init_64.c revision cae5d39032acf26c265f6b1dc73d7ce6ff4bc387
1/*
2 *  linux/arch/x86_64/mm/init.c
3 *
4 *  Copyright (C) 1995  Linus Torvalds
5 *  Copyright (C) 2000  Pavel Machek <pavel@ucw.cz>
6 *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7 */
8
9#include <linux/signal.h>
10#include <linux/sched.h>
11#include <linux/kernel.h>
12#include <linux/errno.h>
13#include <linux/string.h>
14#include <linux/types.h>
15#include <linux/ptrace.h>
16#include <linux/mman.h>
17#include <linux/mm.h>
18#include <linux/swap.h>
19#include <linux/smp.h>
20#include <linux/init.h>
21#include <linux/initrd.h>
22#include <linux/pagemap.h>
23#include <linux/bootmem.h>
24#include <linux/memblock.h>
25#include <linux/proc_fs.h>
26#include <linux/pci.h>
27#include <linux/pfn.h>
28#include <linux/poison.h>
29#include <linux/dma-mapping.h>
30#include <linux/module.h>
31#include <linux/memory_hotplug.h>
32#include <linux/nmi.h>
33#include <linux/gfp.h>
34
35#include <asm/processor.h>
36#include <asm/bios_ebda.h>
37#include <asm/system.h>
38#include <asm/uaccess.h>
39#include <asm/pgtable.h>
40#include <asm/pgalloc.h>
41#include <asm/dma.h>
42#include <asm/fixmap.h>
43#include <asm/e820.h>
44#include <asm/apic.h>
45#include <asm/tlb.h>
46#include <asm/mmu_context.h>
47#include <asm/proto.h>
48#include <asm/smp.h>
49#include <asm/sections.h>
50#include <asm/kdebug.h>
51#include <asm/numa.h>
52#include <asm/cacheflush.h>
53#include <asm/init.h>
54#include <asm/uv/uv.h>
55
56static int __init parse_direct_gbpages_off(char *arg)
57{
58	direct_gbpages = 0;
59	return 0;
60}
61early_param("nogbpages", parse_direct_gbpages_off);
62
63static int __init parse_direct_gbpages_on(char *arg)
64{
65	direct_gbpages = 1;
66	return 0;
67}
68early_param("gbpages", parse_direct_gbpages_on);
69
70/*
71 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
72 * physical space so we can cache the place of the first one and move
73 * around without checking the pgd every time.
74 */
75
76pteval_t __supported_pte_mask __read_mostly = ~_PAGE_IOMAP;
77EXPORT_SYMBOL_GPL(__supported_pte_mask);
78
79int force_personality32;
80
81/*
82 * noexec32=on|off
83 * Control non executable heap for 32bit processes.
84 * To control the stack too use noexec=off
85 *
86 * on	PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
87 * off	PROT_READ implies PROT_EXEC
88 */
89static int __init nonx32_setup(char *str)
90{
91	if (!strcmp(str, "on"))
92		force_personality32 &= ~READ_IMPLIES_EXEC;
93	else if (!strcmp(str, "off"))
94		force_personality32 |= READ_IMPLIES_EXEC;
95	return 1;
96}
97__setup("noexec32=", nonx32_setup);
98
99/*
100 * When memory was added/removed make sure all the processes MM have
101 * suitable PGD entries in the local PGD level page.
