init_64.c revision b27a43c1e90582facad44de67d02bc9e9f900289
1/*
2 *  linux/arch/x86_64/mm/init.c
3 *
4 *  Copyright (C) 1995  Linus Torvalds
5 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
6 *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7 */
8
9#include <linux/signal.h>
10#include <linux/sched.h>
11#include <linux/kernel.h>
12#include <linux/errno.h>
13#include <linux/string.h>
14#include <linux/types.h>
15#include <linux/ptrace.h>
16#include <linux/mman.h>
17#include <linux/mm.h>
18#include <linux/swap.h>
19#include <linux/smp.h>
20#include <linux/init.h>
21#include <linux/initrd.h>
22#include <linux/pagemap.h>
23#include <linux/bootmem.h>
24#include <linux/proc_fs.h>
25#include <linux/pci.h>
26#include <linux/pfn.h>
27#include <linux/poison.h>
28#include <linux/dma-mapping.h>
29#include <linux/module.h>
30#include <linux/memory_hotplug.h>
31#include <linux/nmi.h>
32
33#include <asm/processor.h>
34#include <asm/system.h>
35#include <asm/uaccess.h>
36#include <asm/pgtable.h>
37#include <asm/pgalloc.h>
38#include <asm/dma.h>
39#include <asm/fixmap.h>
40#include <asm/e820.h>
41#include <asm/apic.h>
42#include <asm/tlb.h>
43#include <asm/mmu_context.h>
44#include <asm/proto.h>
45#include <asm/smp.h>
46#include <asm/sections.h>
47#include <asm/kdebug.h>
48#include <asm/numa.h>
49#include <asm/cacheflush.h>
50
51/*
52 * end_pfn only includes RAM, while max_pfn_mapped includes all e820 entries.
53 * The direct mapping extends to max_pfn_mapped, so that we can directly access
54 * apertures, ACPI and other tables without having to play with fixmaps.
55 */
56unsigned long max_low_pfn_mapped;
57unsigned long max_pfn_mapped;
58
59static unsigned long dma_reserve __initdata;
60
61DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
62
63int direct_gbpages
64#ifdef CONFIG_DIRECT_GBPAGES
65				= 1
66#endif
67;
68
69static int __init parse_direct_gbpages_off(char *arg)
70{
71	direct_gbpages = 0;
72	return 0;
73}
74early_param("nogbpages", parse_direct_gbpages_off);
75
76static int __init parse_direct_gbpages_on(char *arg)
77{
78	direct_gbpages = 1;
79	return 0;
80}
81early_param("gbpages", parse_direct_gbpages_on);
82
83/*
84 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
85 * physical space so we can cache the place of the first one and move
86 * around without checking the pgd every time.
87 */
88
89int after_bootmem;
90
91/*
92 * NOTE: This function is marked __ref because it calls __init function
93 * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
94 */
95static __ref void *spp_getpage(void)
96{
97	void *ptr;
98
99	if (after_bootmem)
100		ptr = (void *) get_zeroed_page(GFP_ATOMIC);
101	else
102		ptr = alloc_bootmem_pages(PAGE_SIZE);
103
104	if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
105		panic("set_pte_phys: cannot allocate page data %s\n",
106			after_bootmem ? "after bootmem" : "");
107	}
108
109	pr_debug("spp_getpage %p\n", ptr);
110
111	return ptr;
112}
113
114void
115set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
116{
117	pud_t *pud;
118	pmd_t *pmd;
119	pte_t *pte;
120
121	pud = pud_page + pud_index(vaddr);
122	if (pud_none(*pud)) {
123		pmd = (pmd_t *) spp_getpage();
124		pud_populate(&init_mm, pud, pmd);
125		if (pmd != pmd_offset(pud, 0)) {
126			printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
127				pmd, pmd_offset(pud, 0));
128			return;
129		}
130	}
131	pmd = pmd_offset(pud, vaddr);
132	if (pmd_none(*pmd)) {
133		pte = (pte_t *) spp_getpage();
134		pmd_populate_kernel(&init_mm, pmd, pte);
135		if (pte != pte_offset_kernel(pmd, 0)) {
136			printk(KERN_ERR "PAGETABLE BUG #02!\n");
137			return;
138		}
139	}
140
141	pte = pte_offset_kernel(pmd, vaddr);
142	if (!pte_none(*pte) && pte_val(new_pte) &&
143	    pte_val(*pte) != (pte_val(new_pte) & __supported_pte_mask))
144		pte_ERROR(*pte);
145	set_pte(pte, new_pte);
146
147	/*
148	 * It's enough to flush this one mapping.
