init_64.c revision f89112502805c1f6a6955f90ad158e538edb319d
1/*
2 *  linux/arch/x86_64/mm/init.c
3 *
4 *  Copyright (C) 1995  Linus Torvalds
5 *  Copyright (C) 2000  Pavel Machek <pavel@ucw.cz>
6 *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7 */
8
9#include <linux/signal.h>
10#include <linux/sched.h>
11#include <linux/kernel.h>
12#include <linux/errno.h>
13#include <linux/string.h>
14#include <linux/types.h>
15#include <linux/ptrace.h>
16#include <linux/mman.h>
17#include <linux/mm.h>
18#include <linux/swap.h>
19#include <linux/smp.h>
20#include <linux/init.h>
21#include <linux/initrd.h>
22#include <linux/pagemap.h>
23#include <linux/bootmem.h>
24#include <linux/memblock.h>
25#include <linux/proc_fs.h>
26#include <linux/pci.h>
27#include <linux/pfn.h>
28#include <linux/poison.h>
29#include <linux/dma-mapping.h>
30#include <linux/module.h>
31#include <linux/memory_hotplug.h>
32#include <linux/nmi.h>
33#include <linux/gfp.h>
34
35#include <asm/processor.h>
36#include <asm/bios_ebda.h>
37#include <asm/system.h>
38#include <asm/uaccess.h>
39#include <asm/pgtable.h>
40#include <asm/pgalloc.h>
41#include <asm/dma.h>
42#include <asm/fixmap.h>
43#include <asm/e820.h>
44#include <asm/apic.h>
45#include <asm/tlb.h>
46#include <asm/mmu_context.h>
47#include <asm/proto.h>
48#include <asm/smp.h>
49#include <asm/sections.h>
50#include <asm/kdebug.h>
51#include <asm/numa.h>
52#include <asm/cacheflush.h>
53#include <asm/init.h>
54
55static int __init parse_direct_gbpages_off(char *arg)
56{
57	direct_gbpages = 0;
58	return 0;
59}
60early_param("nogbpages", parse_direct_gbpages_off);
61
62static int __init parse_direct_gbpages_on(char *arg)
63{
64	direct_gbpages = 1;
65	return 0;
66}
67early_param("gbpages", parse_direct_gbpages_on);
68
69/*
70 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
71 * physical space so we can cache the place of the first one and move
72 * around without checking the pgd every time.
73 */
74
75pteval_t __supported_pte_mask __read_mostly = ~_PAGE_IOMAP;
76EXPORT_SYMBOL_GPL(__supported_pte_mask);
77
78int force_personality32;
79
80/*
81 * noexec32=on|off
82 * Control non executable heap for 32bit processes.
83 * To control the stack too use noexec=off
84 *
85 * on	PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
86 * off	PROT_READ implies PROT_EXEC
87 */
88static int __init nonx32_setup(char *str)
89{
90	if (!strcmp(str, "on"))
91		force_personality32 &= ~READ_IMPLIES_EXEC;
92	else if (!strcmp(str, "off"))
93		force_personality32 |= READ_IMPLIES_EXEC;
94	return 1;
95}
96__setup("noexec32=", nonx32_setup);
97
98/*
99 * When memory was added/removed make sure all the processes MM have
100 * suitable PGD entries in the local PGD level page.
