cciss.c revision 2cfa948c9ea8681e831743a3bb61157f590fa8d8
1/*
2 *    Disk Array driver for HP Smart Array controllers.
3 *    (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
4 *
5 *    This program is free software; you can redistribute it and/or modify
6 *    it under the terms of the GNU General Public License as published by
7 *    the Free Software Foundation; version 2 of the License.
8 *
9 *    This program is distributed in the hope that it will be useful,
10 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11 *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 *    General Public License for more details.
13 *
14 *    You should have received a copy of the GNU General Public License
15 *    along with this program; if not, write to the Free Software
16 *    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
17 *    02111-1307, USA.
18 *
19 *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
20 *
21 */
22
23#include <linux/module.h>
24#include <linux/interrupt.h>
25#include <linux/types.h>
26#include <linux/pci.h>
27#include <linux/kernel.h>
28#include <linux/slab.h>
29#include <linux/smp_lock.h>
30#include <linux/delay.h>
31#include <linux/major.h>
32#include <linux/fs.h>
33#include <linux/bio.h>
34#include <linux/blkpg.h>
35#include <linux/timer.h>
36#include <linux/proc_fs.h>
37#include <linux/seq_file.h>
38#include <linux/init.h>
39#include <linux/jiffies.h>
40#include <linux/hdreg.h>
41#include <linux/spinlock.h>
42#include <linux/compat.h>
43#include <linux/mutex.h>
44#include <asm/uaccess.h>
45#include <asm/io.h>
46
47#include <linux/dma-mapping.h>
48#include <linux/blkdev.h>
49#include <linux/genhd.h>
50#include <linux/completion.h>
51#include <scsi/scsi.h>
52#include <scsi/sg.h>
53#include <scsi/scsi_ioctl.h>
54#include <linux/cdrom.h>
55#include <linux/scatterlist.h>
56#include <linux/kthread.h>
57
58#define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
59#define DRIVER_NAME "HP CISS Driver (v 3.6.20)"
60#define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 20)
61
62/* Embedded module documentation macros - see modules.h */
63MODULE_AUTHOR("Hewlett-Packard Company");
64MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
65MODULE_SUPPORTED_DEVICE("HP SA5i SA5i+ SA532 SA5300 SA5312 SA641 SA642 SA6400"
66			" SA6i P600 P800 P400 P400i E200 E200i E500 P700m"
67			" Smart Array G2 Series SAS/SATA Controllers");
68MODULE_VERSION("3.6.20");
69MODULE_LICENSE("GPL");
70
71#include "cciss_cmd.h"
72#include "cciss.h"
73#include <linux/cciss_ioctl.h>
74
75/* define the PCI info for the cards we can control */
76static const struct pci_device_id cciss_pci_device_id[] = {
77	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS,  0x0E11, 0x4070},
78	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
79	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
80	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
81	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
82	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
83	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
84	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
85	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
86	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSA,     0x103C, 0x3225},
87	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3223},
88	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3234},
89	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3235},
90	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3211},
91	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3212},
92	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3213},
93	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3214},
94	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3215},
95	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3237},
96	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x323D},
97	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
98	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
99	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
100	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
101	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
102	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
103	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
104	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
105		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
106	{0,}
107};
108
109MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
110
111/*  board_id = Subsystem Device ID & Vendor ID
112 *  product = Marketing Name for the board
113 *  access = Address of the struct of function pointers
114 */
115static struct board_type products[] = {
116	{0x40700E11, "Smart Array 5300", &SA5_access},
117	{0x40800E11, "Smart Array 5i", &SA5B_access},
118	{0x40820E11, "Smart Array 532", &SA5B_access},
119	{0x40830E11, "Smart Array 5312", &SA5B_access},
120	{0x409A0E11, "Smart Array 641", &SA5_access},
121	{0x409B0E11, "Smart Array 642", &SA5_access},
122	{0x409C0E11, "Smart Array 6400", &SA5_access},
123	{0x409D0E11, "Smart Array 6400 EM", &SA5_access},
124	{0x40910E11, "Smart Array 6i", &SA5_access},
125	{0x3225103C, "Smart Array P600", &SA5_access},
126	{0x3223103C, "Smart Array P800", &SA5_access},
127	{0x3234103C, "Smart Array P400", &SA5_access},
128	{0x3235103C, "Smart Array P400i", &SA5_access},
129	{0x3211103C, "Smart Array E200i", &SA5_access},
130	{0x3212103C, "Smart Array E200", &SA5_access},
131	{0x3213103C, "Smart Array E200i", &SA5_access},
132	{0x3214103C, "Smart Array E200i", &SA5_access},
133	{0x3215103C, "Smart Array E200i", &SA5_access},
134	{0x3237103C, "Smart Array E500", &SA5_access},
135	{0x323D103C, "Smart Array P700m", &SA5_access},
136	{0x3241103C, "Smart Array P212", &SA5_access},
137	{0x3243103C, "Smart Array P410", &SA5_access},
138	{0x3245103C, "Smart Array P410i", &SA5_access},
139	{0x3247103C, "Smart Array P411", &SA5_access},
140	{0x3249103C, "Smart Array P812", &SA5_access},
141	{0x324A103C, "Smart Array P712m", &SA5_access},
142	{0x324B103C, "Smart Array P711m", &SA5_access},
143	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
144};
145
146/* How long to wait (in milliseconds) for board to go into simple mode */
147#define MAX_CONFIG_WAIT 30000
148#define MAX_IOCTL_CONFIG_WAIT 1000
149
150/*define how many times we will try a command because of bus resets */
151#define MAX_CMD_RETRIES 3
152
153#define MAX_CTLR	32
154
155/* Originally cciss driver only supports 8 major numbers */
156#define MAX_CTLR_ORIG 	8
157
158static ctlr_info_t *hba[MAX_CTLR];
159
160static struct task_struct *cciss_scan_thread;
161static DEFINE_MUTEX(scan_mutex);
162static LIST_HEAD(scan_q);
163
164static void do_cciss_request(struct request_queue *q);
165static irqreturn_t do_cciss_intr(int irq, void *dev_id);
166static int cciss_open(struct block_device *bdev, fmode_t mode);
167static int cciss_release(struct gendisk *disk, fmode_t mode);
168static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
169		       unsigned int cmd, unsigned long arg);
170static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
171
172static int cciss_revalidate(struct gendisk *disk);
173static int rebuild_lun_table(ctlr_info_t *h, int first_time, int via_ioctl);
174static int deregister_disk(ctlr_info_t *h, int drv_index,
175			   int clear_all, int via_ioctl);
176
177static void cciss_read_capacity(int ctlr, int logvol, int withirq,
178			sector_t *total_size, unsigned int *block_size);
179static void cciss_read_capacity_16(int ctlr, int logvol, int withirq,
180			sector_t *total_size, unsigned int *block_size);
181static void cciss_geometry_inquiry(int ctlr, int logvol,
182			int withirq, sector_t total_size,
183			unsigned int block_size, InquiryData_struct *inq_buff,
184				   drive_info_struct *drv);
185static void __devinit cciss_interrupt_mode(ctlr_info_t *, struct pci_dev *,
186					   __u32);
187static void start_io(ctlr_info_t *h);
188static int sendcmd(__u8 cmd, int ctlr, void *buff, size_t size,
189		   __u8 page_code, unsigned char *scsi3addr, int cmd_type);
190static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
191			__u8 page_code, unsigned char scsi3addr[],
192			int cmd_type);
193static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
194	int attempt_retry);
195static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c);
196
197static void fail_all_cmds(unsigned long ctlr);
198static int add_to_scan_list(struct ctlr_info *h);
199static int scan_thread(void *data);
200static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c);
201static void cciss_hba_release(struct device *dev);
202static void cciss_device_release(struct device *dev);
203static void cciss_free_gendisk(ctlr_info_t *h, int drv_index);
204static void cciss_free_drive_info(ctlr_info_t *h, int drv_index);
205
206#ifdef CONFIG_PROC_FS
207static void cciss_procinit(int i);
208#else
209static void cciss_procinit(int i)
210{
211}
212#endif				/* CONFIG_PROC_FS */
213
214#ifdef CONFIG_COMPAT
215static int cciss_compat_ioctl(struct block_device *, fmode_t,
216			      unsigned, unsigned long);
217#endif
218
219static const struct block_device_operations cciss_fops = {
220	.owner = THIS_MODULE,
221	.open = cciss_open,
222	.release = cciss_release,
223	.locked_ioctl = cciss_ioctl,
224	.getgeo = cciss_getgeo,
225#ifdef CONFIG_COMPAT
226	.compat_ioctl = cciss_compat_ioctl,
227#endif
228	.revalidate_disk = cciss_revalidate,
229};
230
231/*
232 * Enqueuing and dequeuing functions for cmdlists.
233 */
234static inline void addQ(struct hlist_head *list, CommandList_struct *c)
235{
236	hlist_add_head(&c->list, list);
237}
238
239static inline void removeQ(CommandList_struct *c)
240{
241	/*
242	 * After kexec/dump some commands might still
243	 * be in flight, which the firmware will try
244	 * to complete. Resetting the firmware doesn't work
245	 * with old fw revisions, so we have to mark
246	 * them off as 'stale' to prevent the driver from
247	 * falling over.
248	 */
249	if (WARN_ON(hlist_unhashed(&c->list))) {
250		c->cmd_type = CMD_MSG_STALE;
251		return;
252	}
253
254	hlist_del_init(&c->list);
255}
256
257#include "cciss_scsi.c"		/* For SCSI tape support */
258
259static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
260	"UNKNOWN"
261};
262#define RAID_UNKNOWN (sizeof(raid_label) / sizeof(raid_label[0])-1)
263
264#ifdef CONFIG_PROC_FS
265
266/*
267 * Report information about this controller.