149	 * (PGE mappings get flushed as well)
150	 */
151	__flush_tlb_one(vaddr);
152}
153
154void
155set_pte_vaddr(unsigned long vaddr, pte_t pteval)
156{
157	pgd_t *pgd;
158	pud_t *pud_page;
159
160	pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
161
162	pgd = pgd_offset_k(vaddr);
163	if (pgd_none(*pgd)) {
164		printk(KERN_ERR
165			"PGD FIXMAP MISSING, it should be setup in head.S!\n");
166		return;
167	}
168	pud_page = (pud_t*)pgd_page_vaddr(*pgd);
169	set_pte_vaddr_pud(pud_page, vaddr, pteval);
170}
171
172/*
173 * Create large page table mappings for a range of physical addresses.
174 */
175static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
176						pgprot_t prot)
177{
178	pgd_t *pgd;
179	pud_t *pud;
180	pmd_t *pmd;
181
182	BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
183	for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
184		pgd = pgd_offset_k((unsigned long)__va(phys));
185		if (pgd_none(*pgd)) {
186			pud = (pud_t *) spp_getpage();
187			set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
188						_PAGE_USER));
189		}
190		pud = pud_offset(pgd, (unsigned long)__va(phys));
191		if (pud_none(*pud)) {
192			pmd = (pmd_t *) spp_getpage();
193			set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
194						_PAGE_USER));
195		}
196		pmd = pmd_offset(pud, phys);
197		BUG_ON(!pmd_none(*pmd));
198		set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
199	}
200}
201
202void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
203{
204	__init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
205}
206
207void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
208{
209	__init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
210}
211
212/*
213 * The head.S code sets up the kernel high mapping:
214 *
215 *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
216 *
217 * phys_addr holds the negative offset to the kernel, which is added
218 * to the compile time generated pmds. This results in invalid pmds up
219 * to the point where we hit the physaddr 0 mapping.
220 *
221 * We limit the mappings to the region from _text to _end.  _end is
222 * rounded up to the 2MB boundary. This catches the invalid pmds as
223 * well, as they are located before _text:
224 */
225void __init cleanup_highmap(void)
226{
227	unsigned long vaddr = __START_KERNEL_map;
228	unsigned long end = round_up((unsigned long)_end, PMD_SIZE) - 1;
229	pmd_t *pmd = level2_kernel_pgt;
230	pmd_t *last_pmd = pmd + PTRS_PER_PMD;
231
232	for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
233		if (pmd_none(*pmd))
234			continue;
235		if (vaddr < (unsigned long) _text || vaddr > end)
236			set_pmd(pmd, __pmd(0));
237	}
238}
239
240static unsigned long __initdata table_start;
241static unsigned long __meminitdata table_end;
242static unsigned long __meminitdata table_top;
243
244static __ref void *alloc_low_page(unsigned long *phys)
245{
246	unsigned long pfn = table_end++;
247	void *adr;
248
249	if (after_bootmem) {
250		adr = (void *)get_zeroed_page(GFP_ATOMIC);
251		*phys = __pa(adr);
252
253		return adr;
254	}
255
256	if (pfn >= table_top)
257		panic("alloc_low_page: ran out of memory");
258
259	adr = early_ioremap(pfn * PAGE_SIZE, PAGE_SIZE);
260	memset(adr, 0, PAGE_SIZE);
261	*phys  = pfn * PAGE_SIZE;
262	return adr;
263}
264
265static __ref void unmap_low_page(void *adr)
266{
267	if (after_bootmem)
268		return;
269
270	early_iounmap(adr, PAGE_SIZE);
271}
272
273static unsigned long __meminit
274phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
275	      pgprot_t prot)
276{
277	unsigned pages = 0;
278	unsigned long last_map_addr = end;
279	int i;
280
281	pte_t *pte = pte_page + pte_index(addr);
282
283	for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) {
284
285		if (addr >= end) {
286			if (!after_bootmem) {
287				for(; i < PTRS_PER_PTE; i++, pte++)
288					set_pte(pte, __pte(0));
289			}
290			break;
291		}
292
293		/*
294		 * We will re-use the existing mapping.
295		 * Xen for example has some special requirements, like mapping
296		 * pagetable pages as RO. So assume someone who pre-setup
297		 * these mappings are more intelligent.