101 */
102void sync_global_pgds(unsigned long start, unsigned long end)
103{
104	unsigned long address;
105
106	for (address = start; address <= end; address += PGDIR_SIZE) {
107		const pgd_t *pgd_ref = pgd_offset_k(address);
108		unsigned long flags;
109		struct page *page;
110
111		if (pgd_none(*pgd_ref))
112			continue;
113
114		spin_lock_irqsave(&pgd_lock, flags);
115		list_for_each_entry(page, &pgd_list, lru) {
116			pgd_t *pgd;
117			spinlock_t *pgt_lock;
118
119			pgd = (pgd_t *)page_address(page) + pgd_index(address);
120			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
121			spin_lock(pgt_lock);
122
123			if (pgd_none(*pgd))
124				set_pgd(pgd, *pgd_ref);
125			else
126				BUG_ON(pgd_page_vaddr(*pgd)
127				       != pgd_page_vaddr(*pgd_ref));
128
129			spin_unlock(pgt_lock);
130		}
131		spin_unlock_irqrestore(&pgd_lock, flags);
132	}
133}
134
135/*
136 * NOTE: This function is marked __ref because it calls __init function
137 * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
138 */
139static __ref void *spp_getpage(void)
140{
141	void *ptr;
142
143	if (after_bootmem)
144		ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
145	else
146		ptr = alloc_bootmem_pages(PAGE_SIZE);
147
148	if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
149		panic("set_pte_phys: cannot allocate page data %s\n",
150			after_bootmem ? "after bootmem" : "");
151	}
152
153	pr_debug("spp_getpage %p\n", ptr);
154
155	return ptr;
156}
157
158static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
159{
160	if (pgd_none(*pgd)) {
161		pud_t *pud = (pud_t *)spp_getpage();
162		pgd_populate(&init_mm, pgd, pud);
163		if (pud != pud_offset(pgd, 0))
164			printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
165			       pud, pud_offset(pgd, 0));
166	}
167	return pud_offset(pgd, vaddr);
168}
169
170static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
171{
172	if (pud_none(*pud)) {
173		pmd_t *pmd = (pmd_t *) spp_getpage();
174		pud_populate(&init_mm, pud, pmd);
175		if (pmd != pmd_offset(pud, 0))
176			printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
177			       pmd, pmd_offset(pud, 0));
178	}
179	return pmd_offset(pud, vaddr);
180}
181
182static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
183{
184	if (pmd_none(*pmd)) {
185		pte_t *pte = (pte_t *) spp_getpage();
186		pmd_populate_kernel(&init_mm, pmd, pte);
187		if (pte != pte_offset_kernel(pmd, 0))
188			printk(KERN_ERR "PAGETABLE BUG #02!\n");
189	}
190	return pte_offset_kernel(pmd, vaddr);
191}
192
193void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
194{
195	pud_t *pud;
196	pmd_t *pmd;
197	pte_t *pte;
198
199	pud = pud_page + pud_index(vaddr);
200	pmd = fill_pmd(pud, vaddr);
201	pte = fill_pte(pmd, vaddr);
202
203	set_pte(pte, new_pte);
204
205	/*
206	 * It's enough to flush this one mapping.
207	 * (PGE mappings get flushed as well)
208	 */
209	__flush_tlb_one(vaddr);
210}
211
212void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
213{
214	pgd_t *pgd;
215	pud_t *pud_page;
216
217	pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
218
219	pgd = pgd_offset_k(vaddr);
220	if (pgd_none(*pgd)) {
221		printk(KERN_ERR
222			"PGD FIXMAP MISSING, it should be setup in head.S!\n");
223		return;
224	}
225	pud_page = (pud_t*)pgd_page_vaddr(*pgd);
226	set_pte_vaddr_pud(pud_page, vaddr, pteval);
227}
228
229pmd_t * __init populate_extra_pmd(unsigned long vaddr)
230{
231	pgd_t *pgd;
232	pud_t *pud;
233
234	pgd = pgd_offset_k(vaddr);
235	pud = fill_pud(pgd, vaddr);
236	return fill_pmd(pud, vaddr);
237}
238
239pte_t * __init populate_extra_pte(unsigned long vaddr)
240{
241	pmd_t *pmd;
242
243	pmd = populate_extra_pmd(vaddr);
244	return fill_pte(pmd, vaddr);
245}
246
247/*
248 * Create large page table mappings for a range of physical addresses.
249 */
250static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
251						pgprot_t prot)
252{
253	pgd_t *pgd;
254	pud_t *pud;
255	pmd_t *pmd;
256
257	BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
258	for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
259		pgd = pgd_offset_k((unsigned long)__va(phys));
260		if (pgd_none(*pgd)) {
261			pud = (pud_t *) spp_getpage();
262			set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
263						_PAGE_USER));
264		}
265		pud = pud_offset(pgd, (unsigned long)__va(phys));
266		if (pud_none(*pud)) {
267			pmd = (pmd_t *) spp_getpage();
268			set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
269						_PAGE_USER));
270		}
271		pmd = pmd_offset(pud, phys);
272		BUG_ON(!pmd_none(*pmd));
273		set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
274	}
275}
276
277void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
278{
279	__init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
280}
281
282void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
283{
284	__init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
285}
286
287/*
288 * The head.S code sets up the kernel high mapping:
289 *
290 *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
291 *
292 * phys_addr holds the negative offset to the kernel, which is added
293 * to the compile time generated pmds. This results in invalid pmds up
294 * to the point where we hit the physaddr 0 mapping.