268 */
269#define ENG_GIG 1000000000
270#define ENG_GIG_FACTOR (ENG_GIG/512)
271#define ENGAGE_SCSI	"engage scsi"
272
273static struct proc_dir_entry *proc_cciss;
274
275static void cciss_seq_show_header(struct seq_file *seq)
276{
277	ctlr_info_t *h = seq->private;
278
279	seq_printf(seq, "%s: HP %s Controller\n"
280		"Board ID: 0x%08lx\n"
281		"Firmware Version: %c%c%c%c\n"
282		"IRQ: %d\n"
283		"Logical drives: %d\n"
284		"Current Q depth: %d\n"
285		"Current # commands on controller: %d\n"
286		"Max Q depth since init: %d\n"
287		"Max # commands on controller since init: %d\n"
288		"Max SG entries since init: %d\n",
289		h->devname,
290		h->product_name,
291		(unsigned long)h->board_id,
292		h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
293		h->firm_ver[3], (unsigned int)h->intr[SIMPLE_MODE_INT],
294		h->num_luns,
295		h->Qdepth, h->commands_outstanding,
296		h->maxQsinceinit, h->max_outstanding, h->maxSG);
297
298#ifdef CONFIG_CISS_SCSI_TAPE
299	cciss_seq_tape_report(seq, h->ctlr);
300#endif /* CONFIG_CISS_SCSI_TAPE */
301}
302
303static void *cciss_seq_start(struct seq_file *seq, loff_t *pos)
304{
305	ctlr_info_t *h = seq->private;
306	unsigned ctlr = h->ctlr;
307	unsigned long flags;
308
309	/* prevent displaying bogus info during configuration
310	 * or deconfiguration of a logical volume
311	 */
312	spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
313	if (h->busy_configuring) {
314		spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
315		return ERR_PTR(-EBUSY);
316	}
317	h->busy_configuring = 1;
318	spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
319
320	if (*pos == 0)
321		cciss_seq_show_header(seq);
322
323	return pos;
324}
325
326static int cciss_seq_show(struct seq_file *seq, void *v)
327{
328	sector_t vol_sz, vol_sz_frac;
329	ctlr_info_t *h = seq->private;
330	unsigned ctlr = h->ctlr;
331	loff_t *pos = v;
332	drive_info_struct *drv = h->drv[*pos];
333
334	if (*pos > h->highest_lun)
335		return 0;
336
337	if (drv->heads == 0)
338		return 0;
339
340	vol_sz = drv->nr_blocks;
341	vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
342	vol_sz_frac *= 100;
343	sector_div(vol_sz_frac, ENG_GIG_FACTOR);
344
345	if (drv->raid_level < 0 || drv->raid_level > RAID_UNKNOWN)
346		drv->raid_level = RAID_UNKNOWN;
347	seq_printf(seq, "cciss/c%dd%d:"
348			"\t%4u.%02uGB\tRAID %s\n",
349			ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac,
350			raid_label[drv->raid_level]);
351	return 0;
352}
353
354static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos)
355{
356	ctlr_info_t *h = seq->private;
357
358	if (*pos > h->highest_lun)
359		return NULL;
360	*pos += 1;
361
362	return pos;
363}
364
365static void cciss_seq_stop(struct seq_file *seq, void *v)
366{
367	ctlr_info_t *h = seq->private;
368
369	/* Only reset h->busy_configuring if we succeeded in setting
370	 * it during cciss_seq_start. */
371	if (v == ERR_PTR(-EBUSY))
372		return;
373
374	h->busy_configuring = 0;
375}
376
377static const struct seq_operations cciss_seq_ops = {
378	.start = cciss_seq_start,
379	.show  = cciss_seq_show,
380	.next  = cciss_seq_next,
381	.stop  = cciss_seq_stop,
382};
383
384static int cciss_seq_open(struct inode *inode, struct file *file)
385{
386	int ret = seq_open(file, &cciss_seq_ops);
387	struct seq_file *seq = file->private_data;
388
389	if (!ret)
390		seq->private = PDE(inode)->data;
391
392	return ret;
393}
394
395static ssize_t
396cciss_proc_write(struct file *file, const char __user *buf,
397		 size_t length, loff_t *ppos)
398{
399	int err;
400	char *buffer;
401
402#ifndef CONFIG_CISS_SCSI_TAPE
403	return -EINVAL;
404#endif
405
406	if (!buf || length > PAGE_SIZE - 1)
407		return -EINVAL;
408
409	buffer = (char *)__get_free_page(GFP_KERNEL);
410	if (!buffer)
411		return -ENOMEM;
412
413	err = -EFAULT;
414	if (copy_from_user(buffer, buf, length))
415		goto out;
416	buffer[length] = '\0';
417
418#ifdef CONFIG_CISS_SCSI_TAPE
419	if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) {
420		struct seq_file *seq = file->private_data;
421		ctlr_info_t *h = seq->private;
422		int rc;
423
424		rc = cciss_engage_scsi(h->ctlr);
425		if (rc != 0)
426			err = -rc;
427		else
428			err = length;
429	} else
430#endif /* CONFIG_CISS_SCSI_TAPE */
431		err = -EINVAL;
432	/* might be nice to have "disengage" too, but it's not
433	   safely possible. (only 1 module use count, lock issues.) */
434
435out:
436	free_page((unsigned long)buffer);
437	return err;
438}
439
440static const struct file_operations cciss_proc_fops = {
441	.owner	 = THIS_MODULE,
442	.open    = cciss_seq_open,
443	.read    = seq_read,
444	.llseek  = seq_lseek,
445	.release = seq_release,
446	.write	 = cciss_proc_write,
447};
448
449static void __devinit cciss_procinit(int i)
450{
451	struct proc_dir_entry *pde;
452
453	if (proc_cciss == NULL)
454		proc_cciss = proc_mkdir("driver/cciss", NULL);
455	if (!proc_cciss)
456		return;
457	pde = proc_create_data(hba[i]->devname, S_IWUSR | S_IRUSR | S_IRGRP |
458					S_IROTH, proc_cciss,
459					&cciss_proc_fops, hba[i]);
460}
461#endif				/* CONFIG_PROC_FS */
462
463#define MAX_PRODUCT_NAME_LEN 19
464
465#define to_hba(n) container_of(n, struct ctlr_info, dev)
466#define to_drv(n) container_of(n, drive_info_struct, dev)
467
468static ssize_t host_store_rescan(struct device *dev,
469				 struct device_attribute *attr,
470				 const char *buf, size_t count)
471{
472	struct ctlr_info *h = to_hba(dev);
473
474	add_to_scan_list(h);
475	wake_up_process(cciss_scan_thread);
476	wait_for_completion_interruptible(&h->scan_wait);
477
478	return count;
479}
480DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
481
482static ssize_t dev_show_unique_id(struct device *dev,
483				 struct device_attribute *attr,
484				 char *buf)
485{
486	drive_info_struct *drv = to_drv(dev);
487	struct ctlr_info *h = to_hba(drv->dev.parent);
488	__u8 sn[16];
489	unsigned long flags;
490	int ret = 0;
491
492	spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
493	if (h->busy_configuring)
494		ret = -EBUSY;
495	else
496		memcpy(sn, drv->serial_no, sizeof(sn));
497	spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
498
499	if (ret)
500		return ret;
501	else
502		return snprintf(buf, 16 * 2 + 2,
503				"%02X%02X%02X%02X%02X%02X%02X%02X"
504				"%02X%02X%02X%02X%02X%02X%02X%02X\n",
505				sn[0], sn[1], sn[2], sn[3],
506				sn[4], sn[5], sn[6], sn[7],
507				sn[8], sn[9], sn[10], sn[11],
508				sn[12], sn[13], sn[14], sn[15]);
509}
510DEVICE_ATTR(unique_id, S_IRUGO, dev_show_unique_id, NULL);
511
512static ssize_t dev_show_vendor(struct device *dev,
513			       struct device_attribute *attr,
514			       char *buf)
515{
516	drive_info_struct *drv = to_drv(dev);
517	struct ctlr_info *h = to_hba(drv->dev.parent);
518	char vendor[VENDOR_LEN + 1];
519	unsigned long flags;
520	int ret = 0;
521
522	spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
523	if (h->busy_configuring)
524		ret = -EBUSY;
525	else
526		memcpy(vendor, drv->vendor, VENDOR_LEN + 1);
527	spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
528
529	if (ret)
530		return ret;
531	else
532		return snprintf(buf, sizeof(vendor) + 1, "%s\n", drv->vendor);
533}
534DEVICE_ATTR(vendor, S_IRUGO, dev_show_vendor, NULL);
535
536static ssize_t dev_show_model(struct device *dev,
537			      struct device_attribute *attr,
538			      char *buf)
539{
540	drive_info_struct *drv = to_drv(dev);
541	struct ctlr_info *h = to_hba(drv->dev.parent);
542	char model[MODEL_LEN + 1];
543	unsigned long flags;
544	int ret = 0;
545
546	spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
547	if (h->busy_configuring)
548		ret = -EBUSY;
549	else
550		memcpy(model, drv->model, MODEL_LEN + 1);
551	spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
552
553	if (ret)
554		return ret;
555	else
556		return snprintf(buf, sizeof(model) + 1, "%s\n", drv->model);
557}
558DEVICE_ATTR(model, S_IRUGO, dev_show_model, NULL);
559
560static ssize_t dev_show_rev(struct device *dev,
561			    struct device_attribute *attr,
562			    char *buf)
563{
564	drive_info_struct *drv = to_drv(dev);
565	struct ctlr_info *h = to_hba(drv->dev.parent);
566	char rev[REV_LEN + 1];
567	unsigned long flags;
568	int ret = 0;
569
570	spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
571	if (h->busy_configuring)
572		ret = -EBUSY;
573	else
574		memcpy(rev, drv->rev, REV_LEN + 1);
575	spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
576
577	if (ret)
578		return ret;
579	else
580		return snprintf(buf, sizeof(rev) + 1, "%s\n", drv->rev);
581}
582DEVICE_ATTR(rev, S_IRUGO, dev_show_rev, NULL);
583
584static ssize_t cciss_show_lunid(struct device *dev,
585				struct device_attribute *attr, char *buf)
586{
587	drive_info_struct *drv = to_drv(dev);
588	struct ctlr_info *h = to_hba(drv->dev.parent);
589	unsigned long flags;
590	unsigned char lunid[8];
591
592	spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
593	if (h->busy_configuring) {
594		spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
595		return -EBUSY;
596	}
597	if (!drv->heads) {
598		spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
599		return -ENOTTY;
600	}
601	memcpy(lunid, drv->LunID, sizeof(lunid));
602	spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