298		 */
299		if (pte_val(*pte))
300			continue;
301
302		if (0)
303			printk("   pte=%p addr=%lx pte=%016lx\n",
304			       pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
305		pages++;
306		set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
307		last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
308	}
309
310	update_page_count(PG_LEVEL_4K, pages);
311
312	return last_map_addr;
313}
314
315static unsigned long __meminit
316phys_pte_update(pmd_t *pmd, unsigned long address, unsigned long end,
317		pgprot_t prot)
318{
319	pte_t *pte = (pte_t *)pmd_page_vaddr(*pmd);
320
321	return phys_pte_init(pte, address, end, prot);
322}
323
324static unsigned long __meminit
325phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
326	      unsigned long page_size_mask, pgprot_t prot)
327{
328	unsigned long pages = 0;
329	unsigned long last_map_addr = end;
330
331	int i = pmd_index(address);
332
333	for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
334		unsigned long pte_phys;
335		pmd_t *pmd = pmd_page + pmd_index(address);
336		pte_t *pte;
337		pgprot_t new_prot = prot;
338
339		if (address >= end) {
340			if (!after_bootmem) {
341				for (; i < PTRS_PER_PMD; i++, pmd++)
342					set_pmd(pmd, __pmd(0));
343			}
344			break;
345		}
346
347		if (pmd_val(*pmd)) {
348			if (!pmd_large(*pmd)) {
349				spin_lock(&init_mm.page_table_lock);
350				last_map_addr = phys_pte_update(pmd, address,
351								end, prot);
352				spin_unlock(&init_mm.page_table_lock);
353				continue;
354			}
355			/*
356			 * If we are ok with PG_LEVEL_2M mapping, then we will
357			 * use the existing mapping,
358			 *
359			 * Otherwise, we will split the large page mapping but
360			 * use the same existing protection bits except for
361			 * large page, so that we don't violate Intel's TLB
362			 * Application note (317080) which says, while changing
363			 * the page sizes, new and old translations should
364			 * not differ with respect to page frame and
365			 * attributes.
366			 */
367			if (page_size_mask & (1 << PG_LEVEL_2M))
368				continue;
369			new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
370		}
371
372		if (page_size_mask & (1<<PG_LEVEL_2M)) {
373			pages++;
374			spin_lock(&init_mm.page_table_lock);
375			set_pte((pte_t *)pmd,
376				pfn_pte(address >> PAGE_SHIFT,
377					__pgprot(pgprot_val(prot) | _PAGE_PSE)));
378			spin_unlock(&init_mm.page_table_lock);
379			last_map_addr = (address & PMD_MASK) + PMD_SIZE;
380			continue;
381		}
382
383		pte = alloc_low_page(&pte_phys);
384		last_map_addr = phys_pte_init(pte, address, end, new_prot);
385		unmap_low_page(pte);
386
387		spin_lock(&init_mm.page_table_lock);
388		pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
389		spin_unlock(&init_mm.page_table_lock);
390	}
391	update_page_count(PG_LEVEL_2M, pages);
392	return last_map_addr;
393}
394
395static unsigned long __meminit
396phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end,
397		unsigned long page_size_mask, pgprot_t prot)
398{
399	pmd_t *pmd = pmd_offset(pud, 0);
400	unsigned long last_map_addr;
401
402	last_map_addr = phys_pmd_init(pmd, address, end, page_size_mask, prot);
403	__flush_tlb_all();
404	return last_map_addr;
405}
406
407static unsigned long __meminit
408phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
409			 unsigned long page_size_mask)
410{
411	unsigned long pages = 0;
412	unsigned long last_map_addr = end;
413	int i = pud_index(addr);
414
415	for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
416		unsigned long pmd_phys;
417		pud_t *pud = pud_page + pud_index(addr);
418		pmd_t *pmd;
419		pgprot_t prot = PAGE_KERNEL;
420
421		if (addr >= end)
422			break;
423
424		if (!after_bootmem &&
425				!e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
426			set_pud(pud, __pud(0));
427			continue;
428		}
429
430		if (pud_val(*pud)) {
431			if (!pud_large(*pud)) {
432				last_map_addr = phys_pmd_update(pud, addr, end,
433							 page_size_mask, prot);
434				continue;
435			}
436			/*
437			 * If we are ok with PG_LEVEL_1G mapping, then we will
438			 * use the existing mapping.
439			 *
440			 * Otherwise, we will split the gbpage mapping but use
441			 * the same existing protection  bits except for large
442			 * page, so that we don't violate Intel's TLB
443			 * Application note (317080) which says, while changing
444			 * the page sizes, new and old translations should
445			 * not differ with respect to page frame and
446			 * attributes.
