init_64.c revision 8f0f996e80b980fba07d11961d96a5fefb60976a
1/*
2 *  linux/arch/x86_64/mm/init.c
3 *
4 *  Copyright (C) 1995  Linus Torvalds
5 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
6 *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7 */
8
9#include <linux/signal.h>
10#include <linux/sched.h>
11#include <linux/kernel.h>
12#include <linux/errno.h>
13#include <linux/string.h>
14#include <linux/types.h>
15#include <linux/ptrace.h>
16#include <linux/mman.h>
17#include <linux/mm.h>
18#include <linux/swap.h>
19#include <linux/smp.h>
20#include <linux/init.h>
21#include <linux/pagemap.h>
22#include <linux/bootmem.h>
23#include <linux/proc_fs.h>
24#include <linux/pci.h>
25#include <linux/pfn.h>
26#include <linux/poison.h>
27#include <linux/dma-mapping.h>
28#include <linux/module.h>
29#include <linux/memory_hotplug.h>
30#include <linux/nmi.h>
31
32#include <asm/processor.h>
33#include <asm/system.h>
34#include <asm/uaccess.h>
35#include <asm/pgtable.h>
36#include <asm/pgalloc.h>
37#include <asm/dma.h>
38#include <asm/fixmap.h>
39#include <asm/e820.h>
40#include <asm/apic.h>
41#include <asm/tlb.h>
42#include <asm/mmu_context.h>
43#include <asm/proto.h>
44#include <asm/smp.h>
45#include <asm/sections.h>
46#include <asm/kdebug.h>
47#include <asm/numa.h>
48#include <asm/cacheflush.h>
49
50static unsigned long dma_reserve __initdata;
51
52DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
53
54int direct_gbpages __meminitdata
55#ifdef CONFIG_DIRECT_GBPAGES
56				= 1
57#endif
58;
59
60static int __init parse_direct_gbpages_off(char *arg)
61{
62	direct_gbpages = 0;
63	return 0;
64}
65early_param("nogbpages", parse_direct_gbpages_off);
66
67static int __init parse_direct_gbpages_on(char *arg)
68{
69	direct_gbpages = 1;
70	return 0;
71}
72early_param("gbpages", parse_direct_gbpages_on);
73
74/*
75 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
76 * physical space so we can cache the place of the first one and move
77 * around without checking the pgd every time.
78 */
79
80void show_mem(void)
81{
82	long i, total = 0, reserved = 0;
83	long shared = 0, cached = 0;
84	struct page *page;
85	pg_data_t *pgdat;
86
87	printk(KERN_INFO "Mem-info:\n");
88	show_free_areas();
89	for_each_online_pgdat(pgdat) {
90		for (i = 0; i < pgdat->node_spanned_pages; ++i) {
91			/*
92			 * This loop can take a while with 256 GB and
93			 * 4k pages so defer the NMI watchdog:
94			 */
95			if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
96				touch_nmi_watchdog();
97
98			if (!pfn_valid(pgdat->node_start_pfn + i))
99				continue;
100
101			page = pfn_to_page(pgdat->node_start_pfn + i);
102			total++;
103			if (PageReserved(page))
104				reserved++;
105			else if (PageSwapCache(page))
106				cached++;
107			else if (page_count(page))
108				shared += page_count(page) - 1;
109		}
110	}
111	printk(KERN_INFO "%lu pages of RAM\n",		total);
112	printk(KERN_INFO "%lu reserved pages\n",	reserved);
113	printk(KERN_INFO "%lu pages shared\n",		shared);
114	printk(KERN_INFO "%lu pages swap cached\n",	cached);
115}
116
117int after_bootmem;
118
119static __init void *spp_getpage(void)
120{
121	void *ptr;
122
123	if (after_bootmem)
124		ptr = (void *) get_zeroed_page(GFP_ATOMIC);
125	else
126		ptr = alloc_bootmem_pages(PAGE_SIZE);
127
128	if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