102 */
103void sync_global_pgds(unsigned long start, unsigned long end)
104{
105	unsigned long address;
106
107	for (address = start; address <= end; address += PGDIR_SIZE) {
108		const pgd_t *pgd_ref = pgd_offset_k(address);
109		struct page *page;
110
111		if (pgd_none(*pgd_ref))
112			continue;
113
114		spin_lock(&pgd_lock);
115		list_for_each_entry(page, &pgd_list, lru) {
116			pgd_t *pgd;
117			spinlock_t *pgt_lock;
118
119			pgd = (pgd_t *)page_address(page) + pgd_index(address);
120			/* the pgt_lock only for Xen */
121			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
122			spin_lock(pgt_lock);
123
124			if (pgd_none(*pgd))
125				set_pgd(pgd, *pgd_ref);
126			else
127				BUG_ON(pgd_page_vaddr(*pgd)
128				       != pgd_page_vaddr(*pgd_ref));
129
130			spin_unlock(pgt_lock);
131		}
132		spin_unlock(&pgd_lock);
133	}
134}
135
136/*
137 * NOTE: This function is marked __ref because it calls __init function
138 * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
139 */
140static __ref void *spp_getpage(void)
141{
142	void *ptr;
143
144	if (after_bootmem)
145		ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
146	else
147		ptr = alloc_bootmem_pages(PAGE_SIZE);
148
149	if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
150		panic("set_pte_phys: cannot allocate page data %s\n",
151			after_bootmem ? "after bootmem" : "");
152	}
153
154	pr_debug("spp_getpage %p\n", ptr);
155
156	return ptr;
157}
158
159static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
160{
161	if (pgd_none(*pgd)) {
162		pud_t *pud = (pud_t *)spp_getpage();
163		pgd_populate(&init_mm, pgd, pud);
164		if (pud != pud_offset(pgd, 0))
165			printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
166			       pud, pud_offset(pgd, 0));
167	}
168	return pud_offset(pgd, vaddr);
169}
170
171static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
172{
173	if (pud_none(*pud)) {
174		pmd_t *pmd = (pmd_t *) spp_getpage();
175		pud_populate(&init_mm, pud, pmd);
176		if (pmd != pmd_offset(pud, 0))
177			printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
178			       pmd, pmd_offset(pud, 0));
179	}
180	return pmd_offset(pud, vaddr);
181}
182
183static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
184{
185	if (pmd_none(*pmd)) {
186		pte_t *pte = (pte_t *) spp_getpage();
187		pmd_populate_kernel(&init_mm, pmd, pte);
188		if (pte != pte_offset_kernel(pmd, 0))
189			printk(KERN_ERR "PAGETABLE BUG #02!\n");
190	}
191	return pte_offset_kernel(pmd, vaddr);
192}
193
194void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
195{
196	pud_t *pud;
197	pmd_t *pmd;
198	pte_t *pte;
199
200	pud = pud_page + pud_index(vaddr);
201	pmd = fill_pmd(pud, vaddr);
202	pte = fill_pte(pmd, vaddr);
203
204	set_pte(pte, new_pte);
205
206	/*
207	 * It's enough to flush this one mapping.
208	 * (PGE mappings get flushed as well)
209	 */
210	__flush_tlb_one(vaddr);
211}
212
213void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
214{
215	pgd_t *pgd;
216	pud_t *pud_page;
217
218	pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
219
220	pgd = pgd_offset_k(vaddr);
221	if (pgd_none(*pgd)) {
222		printk(KERN_ERR
223			"PGD FIXMAP MISSING, it should be setup in head.S!\n");
224		return;
225	}
226	pud_page = (pud_t*)pgd_page_vaddr(*pgd);
227	set_pte_vaddr_pud(pud_page, vaddr, pteval);
228}
229
230pmd_t * __init populate_extra_pmd(unsigned long vaddr)
231{
232	pgd_t *pgd;
233	pud_t *pud;
234
235	pgd = pgd_offset_k(vaddr);
236	pud = fill_pud(pgd, vaddr);
237	return fill_pmd(pud, vaddr);
238}
239
240pte_t * __init populate_extra_pte(unsigned long vaddr)
241{
242	pmd_t *pmd;
243
244	pmd = populate_extra_pmd(vaddr);
245	return fill_pte(pmd, vaddr);
246}
247
248/*
249 * Create large page table mappings for a range of physical addresses.
250 */
251static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
252						pgprot_t prot)
253{
254	pgd_t *pgd;
255	pud_t *pud;
256	pmd_t *pmd;
257
258	BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
259	for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
260		pgd = pgd_offset_k((unsigned long)__va(phys));
261		if (pgd_none(*pgd)) {
262			pud = (pud_t *) spp_getpage();
263			set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
264						_PAGE_USER));
265		}
266		pud = pud_offset(pgd, (unsigned long)__va(phys));
267		if (pud_none(*pud)) {
268			pmd = (pmd_t *) spp_getpage();
269			set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
270						_PAGE_USER));
271		}
272		pmd = pmd_offset(pud, phys);
273		BUG_ON(!pmd_none(*pmd));
274		set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
275	}
276}
277
278void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
279{
280	__init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
281}
282
283void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
284{
285	__init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
286}
287
288/*
289 * The head.S code sets up the kernel high mapping:
290 *
291 *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
292 *
293 * phys_addr holds the negative offset to the kernel, which is added
294 * to the compile time generated pmds. This results in invalid pmds up
295 * to the point where we hit the physaddr 0 mapping.