603	return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
604		lunid[0], lunid[1], lunid[2], lunid[3],
605		lunid[4], lunid[5], lunid[6], lunid[7]);
606}
607DEVICE_ATTR(lunid, S_IRUGO, cciss_show_lunid, NULL);
608
609static ssize_t cciss_show_raid_level(struct device *dev,
610				     struct device_attribute *attr, char *buf)
611{
612	drive_info_struct *drv = to_drv(dev);
613	struct ctlr_info *h = to_hba(drv->dev.parent);
614	int raid;
615	unsigned long flags;
616
617	spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
618	if (h->busy_configuring) {
619		spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
620		return -EBUSY;
621	}
622	raid = drv->raid_level;
623	spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
624	if (raid < 0 || raid > RAID_UNKNOWN)
625		raid = RAID_UNKNOWN;
626
627	return snprintf(buf, strlen(raid_label[raid]) + 7, "RAID %s\n",
628			raid_label[raid]);
629}
630DEVICE_ATTR(raid_level, S_IRUGO, cciss_show_raid_level, NULL);
631
632static ssize_t cciss_show_usage_count(struct device *dev,
633				      struct device_attribute *attr, char *buf)
634{
635	drive_info_struct *drv = to_drv(dev);
636	struct ctlr_info *h = to_hba(drv->dev.parent);
637	unsigned long flags;
638	int count;
639
640	spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
641	if (h->busy_configuring) {
642		spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
643		return -EBUSY;
644	}
645	count = drv->usage_count;
646	spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
647	return snprintf(buf, 20, "%d\n", count);
648}
649DEVICE_ATTR(usage_count, S_IRUGO, cciss_show_usage_count, NULL);
650
651static struct attribute *cciss_host_attrs[] = {
652	&dev_attr_rescan.attr,
653	NULL
654};
655
656static struct attribute_group cciss_host_attr_group = {
657	.attrs = cciss_host_attrs,
658};
659
660static const struct attribute_group *cciss_host_attr_groups[] = {
661	&cciss_host_attr_group,
662	NULL
663};
664
665static struct device_type cciss_host_type = {
666	.name		= "cciss_host",
667	.groups		= cciss_host_attr_groups,
668	.release	= cciss_hba_release,
669};
670
671static struct attribute *cciss_dev_attrs[] = {
672	&dev_attr_unique_id.attr,
673	&dev_attr_model.attr,
674	&dev_attr_vendor.attr,
675	&dev_attr_rev.attr,
676	&dev_attr_lunid.attr,
677	&dev_attr_raid_level.attr,
678	&dev_attr_usage_count.attr,
679	NULL
680};
681
682static struct attribute_group cciss_dev_attr_group = {
683	.attrs = cciss_dev_attrs,
684};
685
686static const struct attribute_group *cciss_dev_attr_groups[] = {
687	&cciss_dev_attr_group,
688	NULL
689};
690
691static struct device_type cciss_dev_type = {
692	.name		= "cciss_device",
693	.groups		= cciss_dev_attr_groups,
694	.release	= cciss_device_release,
695};
696
697static struct bus_type cciss_bus_type = {
698	.name		= "cciss",
699};
700
701/*
702 * cciss_hba_release is called when the reference count
703 * of h->dev goes to zero.
704 */
705static void cciss_hba_release(struct device *dev)
706{
707	/*
708	 * nothing to do, but need this to avoid a warning
709	 * about not having a release handler from lib/kref.c.
710	 */
711}
712
713/*
714 * Initialize sysfs entry for each controller.  This sets up and registers
715 * the 'cciss#' directory for each individual controller under
716 * /sys/bus/pci/devices/<dev>/.
717 */
718static int cciss_create_hba_sysfs_entry(struct ctlr_info *h)
719{
720	device_initialize(&h->dev);
721	h->dev.type = &cciss_host_type;
722	h->dev.bus = &cciss_bus_type;
723	dev_set_name(&h->dev, "%s", h->devname);
724	h->dev.parent = &h->pdev->dev;
725
726	return device_add(&h->dev);
727}
728
729/*
730 * Remove sysfs entries for an hba.
731 */
732static void cciss_destroy_hba_sysfs_entry(struct ctlr_info *h)
733{
734	device_del(&h->dev);
735	put_device(&h->dev); /* final put. */
736}
737
738/* cciss_device_release is called when the reference count
739 * of h->drv[x]dev goes to zero.
740 */
741static void cciss_device_release(struct device *dev)
742{
743	drive_info_struct *drv = to_drv(dev);
744	kfree(drv);
745}
746
747/*
748 * Initialize sysfs for each logical drive.  This sets up and registers
749 * the 'c#d#' directory for each individual logical drive under
750 * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
751 * /sys/block/cciss!c#d# to this entry.
752 */
753static long cciss_create_ld_sysfs_entry(struct ctlr_info *h,
754				       int drv_index)
755{
756	struct device *dev;
757
758	if (h->drv[drv_index]->device_initialized)
759		return 0;
760
761	dev = &h->drv[drv_index]->dev;
762	device_initialize(dev);
763	dev->type = &cciss_dev_type;
764	dev->bus = &cciss_bus_type;
765	dev_set_name(dev, "c%dd%d", h->ctlr, drv_index);
766	dev->parent = &h->dev;
767	h->drv[drv_index]->device_initialized = 1;
768	return device_add(dev);
769}
770
771/*
772 * Remove sysfs entries for a logical drive.
773 */
774static void cciss_destroy_ld_sysfs_entry(struct ctlr_info *h, int drv_index,
775	int ctlr_exiting)
776{
777	struct device *dev = &h->drv[drv_index]->dev;
778
779	/* special case for c*d0, we only destroy it on controller exit */
780	if (drv_index == 0 && !ctlr_exiting)
781		return;
782
783	device_del(dev);
784	put_device(dev); /* the "final" put. */
785	h->drv[drv_index] = NULL;
786}
787
788/*
789 * For operations that cannot sleep, a command block is allocated at init,
790 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
791 * which ones are free or in use.  For operations that can wait for kmalloc
792 * to possible sleep, this routine can be called with get_from_pool set to 0.
793 * cmd_free() MUST be called with a got_from_pool set to 0 if cmd_alloc was.
794 */
795static CommandList_struct *cmd_alloc(ctlr_info_t *h, int get_from_pool)
796{
797	CommandList_struct *c;
798	int i;
799	u64bit temp64;
800	dma_addr_t cmd_dma_handle, err_dma_handle;
801
802	if (!get_from_pool) {
803		c = (CommandList_struct *) pci_alloc_consistent(h->pdev,
804			sizeof(CommandList_struct), &cmd_dma_handle);
805		if (c == NULL)
806			return NULL;
807		memset(c, 0, sizeof(CommandList_struct));
808
809		c->cmdindex = -1;
810
811		c->err_info = (ErrorInfo_struct *)
812		    pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
813			    &err_dma_handle);
814
815		if (c->err_info == NULL) {
816			pci_free_consistent(h->pdev,
817				sizeof(CommandList_struct), c, cmd_dma_handle);
818			return NULL;
819		}
820		memset(c->err_info, 0, sizeof(ErrorInfo_struct));
821	} else {		/* get it out of the controllers pool */
822
823		do {
824			i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
825			if (i == h->nr_cmds)
826				return NULL;
827		} while (test_and_set_bit
828			 (i & (BITS_PER_LONG - 1),
829			  h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
830#ifdef CCISS_DEBUG
831		printk(KERN_DEBUG "cciss: using command buffer %d\n", i);
832#endif
833		c = h->cmd_pool + i;
834		memset(c, 0, sizeof(CommandList_struct));
835		cmd_dma_handle = h->cmd_pool_dhandle
836		    + i * sizeof(CommandList_struct);
837		c->err_info = h->errinfo_pool + i;
838		memset(c->err_info, 0, sizeof(ErrorInfo_struct));
839		err_dma_handle = h->errinfo_pool_dhandle
840		    + i * sizeof(ErrorInfo_struct);
841		h->nr_allocs++;
842
843		c->cmdindex = i;
844	}
845
846	INIT_HLIST_NODE(&c->list);
847	c->busaddr = (__u32) cmd_dma_handle;
848	temp64.val = (__u64) err_dma_handle;
849	c->ErrDesc.Addr.lower = temp64.val32.lower;
850	c->ErrDesc.Addr.upper = temp64.val32.upper;
851	c->ErrDesc.Len = sizeof(ErrorInfo_struct);
852
853	c->ctlr = h->ctlr;
854	return c;
855}
856
857/*
858 * Frees a command block that was previously allocated with cmd_alloc().
859 */
860static void cmd_free(ctlr_info_t *h, CommandList_struct *c, int got_from_pool)
861{
862	int i;
863	u64bit temp64;
864
865	if (!got_from_pool) {
866		temp64.val32.lower = c->ErrDesc.Addr.lower;
867		temp64.val32.upper = c->ErrDesc.Addr.upper;
868		pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
869				    c->err_info, (dma_addr_t) temp64.val);
870		pci_free_consistent(h->pdev, sizeof(CommandList_struct),
871				    c, (dma_addr_t) c->busaddr);
872	} else {
873		i = c - h->cmd_pool;
874		clear_bit(i & (BITS_PER_LONG - 1),
875			  h->cmd_pool_bits + (i / BITS_PER_LONG));
876		h->nr_frees++;
877	}
878}
879
880static inline ctlr_info_t *get_host(struct gendisk *disk)
881{
882	return disk->queue->queuedata;
883}
884
885static inline drive_info_struct *get_drv(struct gendisk *disk)
886{
887	return disk->private_data;
888}
889
890/*
891 * Open.  Make sure the device is really there.
892 */
893static int cciss_open(struct block_device *bdev, fmode_t mode)
894{
895	ctlr_info_t *host = get_host(bdev->bd_disk);
896	drive_info_struct *drv = get_drv(bdev->bd_disk);
897
898#ifdef CCISS_DEBUG
899	printk(KERN_DEBUG "cciss_open %s\n", bdev->bd_disk->disk_name);
900#endif				/* CCISS_DEBUG */
901
902	if (drv->busy_configuring)
903		return -EBUSY;
904	/*
905	 * Root is allowed to open raw volume zero even if it's not configured
906	 * so array config can still work. Root is also allowed to open any
907	 * volume that has a LUN ID, so it can issue IOCTL to reread the
908	 * disk information.  I don't think I really like this
909	 * but I'm already using way to many device nodes to claim another one
910	 * for "raw controller".