129		panic("set_pte_phys: cannot allocate page data %s\n",
130			after_bootmem ? "after bootmem" : "");
131	}
132
133	pr_debug("spp_getpage %p\n", ptr);
134
135	return ptr;
136}
137
138static void
139set_pte_phys(unsigned long vaddr, unsigned long phys, pgprot_t prot)
140{
141	pgd_t *pgd;
142	pud_t *pud;
143	pmd_t *pmd;
144	pte_t *pte, new_pte;
145
146	pr_debug("set_pte_phys %lx to %lx\n", vaddr, phys);
147
148	pgd = pgd_offset_k(vaddr);
149	if (pgd_none(*pgd)) {
150		printk(KERN_ERR
151			"PGD FIXMAP MISSING, it should be setup in head.S!\n");
152		return;
153	}
154	pud = pud_offset(pgd, vaddr);
155	if (pud_none(*pud)) {
156		pmd = (pmd_t *) spp_getpage();
157		set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE | _PAGE_USER));
158		if (pmd != pmd_offset(pud, 0)) {
159			printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
160				pmd, pmd_offset(pud, 0));
161			return;
162		}
163	}
164	pmd = pmd_offset(pud, vaddr);
165	if (pmd_none(*pmd)) {
166		pte = (pte_t *) spp_getpage();
167		set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE | _PAGE_USER));
168		if (pte != pte_offset_kernel(pmd, 0)) {
169			printk(KERN_ERR "PAGETABLE BUG #02!\n");
170			return;
171		}
172	}
173	new_pte = pfn_pte(phys >> PAGE_SHIFT, prot);
174
175	pte = pte_offset_kernel(pmd, vaddr);
176	if (!pte_none(*pte) && pte_val(new_pte) &&
177	    pte_val(*pte) != (pte_val(new_pte) & __supported_pte_mask))
178		pte_ERROR(*pte);
179	set_pte(pte, new_pte);
180
181	/*
182	 * It's enough to flush this one mapping.
183	 * (PGE mappings get flushed as well)
184	 */
185	__flush_tlb_one(vaddr);
186}
187
188/*
189 * The head.S code sets up the kernel high mapping:
190 *
191 *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
192 *
193 * phys_addr holds the negative offset to the kernel, which is added
194 * to the compile time generated pmds. This results in invalid pmds up
195 * to the point where we hit the physaddr 0 mapping.
196 *
197 * We limit the mappings to the region from _text to _end.  _end is
198 * rounded up to the 2MB boundary. This catches the invalid pmds as
199 * well, as they are located before _text:
200 */
201void __init cleanup_highmap(void)
202{
203	unsigned long vaddr = __START_KERNEL_map;
204	unsigned long end = round_up((unsigned long)_end, PMD_SIZE) - 1;
205	pmd_t *pmd = level2_kernel_pgt;
206	pmd_t *last_pmd = pmd + PTRS_PER_PMD;
207
208	for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
209		if (!pmd_present(*pmd))
210			continue;
211		if (vaddr < (unsigned long) _text || vaddr > end)
212			set_pmd(pmd, __pmd(0));
213	}
214}
215
216/* NOTE: this is meant to be run only at boot */
217void __set_fixmap(enum fixed_addresses idx, unsigned long phys, pgprot_t prot)
218{
219	unsigned long address = __fix_to_virt(idx);
220
221	if (idx >= __end_of_fixed_addresses) {
222		printk(KERN_ERR "Invalid __set_fixmap\n");
223		return;
224	}
225	set_pte_phys(address, phys, prot);
226}
227
228static unsigned long __initdata table_start;
229static unsigned long __meminitdata table_end;
230
231static __meminit void *alloc_low_page(unsigned long *phys)
232{
233	unsigned long pfn = table_end++;
234	void *adr;
235
236	if (after_bootmem) {
237		adr = (void *)get_zeroed_page(GFP_ATOMIC);
238		*phys = __pa(adr);
239
240		return adr;
241	}
242
243	if (pfn >= end_pfn)
244		panic("alloc_low_page: ran out of memory");
