endif
676
677	absent_pages = absent_pages_in_range(0, max_pfn);
678	reservedpages = max_pfn - totalram_pages - absent_pages;
679	after_bootmem = 1;
680
681	codesize =  (unsigned long) &_etext - (unsigned long) &_text;
682	datasize =  (unsigned long) &_edata - (unsigned long) &_etext;
683	initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin;
684
685	/* Register memory areas for /proc/kcore */
686	kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
687			 VSYSCALL_END - VSYSCALL_START, KCORE_OTHER);
688
689	printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
690			 "%ldk absent, %ldk reserved, %ldk data, %ldk init)\n",
691		nr_free_pages() << (PAGE_SHIFT-10),
692		max_pfn << (PAGE_SHIFT-10),
693		codesize >> 10,
694		absent_pages << (PAGE_SHIFT-10),
695		reservedpages << (PAGE_SHIFT-10),
696		datasize >> 10,
697		initsize >> 10);
698}
699
700#ifdef CONFIG_DEBUG_RODATA
701const int rodata_test_data = 0xC3;
702EXPORT_SYMBOL_GPL(rodata_test_data);
703
704int kernel_set_to_readonly;
705
706void set_kernel_text_rw(void)
707{
708	unsigned long start = PFN_ALIGN(_text);
709	unsigned long end = PFN_ALIGN(__stop___ex_table);
710
711	if (!kernel_set_to_readonly)
712		return;
713
714	pr_debug("Set kernel text: %lx - %lx for read write\n",
715		 start, end);
716
717	/*
718	 * Make the kernel identity mapping for text RW. Kernel text
719	 * mapping will always be RO. Refer to the comment in
720	 * static_protections() in pageattr.c
721	 */
722	set_memory_rw(start, (end - start) >> PAGE_SHIFT);
723}
724
725void set_kernel_text_ro(void)
726{
727	unsigned long start = PFN_ALIGN(_text);
728	unsigned long end = PFN_ALIGN(__stop___ex_table);
729
730	if (!kernel_set_to_readonly)
731		return;
732
733	pr_debug("Set kernel text: %lx - %lx for read only\n",
734		 start, end);
735
736	/*
737	 * Set the kernel identity mapping for text RO.
738	 */
739	set_memory_ro(start, (end - start) >> PAGE_SHIFT);
740}
741
742void mark_rodata_ro(void)
743{
744	unsigned long start = PFN_ALIGN(_text);
745	unsigned long rodata_start =
746		((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
747	unsigned long end = (unsigned long) &__end_rodata_hpage_align;
748	unsigned long text_end = PAGE_ALIGN((unsigned long) &__stop___ex_table);
749	unsigned long rodata_end = PAGE_ALIGN((unsigned long) &__end_rodata);
750	unsigned long data_start = (unsigned long) &_sdata;
751
752	printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
753	       (end - start) >> 10);
754	set_memory_ro(start, (end - start) >> PAGE_SHIFT);
755
756	kernel_set_to_readonly = 1;
757
758	/*
759	 * The rodata section (but not the kernel text!) should also be
760	 * not-executable.
761	 */
762	set_memory_nx(rodata_start, (end - rodata_start) >> PAGE_SHIFT);
763
764	rodata_test();
765
766#ifdef CONFIG_CPA_DEBUG
767	printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
768	set_memory_rw(start, (end-start) >> PAGE_SHIFT);
769
770	printk(KERN_INFO "Testing CPA: again\n");
771	set_memory_ro(start, (end-start) >> PAGE_SHIFT);
772#endif
773
774	free_init_pages("unused kernel memory",
775			(unsigned long) page_address(virt_to_page(text_end)),
776			(unsigned long)
777				 page_address(virt_to_page(rodata_start)));
778	free_init_pages("unused kernel memory",
779			(unsigned long) page_address(virt_to_page(rodata_end)),
780			(unsigned long) page_address(virt_to_page(data_start)));
781}
782
783#endif
784
785int kern_addr_valid(unsigned long addr)
786{
787	unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
788	pgd_t *pgd;
789	pud_t *pud;
790	pmd_t *pmd;
791	pte_t *pte;
792
793	if (above != 0 && above != -1UL)
794		return 0;
795
796	pgd = pgd_offset_k(addr);
797	if (pgd_none(*pgd))
798		return 0;
799
800	pud = pud_offset(pgd, addr);
801	if (pud_none(*pud))
802		return 0;
803
804	pmd = pmd_offset(pud, addr);
805	if (pmd_none(*pmd))
806		return 0;
807