911	 */
912	if (drv->heads == 0) {
913		if (MINOR(bdev->bd_dev) != 0) {	/* not node 0? */
914			/* if not node 0 make sure it is a partition = 0 */
915			if (MINOR(bdev->bd_dev) & 0x0f) {
916				return -ENXIO;
917				/* if it is, make sure we have a LUN ID */
918			} else if (memcmp(drv->LunID, CTLR_LUNID,
919				sizeof(drv->LunID))) {
920				return -ENXIO;
921			}
922		}
923		if (!capable(CAP_SYS_ADMIN))
924			return -EPERM;
925	}
926	drv->usage_count++;
927	host->usage_count++;
928	return 0;
929}
930
931/*
932 * Close.  Sync first.
933 */
934static int cciss_release(struct gendisk *disk, fmode_t mode)
935{
936	ctlr_info_t *host = get_host(disk);
937	drive_info_struct *drv = get_drv(disk);
938
939#ifdef CCISS_DEBUG
940	printk(KERN_DEBUG "cciss_release %s\n", disk->disk_name);
941#endif				/* CCISS_DEBUG */
942
943	drv->usage_count--;
944	host->usage_count--;
945	return 0;
946}
947
948#ifdef CONFIG_COMPAT
949
950static int do_ioctl(struct block_device *bdev, fmode_t mode,
951		    unsigned cmd, unsigned long arg)
952{
953	int ret;
954	lock_kernel();
955	ret = cciss_ioctl(bdev, mode, cmd, arg);
956	unlock_kernel();
957	return ret;
958}
959
960static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
961				  unsigned cmd, unsigned long arg);
962static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
963				      unsigned cmd, unsigned long arg);
964
965static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode,
966			      unsigned cmd, unsigned long arg)
967{
968	switch (cmd) {
969	case CCISS_GETPCIINFO:
970	case CCISS_GETINTINFO:
971	case CCISS_SETINTINFO:
972	case CCISS_GETNODENAME:
973	case CCISS_SETNODENAME:
974	case CCISS_GETHEARTBEAT:
975	case CCISS_GETBUSTYPES:
976	case CCISS_GETFIRMVER:
977	case CCISS_GETDRIVVER:
978	case CCISS_REVALIDVOLS:
979	case CCISS_DEREGDISK:
980	case CCISS_REGNEWDISK:
981	case CCISS_REGNEWD:
982	case CCISS_RESCANDISK:
983	case CCISS_GETLUNINFO:
984		return do_ioctl(bdev, mode, cmd, arg);
985
986	case CCISS_PASSTHRU32:
987		return cciss_ioctl32_passthru(bdev, mode, cmd, arg);
988	case CCISS_BIG_PASSTHRU32:
989		return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg);
990
991	default:
992		return -ENOIOCTLCMD;
993	}
994}
995
996static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
997				  unsigned cmd, unsigned long arg)
998{
999	IOCTL32_Command_struct __user *arg32 =
1000	    (IOCTL32_Command_struct __user *) arg;
1001	IOCTL_Command_struct arg64;
1002	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
1003	int err;
1004	u32 cp;
1005
1006	err = 0;
1007	err |=
1008	    copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1009			   sizeof(arg64.LUN_info));
1010	err |=
1011	    copy_from_user(&arg64.Request, &arg32->Request,
1012			   sizeof(arg64.Request));
1013	err |=
1014	    copy_from_user(&arg64.error_info, &arg32->error_info,
1015			   sizeof(arg64.error_info));
1016	err |= get_user(arg64.buf_size, &arg32->buf_size);
1017	err |= get_user(cp, &arg32->buf);
1018	arg64.buf = compat_ptr(cp);
1019	err |= copy_to_user(p, &arg64, sizeof(arg64));
1020
1021	if (err)
1022		return -EFAULT;
1023
1024	err = do_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p);
1025	if (err)
1026		return err;
1027	err |=
1028	    copy_in_user(&arg32->error_info, &p->error_info,
1029			 sizeof(arg32->error_info));
1030	if (err)
1031		return -EFAULT;
1032	return err;
1033}
1034
1035static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1036				      unsigned cmd, unsigned long arg)
1037{
1038	BIG_IOCTL32_Command_struct __user *arg32 =
1039	    (BIG_IOCTL32_Command_struct __user *) arg;
1040	BIG_IOCTL_Command_struct arg64;
1041	BIG_IOCTL_Command_struct __user *p =
1042	    compat_alloc_user_space(sizeof(arg64));
1043	int err;
1044	u32 cp;
1045
1046	err = 0;
1047	err |=
1048	    copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1049			   sizeof(arg64.LUN_info));
1050	err |=
1051	    copy_from_user(&arg64.Request, &arg32->Request,
1052			   sizeof(arg64.Request));
1053	err |=
1054	    copy_from_user(&arg64.error_info, &arg32->error_info,
1055			   sizeof(arg64.error_info));
1056	err |= get_user(arg64.buf_size, &arg32->buf_size);
1057	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
1058	err |= get_user(cp, &arg32->buf);
1059	arg64.buf = compat_ptr(cp);
1060	err |= copy_to_user(p, &arg64, sizeof(arg64));
1061
1062	if (err)
1063		return -EFAULT;
1064
1065	err = do_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p);
1066	if (err)
1067		return err;
1068	err |=
1069	    copy_in_user(&arg32->error_info, &p->error_info,
1070			 sizeof(arg32->error_info));
1071	if (err)
1072		return -EFAULT;
1073	return err;
1074}
1075#endif
1076
1077static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1078{
1079	drive_info_struct *drv = get_drv(bdev->bd_disk);
1080
1081	if (!drv->cylinders)
1082		return -ENXIO;
1083
1084	geo->heads = drv->heads;
1085	geo->sectors = drv->sectors;
1086	geo->cylinders = drv->cylinders;
1087	return 0;
1088}
1089
1090static void check_ioctl_unit_attention(ctlr_info_t *host, CommandList_struct *c)
1091{
1092	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
1093			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
1094		(void)check_for_unit_attention(host, c);
1095}
1096/*
1097 * ioctl
1098 */
1099static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
1100		       unsigned int cmd, unsigned long arg)
1101{
1102	struct gendisk *disk = bdev->bd_disk;
1103	ctlr_info_t *host = get_host(disk);
1104	drive_info_struct *drv = get_drv(disk);
1105	int ctlr = host->ctlr;
1106	void __user *argp = (void __user *)arg;
1107
1108#ifdef CCISS_DEBUG
1109	printk(KERN_DEBUG "cciss_ioctl: Called with cmd=%x %lx\n", cmd, arg);
1110#endif				/* CCISS_DEBUG */
1111
1112	switch (cmd) {
1113	case CCISS_GETPCIINFO:
1114		{
1115			cciss_pci_info_struct pciinfo;
1116
1117			if (!arg)
1118				return -EINVAL;
1119			pciinfo.domain = pci_domain_nr(host->pdev->bus);
1120			pciinfo.bus = host->pdev->bus->number;
1121			pciinfo.dev_fn = host->pdev->devfn;
1122			pciinfo.board_id = host->board_id;
1123			if (copy_to_user
1124			    (argp, &pciinfo, sizeof(cciss_pci_info_struct)))
1125				return -EFAULT;
1126			return 0;
1127		}
1128	case CCISS_GETINTINFO:
1129		{
1130			cciss_coalint_struct intinfo;
1131			if (!arg)
1132				return -EINVAL;
1133			intinfo.delay =
1134			    readl(&host->cfgtable->HostWrite.CoalIntDelay);
1135			intinfo.count =
1136			    readl(&host->cfgtable->HostWrite.CoalIntCount);
1137			if (copy_to_user
1138			    (argp, &intinfo, sizeof(cciss_coalint_struct)))
1139				return -EFAULT;
1140			return 0;
1141		}
1142	case CCISS_SETINTINFO:
1143		{
1144			cciss_coalint_struct intinfo;
1145			unsigned long flags;
1146			int i;
1147
1148			if (!arg)
1149				return -EINVAL;
1150			if (!capable(CAP_SYS_ADMIN))
1151				return -EPERM;
1152			if (copy_from_user
1153			    (&intinfo, argp, sizeof(cciss_coalint_struct)))
1154				return -EFAULT;
1155			if ((intinfo.delay == 0) && (intinfo.count == 0))
1156			{
1157//                      printk("cciss_ioctl: delay and count cannot be 0\n");
1158				return -EINVAL;
1159			}
1160			spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1161			/* Update the field, and then ring the doorbell */
1162			writel(intinfo.delay,
1163			       &(host->cfgtable->HostWrite.CoalIntDelay));
1164			writel(intinfo.count,
1165			       &(host->cfgtable->HostWrite.CoalIntCount));
1166			writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
1167
1168			for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1169				if (!(readl(host->vaddr + SA5_DOORBELL)
1170				      & CFGTBL_ChangeReq))
1171					break;
1172				/* delay and try again */
1173				udelay(1000);
1174			}
1175			spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1176			if (i >= MAX_IOCTL_CONFIG_WAIT)
1177				return -EAGAIN;
1178			return 0;
1179		}
1180	case CCISS_GETNODENAME:
1181		{
1182			NodeName_type NodeName;
1183			int i;
1184
1185			if (!arg)
1186				return -EINVAL;
1187			for (i = 0; i < 16; i++)
1188				NodeName[i] =
1189				    readb(&host->cfgtable->ServerName[i]);
1190			if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
1191				return -EFAULT;