295 *
296 * We limit the mappings to the region from _text to _end.  _end is
297 * rounded up to the 2MB boundary. This catches the invalid pmds as
298 * well, as they are located before _text:
299 */
300void __init cleanup_highmap(void)
301{
302	unsigned long vaddr = __START_KERNEL_map;
303	unsigned long end = roundup((unsigned long)_end, PMD_SIZE) - 1;
304	pmd_t *pmd = level2_kernel_pgt;
305	pmd_t *last_pmd = pmd + PTRS_PER_PMD;
306
307	for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
308		if (pmd_none(*pmd))
309			continue;
310		if (vaddr < (unsigned long) _text || vaddr > end)
311			set_pmd(pmd, __pmd(0));
312	}
313}
314
315static __ref void *alloc_low_page(unsigned long *phys)
316{
317	unsigned long pfn = pgt_buf_end++;
318	void *adr;
319
320	if (after_bootmem) {
321		adr = (void *)get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
322		*phys = __pa(adr);
323
324		return adr;
325	}
326
327	if (pfn >= pgt_buf_top)
328		panic("alloc_low_page: ran out of memory");
329
330	adr = early_memremap(pfn * PAGE_SIZE, PAGE_SIZE);
331	clear_page(adr);
332	*phys  = pfn * PAGE_SIZE;
333	return adr;
334}
335
336static __ref void *map_low_page(void *virt)
337{
338	void *adr;
339	unsigned long phys, left;
340
341	if (after_bootmem)
342		return virt;
343
344	phys = __pa(virt);
345	left = phys & (PAGE_SIZE - 1);
346	adr = early_memremap(phys & PAGE_MASK, PAGE_SIZE);
347	adr = (void *)(((unsigned long)adr) | left);
348
349	return adr;
350}
351
352static __ref void unmap_low_page(void *adr)
353{
354	if (after_bootmem)
355		return;
356
357	early_iounmap((void *)((unsigned long)adr & PAGE_MASK), PAGE_SIZE);
358}
359
360static unsigned long __meminit
361phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
362	      pgprot_t prot)
363{
364	unsigned pages = 0;
365	unsigned long last_map_addr = end;
366	int i;
367
368	pte_t *pte = pte_page + pte_index(addr);
369
370	for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) {
371
372		if (addr >= end) {
373			if (!after_bootmem) {
374				for(; i < PTRS_PER_PTE; i++, pte++)
375					set_pte(pte, __pte(0));
376			}
377			break;
378		}
379
380		/*
381		 * We will re-use the existing mapping.
382		 * Xen for example has some special requirements, like mapping
383		 * pagetable pages as RO. So assume someone who pre-setup
384		 * these mappings are more intelligent.
385		 */
386		if (pte_val(*pte)) {
387			pages++;
388			continue;
389		}
390
391		if (0)
392			printk("   pte=%p addr=%lx pte=%016lx\n",
393			       pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
394		pages++;
395		set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
396		last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
397	}
398
399	update_page_count(PG_LEVEL_4K, pages);
400
401	return last_map_addr;
402}
403
404static unsigned long __meminit
405phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
406	      unsigned long page_size_mask, pgprot_t prot)
407{
408	unsigned long pages = 0;
409	unsigned long last_map_addr = end;
410
411	int i = pmd_index(address);
412
413	for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
414		unsigned long pte_phys;
415		pmd_t *pmd = pmd_page + pmd_index(address);
416		pte_t *pte;
417		pgprot_t new_prot = prot;
418
419		if (address >= end) {
420			if (!after_bootmem) {
421				for (; i < PTRS_PER_PMD; i++, pmd++)
422					set_pmd(pmd, __pmd(0));
423			}
424			break;
425		}
426
427		if (pmd_val(*pmd)) {
428			if (!pmd_large(*pmd)) {
429				spin_lock(&init_mm.page_table_lock);
430				pte = map_low_page((pte_t *)pmd_page_vaddr(*pmd));
431				last_map_addr = phys_pte_init(pte, address,
432								end, prot);
433				unmap_low_page(pte);
434				spin_unlock(&init_mm.page_table_lock);
435				continue;
436			}
437			/*
438			 * If we are ok with PG_LEVEL_2M mapping, then we will
439			 * use the existing mapping,
440			 *
441			 * Otherwise, we will split the large page mapping but
442			 * use the same existing protection bits except for
443			 * large page, so that we don't violate Intel's TLB
444			 * Application note (317080) which says, while changing
445			 * the page sizes, new and old translations should
446			 * not differ with respect to page frame and
447			 * attributes.