245
246	adr = early_ioremap(pfn * PAGE_SIZE, PAGE_SIZE);
247	memset(adr, 0, PAGE_SIZE);
248	*phys  = pfn * PAGE_SIZE;
249	return adr;
250}
251
252static __meminit void unmap_low_page(void *adr)
253{
254	if (after_bootmem)
255		return;
256
257	early_iounmap(adr, PAGE_SIZE);
258}
259
260/* Must run before zap_low_mappings */
261__meminit void *early_ioremap(unsigned long addr, unsigned long size)
262{
263	pmd_t *pmd, *last_pmd;
264	unsigned long vaddr;
265	int i, pmds;
266
267	pmds = ((addr & ~PMD_MASK) + size + ~PMD_MASK) / PMD_SIZE;
268	vaddr = __START_KERNEL_map;
269	pmd = level2_kernel_pgt;
270	last_pmd = level2_kernel_pgt + PTRS_PER_PMD - 1;
271
272	for (; pmd <= last_pmd; pmd++, vaddr += PMD_SIZE) {
273		for (i = 0; i < pmds; i++) {
274			if (pmd_present(pmd[i]))
275				goto continue_outer_loop;
276		}
277		vaddr += addr & ~PMD_MASK;
278		addr &= PMD_MASK;
279
280		for (i = 0; i < pmds; i++, addr += PMD_SIZE)
281			set_pmd(pmd+i, __pmd(addr | __PAGE_KERNEL_LARGE_EXEC));
282		__flush_tlb_all();
283
284		return (void *)vaddr;
285continue_outer_loop:
286		;
287	}
288	printk(KERN_ERR "early_ioremap(0x%lx, %lu) failed\n", addr, size);
289
290	return NULL;
291}
292
293/*
294 * To avoid virtual aliases later:
295 */
296__meminit void early_iounmap(void *addr, unsigned long size)
297{
298	unsigned long vaddr;
299	pmd_t *pmd;
300	int i, pmds;
301
302	vaddr = (unsigned long)addr;
303	pmds = ((vaddr & ~PMD_MASK) + size + ~PMD_MASK) / PMD_SIZE;
304	pmd = level2_kernel_pgt + pmd_index(vaddr);
305
306	for (i = 0; i < pmds; i++)
307		pmd_clear(pmd + i);
308
309	__flush_tlb_all();
310}
311
312static unsigned long __meminit
313phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end)
314{
315	int i = pmd_index(address);
316
317	for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
318		pmd_t *pmd = pmd_page + pmd_index(address);
319
320		if (address >= end) {
321			if (!after_bootmem) {
322				for (; i < PTRS_PER_PMD; i++, pmd++)
323					set_pmd(pmd, __pmd(0));
324			}
325			break;
326		}
327
328		if (pmd_val(*pmd))
329			continue;
330
331		set_pte((pte_t *)pmd,
332			pfn_pte(address >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
333	}
334	return address;
335}
336
337static unsigned long __meminit
338phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end)
339{
340	pmd_t *pmd = pmd_offset(pud, 0);
341	unsigned long last_map_addr;
342
343	spin_lock(&init_mm.page_table_lock);
344	last_map_addr = phys_pmd_init(pmd, address, end);
345	spin_unlock(&init_mm.page_table_lock);
346	__flush_tlb_all();
347	return last_map_addr;
348}
349
350static unsigned long __meminit
351phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end)
352{
353	unsigned long last_map_addr = end;
354	int i = pud_index(addr);
355
356	for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
357		unsigned long pmd_phys;
358		pud_t *pud = pud_page + pud_index(addr);
359		pmd_t *pmd;
360
361		if (addr >= end)
362			break;
363
364		if (!after_bootmem &&
365				!e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
366			set_pud(pud, __pud(0));
367			continue;
368		}
369
370		if (pud_val(*pud)) {
371			if (!pud_large(*pud))
372				last_map_addr = phys_pmd_update(pud, addr, end);
373			continue;
374		}
375
376		if (direct_gbpages) {
377			set_pte((pte_t *)pud,
378				pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