447			 */
448			if (page_size_mask & (1 << PG_LEVEL_1G))
449				continue;
450			prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
451		}
452
453		if (page_size_mask & (1<<PG_LEVEL_1G)) {
454			pages++;
455			spin_lock(&init_mm.page_table_lock);
456			set_pte((pte_t *)pud,
457				pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
458			spin_unlock(&init_mm.page_table_lock);
459			last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
460			continue;
461		}
462
463		pmd = alloc_low_page(&pmd_phys);
464		last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
465					      prot);
466		unmap_low_page(pmd);
467
468		spin_lock(&init_mm.page_table_lock);
469		pud_populate(&init_mm, pud, __va(pmd_phys));
470		spin_unlock(&init_mm.page_table_lock);
471	}
472	__flush_tlb_all();
473
474	update_page_count(PG_LEVEL_1G, pages);
475
476	return last_map_addr;
477}
478
479static unsigned long __meminit
480phys_pud_update(pgd_t *pgd, unsigned long addr, unsigned long end,
481		 unsigned long page_size_mask)
482{
483	pud_t *pud;
484
485	pud = (pud_t *)pgd_page_vaddr(*pgd);
486
487	return phys_pud_init(pud, addr, end, page_size_mask);
488}
489
490static void __init find_early_table_space(unsigned long end, int use_pse,
491					  int use_gbpages)
492{
493	unsigned long puds, pmds, ptes, tables, start;
494
495	puds = (end + PUD_SIZE - 1) >> PUD_SHIFT;
496	tables = round_up(puds * sizeof(pud_t), PAGE_SIZE);
497	if (use_gbpages) {
498		unsigned long extra;
499		extra = end - ((end>>PUD_SHIFT) << PUD_SHIFT);
500		pmds = (extra + PMD_SIZE - 1) >> PMD_SHIFT;
501	} else
502		pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT;
503	tables += round_up(pmds * sizeof(pmd_t), PAGE_SIZE);
504
505	if (use_pse) {
506		unsigned long extra;
507		extra = end - ((end>>PMD_SHIFT) << PMD_SHIFT);
508		ptes = (extra + PAGE_SIZE - 1) >> PAGE_SHIFT;
509	} else
510		ptes = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
511	tables += round_up(ptes * sizeof(pte_t), PAGE_SIZE);
512
513	/*
514	 * RED-PEN putting page tables only on node 0 could
515	 * cause a hotspot and fill up ZONE_DMA. The page tables
516	 * need roughly 0.5KB per GB.
517	 */
518	start = 0x8000;
519	table_start = find_e820_area(start, end, tables, PAGE_SIZE);
520	if (table_start == -1UL)
521		panic("Cannot find space for the kernel page tables");
522
523	table_start >>= PAGE_SHIFT;
524	table_end = table_start;
525	table_top = table_start + (tables >> PAGE_SHIFT);
526
527	printk(KERN_DEBUG "kernel direct mapping tables up to %lx @ %lx-%lx\n",
528		end, table_start << PAGE_SHIFT, table_top << PAGE_SHIFT);
529}
530
531static void __init init_gbpages(void)
532{
533	if (direct_gbpages && cpu_has_gbpages)
534		printk(KERN_INFO "Using GB pages for direct mapping\n");
535	else
536		direct_gbpages = 0;
537}
538
539static unsigned long __init kernel_physical_mapping_init(unsigned long start,
540						unsigned long end,
541						unsigned long page_size_mask)
542{
543
544	unsigned long next, last_map_addr = end;
545
546	start = (unsigned long)__va(start);
547	end = (unsigned long)__va(end);
548
549	for (; start < end; start = next) {
550		pgd_t *pgd = pgd_offset_k(start);
551		unsigned long pud_phys;
552		pud_t *pud;
553
554		next = (start + PGDIR_SIZE) & PGDIR_MASK;
555		if (next > end)
556			next = end;
557
558		if (pgd_val(*pgd)) {
559			last_map_addr = phys_pud_update(pgd, __pa(start),
560						 __pa(end), page_size_mask);
561			continue;
562		}
563
564		pud = alloc_low_page(&pud_phys);
565		last_map_addr = phys_pud_init(pud, __pa(start), __pa(next),
566						 page_size_mask);
567		unmap_low_page(pud);
568
569		spin_lock(&init_mm.page_table_lock);
570		pgd_populate(&init_mm, pgd, __va(pud_phys));
571		spin_unlock(&init_mm.page_table_lock);
572	}
573	__flush_tlb_all();
574
575	return last_map_addr;
576}
577
578struct map_range {
579	unsigned long start;
580	unsigned long end;
581	unsigned page_size_mask;
582};
583
584#define NR_RANGE_MR 5
585
586static int save_mr(struct map_range *mr, int nr_range,
587		   unsigned long start_pfn, unsigned long end_pfn,
588		   unsigned long page_size_mask)
589{
590
591	if (start_pfn < end_pfn) {
592		if (nr_range >= NR_RANGE_MR)
593			panic("run out of range for init_memory_mapping\n");
594		mr[nr_range].start = start_pfn<<PAGE_SHIFT;
595		mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
596		mr[nr_range].page_size_mask = page_size_mask;
597		nr_range++;
598	}
599
600	return nr_range;
601}
602
603/*
604 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
605 * This runs before bootmem is initialized and gets pages directly from
606 * the physical memory. To access them they are temporarily mapped.