1192			return 0;
1193		}
1194	case CCISS_SETNODENAME:
1195		{
1196			NodeName_type NodeName;
1197			unsigned long flags;
1198			int i;
1199
1200			if (!arg)
1201				return -EINVAL;
1202			if (!capable(CAP_SYS_ADMIN))
1203				return -EPERM;
1204
1205			if (copy_from_user
1206			    (NodeName, argp, sizeof(NodeName_type)))
1207				return -EFAULT;
1208
1209			spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1210
1211			/* Update the field, and then ring the doorbell */
1212			for (i = 0; i < 16; i++)
1213				writeb(NodeName[i],
1214				       &host->cfgtable->ServerName[i]);
1215
1216			writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
1217
1218			for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1219				if (!(readl(host->vaddr + SA5_DOORBELL)
1220				      & CFGTBL_ChangeReq))
1221					break;
1222				/* delay and try again */
1223				udelay(1000);
1224			}
1225			spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1226			if (i >= MAX_IOCTL_CONFIG_WAIT)
1227				return -EAGAIN;
1228			return 0;
1229		}
1230
1231	case CCISS_GETHEARTBEAT:
1232		{
1233			Heartbeat_type heartbeat;
1234
1235			if (!arg)
1236				return -EINVAL;
1237			heartbeat = readl(&host->cfgtable->HeartBeat);
1238			if (copy_to_user
1239			    (argp, &heartbeat, sizeof(Heartbeat_type)))
1240				return -EFAULT;
1241			return 0;
1242		}
1243	case CCISS_GETBUSTYPES:
1244		{
1245			BusTypes_type BusTypes;
1246
1247			if (!arg)
1248				return -EINVAL;
1249			BusTypes = readl(&host->cfgtable->BusTypes);
1250			if (copy_to_user
1251			    (argp, &BusTypes, sizeof(BusTypes_type)))
1252				return -EFAULT;
1253			return 0;
1254		}
1255	case CCISS_GETFIRMVER:
1256		{
1257			FirmwareVer_type firmware;
1258
1259			if (!arg)
1260				return -EINVAL;
1261			memcpy(firmware, host->firm_ver, 4);
1262
1263			if (copy_to_user
1264			    (argp, firmware, sizeof(FirmwareVer_type)))
1265				return -EFAULT;
1266			return 0;
1267		}
1268	case CCISS_GETDRIVVER:
1269		{
1270			DriverVer_type DriverVer = DRIVER_VERSION;
1271
1272			if (!arg)
1273				return -EINVAL;
1274
1275			if (copy_to_user
1276			    (argp, &DriverVer, sizeof(DriverVer_type)))
1277				return -EFAULT;
1278			return 0;
1279		}
1280
1281	case CCISS_DEREGDISK:
1282	case CCISS_REGNEWD:
1283	case CCISS_REVALIDVOLS:
1284		return rebuild_lun_table(host, 0, 1);
1285
1286	case CCISS_GETLUNINFO:{
1287			LogvolInfo_struct luninfo;
1288
1289			memcpy(&luninfo.LunID, drv->LunID,
1290				sizeof(luninfo.LunID));
1291			luninfo.num_opens = drv->usage_count;
1292			luninfo.num_parts = 0;
1293			if (copy_to_user(argp, &luninfo,
1294					 sizeof(LogvolInfo_struct)))
1295				return -EFAULT;
1296			return 0;
1297		}
1298	case CCISS_PASSTHRU:
1299		{
1300			IOCTL_Command_struct iocommand;
1301			CommandList_struct *c;
1302			char *buff = NULL;
1303			u64bit temp64;
1304			unsigned long flags;
1305			DECLARE_COMPLETION_ONSTACK(wait);
1306
1307			if (!arg)
1308				return -EINVAL;
1309
1310			if (!capable(CAP_SYS_RAWIO))
1311				return -EPERM;
1312
1313			if (copy_from_user
1314			    (&iocommand, argp, sizeof(IOCTL_Command_struct)))
1315				return -EFAULT;
1316			if ((iocommand.buf_size < 1) &&
1317			    (iocommand.Request.Type.Direction != XFER_NONE)) {
1318				return -EINVAL;
1319			}
1320#if 0				/* 'buf_size' member is 16-bits, and always smaller than kmalloc limit */
1321			/* Check kmalloc limits */
1322			if (iocommand.buf_size > 128000)
1323				return -EINVAL;
1324#endif
1325			if (iocommand.buf_size > 0) {
1326				buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
1327				if (buff == NULL)
1328					return -EFAULT;
1329			}
1330			if (iocommand.Request.Type.Direction == XFER_WRITE) {
1331				/* Copy the data into the buffer we created */
1332				if (copy_from_user
1333				    (buff, iocommand.buf, iocommand.buf_size)) {
1334					kfree(buff);
1335					return -EFAULT;
1336				}
1337			} else {
1338				memset(buff, 0, iocommand.buf_size);
1339			}
1340			if ((c = cmd_alloc(host, 0)) == NULL) {
1341				kfree(buff);
1342				return -ENOMEM;
1343			}
1344			// Fill in the command type
1345			c->cmd_type = CMD_IOCTL_PEND;
1346			// Fill in Command Header
1347			c->Header.ReplyQueue = 0;	// unused in simple mode
1348			if (iocommand.buf_size > 0)	// buffer to fill
1349			{
1350				c->Header.SGList = 1;
1351				c->Header.SGTotal = 1;
1352			} else	// no buffers to fill
1353			{
1354				c->Header.SGList = 0;
1355				c->Header.SGTotal = 0;
1356			}
1357			c->Header.LUN = iocommand.LUN_info;
1358			c->Header.Tag.lower = c->busaddr;	// use the kernel address the cmd block for tag
1359
1360			// Fill in Request block
1361			c->Request = iocommand.Request;
1362
1363			// Fill in the scatter gather information
1364			if (iocommand.buf_size > 0) {
1365				temp64.val = pci_map_single(host->pdev, buff,
1366					iocommand.buf_size,
1367					PCI_DMA_BIDIRECTIONAL);
1368				c->SG[0].Addr.lower = temp64.val32.lower;
1369				c->SG[0].Addr.upper = temp64.val32.upper;
1370				c->SG[0].Len = iocommand.buf_size;
1371				c->SG[0].Ext = 0;	// we are not chaining
1372			}
1373			c->waiting = &wait;
1374
1375			/* Put the request on the tail of the request queue */
1376			spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1377			addQ(&host->reqQ, c);
1378			host->Qdepth++;
1379			start_io(host);
1380			spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1381
1382			wait_for_completion(&wait);
1383
1384			/* unlock the buffers from DMA */
1385			temp64.val32.lower = c->SG[0].Addr.lower;
1386			temp64.val32.upper = c->SG[0].Addr.upper;
1387			pci_unmap_single(host->pdev, (dma_addr_t) temp64.val,
1388					 iocommand.buf_size,
1389					 PCI_DMA_BIDIRECTIONAL);
1390
1391			check_ioctl_unit_attention(host, c);
1392
1393			/* Copy the error information out */
1394			iocommand.error_info = *(c->err_info);
1395			if (copy_to_user
1396			    (argp, &iocommand, sizeof(IOCTL_Command_struct))) {
1397				kfree(buff);
1398				cmd_free(host, c, 0);
1399				return -EFAULT;
1400			}
1401
1402			if (iocommand.Request.Type.Direction == XFER_READ) {
1403				/* Copy the data out of the buffer we created */
1404				if (copy_to_user
1405				    (iocommand.buf, buff, iocommand.buf_size)) {
1406					kfree(buff);
1407					cmd_free(host, c, 0);
1408					return -EFAULT;
1409				}
1410			}
1411			kfree(buff);
1412			cmd_free(host, c, 0);
1413			return 0;
1414		}
1415	case CCISS_BIG_PASSTHRU:{
1416			BIG_IOCTL_Command_struct *ioc;
1417			CommandList_struct *c;
1418			unsigned char **buff = NULL;
1419			int *buff_size = NULL;
1420			u64bit temp64;
1421			unsigned long flags;
1422			BYTE sg_used = 0;
1423			int status = 0;
1424			int i;
1425			DECLARE_COMPLETION_ONSTACK(wait);
1426			__u32 left;
1427			__u32 sz;
1428			BYTE __user *data_ptr;
1429
1430			if (!arg)
1431				return -EINVAL;
1432			if (!capable(CAP_SYS_RAWIO))
1433				return -EPERM;
1434			ioc = (BIG_IOCTL_Command_struct *)
1435			    kmalloc(sizeof(*ioc), GFP_KERNEL);
1436			if (!ioc) {
1437				status = -ENOMEM;
1438				goto cleanup1;
1439			}
1440			if (copy_from_user(ioc, argp, sizeof(*ioc))) {
1441				status = -EFAULT;
1442				goto cleanup1;
1443			}
1444			if ((ioc->buf_size < 1) &&
1445			    (ioc->Request.Type.Direction != XFER_NONE)) {
1446				status = -EINVAL;
1447				goto cleanup1;
1448			}
1449			/* Check kmalloc limits  using all SGs */
1450			if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
1451				status = -EINVAL;
1452				goto cleanup1;
1453			}
1454			if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
1455				status = -EINVAL;
1456				goto cleanup1;
1457			}
1458			buff =
1459			    kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
1460			if (!buff) {
1461				status = -ENOMEM;
1462				goto cleanup1;
1463			}
1464			buff_size = kmalloc(MAXSGENTRIES * sizeof(int),
1465						   GFP_KERNEL);
1466			if (!buff_size) {
1467				status = -ENOMEM;
1468				goto cleanup1;
1469			}
1470			left = ioc->buf_size;
1471			data_ptr = ioc->buf;
1472			while (left) {
1473				sz = (left >
1474				      ioc->malloc_size) ? ioc->
1475				    malloc_size : left;
1476				buff_size[sg_used] = sz;
1477				buff[sg_used] = kmalloc(sz, GFP_KERNEL);
1478				if (buff[sg_used] == NULL) {