379			last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
380			continue;
381		}
382
383		pmd = alloc_low_page(&pmd_phys);
384
385		spin_lock(&init_mm.page_table_lock);
386		set_pud(pud, __pud(pmd_phys | _KERNPG_TABLE));
387		last_map_addr = phys_pmd_init(pmd, addr, end);
388		spin_unlock(&init_mm.page_table_lock);
389
390		unmap_low_page(pmd);
391	}
392	__flush_tlb_all();
393
394	return last_map_addr >> PAGE_SHIFT;
395}
396
397static void __init find_early_table_space(unsigned long end)
398{
399	unsigned long puds, pmds, tables, start;
400
401	puds = (end + PUD_SIZE - 1) >> PUD_SHIFT;
402	tables = round_up(puds * sizeof(pud_t), PAGE_SIZE);
403	if (!direct_gbpages) {
404		pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT;
405		tables += round_up(pmds * sizeof(pmd_t), PAGE_SIZE);
406	}
407
408	/*
409	 * RED-PEN putting page tables only on node 0 could
410	 * cause a hotspot and fill up ZONE_DMA. The page tables
411	 * need roughly 0.5KB per GB.
412	 */
413	start = 0x8000;
414	table_start = find_e820_area(start, end, tables, PAGE_SIZE);
415	if (table_start == -1UL)
416		panic("Cannot find space for the kernel page tables");
417
418	table_start >>= PAGE_SHIFT;
419	table_end = table_start;
420
421	early_printk("kernel direct mapping tables up to %lx @ %lx-%lx\n",
422		end, table_start << PAGE_SHIFT,
423		(table_start << PAGE_SHIFT) + tables);
424}
425
426static void __init init_gbpages(void)
427{
428	if (direct_gbpages && cpu_has_gbpages)
429		printk(KERN_INFO "Using GB pages for direct mapping\n");
430	else
431		direct_gbpages = 0;
432}
433
434#ifdef CONFIG_MEMTEST_BOOTPARAM
435
436static void __init memtest(unsigned long start_phys, unsigned long size,
437				 unsigned pattern)
438{
439	unsigned long i;
440	unsigned long *start;
441	unsigned long start_bad;
442	unsigned long last_bad;
443	unsigned long val;
444	unsigned long start_phys_aligned;
445	unsigned long count;
446	unsigned long incr;
447
448	switch (pattern) {
449	case 0:
450		val = 0UL;
451		break;
452	case 1:
453		val = -1UL;
454		break;
455	case 2:
456		val = 0x5555555555555555UL;
457		break;
458	case 3:
459		val = 0xaaaaaaaaaaaaaaaaUL;
460		break;
461	default:
462		return;
463	}
464
465	incr = sizeof(unsigned long);
466	start_phys_aligned = ALIGN(start_phys, incr);
467	count = (size - (start_phys_aligned - start_phys))/incr;
468	start = __va(start_phys_aligned);
469	start_bad = 0;
470	last_bad = 0;
471
472	for (i = 0; i < count; i++)
473		start[i] = val;
474	for (i = 0; i < count; i++, start++, start_phys_aligned += incr) {
475		if (*start != val) {
476			if (start_phys_aligned == last_bad + incr) {
477				last_bad += incr;
478			} else {
479				if (start_bad) {
480					printk(KERN_CONT "\n  %016lx bad mem addr %016lx - %016lx reserved",
481						val, start_bad, last_bad + incr);
482					reserve_early(start_bad, last_bad - start_bad, "BAD RAM");
483				}
484				start_bad = last_bad = start_phys_aligned;
485			}
486		}
487	}
488	if (start_bad) {
489		printk(KERN_CONT "\n  %016lx bad mem addr %016lx - %016lx reserved",
490			val, start_bad, last_bad + incr);
491		reserve_early(start_bad, last_bad - start_bad, "BAD RAM");
492	}
493
494}
495
496static int memtest_pattern __initdata = CONFIG_MEMTEST_BOOTPARAM_VALUE;
497
498static int __init parse_memtest(char *arg)
499{
500	if (arg)
501		memtest_pattern = simple_strtoul(arg, NULL, 0);