607 */
608unsigned long __init_refok init_memory_mapping(unsigned long start,
609					       unsigned long end)
610{
611	unsigned long last_map_addr = 0;
612	unsigned long page_size_mask = 0;
613	unsigned long start_pfn, end_pfn;
614
615	struct map_range mr[NR_RANGE_MR];
616	int nr_range, i;
617	int use_pse, use_gbpages;
618
619	printk(KERN_INFO "init_memory_mapping\n");
620
621	/*
622	 * Find space for the kernel direct mapping tables.
623	 *
624	 * Later we should allocate these tables in the local node of the
625	 * memory mapped. Unfortunately this is done currently before the
626	 * nodes are discovered.
627	 */
628	if (!after_bootmem)
629		init_gbpages();
630
631#ifdef CONFIG_DEBUG_PAGEALLOC
632	/*
633	 * For CONFIG_DEBUG_PAGEALLOC, identity mapping will use small pages.
634	 * This will simplify cpa(), which otherwise needs to support splitting
635	 * large pages into small in interrupt context, etc.
636	 */
637	use_pse = use_gbpages = 0;
638#else
639	use_pse = cpu_has_pse;
640	use_gbpages = direct_gbpages;
641#endif
642
643	if (use_gbpages)
644		page_size_mask |= 1 << PG_LEVEL_1G;
645	if (use_pse)
646		page_size_mask |= 1 << PG_LEVEL_2M;
647
648	memset(mr, 0, sizeof(mr));
649	nr_range = 0;
650
651	/* head if not big page alignment ?*/
652	start_pfn = start >> PAGE_SHIFT;
653	end_pfn = ((start + (PMD_SIZE - 1)) >> PMD_SHIFT)
654			<< (PMD_SHIFT - PAGE_SHIFT);
655	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
656
657	/* big page (2M) range*/
658	start_pfn = ((start + (PMD_SIZE - 1))>>PMD_SHIFT)
659			 << (PMD_SHIFT - PAGE_SHIFT);
660	end_pfn = ((start + (PUD_SIZE - 1))>>PUD_SHIFT)
661			 << (PUD_SHIFT - PAGE_SHIFT);
662	if (end_pfn > ((end>>PUD_SHIFT)<<(PUD_SHIFT - PAGE_SHIFT)))
663		end_pfn = ((end>>PUD_SHIFT)<<(PUD_SHIFT - PAGE_SHIFT));
664	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
665			page_size_mask & (1<<PG_LEVEL_2M));
666
667	/* big page (1G) range */
668	start_pfn = end_pfn;
669	end_pfn = (end>>PUD_SHIFT) << (PUD_SHIFT - PAGE_SHIFT);
670	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
671				page_size_mask &
672				 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
673
674	/* tail is not big page (1G) alignment */
675	start_pfn = end_pfn;
676	end_pfn = (end>>PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT);
677	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
678			page_size_mask & (1<<PG_LEVEL_2M));
679
680	/* tail is not big page (2M) alignment */
681	start_pfn = end_pfn;
682	end_pfn = end>>PAGE_SHIFT;
683	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
684
685	/* try to merge same page size and continuous */
686	for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
687		unsigned long old_start;
688		if (mr[i].end != mr[i+1].start ||
689		    mr[i].page_size_mask != mr[i+1].page_size_mask)
690			continue;
691		/* move it */
692		old_start = mr[i].start;
693		memmove(&mr[i], &mr[i+1],
694			 (nr_range - 1 - i) * sizeof (struct map_range));
695		mr[i].start = old_start;
696		nr_range--;
697	}
698
699	for (i = 0; i < nr_range; i++)
700		printk(KERN_DEBUG " %010lx - %010lx page %s\n",
701				mr[i].start, mr[i].end,
702			(mr[i].page_size_mask & (1<<PG_LEVEL_1G))?"1G":(
703			 (mr[i].page_size_mask & (1<<PG_LEVEL_2M))?"2M":"4k"));
704
705	if (!after_bootmem)
706		find_early_table_space(end, use_pse, use_gbpages);
707
708	for (i = 0; i < nr_range; i++)
709		last_map_addr = kernel_physical_mapping_init(
710					mr[i].start, mr[i].end,
711					mr[i].page_size_mask);
712
713	if (!after_bootmem)
714		mmu_cr4_features = read_cr4();
715	__flush_tlb_all();
716
717	if (!after_bootmem && table_end > table_start)
718		reserve_early(table_start << PAGE_SHIFT,
719				 table_end << PAGE_SHIFT, "PGTABLE");
720
721	printk(KERN_INFO "last_map_addr: %lx end: %lx\n",
722			 last_map_addr, end);
723
724	if (!after_bootmem)
725		early_memtest(start, end);
726
727	return last_map_addr >> PAGE_SHIFT;
728}
729
730#ifndef CONFIG_NUMA
731void __init initmem_init(unsigned long start_pfn, unsigned long end_pfn)
732{
733	unsigned long bootmap_size, bootmap;