1479					status = -ENOMEM;
1480					goto cleanup1;
1481				}
1482				if (ioc->Request.Type.Direction == XFER_WRITE) {
1483					if (copy_from_user
1484					    (buff[sg_used], data_ptr, sz)) {
1485						status = -EFAULT;
1486						goto cleanup1;
1487					}
1488				} else {
1489					memset(buff[sg_used], 0, sz);
1490				}
1491				left -= sz;
1492				data_ptr += sz;
1493				sg_used++;
1494			}
1495			if ((c = cmd_alloc(host, 0)) == NULL) {
1496				status = -ENOMEM;
1497				goto cleanup1;
1498			}
1499			c->cmd_type = CMD_IOCTL_PEND;
1500			c->Header.ReplyQueue = 0;
1501
1502			if (ioc->buf_size > 0) {
1503				c->Header.SGList = sg_used;
1504				c->Header.SGTotal = sg_used;
1505			} else {
1506				c->Header.SGList = 0;
1507				c->Header.SGTotal = 0;
1508			}
1509			c->Header.LUN = ioc->LUN_info;
1510			c->Header.Tag.lower = c->busaddr;
1511
1512			c->Request = ioc->Request;
1513			if (ioc->buf_size > 0) {
1514				int i;
1515				for (i = 0; i < sg_used; i++) {
1516					temp64.val =
1517					    pci_map_single(host->pdev, buff[i],
1518						    buff_size[i],
1519						    PCI_DMA_BIDIRECTIONAL);
1520					c->SG[i].Addr.lower =
1521					    temp64.val32.lower;
1522					c->SG[i].Addr.upper =
1523					    temp64.val32.upper;
1524					c->SG[i].Len = buff_size[i];
1525					c->SG[i].Ext = 0;	/* we are not chaining */
1526				}
1527			}
1528			c->waiting = &wait;
1529			/* Put the request on the tail of the request queue */
1530			spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1531			addQ(&host->reqQ, c);
1532			host->Qdepth++;
1533			start_io(host);
1534			spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1535			wait_for_completion(&wait);
1536			/* unlock the buffers from DMA */
1537			for (i = 0; i < sg_used; i++) {
1538				temp64.val32.lower = c->SG[i].Addr.lower;
1539				temp64.val32.upper = c->SG[i].Addr.upper;
1540				pci_unmap_single(host->pdev,
1541					(dma_addr_t) temp64.val, buff_size[i],
1542					PCI_DMA_BIDIRECTIONAL);
1543			}
1544			check_ioctl_unit_attention(host, c);
1545			/* Copy the error information out */
1546			ioc->error_info = *(c->err_info);
1547			if (copy_to_user(argp, ioc, sizeof(*ioc))) {
1548				cmd_free(host, c, 0);
1549				status = -EFAULT;
1550				goto cleanup1;
1551			}
1552			if (ioc->Request.Type.Direction == XFER_READ) {
1553				/* Copy the data out of the buffer we created */
1554				BYTE __user *ptr = ioc->buf;
1555				for (i = 0; i < sg_used; i++) {
1556					if (copy_to_user
1557					    (ptr, buff[i], buff_size[i])) {
1558						cmd_free(host, c, 0);
1559						status = -EFAULT;
1560						goto cleanup1;
1561					}
1562					ptr += buff_size[i];
1563				}
1564			}
1565			cmd_free(host, c, 0);
1566			status = 0;
1567		      cleanup1:
1568			if (buff) {
1569				for (i = 0; i < sg_used; i++)
1570					kfree(buff[i]);
1571				kfree(buff);
1572			}
1573			kfree(buff_size);
1574			kfree(ioc);
1575			return status;
1576		}
1577
1578	/* scsi_cmd_ioctl handles these, below, though some are not */
1579	/* very meaningful for cciss.  SG_IO is the main one people want. */
1580
1581	case SG_GET_VERSION_NUM:
1582	case SG_SET_TIMEOUT:
1583	case SG_GET_TIMEOUT:
1584	case SG_GET_RESERVED_SIZE:
1585	case SG_SET_RESERVED_SIZE:
1586	case SG_EMULATED_HOST:
1587	case SG_IO:
1588	case SCSI_IOCTL_SEND_COMMAND:
1589		return scsi_cmd_ioctl(disk->queue, disk, mode, cmd, argp);
1590
1591	/* scsi_cmd_ioctl would normally handle these, below, but */
1592	/* they aren't a good fit for cciss, as CD-ROMs are */
1593	/* not supported, and we don't have any bus/target/lun */
1594	/* which we present to the kernel. */
1595
1596	case CDROM_SEND_PACKET:
1597	case CDROMCLOSETRAY:
1598	case CDROMEJECT:
1599	case SCSI_IOCTL_GET_IDLUN:
1600	case SCSI_IOCTL_GET_BUS_NUMBER:
1601	default:
1602		return -ENOTTY;
1603	}
1604}
1605
1606static void cciss_check_queues(ctlr_info_t *h)
1607{
1608	int start_queue = h->next_to_run;
1609	int i;
1610
1611	/* check to see if we have maxed out the number of commands that can
1612	 * be placed on the queue.  If so then exit.  We do this check here
1613	 * in case the interrupt we serviced was from an ioctl and did not
1614	 * free any new commands.
1615	 */
1616	if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
1617		return;
1618
1619	/* We have room on the queue for more commands.  Now we need to queue
1620	 * them up.  We will also keep track of the next queue to run so
1621	 * that every queue gets a chance to be started first.
1622	 */
1623	for (i = 0; i < h->highest_lun + 1; i++) {
1624		int curr_queue = (start_queue + i) % (h->highest_lun + 1);
1625		/* make sure the disk has been added and the drive is real
1626		 * because this can be called from the middle of init_one.
1627		 */
1628		if (!h->drv[curr_queue])
1629			continue;
1630		if (!(h->drv[curr_queue]->queue) ||
1631			!(h->drv[curr_queue]->heads))
1632			continue;
1633		blk_start_queue(h->gendisk[curr_queue]->queue);
1634
1635		/* check to see if we have maxed out the number of commands
1636		 * that can be placed on the queue.
1637		 */
1638		if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
1639			if (curr_queue == start_queue) {
1640				h->next_to_run =
1641				    (start_queue + 1) % (h->highest_lun + 1);
1642				break;
1643			} else {
1644				h->next_to_run = curr_queue;
1645				break;
1646			}
1647		}
1648	}
1649}
1650
1651static void cciss_softirq_done(struct request *rq)
1652{
1653	CommandList_struct *cmd = rq->completion_data;
1654	ctlr_info_t *h = hba[cmd->ctlr];
1655	unsigned long flags;
1656	u64bit temp64;
1657	int i, ddir;
1658
1659	if (cmd->Request.Type.Direction == XFER_READ)
1660		ddir = PCI_DMA_FROMDEVICE;
1661	else
1662		ddir = PCI_DMA_TODEVICE;
1663
1664	/* command did not need to be retried */
1665	/* unmap the DMA mapping for all the scatter gather elements */
1666	for (i = 0; i < cmd->Header.SGList; i++) {
1667		temp64.val32.lower = cmd->SG[i].Addr.lower;
1668		temp64.val32.upper = cmd->SG[i].Addr.upper;
1669		pci_unmap_page(h->pdev, temp64.val, cmd->SG[i].Len, ddir);
1670	}
1671
1672#ifdef CCISS_DEBUG
1673	printk("Done with %p\n", rq);
1674#endif				/* CCISS_DEBUG */
1675
1676	/* set the residual count for pc requests */
1677	if (blk_pc_request(rq))
1678		rq->resid_len = cmd->err_info->ResidualCnt;
1679
1680	blk_end_request_all(rq, (rq->errors == 0) ? 0 : -EIO);
1681
1682	spin_lock_irqsave(&h->lock, flags);
1683	cmd_free(h, cmd, 1);
1684	cciss_check_queues(h);
1685	spin_unlock_irqrestore(&h->lock, flags);
1686}
1687
1688static inline void log_unit_to_scsi3addr(ctlr_info_t *h,
1689	unsigned char scsi3addr[], uint32_t log_unit)
1690{
1691	memcpy(scsi3addr, h->drv[log_unit]->LunID,
1692		sizeof(h->drv[log_unit]->LunID));
1693}
1694
1695/* This function gets the SCSI vendor, model, and revision of a logical drive
1696 * via the inquiry page 0.  Model, vendor, and rev are set to empty strings if
1697 * they cannot be read.
1698 */
1699static void cciss_get_device_descr(int ctlr, int logvol, int withirq,
1700				   char *vendor, char *model, char *rev)
1701{
1702	int rc;
1703	InquiryData_struct *inq_buf;
1704	unsigned char scsi3addr[8];
1705
1706	*vendor = '\0';
1707	*model = '\0';
1708	*rev = '\0';
1709
1710	inq_buf = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1711	if (!inq_buf)
1712		return;
1713
1714	log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
1715	if (withirq)
1716		rc = sendcmd_withirq(CISS_INQUIRY, ctlr, inq_buf,
1717			     sizeof(InquiryData_struct), 0,
1718				scsi3addr, TYPE_CMD);
1719	else
1720		rc = sendcmd(CISS_INQUIRY, ctlr, inq_buf,
1721			     sizeof(InquiryData_struct), 0,
1722				scsi3addr, TYPE_CMD);
1723	if (rc == IO_OK) {
1724		memcpy(vendor, &inq_buf->data_byte[8], VENDOR_LEN);
1725		vendor[VENDOR_LEN] = '\0';
1726		memcpy(model, &inq_buf->data_byte[16], MODEL_LEN);
1727		model[MODEL_LEN] = '\0';
1728		memcpy(rev, &inq_buf->data_byte[32], REV_LEN);
1729		rev[REV_LEN] = '\0';
1730	}
1731
1732	kfree(inq_buf);
1733	return;
1734}
1735
1736/* This function gets the serial number of a logical drive via
1737 * inquiry page 0x83.  Serial no. is 16 bytes.  If the serial
1738 * number cannot be had, for whatever reason, 16 bytes of 0xff
1739 * are returned instead.