448			 */
449			if (page_size_mask & (1 << PG_LEVEL_2M)) {
450				pages++;
451				continue;
452			}
453			new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
454		}
455
456		if (page_size_mask & (1<<PG_LEVEL_2M)) {
457			pages++;
458			spin_lock(&init_mm.page_table_lock);
459			set_pte((pte_t *)pmd,
460				pfn_pte(address >> PAGE_SHIFT,
461					__pgprot(pgprot_val(prot) | _PAGE_PSE)));
462			spin_unlock(&init_mm.page_table_lock);
463			last_map_addr = (address & PMD_MASK) + PMD_SIZE;
464			continue;
465		}
466
467		pte = alloc_low_page(&pte_phys);
468		last_map_addr = phys_pte_init(pte, address, end, new_prot);
469		unmap_low_page(pte);
470
471		spin_lock(&init_mm.page_table_lock);
472		pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
473		spin_unlock(&init_mm.page_table_lock);
474	}
475	update_page_count(PG_LEVEL_2M, pages);
476	return last_map_addr;
477}
478
479static unsigned long __meminit
480phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
481			 unsigned long page_size_mask)
482{
483	unsigned long pages = 0;
484	unsigned long last_map_addr = end;
485	int i = pud_index(addr);
486
487	for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
488		unsigned long pmd_phys;
489		pud_t *pud = pud_page + pud_index(addr);
490		pmd_t *pmd;
491		pgprot_t prot = PAGE_KERNEL;
492
493		if (addr >= end)
494			break;
495
496		if (!after_bootmem &&
497				!e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
498			set_pud(pud, __pud(0));
499			continue;
500		}
501
502		if (pud_val(*pud)) {
503			if (!pud_large(*pud)) {
504				pmd = map_low_page(pmd_offset(pud, 0));
505				last_map_addr = phys_pmd_init(pmd, addr, end,
506							 page_size_mask, prot);
507				unmap_low_page(pmd);
508				__flush_tlb_all();
509				continue;
510			}
511			/*
512			 * If we are ok with PG_LEVEL_1G mapping, then we will
513			 * use the existing mapping.
514			 *
515			 * Otherwise, we will split the gbpage mapping but use
516			 * the same existing protection  bits except for large
517			 * page, so that we don't violate Intel's TLB
518			 * Application note (317080) which says, while changing
519			 * the page sizes, new and old translations should
520			 * not differ with respect to page frame and
521			 * attributes.
522			 */
523			if (page_size_mask & (1 << PG_LEVEL_1G)) {
524				pages++;
525				continue;
526			}
527			prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
528		}
529
530		if (page_size_mask & (1<<PG_LEVEL_1G)) {
531			pages++;
532			spin_lock(&init_mm.page_table_lock);
533			set_pte((pte_t *)pud,
534				pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
535			spin_unlock(&init_mm.page_table_lock);
536			last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
537			continue;
538		}
539
540		pmd = alloc_low_page(&pmd_phys);
541		last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
542					      prot);
543		unmap_low_page(pmd);
544
545		spin_lock(&init_mm.page_table_lock);
546		pud_populate(&init_mm, pud, __va(pmd_phys));
547		spin_unlock(&init_mm.page_table_lock);
548	}
549	__flush_tlb_all();
550
551	update_page_count(PG_LEVEL_1G, pages);
552
553	return last_map_addr;
554}
555
556unsigned long __meminit
557kernel_physical_mapping_init(unsigned long start,
558			     unsigned long end,
559			     unsigned long page_size_mask)
560{
561	bool pgd_changed = false;
562	unsigned long next, last_map_addr = end;
563	unsigned long addr;
564
565	start = (unsigned long)__va(start);
566	end = (unsigned long)__va(end);
567	addr = start;
568
569	for (; start < end; start = next) {
570		pgd_t *pgd = pgd_offset_k(start);
571		unsigned long pud_phys;
572		pud_t *pud;
573
574		next = (start + PGDIR_SIZE) & PGDIR_MASK;
575		if (next > end)
576			next = end;
577
578		if (pgd_val(*pgd)) {