296 *
297 * We limit the mappings to the region from _text to _end.  _end is
298 * rounded up to the 2MB boundary. This catches the invalid pmds as
299 * well, as they are located before _text:
300 */
301void __init cleanup_highmap(void)
302{
303	unsigned long vaddr = __START_KERNEL_map;
304	unsigned long end = roundup((unsigned long)_end, PMD_SIZE) - 1;
305	pmd_t *pmd = level2_kernel_pgt;
306	pmd_t *last_pmd = pmd + PTRS_PER_PMD;
307
308	for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
309		if (pmd_none(*pmd))
310			continue;
311		if (vaddr < (unsigned long) _text || vaddr > end)
312			set_pmd(pmd, __pmd(0));
313	}
314}
315
316static __ref void *alloc_low_page(unsigned long *phys)
317{
318	unsigned long pfn = pgt_buf_end++;
319	void *adr;
320
321	if (after_bootmem) {
322		adr = (void *)get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
323		*phys = __pa(adr);
324
325		return adr;
326	}
327
328	if (pfn >= pgt_buf_top)
329		panic("alloc_low_page: ran out of memory");
330
331	adr = early_memremap(pfn * PAGE_SIZE, PAGE_SIZE);
332	clear_page(adr);
333	*phys  = pfn * PAGE_SIZE;
334	return adr;
335}
336
337static __ref void *map_low_page(void *virt)
338{
339	void *adr;
340	unsigned long phys, left;
341
342	if (after_bootmem)
343		return virt;
344
345	phys = __pa(virt);
346	left = phys & (PAGE_SIZE - 1);
347	adr = early_memremap(phys & PAGE_MASK, PAGE_SIZE);
348	adr = (void *)(((unsigned long)adr) | left);
349
350	return adr;
351}
352
353static __ref void unmap_low_page(void *adr)
354{
355	if (after_bootmem)
356		return;
357
358	early_iounmap((void *)((unsigned long)adr & PAGE_MASK), PAGE_SIZE);
359}
360
361static unsigned long __meminit
362phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
363	      pgprot_t prot)
364{
365	unsigned pages = 0;
366	unsigned long last_map_addr = end;
367	int i;
368
369	pte_t *pte = pte_page + pte_index(addr);
370
371	for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) {
372
373		if (addr >= end) {
374			if (!after_bootmem) {
375				for(; i < PTRS_PER_PTE; i++, pte++)
376					set_pte(pte, __pte(0));
377			}
378			break;
379		}
380
381		/*
382		 * We will re-use the existing mapping.
383		 * Xen for example has some special requirements, like mapping
384		 * pagetable pages as RO. So assume someone who pre-setup
385		 * these mappings are more intelligent.
386		 */
387		if (pte_val(*pte)) {
388			pages++;
389			continue;
390		}
391
392		if (0)
393			printk("   pte=%p addr=%lx pte=%016lx\n",
394			       pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
395		pages++;
396		set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
397		last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
398	}
399
400	update_page_count(PG_LEVEL_4K, pages);
401
402	return last_map_addr;
403}
404
405static unsigned long __meminit
406phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
407	      unsigned long page_size_mask, pgprot_t prot)
408{
409	unsigned long pages = 0;
410	unsigned long last_map_addr = end;
411
412	int i = pmd_index(address);
413
414	for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
415		unsigned long pte_phys;
416		pmd_t *pmd = pmd_page + pmd_index(address);
417		pte_t *pte;
418		pgprot_t new_prot = prot;
419
420		if (address >= end) {
421			if (!after_bootmem) {
422				for (; i < PTRS_PER_PMD; i++, pmd++)
423					set_pmd(pmd, __pmd(0));
424			}
425			break;
426		}
427
428		if (pmd_val(*pmd)) {
429			if (!pmd_large(*pmd)) {
430				spin_lock(&init_mm.page_table_lock);
431				pte = map_low_page((pte_t *)pmd_page_vaddr(*pmd));
432				last_map_addr = phys_pte_init(pte, address,
433								end, prot);
434				unmap_low_page(pte);
435				spin_unlock(&init_mm.page_table_lock);
436				continue;
437			}
438			/*
439			 * If we are ok with PG_LEVEL_2M mapping, then we will
440			 * use the existing mapping,
441			 *
442			 * Otherwise, we will split the large page mapping but
443			 * use the same existing protection bits except for
444			 * large page, so that we don't violate Intel's TLB
445			 * Application note (317080) which says, while changing
446			 * the page sizes, new and old translations should
447			 * not differ with respect to page frame and
448			 * attributes.