1740 */
1741static void cciss_get_serial_no(int ctlr, int logvol, int withirq,
1742				unsigned char *serial_no, int buflen)
1743{
1744#define PAGE_83_INQ_BYTES 64
1745	int rc;
1746	unsigned char *buf;
1747	unsigned char scsi3addr[8];
1748
1749	if (buflen > 16)
1750		buflen = 16;
1751	memset(serial_no, 0xff, buflen);
1752	buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL);
1753	if (!buf)
1754		return;
1755	memset(serial_no, 0, buflen);
1756	log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
1757	if (withirq)
1758		rc = sendcmd_withirq(CISS_INQUIRY, ctlr, buf,
1759			PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
1760	else
1761		rc = sendcmd(CISS_INQUIRY, ctlr, buf,
1762			PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
1763	if (rc == IO_OK)
1764		memcpy(serial_no, &buf[8], buflen);
1765	kfree(buf);
1766	return;
1767}
1768
1769/*
1770 * cciss_add_disk sets up the block device queue for a logical drive
1771 */
1772static int cciss_add_disk(ctlr_info_t *h, struct gendisk *disk,
1773				int drv_index)
1774{
1775	disk->queue = blk_init_queue(do_cciss_request, &h->lock);
1776	if (!disk->queue)
1777		goto init_queue_failure;
1778	sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index);
1779	disk->major = h->major;
1780	disk->first_minor = drv_index << NWD_SHIFT;
1781	disk->fops = &cciss_fops;
1782	if (cciss_create_ld_sysfs_entry(h, drv_index))
1783		goto cleanup_queue;
1784	disk->private_data = h->drv[drv_index];
1785	disk->driverfs_dev = &h->drv[drv_index]->dev;
1786
1787	/* Set up queue information */
1788	blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask);
1789
1790	/* This is a hardware imposed limit. */
1791	blk_queue_max_hw_segments(disk->queue, MAXSGENTRIES);
1792
1793	/* This is a limit in the driver and could be eliminated. */
1794	blk_queue_max_phys_segments(disk->queue, MAXSGENTRIES);
1795
1796	blk_queue_max_sectors(disk->queue, h->cciss_max_sectors);
1797
1798	blk_queue_softirq_done(disk->queue, cciss_softirq_done);
1799
1800	disk->queue->queuedata = h;
1801
1802	blk_queue_logical_block_size(disk->queue,
1803				     h->drv[drv_index]->block_size);
1804
1805	/* Make sure all queue data is written out before */
1806	/* setting h->drv[drv_index]->queue, as setting this */
1807	/* allows the interrupt handler to start the queue */
1808	wmb();
1809	h->drv[drv_index]->queue = disk->queue;
1810	add_disk(disk);
1811	return 0;
1812
1813cleanup_queue:
1814	blk_cleanup_queue(disk->queue);
1815	disk->queue = NULL;
1816init_queue_failure:
1817	return -1;
1818}
1819
1820/* This function will check the usage_count of the drive to be updated/added.
1821 * If the usage_count is zero and it is a heretofore unknown drive, or,
1822 * the drive's capacity, geometry, or serial number has changed,
1823 * then the drive information will be updated and the disk will be
1824 * re-registered with the kernel.  If these conditions don't hold,
1825 * then it will be left alone for the next reboot.  The exception to this
1826 * is disk 0 which will always be left registered with the kernel since it
1827 * is also the controller node.  Any changes to disk 0 will show up on
1828 * the next reboot.
1829 */
1830static void cciss_update_drive_info(int ctlr, int drv_index, int first_time,
1831	int via_ioctl)
1832{
1833	ctlr_info_t *h = hba[ctlr];
1834	struct gendisk *disk;
1835	InquiryData_struct *inq_buff = NULL;
1836	unsigned int block_size;
1837	sector_t total_size;
1838	unsigned long flags = 0;
1839	int ret = 0;
1840	drive_info_struct *drvinfo;
1841
1842	/* Get information about the disk and modify the driver structure */
1843	inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1844	drvinfo = kzalloc(sizeof(*drvinfo), GFP_KERNEL);
1845	if (inq_buff == NULL || drvinfo == NULL)
1846		goto mem_msg;
1847
1848	/* testing to see if 16-byte CDBs are already being used */
1849	if (h->cciss_read == CCISS_READ_16) {
1850		cciss_read_capacity_16(h->ctlr, drv_index, 1,
1851			&total_size, &block_size);
1852
1853	} else {
1854		cciss_read_capacity(ctlr, drv_index, 1,
1855				    &total_size, &block_size);
1856
1857		/* if read_capacity returns all F's this volume is >2TB */
1858		/* in size so we switch to 16-byte CDB's for all */
1859		/* read/write ops */
1860		if (total_size == 0xFFFFFFFFULL) {
1861			cciss_read_capacity_16(ctlr, drv_index, 1,
1862			&total_size, &block_size);
1863			h->cciss_read = CCISS_READ_16;
1864			h->cciss_write = CCISS_WRITE_16;
1865		} else {
1866			h->cciss_read = CCISS_READ_10;
1867			h->cciss_write = CCISS_WRITE_10;
1868		}
1869	}
1870
1871	cciss_geometry_inquiry(ctlr, drv_index, 1, total_size, block_size,
1872			       inq_buff, drvinfo);
1873	drvinfo->block_size = block_size;
1874	drvinfo->nr_blocks = total_size + 1;
1875
1876	cciss_get_device_descr(ctlr, drv_index, 1, drvinfo->vendor,
1877				drvinfo->model, drvinfo->rev);
1878	cciss_get_serial_no(ctlr, drv_index, 1, drvinfo->serial_no,
1879			sizeof(drvinfo->serial_no));
1880	/* Save the lunid in case we deregister the disk, below. */
1881	memcpy(drvinfo->LunID, h->drv[drv_index]->LunID,
1882		sizeof(drvinfo->LunID));
1883
1884	/* Is it the same disk we already know, and nothing's changed? */
1885	if (h->drv[drv_index]->raid_level != -1 &&
1886		((memcmp(drvinfo->serial_no,
1887				h->drv[drv_index]->serial_no, 16) == 0) &&
1888		drvinfo->block_size == h->drv[drv_index]->block_size &&
1889		drvinfo->nr_blocks == h->drv[drv_index]->nr_blocks &&
1890		drvinfo->heads == h->drv[drv_index]->heads &&
1891		drvinfo->sectors == h->drv[drv_index]->sectors &&
1892		drvinfo->cylinders == h->drv[drv_index]->cylinders))
1893			/* The disk is unchanged, nothing to update */
1894			goto freeret;
1895
1896	/* If we get here it's not the same disk, or something's changed,
1897	 * so we need to * deregister it, and re-register it, if it's not
1898	 * in use.
1899	 * If the disk already exists then deregister it before proceeding
1900	 * (unless it's the first disk (for the controller node).
1901	 */
1902	if (h->drv[drv_index]->raid_level != -1 && drv_index != 0) {
1903		printk(KERN_WARNING "disk %d has changed.\n", drv_index);
1904		spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
1905		h->drv[drv_index]->busy_configuring = 1;
1906		spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1907
1908		/* deregister_disk sets h->drv[drv_index]->queue = NULL
1909		 * which keeps the interrupt handler from starting
1910		 * the queue.
1911		 */
1912		ret = deregister_disk(h, drv_index, 0, via_ioctl);
1913	}
1914
1915	/* If the disk is in use return */
1916	if (ret)
1917		goto freeret;
1918
1919	/* Save the new information from cciss_geometry_inquiry
1920	 * and serial number inquiry.  If the disk was deregistered
1921	 * above, then h->drv[drv_index] will be NULL.
1922	 */
1923	if (h->drv[drv_index] == NULL) {
1924		drvinfo->device_initialized = 0;
1925		h->drv[drv_index] = drvinfo;
1926		drvinfo = NULL; /* so it won't be freed below. */
1927	} else {
1928		/* special case for cxd0 */
1929		h->drv[drv_index]->block_size = drvinfo->block_size;
1930		h->drv[drv_index]->nr_blocks = drvinfo->nr_blocks;
1931		h->drv[drv_index]->heads = drvinfo->heads;
1932		h->drv[drv_index]->sectors = drvinfo->sectors;
1933		h->drv[drv_index]->cylinders = drvinfo->cylinders;
1934		h->drv[drv_index]->raid_level = drvinfo->raid_level;
1935		memcpy(h->drv[drv_index]->serial_no, drvinfo->serial_no, 16);
1936		memcpy(h->drv[drv_index]->vendor, drvinfo->vendor,
1937			VENDOR_LEN + 1);
1938		memcpy(h->drv[drv_index]->model, drvinfo->model, MODEL_LEN + 1);
1939		memcpy(h->drv[drv_index]->rev, drvinfo->rev, REV_LEN + 1);
1940	}
1941
1942	++h->num_luns;
1943	disk = h->gendisk[drv_index];
1944	set_capacity(disk, h->drv[drv_index]->nr_blocks);
1945
1946	/* If it's not disk 0 (drv_index != 0)
1947	 * or if it was disk 0, but there was previously
1948	 * no actual corresponding configured logical drive
1949	 * (raid_leve == -1) then we want to update the
1950	 * logical drive's information.
1951	 */
1952	if (drv_index || first_time) {
1953		if (cciss_add_disk(h, disk, drv_index) != 0) {
1954			cciss_free_gendisk(h, drv_index);
1955			cciss_free_drive_info(h, drv_index);
1956			printk(KERN_WARNING "cciss:%d could not update "
1957				"disk %d\n", h->ctlr, drv_index);
1958			--h->num_luns;
1959		}
1960	}
1961
1962freeret:
1963	kfree(inq_buff);
1964	kfree(drvinfo);
1965	return;
1966mem_msg:
1967	printk(KERN_ERR "cciss: out of memory\n");
1968	goto freeret;
1969}
1970
1971/* This function will find the first index of the controllers drive array
1972 * that has a null drv pointer and allocate the drive info struct and
1973 * will return that index   This is where new drives will be added.
1974 * If the index to be returned is greater than the highest_lun index for
1975 * the controller then highest_lun is set * to this new index.
1976 * If there are no available indexes or if tha allocation fails, then -1
1977 * is returned.  * "controller_node" is used to know if this is a real
1978 * logical drive, or just the controller node, which determines if this
1979 * counts towards highest_lun.
1980 */
1981static int cciss_alloc_drive_info(ctlr_info_t *h, int controller_node)
1982{
1983	int i;
1984	drive_info_struct *drv;
1985
1986	/* Search for an empty slot for our drive info */
1987	for (i = 0; i < CISS_MAX_LUN; i++) {
1988
1989		/* if not cxd0 case, and it's occupied, skip it. */
1990		if (h->drv[i] && i != 0)
1991			continue;
1992		/*
1993		 * If it's cxd0 case, and drv is alloc'ed already, and a
1994		 * disk is configured there, skip it.