579			pud = map_low_page((pud_t *)pgd_page_vaddr(*pgd));
580			last_map_addr = phys_pud_init(pud, __pa(start),
581						 __pa(end), page_size_mask);
582			unmap_low_page(pud);
583			continue;
584		}
585
586		pud = alloc_low_page(&pud_phys);
587		last_map_addr = phys_pud_init(pud, __pa(start), __pa(next),
588						 page_size_mask);
589		unmap_low_page(pud);
590
591		spin_lock(&init_mm.page_table_lock);
592		pgd_populate(&init_mm, pgd, __va(pud_phys));
593		spin_unlock(&init_mm.page_table_lock);
594		pgd_changed = true;
595	}
596
597	if (pgd_changed)
598		sync_global_pgds(addr, end);
599
600	__flush_tlb_all();
601
602	return last_map_addr;
603}
604
605#ifndef CONFIG_NUMA
606void __init initmem_init(void)
607{
608	memblock_x86_register_active_regions(0, 0, max_pfn);
609}
610#endif
611
612void __init paging_init(void)
613{
614	unsigned long max_zone_pfns[MAX_NR_ZONES];
615
616	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
617	max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
618	max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
619	max_zone_pfns[ZONE_NORMAL] = max_pfn;
620
621	sparse_memory_present_with_active_regions(MAX_NUMNODES);
622	sparse_init();
623
624	/*
625	 * clear the default setting with node 0
626	 * note: don't use nodes_clear here, that is really clearing when
627	 *	 numa support is not compiled in, and later node_set_state
628	 *	 will not set it back.
629	 */
630	node_clear_state(0, N_NORMAL_MEMORY);
631
632	free_area_init_nodes(max_zone_pfns);
633}
634
635/*
636 * Memory hotplug specific functions
637 */
638#ifdef CONFIG_MEMORY_HOTPLUG
639/*
640 * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
641 * updating.
642 */
643static void  update_end_of_memory_vars(u64 start, u64 size)
644{
645	unsigned long end_pfn = PFN_UP(start + size);
646
647	if (end_pfn > max_pfn) {
648		max_pfn = end_pfn;
649		max_low_pfn = end_pfn;
650		high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
651	}
652}
653
654/*
655 * Memory is added always to NORMAL zone. This means you will never get
656 * additional DMA/DMA32 memory.
657 */
658int arch_add_memory(int nid, u64 start, u64 size)
659{
660	struct pglist_data *pgdat = NODE_DATA(nid);
661	struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
662	unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
663	unsigned long nr_pages = size >> PAGE_SHIFT;
664	int ret;
665
666	last_mapped_pfn = init_memory_mapping(start, start + size);
667	if (last_mapped_pfn > max_pfn_mapped)
668		max_pfn_mapped = last_mapped_pfn;
669
670	ret = __add_pages(nid, zone, start_pfn, nr_pages);
671	WARN_ON_ONCE(ret);
672
673	/* update max_pfn, max_low_pfn and high_memory */
674	update_end_of_memory_vars(start, size);
675
676	return ret;
677}
678EXPORT_SYMBOL_GPL(arch_add_memory);
679
680#if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
681int memory_add_physaddr_to_nid(u64 start)
682{
683	return 0;
684}
685EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
686#endif
687
688#endif /* CONFIG_MEMORY_HOTPLUG */
689
690static struct kcore_list kcore_vsyscall;
691
692void __init mem_init(void)
693{
694	long codesize, reservedpages, datasize, initsize;
695	unsigned long absent_pages;
696
697	pci_iommu_alloc();
698
699	/* clear_bss() already clear the empty_zero_page */
700
701	reservedpages = 0;
702
703	/* this will put all low memory onto the freelists */
704#ifdef CONFIG_NUMA
705	totalram_pages = numa_free_all_bootmem();
706#else
707	totalram_pages = free_all_bootmem();
708#endif
709
710	absent_pages = absent_pages_in_range(0, max_pfn);
711	reservedpages = max_pfn - totalram_pages - absent_pages;
712	after_bootmem = 1;
713
714	codesize =  (unsigned long) &_etext - (unsigned long) &_text;
715	datasize =  (unsigned long) &_edata - (unsigned long) &_etext;