449			 */
450			if (page_size_mask & (1 << PG_LEVEL_2M)) {
451				pages++;
452				continue;
453			}
454			new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
455		}
456
457		if (page_size_mask & (1<<PG_LEVEL_2M)) {
458			pages++;
459			spin_lock(&init_mm.page_table_lock);
460			set_pte((pte_t *)pmd,
461				pfn_pte(address >> PAGE_SHIFT,
462					__pgprot(pgprot_val(prot) | _PAGE_PSE)));
463			spin_unlock(&init_mm.page_table_lock);
464			last_map_addr = (address & PMD_MASK) + PMD_SIZE;
465			continue;
466		}
467
468		pte = alloc_low_page(&pte_phys);
469		last_map_addr = phys_pte_init(pte, address, end, new_prot);
470		unmap_low_page(pte);
471
472		spin_lock(&init_mm.page_table_lock);
473		pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
474		spin_unlock(&init_mm.page_table_lock);
475	}
476	update_page_count(PG_LEVEL_2M, pages);
477	return last_map_addr;
478}
479
480static unsigned long __meminit
481phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
482			 unsigned long page_size_mask)
483{
484	unsigned long pages = 0;
485	unsigned long last_map_addr = end;
486	int i = pud_index(addr);
487
488	for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
489		unsigned long pmd_phys;
490		pud_t *pud = pud_page + pud_index(addr);
491		pmd_t *pmd;
492		pgprot_t prot = PAGE_KERNEL;
493
494		if (addr >= end)
495			break;
496
497		if (!after_bootmem &&
498				!e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
499			set_pud(pud, __pud(0));
500			continue;
501		}
502
503		if (pud_val(*pud)) {
504			if (!pud_large(*pud)) {
505				pmd = map_low_page(pmd_offset(pud, 0));
506				last_map_addr = phys_pmd_init(pmd, addr, end,
507							 page_size_mask, prot);
508				unmap_low_page(pmd);
509				__flush_tlb_all();
510				continue;
511			}
512			/*
513			 * If we are ok with PG_LEVEL_1G mapping, then we will
514			 * use the existing mapping.
515			 *
516			 * Otherwise, we will split the gbpage mapping but use
517			 * the same existing protection  bits except for large
518			 * page, so that we don't violate Intel's TLB
519			 * Application note (317080) which says, while changing
520			 * the page sizes, new and old translations should
521			 * not differ with respect to page frame and
522			 * attributes.
523			 */
524			if (page_size_mask & (1 << PG_LEVEL_1G)) {
525				pages++;
526				continue;
527			}
528			prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
529		}
530
531		if (page_size_mask & (1<<PG_LEVEL_1G)) {
532			pages++;
533			spin_lock(&init_mm.page_table_lock);
534			set_pte((pte_t *)pud,
535				pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
536			spin_unlock(&init_mm.page_table_lock);
537			last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
538			continue;
539		}
540
541		pmd = alloc_low_page(&pmd_phys);
542		last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
543					      prot);
544		unmap_low_page(pmd);
545
546		spin_lock(&init_mm.page_table_lock);
547		pud_populate(&init_mm, pud, __va(pmd_phys));
548		spin_unlock(&init_mm.page_table_lock);
549	}
550	__flush_tlb_all();
551
552	update_page_count(PG_LEVEL_1G, pages);
553
554	return last_map_addr;
555}
556
557unsigned long __meminit
558kernel_physical_mapping_init(unsigned long start,
559			     unsigned long end,
560			     unsigned long page_size_mask)
561{
562	bool pgd_changed = false;
563	unsigned long next, last_map_addr = end;
564	unsigned long addr;
565
566	start = (unsigned long)__va(start);
567	end = (unsigned long)__va(end);
568	addr = start;
569
570	for (; start < end; start = next) {
571		pgd_t *pgd = pgd_offset_k(start);
572		unsigned long pud_phys;
573		pud_t *pud;
574
575		next = (start + PGDIR_SIZE) & PGDIR_MASK;
576		if (next > end)
577			next = end;
578
579		if (pgd_val(*pgd)) {
580			pud = map_low_page((pud_t *)pgd_page_vaddr(*pgd));
581			last_map_addr = phys_pud_init(pud, __pa(start),
582						 __pa(end), page_size_mask);
583			unmap_low_page(pud);
584			continue;
585		}
586
587		pud = alloc_low_page(&pud_phys);
588		last_map_addr = phys_pud_init(pud, __pa(start), __pa(next),
589						 page_size_mask);
590		unmap_low_page(pud);