502	return 0;
503}
504
505early_param("memtest", parse_memtest);
506
507static void __init early_memtest(unsigned long start, unsigned long end)
508{
509	unsigned long t_start, t_size;
510	unsigned pattern;
511
512	if (!memtest_pattern)
513		return;
514
515	printk(KERN_INFO "early_memtest: pattern num %d", memtest_pattern);
516	for (pattern = 0; pattern < memtest_pattern; pattern++) {
517		t_start = start;
518		t_size = 0;
519		while (t_start < end) {
520			t_start = find_e820_area_size(t_start, &t_size, 1);
521
522			/* done ? */
523			if (t_start >= end)
524				break;
525			if (t_start + t_size > end)
526				t_size = end - t_start;
527
528			printk(KERN_CONT "\n  %016lx - %016lx pattern %d",
529				t_start, t_start + t_size, pattern);
530
531			memtest(t_start, t_size, pattern);
532
533			t_start += t_size;
534		}
535	}
536	printk(KERN_CONT "\n");
537}
538#else
539static void __init early_memtest(unsigned long start, unsigned long end)
540{
541}
542#endif
543
544/*
545 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
546 * This runs before bootmem is initialized and gets pages directly from
547 * the physical memory. To access them they are temporarily mapped.
548 */
549unsigned long __init_refok init_memory_mapping(unsigned long start, unsigned long end)
550{
551	unsigned long next, last_map_addr = end;
552	unsigned long start_phys = start, end_phys = end;
553
554	printk(KERN_INFO "init_memory_mapping\n");
555
556	/*
557	 * Find space for the kernel direct mapping tables.
558	 *
559	 * Later we should allocate these tables in the local node of the
560	 * memory mapped. Unfortunately this is done currently before the
561	 * nodes are discovered.
562	 */
563	if (!after_bootmem) {
564		init_gbpages();
565		find_early_table_space(end);
566	}
567
568	start = (unsigned long)__va(start);
569	end = (unsigned long)__va(end);
570
571	for (; start < end; start = next) {
572		pgd_t *pgd = pgd_offset_k(start);
573		unsigned long pud_phys;
574		pud_t *pud;
575
576		if (after_bootmem)
577			pud = pud_offset(pgd, start & PGDIR_MASK);
578		else
579			pud = alloc_low_page(&pud_phys);
580
581		next = start + PGDIR_SIZE;
582		if (next > end)
583			next = end;
584		last_map_addr = phys_pud_init(pud, __pa(start), __pa(next));
585		if (!after_bootmem)
586			set_pgd(pgd_offset_k(start), mk_kernel_pgd(pud_phys));
587		unmap_low_page(pud);
588	}
589
590	if (!after_bootmem)
591		mmu_cr4_features = read_cr4();
592	__flush_tlb_all();
593
594	if (!after_bootmem)
595		reserve_early(table_start << PAGE_SHIFT,
596				 table_end << PAGE_SHIFT, "PGTABLE");
597
598	if (!after_bootmem)
599		early_memtest(start_phys, end_phys);
600
601	return last_map_addr;
602}
603
604#ifndef CONFIG_NUMA
605void __init paging_init(void)
606{
607	unsigned long max_zone_pfns[MAX_NR_ZONES];
608
609	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
610	max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
611	max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
612	max_zone_pfns[ZONE_NORMAL] = end_pfn;
613
614	memory_present(0, 0, end_pfn);
615	sparse_init();
616	free_area_init_nodes(max_zone_pfns);
617}
618#endif
619
620/*
621 * Memory hotplug specific functions
622 */
623#ifdef CONFIG_MEMORY_HOTPLUG
624/*
625 * Memory is added always to NORMAL zone. This means you will never get
626 * additional DMA/DMA32 memory.