808	if (pmd_large(*pmd))
809		return pfn_valid(pmd_pfn(*pmd));
810
811	pte = pte_offset_kernel(pmd, addr);
812	if (pte_none(*pte))
813		return 0;
814
815	return pfn_valid(pte_pfn(*pte));
816}
817
818/*
819 * A pseudo VMA to allow ptrace access for the vsyscall page.  This only
820 * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
821 * not need special handling anymore:
822 */
823static struct vm_area_struct gate_vma = {
824	.vm_start	= VSYSCALL_START,
825	.vm_end		= VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
826	.vm_page_prot	= PAGE_READONLY_EXEC,
827	.vm_flags	= VM_READ | VM_EXEC
828};
829
830struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
831{
832#ifdef CONFIG_IA32_EMULATION
833	if (test_tsk_thread_flag(tsk, TIF_IA32))
834		return NULL;
835#endif
836	return &gate_vma;
837}
838
839int in_gate_area(struct task_struct *task, unsigned long addr)
840{
841	struct vm_area_struct *vma = get_gate_vma(task);
842
843	if (!vma)
844		return 0;
845
846	return (addr >= vma->vm_start) && (addr < vma->vm_end);
847}
848
849/*
850 * Use this when you have no reliable task/vma, typically from interrupt
851 * context. It is less reliable than using the task's vma and may give
852 * false positives:
853 */
854int in_gate_area_no_task(unsigned long addr)
855{
856	return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
857}
858
859const char *arch_vma_name(struct vm_area_struct *vma)
860{
861	if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
862		return "[vdso]";
863	if (vma == &gate_vma)
864		return "[vsyscall]";
865	return NULL;
866}
867
868#ifdef CONFIG_SPARSEMEM_VMEMMAP
869/*
870 * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
871 */
872static long __meminitdata addr_start, addr_end;
873static void __meminitdata *p_start, *p_end;
874static int __meminitdata node_start;
875
876int __meminit
877vmemmap_populate(struct page *start_page, unsigned long size, int node)
878{
879	unsigned long addr = (unsigned long)start_page;
880	unsigned long end = (unsigned long)(start_page + size);
881	unsigned long next;
882	pgd_t *pgd;
883	pud_t *pud;
884	pmd_t *pmd;
885
886	for (; addr < end; addr = next) {
887		void *p = NULL;
888
889		pgd = vmemmap_pgd_populate(addr, node);
890		if (!pgd)
891			return -ENOMEM;
892
893		pud = vmemmap_pud_populate(pgd, addr, node);
894		if (!pud)
895			return -ENOMEM;
896
897		if (!cpu_has_pse) {
898			next = (addr + PAGE_SIZE) & PAGE_MASK;
899			pmd = vmemmap_pmd_populate(pud, addr, node);
900
901			if (!pmd)
902				return -ENOMEM;
903
904			p = vmemmap_pte_populate(pmd, addr, node);
905
906			if (!p)
907				return -ENOMEM;
908
909			addr_end = addr + PAGE_SIZE;
910			p_end = p + PAGE_SIZE;
911		} else {
912			next = pmd_addr_end(addr, end);
913
914			pmd = pmd_offset(pud, addr);
915			if (pmd_none(*pmd)) {
916				pte_t entry;
917
918				p = vmemmap_alloc_block_buf(PMD_SIZE, node);
919				if (!p)
920					return -ENOMEM;
921
922				entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
923						PAGE_KERNEL_LARGE);
924				set_pmd(pmd, __pmd(pte_val(entry)));
925
926				/* check to see if we have contiguous blocks */
927				if (p_end != p || node_start != node) {
928					if (p_start)
929						printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
930						       addr_start, addr_end-1, p_start, p_end-1, node_start);
931					addr_start = addr;
932					node_start = node;
933					p_start = p;
934				}
935
936				addr_end = addr + PMD_SIZE;
937				p_end = p + PMD_SIZE;
938			} else
939				vmemmap_verify((pte_t *)pmd, node, addr, next);
940		}
941
942	}
943	return 0;
944}
945
946void __meminit vmemmap_populate_print_last(void)
947{
948	if (p_start) {
949		printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
950			addr_start, addr_end-1, p_start, p_end-1, node_start);
951		p_start = NULL;
952		p_end = NULL;
953		node_start = 0;
954	}
955}
956#endif
957