591
592		spin_lock(&init_mm.page_table_lock);
593		pgd_populate(&init_mm, pgd, __va(pud_phys));
594		spin_unlock(&init_mm.page_table_lock);
595		pgd_changed = true;
596	}
597
598	if (pgd_changed)
599		sync_global_pgds(addr, end);
600
601	__flush_tlb_all();
602
603	return last_map_addr;
604}
605
606#ifndef CONFIG_NUMA
607void __init initmem_init(void)
608{
609	memblock_x86_register_active_regions(0, 0, max_pfn);
610}
611#endif
612
613void __init paging_init(void)
614{
615	unsigned long max_zone_pfns[MAX_NR_ZONES];
616
617	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
618	max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
619	max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
620	max_zone_pfns[ZONE_NORMAL] = max_pfn;
621
622	sparse_memory_present_with_active_regions(MAX_NUMNODES);
623	sparse_init();
624
625	/*
626	 * clear the default setting with node 0
627	 * note: don't use nodes_clear here, that is really clearing when
628	 *	 numa support is not compiled in, and later node_set_state
629	 *	 will not set it back.
630	 */
631	node_clear_state(0, N_NORMAL_MEMORY);
632
633	free_area_init_nodes(max_zone_pfns);
634}
635
636/*
637 * Memory hotplug specific functions
638 */
639#ifdef CONFIG_MEMORY_HOTPLUG
640/*
641 * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
642 * updating.
643 */
644static void  update_end_of_memory_vars(u64 start, u64 size)
645{
646	unsigned long end_pfn = PFN_UP(start + size);
647
648	if (end_pfn > max_pfn) {
649		max_pfn = end_pfn;
650		max_low_pfn = end_pfn;
651		high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
652	}
653}
654
655/*
656 * Memory is added always to NORMAL zone. This means you will never get
657 * additional DMA/DMA32 memory.
658 */
659int arch_add_memory(int nid, u64 start, u64 size)
660{
661	struct pglist_data *pgdat = NODE_DATA(nid);
662	struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
663	unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
664	unsigned long nr_pages = size >> PAGE_SHIFT;
665	int ret;
666
667	last_mapped_pfn = init_memory_mapping(start, start + size);
668	if (last_mapped_pfn > max_pfn_mapped)
669		max_pfn_mapped = last_mapped_pfn;
670
671	ret = __add_pages(nid, zone, start_pfn, nr_pages);
672	WARN_ON_ONCE(ret);
673
674	/* update max_pfn, max_low_pfn and high_memory */
675	update_end_of_memory_vars(start, size);
676
677	return ret;
678}
679EXPORT_SYMBOL_GPL(arch_add_memory);
680
681#if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
682int memory_add_physaddr_to_nid(u64 start)
683{
684	return 0;
685}
686EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
687#endif
688
689#endif /* CONFIG_MEMORY_HOTPLUG */
690
691static struct kcore_list kcore_vsyscall;
692
693void __init mem_init(void)
694{
695	long codesize, reservedpages, datasize, initsize;
696	unsigned long absent_pages;
697
698	pci_iommu_alloc();
699
700	/* clear_bss() already clear the empty_zero_page */
701
702	reservedpages = 0;
703
704	/* this will put all low memory onto the freelists */
705#ifdef CONFIG_NUMA
706	totalram_pages = numa_free_all_bootmem();
707#else
708	totalram_pages = free_all_bootmem();
709#endif
710
711	absent_pages = absent_pages_in_range(0, max_pfn);
712	reservedpages = max_pfn - totalram_pages - absent_pages;
713	after_bootmem = 1;
714
715	codesize =  (unsigned long) &_etext - (unsigned long) &_text;
716	datasize =  (unsigned long) &_edata - (unsigned long) &_etext;
717	initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin;
718
719	/* Register memory areas for /proc/kcore */
720	kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
721			 VSYSCALL_END - VSYSCALL_START, KCORE_OTHER);
722
723	printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
724			 "%ldk absent, %ldk reserved, %ldk data, %ldk init)\n",
725		nr_free_pages() << (PAGE_SHIFT-10),
726		max_pfn << (PAGE_SHIFT-10),
727		codesize >> 10,
728		absent_pages << (PAGE_SHIFT-10),
729		reservedpages << (PAGE_SHIFT-10),
730		datasize >> 10,
731		initsize >> 10);
732}
733
734#ifdef CONFIG_DEBUG_RODATA
735const int rodata_test_data = 0xC3;
736EXPORT_SYMBOL_GPL(rodata_test_data);