734
735	bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
736	bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size,
737				 PAGE_SIZE);
738	if (bootmap == -1L)
739		panic("Cannot find bootmem map of size %ld\n", bootmap_size);
740	/* don't touch min_low_pfn */
741	bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap >> PAGE_SHIFT,
742					 0, end_pfn);
743	e820_register_active_regions(0, start_pfn, end_pfn);
744	free_bootmem_with_active_regions(0, end_pfn);
745	early_res_to_bootmem(0, end_pfn<<PAGE_SHIFT);
746	reserve_bootmem(bootmap, bootmap_size, BOOTMEM_DEFAULT);
747}
748
749void __init paging_init(void)
750{
751	unsigned long max_zone_pfns[MAX_NR_ZONES];
752
753	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
754	max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
755	max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
756	max_zone_pfns[ZONE_NORMAL] = max_pfn;
757
758	memory_present(0, 0, max_pfn);
759	sparse_init();
760	free_area_init_nodes(max_zone_pfns);
761}
762#endif
763
764/*
765 * Memory hotplug specific functions
766 */
767#ifdef CONFIG_MEMORY_HOTPLUG
768/*
769 * Memory is added always to NORMAL zone. This means you will never get
770 * additional DMA/DMA32 memory.
771 */
772int arch_add_memory(int nid, u64 start, u64 size)
773{
774	struct pglist_data *pgdat = NODE_DATA(nid);
775	struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
776	unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
777	unsigned long nr_pages = size >> PAGE_SHIFT;
778	int ret;
779
780	last_mapped_pfn = init_memory_mapping(start, start + size-1);
781	if (last_mapped_pfn > max_pfn_mapped)
782		max_pfn_mapped = last_mapped_pfn;
783
784	ret = __add_pages(zone, start_pfn, nr_pages);
785	WARN_ON(1);
786
787	return ret;
788}
789EXPORT_SYMBOL_GPL(arch_add_memory);
790
791#if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
792int memory_add_physaddr_to_nid(u64 start)
793{
794	return 0;
795}
796EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
797#endif
798
799#endif /* CONFIG_MEMORY_HOTPLUG */
800
801/*
802 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
803 * is valid. The argument is a physical page number.
804 *
805 *
806 * On x86, access has to be given to the first megabyte of ram because that area
807 * contains bios code and data regions used by X and dosemu and similar apps.
808 * Access has to be given to non-kernel-ram areas as well, these contain the PCI
809 * mmio resources as well as potential bios/acpi data regions.
810 */
811int devmem_is_allowed(unsigned long pagenr)
812{
813	if (pagenr <= 256)
814		return 1;
815	if (!page_is_ram(pagenr))
816		return 1;
817	return 0;
818}
819
820
821static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel,
822			 kcore_modules, kcore_vsyscall;
823
824void __init mem_init(void)
825{
826	long codesize, reservedpages, datasize, initsize;
827
828	pci_iommu_alloc();
829
830	/* clear_bss() already clear the empty_zero_page */
831
832	reservedpages = 0;
833
834	/* this will put all low memory onto the freelists */
835#ifdef CONFIG_NUMA
836	totalram_pages = numa_free_all_bootmem();
837#else
838	totalram_pages = free_all_bootmem();
839#endif
840	reservedpages = max_pfn - totalram_pages -
841					absent_pages_in_range(0, max_pfn);
842	after_bootmem = 1;
843
844	codesize =  (unsigned long) &_etext - (unsigned long) &_text;
845	datasize =  (unsigned long) &_edata - (unsigned long) &_etext;
846	initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin;
847
848	/* Register memory areas for /proc/kcore */
849	kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
850	kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
851		   VMALLOC_END-VMALLOC_START);
852	kclist_add(&kcore_kernel, &_stext, _end - _stext);
853	kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
854	kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
855				 VSYSCALL_END - VSYSCALL_START);
856
857	printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
858				"%ldk reserved, %ldk data, %ldk init)\n",