716	initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin;
717
718	/* Register memory areas for /proc/kcore */
719	kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
720			 VSYSCALL_END - VSYSCALL_START, KCORE_OTHER);
721
722	printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
723			 "%ldk absent, %ldk reserved, %ldk data, %ldk init)\n",
724		nr_free_pages() << (PAGE_SHIFT-10),
725		max_pfn << (PAGE_SHIFT-10),
726		codesize >> 10,
727		absent_pages << (PAGE_SHIFT-10),
728		reservedpages << (PAGE_SHIFT-10),
729		datasize >> 10,
730		initsize >> 10);
731}
732
733#ifdef CONFIG_DEBUG_RODATA
734const int rodata_test_data = 0xC3;
735EXPORT_SYMBOL_GPL(rodata_test_data);
736
737int kernel_set_to_readonly;
738
739void set_kernel_text_rw(void)
740{
741	unsigned long start = PFN_ALIGN(_text);
742	unsigned long end = PFN_ALIGN(__stop___ex_table);
743
744	if (!kernel_set_to_readonly)
745		return;
746
747	pr_debug("Set kernel text: %lx - %lx for read write\n",
748		 start, end);
749
750	/*
751	 * Make the kernel identity mapping for text RW. Kernel text
752	 * mapping will always be RO. Refer to the comment in
753	 * static_protections() in pageattr.c
754	 */
755	set_memory_rw(start, (end - start) >> PAGE_SHIFT);
756}
757
758void set_kernel_text_ro(void)
759{
760	unsigned long start = PFN_ALIGN(_text);
761	unsigned long end = PFN_ALIGN(__stop___ex_table);
762
763	if (!kernel_set_to_readonly)
764		return;
765
766	pr_debug("Set kernel text: %lx - %lx for read only\n",
767		 start, end);
768
769	/*
770	 * Set the kernel identity mapping for text RO.
771	 */
772	set_memory_ro(start, (end - start) >> PAGE_SHIFT);
773}
774
775void mark_rodata_ro(void)
776{
777	unsigned long start = PFN_ALIGN(_text);
778	unsigned long rodata_start =
779		((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
780	unsigned long end = (unsigned long) &__end_rodata_hpage_align;
781	unsigned long text_end = PAGE_ALIGN((unsigned long) &__stop___ex_table);
782	unsigned long rodata_end = PAGE_ALIGN((unsigned long) &__end_rodata);
783	unsigned long data_start = (unsigned long) &_sdata;
784
785	printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
786	       (end - start) >> 10);
787	set_memory_ro(start, (end - start) >> PAGE_SHIFT);
788
789	kernel_set_to_readonly = 1;
790
791	/*
792	 * The rodata section (but not the kernel text!) should also be
793	 * not-executable.
794	 */
795	set_memory_nx(rodata_start, (end - rodata_start) >> PAGE_SHIFT);
796
797	rodata_test();
798
799#ifdef CONFIG_CPA_DEBUG
800	printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
801	set_memory_rw(start, (end-start) >> PAGE_SHIFT);
802
803	printk(KERN_INFO "Testing CPA: again\n");
804	set_memory_ro(start, (end-start) >> PAGE_SHIFT);
805#endif
806
807	free_init_pages("unused kernel memory",
808			(unsigned long) page_address(virt_to_page(text_end)),
809			(unsigned long)
810				 page_address(virt_to_page(rodata_start)));
811	free_init_pages("unused kernel memory",
812			(unsigned long) page_address(virt_to_page(rodata_end)),
813			(unsigned long) page_address(virt_to_page(data_start)));
814}
815
816#endif
817
818int kern_addr_valid(unsigned long addr)
819{
820	unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
821	pgd_t *pgd;
822	pud_t *pud;
823	pmd_t *pmd;
824	pte_t *pte;
825
826	if (above != 0 && above != -1UL)
827		return 0;
828
829	pgd = pgd_offset_k(addr);
830	if (pgd_none(*pgd))
831		return 0;
832
833	pud = pud_offset(pgd, addr);
834	if (pud_none(*pud))
835		return 0;
836
837	pmd = pmd_offset(pud, addr);
838	if (pmd_none(*pmd))
839		return 0;
840
841	if (pmd_large(*pmd))
842		return pfn_valid(pmd_pfn(*pmd));
843
844	pte = pte_offset_kernel(pmd, addr);
845	if (pte_none(*pte))
846		return 0;
847