627 */
628int arch_add_memory(int nid, u64 start, u64 size)
629{
630	struct pglist_data *pgdat = NODE_DATA(nid);
631	struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
632	unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
633	unsigned long nr_pages = size >> PAGE_SHIFT;
634	int ret;
635
636	last_mapped_pfn = init_memory_mapping(start, start + size-1);
637	if (last_mapped_pfn > max_pfn_mapped)
638		max_pfn_mapped = last_mapped_pfn;
639
640	ret = __add_pages(zone, start_pfn, nr_pages);
641	WARN_ON(1);
642
643	return ret;
644}
645EXPORT_SYMBOL_GPL(arch_add_memory);
646
647#if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
648int memory_add_physaddr_to_nid(u64 start)
649{
650	return 0;
651}
652EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
653#endif
654
655#endif /* CONFIG_MEMORY_HOTPLUG */
656
657/*
658 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
659 * is valid. The argument is a physical page number.
660 *
661 *
662 * On x86, access has to be given to the first megabyte of ram because that area
663 * contains bios code and data regions used by X and dosemu and similar apps.
664 * Access has to be given to non-kernel-ram areas as well, these contain the PCI
665 * mmio resources as well as potential bios/acpi data regions.
666 */
667int devmem_is_allowed(unsigned long pagenr)
668{
669	if (pagenr <= 256)
670		return 1;
671	if (!page_is_ram(pagenr))
672		return 1;
673	return 0;
674}
675
676
677static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel,
678			 kcore_modules, kcore_vsyscall;
679
680void __init mem_init(void)
681{
682	long codesize, reservedpages, datasize, initsize;
683
684	pci_iommu_alloc();
685
686	/* clear_bss() already clear the empty_zero_page */
687
688	reservedpages = 0;
689
690	/* this will put all low memory onto the freelists */
691#ifdef CONFIG_NUMA
692	totalram_pages = numa_free_all_bootmem();
693#else
694	totalram_pages = free_all_bootmem();
695#endif
696	reservedpages = end_pfn - totalram_pages -
697					absent_pages_in_range(0, end_pfn);
698	after_bootmem = 1;
699
700	codesize =  (unsigned long) &_etext - (unsigned long) &_text;
701	datasize =  (unsigned long) &_edata - (unsigned long) &_etext;
702	initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin;
703
704	/* Register memory areas for /proc/kcore */
705	kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
706	kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
707		   VMALLOC_END-VMALLOC_START);
708	kclist_add(&kcore_kernel, &_stext, _end - _stext);
709	kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
710	kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
711				 VSYSCALL_END - VSYSCALL_START);
712
713	printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
714				"%ldk reserved, %ldk data, %ldk init)\n",
715		(unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
716		end_pfn << (PAGE_SHIFT-10),
717		codesize >> 10,
718		reservedpages << (PAGE_SHIFT-10),
719		datasize >> 10,
720		initsize >> 10);
721
722	cpa_init();
723}
724
725void free_init_pages(char *what, unsigned long begin, unsigned long end)
726{
727	unsigned long addr = begin;
728
729	if (addr >= end)
730		return;
731
732	/*
733	 * If debugging page accesses then do not free this memory but
734	 * mark them not present - any buggy init-section access will
735	 * create a kernel page fault:
736	 */
737#ifdef CONFIG_DEBUG_PAGEALLOC