737
738int kernel_set_to_readonly;
739
740void set_kernel_text_rw(void)
741{
742	unsigned long start = PFN_ALIGN(_text);
743	unsigned long end = PFN_ALIGN(__stop___ex_table);
744
745	if (!kernel_set_to_readonly)
746		return;
747
748	pr_debug("Set kernel text: %lx - %lx for read write\n",
749		 start, end);
750
751	/*
752	 * Make the kernel identity mapping for text RW. Kernel text
753	 * mapping will always be RO. Refer to the comment in
754	 * static_protections() in pageattr.c
755	 */
756	set_memory_rw(start, (end - start) >> PAGE_SHIFT);
757}
758
759void set_kernel_text_ro(void)
760{
761	unsigned long start = PFN_ALIGN(_text);
762	unsigned long end = PFN_ALIGN(__stop___ex_table);
763
764	if (!kernel_set_to_readonly)
765		return;
766
767	pr_debug("Set kernel text: %lx - %lx for read only\n",
768		 start, end);
769
770	/*
771	 * Set the kernel identity mapping for text RO.
772	 */
773	set_memory_ro(start, (end - start) >> PAGE_SHIFT);
774}
775
776void mark_rodata_ro(void)
777{
778	unsigned long start = PFN_ALIGN(_text);
779	unsigned long rodata_start =
780		((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
781	unsigned long end = (unsigned long) &__end_rodata_hpage_align;
782	unsigned long text_end = PAGE_ALIGN((unsigned long) &__stop___ex_table);
783	unsigned long rodata_end = PAGE_ALIGN((unsigned long) &__end_rodata);
784	unsigned long data_start = (unsigned long) &_sdata;
785
786	printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
787	       (end - start) >> 10);
788	set_memory_ro(start, (end - start) >> PAGE_SHIFT);
789
790	kernel_set_to_readonly = 1;
791
792	/*
793	 * The rodata section (but not the kernel text!) should also be
794	 * not-executable.
795	 */
796	set_memory_nx(rodata_start, (end - rodata_start) >> PAGE_SHIFT);
797
798	rodata_test();
799
800#ifdef CONFIG_CPA_DEBUG
801	printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
802	set_memory_rw(start, (end-start) >> PAGE_SHIFT);
803
804	printk(KERN_INFO "Testing CPA: again\n");
805	set_memory_ro(start, (end-start) >> PAGE_SHIFT);
806#endif
807
808	free_init_pages("unused kernel memory",
809			(unsigned long) page_address(virt_to_page(text_end)),
810			(unsigned long)
811				 page_address(virt_to_page(rodata_start)));
812	free_init_pages("unused kernel memory",
813			(unsigned long) page_address(virt_to_page(rodata_end)),
814			(unsigned long) page_address(virt_to_page(data_start)));
815}
816
817#endif
818
819int kern_addr_valid(unsigned long addr)
820{
821	unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
822	pgd_t *pgd;
823	pud_t *pud;
824	pmd_t *pmd;
825	pte_t *pte;
826
827	if (above != 0 && above != -1UL)
828		return 0;
829
830	pgd = pgd_offset_k(addr);
831	if (pgd_none(*pgd))
832		return 0;
833
834	pud = pud_offset(pgd, addr);
835	if (pud_none(*pud))
836		return 0;
837
838	pmd = pmd_offset(pud, addr);
839	if (pmd_none(*pmd))
840		return 0;
841
842	if (pmd_large(*pmd))
843		return pfn_valid(pmd_pfn(*pmd));
844
845	pte = pte_offset_kernel(pmd, addr);
846	if (pte_none(*pte))
847		return 0;
848
849	return pfn_valid(pte_pfn(*pte));
850}
851
852/*
853 * A pseudo VMA to allow ptrace access for the vsyscall page.  This only
854 * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
855 * not need special handling anymore:
856 */
857static struct vm_area_struct gate_vma = {
858	.vm_start	= VSYSCALL_START,
859	.vm_end		= VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
860	.vm_page_prot	= PAGE_READONLY_EXEC,
861	.vm_flags	= VM_READ | VM_EXEC
862};
863
864struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
865{
866#ifdef CONFIG_IA32_EMULATION
867	if (!mm || mm->context.ia32_compat)
868		return NULL;
869#endif
870	return &gate_vma;
871}
872
873int in_gate_area(struct mm_struct *mm, unsigned long addr)
874{
875	struct vm_area_struct *vma = get_gate_vma(mm);
876
877	if (!vma)
878		return 0;
879
880	return (addr >= vma->vm_start) && (addr < vma->vm_end);
881}
882
883/*
884 * Use this when you have no reliable mm, typically from interrupt
885 * context. It is less reliable than using a task's mm and may give
886 * false positives.