859		(unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
860		max_pfn << (PAGE_SHIFT-10),
861		codesize >> 10,
862		reservedpages << (PAGE_SHIFT-10),
863		datasize >> 10,
864		initsize >> 10);
865}
866
867void free_init_pages(char *what, unsigned long begin, unsigned long end)
868{
869	unsigned long addr = begin;
870
871	if (addr >= end)
872		return;
873
874	/*
875	 * If debugging page accesses then do not free this memory but
876	 * mark them not present - any buggy init-section access will
877	 * create a kernel page fault:
878	 */
879#ifdef CONFIG_DEBUG_PAGEALLOC
880	printk(KERN_INFO "debug: unmapping init memory %08lx..%08lx\n",
881		begin, PAGE_ALIGN(end));
882	set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
883#else
884	printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
885
886	for (; addr < end; addr += PAGE_SIZE) {
887		ClearPageReserved(virt_to_page(addr));
888		init_page_count(virt_to_page(addr));
889		memset((void *)(addr & ~(PAGE_SIZE-1)),
890			POISON_FREE_INITMEM, PAGE_SIZE);
891		free_page(addr);
892		totalram_pages++;
893	}
894#endif
895}
896
897void free_initmem(void)
898{
899	free_init_pages("unused kernel memory",
900			(unsigned long)(&__init_begin),
901			(unsigned long)(&__init_end));
902}
903
904#ifdef CONFIG_DEBUG_RODATA
905const int rodata_test_data = 0xC3;
906EXPORT_SYMBOL_GPL(rodata_test_data);
907
908void mark_rodata_ro(void)
909{
910	unsigned long start = PFN_ALIGN(_stext), end = PFN_ALIGN(__end_rodata);
911	unsigned long rodata_start =
912		((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
913
914#ifdef CONFIG_DYNAMIC_FTRACE
915	/* Dynamic tracing modifies the kernel text section */
916	start = rodata_start;
917#endif
918
919	printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
920	       (end - start) >> 10);
921	set_memory_ro(start, (end - start) >> PAGE_SHIFT);
922
923	/*
924	 * The rodata section (but not the kernel text!) should also be
925	 * not-executable.
926	 */
927	set_memory_nx(rodata_start, (end - rodata_start) >> PAGE_SHIFT);
928
929	rodata_test();
930
931#ifdef CONFIG_CPA_DEBUG
932	printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
933	set_memory_rw(start, (end-start) >> PAGE_SHIFT);
934
935	printk(KERN_INFO "Testing CPA: again\n");
936	set_memory_ro(start, (end-start) >> PAGE_SHIFT);
937#endif
938}
939
940#endif
941
942#ifdef CONFIG_BLK_DEV_INITRD
943void free_initrd_mem(unsigned long start, unsigned long end)
944{
945	free_init_pages("initrd memory", start, end);
946}
947#endif
948
949int __init reserve_bootmem_generic(unsigned long phys, unsigned long len,
950				   int flags)
951{
952#ifdef CONFIG_NUMA
953	int nid, next_nid;
954	int ret;
955#endif
956	unsigned long pfn = phys >> PAGE_SHIFT;
957
958	if (pfn >= max_pfn) {
959		/*
960		 * This can happen with kdump kernels when accessing
961		 * firmware tables:
962		 */
963		if (pfn < max_pfn_mapped)
964			return -EFAULT;
965
966		printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %lu\n",
967				phys, len);
968		return -EFAULT;
969	}
970
971	/* Should check here against the e820 map to avoid double free */
972#ifdef CONFIG_NUMA
973	nid = phys_to_nid(phys);
974	next_nid = phys_to_nid(phys + len - 1);
975	if (nid == next_nid)
976		ret = reserve_bootmem_node(NODE_DATA(nid), phys, len, flags);
977	else
978		ret = reserve_bootmem(phys, len, flags);
979
980	if (ret != 0)
981		return ret;
982
983#else
984	reserve_bootmem(phys, len, BOOTMEM_DEFAULT);
985#endif
986
987	if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
988		dma_reserve += len / PAGE_SIZE;
989		set_dma_reserve(dma_reserve);
990	}
991
992	return 0;
993}
994
995int kern_addr_valid(unsigned long addr)
996{
997	unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
998	pgd_t *pgd;
999	pud_t *pud;
1000	pmd_t *pmd;
1001	pte_t *pte;
1002
1003	if (above != 0 && above != -1UL)
1004		return 0;
1005
1006	pgd = pgd_offset_k(addr);
1007	if (pgd_none(*pgd))
1008		return 0;
1009
1010	pud = pud_offset(pgd, addr);
1011	if (pud_none(*pud))
1012		return 0;
1013
1014	pmd = pmd_offset(pud, addr);