738	printk(KERN_INFO "debug: unmapping init memory %08lx..%08lx\n",
739		begin, PAGE_ALIGN(end));
740	set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
741#else
742	printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
743
744	for (; addr < end; addr += PAGE_SIZE) {
745		ClearPageReserved(virt_to_page(addr));
746		init_page_count(virt_to_page(addr));
747		memset((void *)(addr & ~(PAGE_SIZE-1)),
748			POISON_FREE_INITMEM, PAGE_SIZE);
749		free_page(addr);
750		totalram_pages++;
751	}
752#endif
753}
754
755void free_initmem(void)
756{
757	free_init_pages("unused kernel memory",
758			(unsigned long)(&__init_begin),
759			(unsigned long)(&__init_end));
760}
761
762#ifdef CONFIG_DEBUG_RODATA
763const int rodata_test_data = 0xC3;
764EXPORT_SYMBOL_GPL(rodata_test_data);
765
766void mark_rodata_ro(void)
767{
768	unsigned long start = PFN_ALIGN(_stext), end = PFN_ALIGN(__end_rodata);
769	unsigned long rodata_start =
770		((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
771
772#ifdef CONFIG_DYNAMIC_FTRACE
773	/* Dynamic tracing modifies the kernel text section */
774	start = rodata_start;
775#endif
776
777	printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
778	       (end - start) >> 10);
779	set_memory_ro(start, (end - start) >> PAGE_SHIFT);
780
781	/*
782	 * The rodata section (but not the kernel text!) should also be
783	 * not-executable.
784	 */
785	set_memory_nx(rodata_start, (end - start) >> PAGE_SHIFT);
786
787	rodata_test();
788
789#ifdef CONFIG_CPA_DEBUG
790	printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
791	set_memory_rw(start, (end-start) >> PAGE_SHIFT);
792
793	printk(KERN_INFO "Testing CPA: again\n");
794	set_memory_ro(start, (end-start) >> PAGE_SHIFT);
795#endif
796}
797
798#endif
799
800#ifdef CONFIG_BLK_DEV_INITRD
801void free_initrd_mem(unsigned long start, unsigned long end)
802{
803	free_init_pages("initrd memory", start, end);
804}
805#endif
806
807void __init reserve_bootmem_generic(unsigned long phys, unsigned len)
808{
809#ifdef CONFIG_NUMA
810	int nid, next_nid;
811#endif
812	unsigned long pfn = phys >> PAGE_SHIFT;
813
814	if (pfn >= end_pfn) {
815		/*
816		 * This can happen with kdump kernels when accessing
817		 * firmware tables:
818		 */
819		if (pfn < max_pfn_mapped)
820			return;
821
822		printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %u\n",
823				phys, len);
824		return;
825	}
826
827	/* Should check here against the e820 map to avoid double free */
828#ifdef CONFIG_NUMA
829	nid = phys_to_nid(phys);
830	next_nid = phys_to_nid(phys + len - 1);
831	if (nid == next_nid)
832		reserve_bootmem_node(NODE_DATA(nid), phys, len, BOOTMEM_DEFAULT);
833	else
834		reserve_bootmem(phys, len, BOOTMEM_DEFAULT);
835#else
836	reserve_bootmem(phys, len, BOOTMEM_DEFAULT);
837#endif
838
839	if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
840		dma_reserve += len / PAGE_SIZE;
841		set_dma_reserve(dma_reserve);
842	}
843}
844
845int kern_addr_valid(unsigned long addr)
846{
847	unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
848	pgd_t *pgd;
849	pud_t *pud;
850	pmd_t *pmd;
851	pte_t *pte;
852
853	if (above != 0 && above != -1UL)
854		return 0;
855
856	pgd = pgd_offset_k(addr);
857	if (pgd_none(*pgd))
858		return 0;
859
860	pud = pud_offset(pgd, addr);
861	if (pud_none(*pud))
862		return 0;
863
864	pmd = pmd_offset(pud, addr);
865	if (pmd_none(*pmd))
866		return 0;
867
868	if (pmd_large(*pmd))
869		return pfn_valid(pmd_pfn(*pmd));