848	return pfn_valid(pte_pfn(*pte));
849}
850
851/*
852 * A pseudo VMA to allow ptrace access for the vsyscall page.  This only
853 * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
854 * not need special handling anymore:
855 */
856static struct vm_area_struct gate_vma = {
857	.vm_start	= VSYSCALL_START,
858	.vm_end		= VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
859	.vm_page_prot	= PAGE_READONLY_EXEC,
860	.vm_flags	= VM_READ | VM_EXEC
861};
862
863struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
864{
865#ifdef CONFIG_IA32_EMULATION
866	if (test_tsk_thread_flag(tsk, TIF_IA32))
867		return NULL;
868#endif
869	return &gate_vma;
870}
871
872int in_gate_area(struct task_struct *task, unsigned long addr)
873{
874	struct vm_area_struct *vma = get_gate_vma(task);
875
876	if (!vma)
877		return 0;
878
879	return (addr >= vma->vm_start) && (addr < vma->vm_end);
880}
881
882/*
883 * Use this when you have no reliable task/vma, typically from interrupt
884 * context. It is less reliable than using the task's vma and may give
885 * false positives:
886 */
887int in_gate_area_no_task(unsigned long addr)
888{
889	return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
890}
891
892const char *arch_vma_name(struct vm_area_struct *vma)
893{
894	if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
895		return "[vdso]";
896	if (vma == &gate_vma)
897		return "[vsyscall]";
898	return NULL;
899}
900
901#ifdef CONFIG_SPARSEMEM_VMEMMAP
902/*
903 * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
904 */
905static long __meminitdata addr_start, addr_end;
906static void __meminitdata *p_start, *p_end;
907static int __meminitdata node_start;
908
909int __meminit
910vmemmap_populate(struct page *start_page, unsigned long size, int node)
911{
912	unsigned long addr = (unsigned long)start_page;
913	unsigned long end = (unsigned long)(start_page + size);
914	unsigned long next;
915	pgd_t *pgd;
916	pud_t *pud;
917	pmd_t *pmd;
918
919	for (; addr < end; addr = next) {
920		void *p = NULL;
921
922		pgd = vmemmap_pgd_populate(addr, node);
923		if (!pgd)
924			return -ENOMEM;
925
926		pud = vmemmap_pud_populate(pgd, addr, node);
927		if (!pud)
928			return -ENOMEM;
929
930		if (!cpu_has_pse) {
931			next = (addr + PAGE_SIZE) & PAGE_MASK;
932			pmd = vmemmap_pmd_populate(pud, addr, node);
933
934			if (!pmd)
935				return -ENOMEM;
936
937			p = vmemmap_pte_populate(pmd, addr, node);
938
939			if (!p)
940				return -ENOMEM;
941
942			addr_end = addr + PAGE_SIZE;
943			p_end = p + PAGE_SIZE;
944		} else {
945			next = pmd_addr_end(addr, end);
946
947			pmd = pmd_offset(pud, addr);
948			if (pmd_none(*pmd)) {
949				pte_t entry;
950
951				p = vmemmap_alloc_block_buf(PMD_SIZE, node);
952				if (!p)
953					return -ENOMEM;
954
955				entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
956						PAGE_KERNEL_LARGE);
957				set_pmd(pmd, __pmd(pte_val(entry)));
958
959				/* check to see if we have contiguous blocks */
960				if (p_end != p || node_start != node) {
961					if (p_start)
962						printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
963						       addr_start, addr_end-1, p_start, p_end-1, node_start);
964					addr_start = addr;
965					node_start = node;
966					p_start = p;
967				}
968
969				addr_end = addr + PMD_SIZE;
970				p_end = p + PMD_SIZE;
971			} else
972				vmemmap_verify((pte_t *)pmd, node, addr, next);
973		}
974
975	}
976	sync_global_pgds((unsigned long)start_page, end);
977	return 0;
978}
979
980void __meminit vmemmap_populate_print_last(void)
981{
982	if (p_start) {
983		printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
984			addr_start, addr_end-1, p_start, p_end-1, node_start);
985		p_start = NULL;
986		p_end = NULL;
987		node_start = 0;
988	}
989}
990#endif
991