1015	if (pmd_none(*pmd))
1016		return 0;
1017
1018	if (pmd_large(*pmd))
1019		return pfn_valid(pmd_pfn(*pmd));
1020
1021	pte = pte_offset_kernel(pmd, addr);
1022	if (pte_none(*pte))
1023		return 0;
1024
1025	return pfn_valid(pte_pfn(*pte));
1026}
1027
1028/*
1029 * A pseudo VMA to allow ptrace access for the vsyscall page.  This only
1030 * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
1031 * not need special handling anymore:
1032 */
1033static struct vm_area_struct gate_vma = {
1034	.vm_start	= VSYSCALL_START,
1035	.vm_end		= VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
1036	.vm_page_prot	= PAGE_READONLY_EXEC,
1037	.vm_flags	= VM_READ | VM_EXEC
1038};
1039
1040struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
1041{
1042#ifdef CONFIG_IA32_EMULATION
1043	if (test_tsk_thread_flag(tsk, TIF_IA32))
1044		return NULL;
1045#endif
1046	return &gate_vma;
1047}
1048
1049int in_gate_area(struct task_struct *task, unsigned long addr)
1050{
1051	struct vm_area_struct *vma = get_gate_vma(task);
1052
1053	if (!vma)
1054		return 0;
1055
1056	return (addr >= vma->vm_start) && (addr < vma->vm_end);
1057}
1058
1059/*
1060 * Use this when you have no reliable task/vma, typically from interrupt
1061 * context. It is less reliable than using the task's vma and may give
1062 * false positives:
1063 */
1064int in_gate_area_no_task(unsigned long addr)
1065{
1066	return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
1067}
1068
1069const char *arch_vma_name(struct vm_area_struct *vma)
1070{
1071	if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
1072		return "[vdso]";
1073	if (vma == &gate_vma)
1074		return "[vsyscall]";
1075	return NULL;
1076}
1077
1078#ifdef CONFIG_SPARSEMEM_VMEMMAP
1079/*
1080 * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1081 */
1082static long __meminitdata addr_start, addr_end;
1083static void __meminitdata *p_start, *p_end;
1084static int __meminitdata node_start;
1085
1086int __meminit
1087vmemmap_populate(struct page *start_page, unsigned long size, int node)
1088{
1089	unsigned long addr = (unsigned long)start_page;
1090	unsigned long end = (unsigned long)(start_page + size);
1091	unsigned long next;
1092	pgd_t *pgd;
1093	pud_t *pud;
1094	pmd_t *pmd;
1095
1096	for (; addr < end; addr = next) {
1097		void *p = NULL;
1098
1099		pgd = vmemmap_pgd_populate(addr, node);
1100		if (!pgd)
1101			return -ENOMEM;
1102
1103		pud = vmemmap_pud_populate(pgd, addr, node);
1104		if (!pud)
1105			return -ENOMEM;
1106
1107		if (!cpu_has_pse) {
1108			next = (addr + PAGE_SIZE) & PAGE_MASK;
1109			pmd = vmemmap_pmd_populate(pud, addr, node);
1110
1111			if (!pmd)
1112				return -ENOMEM;
1113
1114			p = vmemmap_pte_populate(pmd, addr, node);
1115
1116			if (!p)
1117				return -ENOMEM;
1118
1119			addr_end = addr + PAGE_SIZE;
1120			p_end = p + PAGE_SIZE;
1121		} else {
1122			next = pmd_addr_end(addr, end);
1123
1124			pmd = pmd_offset(pud, addr);
1125			if (pmd_none(*pmd)) {
1126				pte_t entry;
1127
1128				p = vmemmap_alloc_block(PMD_SIZE, node);
1129				if (!p)
1130					return -ENOMEM;
1131
1132				entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1133						PAGE_KERNEL_LARGE);
1134				set_pmd(pmd, __pmd(pte_val(entry)));
1135
1136				/* check to see if we have contiguous blocks */
1137				if (p_end != p || node_start != node) {
1138					if (p_start)
1139						printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1140						       addr_start, addr_end-1, p_start, p_end-1, node_start);
1141					addr_start = addr;
1142					node_start = node;
1143					p_start = p;
1144				}
1145
1146				addr_end = addr + PMD_SIZE;
1147				p_end = p + PMD_SIZE;
1148			} else
1149				vmemmap_verify((pte_t *)pmd, node, addr, next);
1150		}
1151
1152	}
1153	return 0;
1154}
1155
1156void __meminit vmemmap_populate_print_last(void)
1157{
1158	if (p_start) {
1159		printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1160			addr_start, addr_end-1, p_start, p_end-1, node_start);
1161		p_start = NULL;
1162		p_end = NULL;
1163		node_start = 0;
1164	}
1165}
1166#endif
1167