870
871	pte = pte_offset_kernel(pmd, addr);
872	if (pte_none(*pte))
873		return 0;
874
875	return pfn_valid(pte_pfn(*pte));
876}
877
878/*
879 * A pseudo VMA to allow ptrace access for the vsyscall page.  This only
880 * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
881 * not need special handling anymore:
882 */
883static struct vm_area_struct gate_vma = {
884	.vm_start	= VSYSCALL_START,
885	.vm_end		= VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
886	.vm_page_prot	= PAGE_READONLY_EXEC,
887	.vm_flags	= VM_READ | VM_EXEC
888};
889
890struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
891{
892#ifdef CONFIG_IA32_EMULATION
893	if (test_tsk_thread_flag(tsk, TIF_IA32))
894		return NULL;
895#endif
896	return &gate_vma;
897}
898
899int in_gate_area(struct task_struct *task, unsigned long addr)
900{
901	struct vm_area_struct *vma = get_gate_vma(task);
902
903	if (!vma)
904		return 0;
905
906	return (addr >= vma->vm_start) && (addr < vma->vm_end);
907}
908
909/*
910 * Use this when you have no reliable task/vma, typically from interrupt
911 * context. It is less reliable than using the task's vma and may give
912 * false positives:
913 */
914int in_gate_area_no_task(unsigned long addr)
915{
916	return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
917}
918
919const char *arch_vma_name(struct vm_area_struct *vma)
920{
921	if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
922		return "[vdso]";
923	if (vma == &gate_vma)
924		return "[vsyscall]";
925	return NULL;
926}
927
928#ifdef CONFIG_SPARSEMEM_VMEMMAP
929/*
930 * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
931 */
932static long __meminitdata addr_start, addr_end;
933static void __meminitdata *p_start, *p_end;
934static int __meminitdata node_start;
935
936int __meminit
937vmemmap_populate(struct page *start_page, unsigned long size, int node)
938{
939	unsigned long addr = (unsigned long)start_page;
940	unsigned long end = (unsigned long)(start_page + size);
941	unsigned long next;
942	pgd_t *pgd;
943	pud_t *pud;
944	pmd_t *pmd;
945
946	for (; addr < end; addr = next) {
947		next = pmd_addr_end(addr, end);
948
949		pgd = vmemmap_pgd_populate(addr, node);
950		if (!pgd)
951			return -ENOMEM;
952
953		pud = vmemmap_pud_populate(pgd, addr, node);
954		if (!pud)
955			return -ENOMEM;
956
957		pmd = pmd_offset(pud, addr);
958		if (pmd_none(*pmd)) {
959			pte_t entry;
960			void *p;
961
962			p = vmemmap_alloc_block(PMD_SIZE, node);
963			if (!p)
964				return -ENOMEM;
965
966			entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
967							PAGE_KERNEL_LARGE);
968			set_pmd(pmd, __pmd(pte_val(entry)));
969
970			/* check to see if we have contiguous blocks */
971			if (p_end != p || node_start != node) {
972				if (p_start)
973					printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
974						addr_start, addr_end-1, p_start, p_end-1, node_start);
975				addr_start = addr;
976				node_start = node;
977				p_start = p;
978			}
979			addr_end = addr + PMD_SIZE;
980			p_end = p + PMD_SIZE;
981		} else {
982			vmemmap_verify((pte_t *)pmd, node, addr, next);
983		}
984	}
985	return 0;
986}
987
988void __meminit vmemmap_populate_print_last(void)
989{
990	if (p_start) {
991		printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
992			addr_start, addr_end-1, p_start, p_end-1, node_start);
993		p_start = NULL;
994		p_end = NULL;
995		node_start = 0;
996	}
997}
998#endif
999