887 */
888int in_gate_area_no_mm(unsigned long addr)
889{
890	return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
891}
892
893const char *arch_vma_name(struct vm_area_struct *vma)
894{
895	if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
896		return "[vdso]";
897	if (vma == &gate_vma)
898		return "[vsyscall]";
899	return NULL;
900}
901
902#ifdef CONFIG_X86_UV
903#define MIN_MEMORY_BLOCK_SIZE   (1 << SECTION_SIZE_BITS)
904
905unsigned long memory_block_size_bytes(void)
906{
907	if (is_uv_system()) {
908		printk(KERN_INFO "UV: memory block size 2GB\n");
909		return 2UL * 1024 * 1024 * 1024;
910	}
911	return MIN_MEMORY_BLOCK_SIZE;
912}
913#endif
914
915#ifdef CONFIG_SPARSEMEM_VMEMMAP
916/*
917 * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
918 */
919static long __meminitdata addr_start, addr_end;
920static void __meminitdata *p_start, *p_end;
921static int __meminitdata node_start;
922
923int __meminit
924vmemmap_populate(struct page *start_page, unsigned long size, int node)
925{
926	unsigned long addr = (unsigned long)start_page;
927	unsigned long end = (unsigned long)(start_page + size);
928	unsigned long next;
929	pgd_t *pgd;
930	pud_t *pud;
931	pmd_t *pmd;
932
933	for (; addr < end; addr = next) {
934		void *p = NULL;
935
936		pgd = vmemmap_pgd_populate(addr, node);
937		if (!pgd)
938			return -ENOMEM;
939
940		pud = vmemmap_pud_populate(pgd, addr, node);
941		if (!pud)
942			return -ENOMEM;
943
944		if (!cpu_has_pse) {
945			next = (addr + PAGE_SIZE) & PAGE_MASK;
946			pmd = vmemmap_pmd_populate(pud, addr, node);
947
948			if (!pmd)
949				return -ENOMEM;
950
951			p = vmemmap_pte_populate(pmd, addr, node);
952
953			if (!p)
954				return -ENOMEM;
955
956			addr_end = addr + PAGE_SIZE;
957			p_end = p + PAGE_SIZE;
958		} else {
959			next = pmd_addr_end(addr, end);
960
961			pmd = pmd_offset(pud, addr);
962			if (pmd_none(*pmd)) {
963				pte_t entry;
964
965				p = vmemmap_alloc_block_buf(PMD_SIZE, node);
966				if (!p)
967					return -ENOMEM;
968
969				entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
970						PAGE_KERNEL_LARGE);
971				set_pmd(pmd, __pmd(pte_val(entry)));
972
973				/* check to see if we have contiguous blocks */
974				if (p_end != p || node_start != node) {
975					if (p_start)
976						printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
977						       addr_start, addr_end-1, p_start, p_end-1, node_start);
978					addr_start = addr;
979					node_start = node;
980					p_start = p;
981				}
982
983				addr_end = addr + PMD_SIZE;
984				p_end = p + PMD_SIZE;
985			} else
986				vmemmap_verify((pte_t *)pmd, node, addr, next);
987		}
988
989	}
990	sync_global_pgds((unsigned long)start_page, end);
991	return 0;
992}
993
994void __meminit vmemmap_populate_print_last(void)
995{
996	if (p_start) {
997		printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
998			addr_start, addr_end-1, p_start, p_end-1, node_start);
999		p_start = NULL;
1000		p_end = NULL;
1001		node_start = 0;
1002	}
1003}
1004#endif
1005