1995		 */
1996		if (i == 0 && h->drv[i] && h->drv[i]->raid_level != -1)
1997			continue;
1998
1999		/*
2000		 * We've found an empty slot.  Update highest_lun
2001		 * provided this isn't just the fake cxd0 controller node.
2002		 */
2003		if (i > h->highest_lun && !controller_node)
2004			h->highest_lun = i;
2005
2006		/* If adding a real disk at cxd0, and it's already alloc'ed */
2007		if (i == 0 && h->drv[i] != NULL)
2008			return i;
2009
2010		/*
2011		 * Found an empty slot, not already alloc'ed.  Allocate it.
2012		 * Mark it with raid_level == -1, so we know it's new later on.
2013		 */
2014		drv = kzalloc(sizeof(*drv), GFP_KERNEL);
2015		if (!drv)
2016			return -1;
2017		drv->raid_level = -1; /* so we know it's new */
2018		h->drv[i] = drv;
2019		return i;
2020	}
2021	return -1;
2022}
2023
2024static void cciss_free_drive_info(ctlr_info_t *h, int drv_index)
2025{
2026	kfree(h->drv[drv_index]);
2027	h->drv[drv_index] = NULL;
2028}
2029
2030static void cciss_free_gendisk(ctlr_info_t *h, int drv_index)
2031{
2032	put_disk(h->gendisk[drv_index]);
2033	h->gendisk[drv_index] = NULL;
2034}
2035
2036/* cciss_add_gendisk finds a free hba[]->drv structure
2037 * and allocates a gendisk if needed, and sets the lunid
2038 * in the drvinfo structure.   It returns the index into
2039 * the ->drv[] array, or -1 if none are free.
2040 * is_controller_node indicates whether highest_lun should
2041 * count this disk, or if it's only being added to provide
2042 * a means to talk to the controller in case no logical
2043 * drives have yet been configured.
2044 */
2045static int cciss_add_gendisk(ctlr_info_t *h, unsigned char lunid[],
2046	int controller_node)
2047{
2048	int drv_index;
2049
2050	drv_index = cciss_alloc_drive_info(h, controller_node);
2051	if (drv_index == -1)
2052		return -1;
2053
2054	/*Check if the gendisk needs to be allocated */
2055	if (!h->gendisk[drv_index]) {
2056		h->gendisk[drv_index] =
2057			alloc_disk(1 << NWD_SHIFT);
2058		if (!h->gendisk[drv_index]) {
2059			printk(KERN_ERR "cciss%d: could not "
2060				"allocate a new disk %d\n",
2061				h->ctlr, drv_index);
2062			goto err_free_drive_info;
2063		}
2064	}
2065	memcpy(h->drv[drv_index]->LunID, lunid,
2066		sizeof(h->drv[drv_index]->LunID));
2067	if (cciss_create_ld_sysfs_entry(h, drv_index))
2068		goto err_free_disk;
2069	/* Don't need to mark this busy because nobody */
2070	/* else knows about this disk yet to contend */
2071	/* for access to it. */
2072	h->drv[drv_index]->busy_configuring = 0;
2073	wmb();
2074	return drv_index;
2075
2076err_free_disk:
2077	cciss_free_gendisk(h, drv_index);
2078err_free_drive_info:
2079	cciss_free_drive_info(h, drv_index);
2080	return -1;
2081}
2082
2083/* This is for the special case of a controller which
2084 * has no logical drives.  In this case, we still need
2085 * to register a disk so the controller can be accessed
2086 * by the Array Config Utility.
2087 */
2088static void cciss_add_controller_node(ctlr_info_t *h)
2089{
2090	struct gendisk *disk;
2091	int drv_index;
2092
2093	if (h->gendisk[0] != NULL) /* already did this? Then bail. */
2094		return;
2095
2096	drv_index = cciss_add_gendisk(h, CTLR_LUNID, 1);
2097	if (drv_index == -1)
2098		goto error;
2099	h->drv[drv_index]->block_size = 512;
2100	h->drv[drv_index]->nr_blocks = 0;
2101	h->drv[drv_index]->heads = 0;
2102	h->drv[drv_index]->sectors = 0;
2103	h->drv[drv_index]->cylinders = 0;
2104	h->drv[drv_index]->raid_level = -1;
2105	memset(h->drv[drv_index]->serial_no, 0, 16);
2106	disk = h->gendisk[drv_index];
2107	if (cciss_add_disk(h, disk, drv_index) == 0)
2108		return;
2109	cciss_free_gendisk(h, drv_index);
2110	cciss_free_drive_info(h, drv_index);
2111error:
2112	printk(KERN_WARNING "cciss%d: could not "
2113		"add disk 0.\n", h->ctlr);
2114	return;
2115}
2116
2117/* This function will add and remove logical drives from the Logical
2118 * drive array of the controller and maintain persistency of ordering
2119 * so that mount points are preserved until the next reboot.  This allows
2120 * for the removal of logical drives in the middle of the drive array
2121 * without a re-ordering of those drives.
2122 * INPUT
2123 * h		= The controller to perform the operations on
2124 */
2125static int rebuild_lun_table(ctlr_info_t *h, int first_time,
2126	int via_ioctl)
2127{
2128	int ctlr = h->ctlr;
2129	int num_luns;
2130	ReportLunData_struct *ld_buff = NULL;
2131	int return_code;
2132	int listlength = 0;
2133	int i;
2134	int drv_found;
2135	int drv_index = 0;
2136	unsigned char lunid[8] = CTLR_LUNID;
2137	unsigned long flags;
2138
2139	if (!capable(CAP_SYS_RAWIO))
2140		return -EPERM;
2141
2142	/* Set busy_configuring flag for this operation */
2143	spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2144	if (h->busy_configuring) {
2145		spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2146		return -EBUSY;
2147	}
2148	h->busy_configuring = 1;
2149	spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2150
2151	ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
2152	if (ld_buff == NULL)
2153		goto mem_msg;
2154
2155	return_code = sendcmd_withirq(CISS_REPORT_LOG, ctlr, ld_buff,
2156				      sizeof(ReportLunData_struct),
2157				      0, CTLR_LUNID, TYPE_CMD);
2158
2159	if (return_code == IO_OK)
2160		listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
2161	else {	/* reading number of logical volumes failed */
2162		printk(KERN_WARNING "cciss: report logical volume"
2163		       " command failed\n");
2164		listlength = 0;
2165		goto freeret;
2166	}
2167
2168	num_luns = listlength / 8;	/* 8 bytes per entry */
2169	if (num_luns > CISS_MAX_LUN) {
2170		num_luns = CISS_MAX_LUN;
2171		printk(KERN_WARNING "cciss: more luns configured"
2172		       " on controller than can be handled by"
2173		       " this driver.\n");
2174	}
2175
2176	if (num_luns == 0)
2177		cciss_add_controller_node(h);
2178
2179	/* Compare controller drive array to driver's drive array
2180	 * to see if any drives are missing on the controller due
2181	 * to action of Array Config Utility (user deletes drive)
2182	 * and deregister logical drives which have disappeared.
2183	 */
2184	for (i = 0; i <= h->highest_lun; i++) {
2185		int j;
2186		drv_found = 0;
2187
2188		/* skip holes in the array from already deleted drives */
2189		if (h->drv[i] == NULL)
2190			continue;
2191
2192		for (j = 0; j < num_luns; j++) {
2193			memcpy(lunid, &ld_buff->LUN[j][0], sizeof(lunid));
2194			if (memcmp(h->drv[i]->LunID, lunid,
2195				sizeof(lunid)) == 0) {
2196				drv_found = 1;
2197				break;
2198			}
2199		}
2200		if (!drv_found) {
2201			/* Deregister it from the OS, it's gone. */
2202			spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2203			h->drv[i]->busy_configuring = 1;
2204			spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2205			return_code = deregister_disk(h, i, 1, via_ioctl);
2206			if (h->drv[i] != NULL)
2207				h->drv[i]->busy_configuring = 0;
2208		}
2209	}
2210
2211	/* Compare controller drive array to driver's drive array.
2212	 * Check for updates in the drive information and any new drives
2213	 * on the controller due to ACU adding logical drives, or changing
2214	 * a logical drive's size, etc.  Reregister any new/changed drives
2215	 */
2216	for (i = 0; i < num_luns; i++) {
2217		int j;
2218
2219		drv_found = 0;
2220
2221		memcpy(lunid, &ld_buff->LUN[i][0], sizeof(lunid));
2222		/* Find if the LUN is already in the drive array
2223		 * of the driver.  If so then update its info
2224		 * if not in use.  If it does not exist then find
2225		 * the first free index and add it.
2226		 */
2227		for (j = 0; j <= h->highest_lun; j++) {
2228			if (h->drv[j] != NULL &&
2229				memcmp(h->drv[j]->LunID, lunid,
2230					sizeof(h->drv[j]->LunID)) == 0) {
2231				drv_index = j;
2232				drv_found = 1;
2233				break;
2234			}
2235		}
2236
2237		/* check if the drive was found already in the array */
2238		if (!drv_found) {
2239			drv_index = cciss_add_gendisk(h, lunid, 0);
2240			if (drv_index == -1)
2241				goto freeret;
2242		}
2243		cciss_update_drive_info(ctlr, drv_index, first_time,
2244			via_ioctl);
2245	}		/* end for */
2246
2247freeret:
2248	kfree(ld_buff);
2249	h->busy_configuring = 0;
2250	/* We return -1 here to tell the ACU that we have registered/updated
2251	 * all of the drives that we can and to keep it from calling us
2252	 * additional times.
2253	 */
2254	return -1;
2255mem_msg:
2256	printk(KERN_ERR "cciss: out of memory\n");
2257	h->busy_configuring = 0;
2258	goto freeret;
2259}
2260
2261static void cciss_clear_drive_info(drive_info_struct *drive_info)
2262{
2263	/* zero out the disk size info */
2264	drive_info->nr_blocks = 0;
2265	drive_info->block_size = 0;
2266	drive_info->heads = 0;
2267	drive_info->sectors = 0;
2268	drive_info->cylinders = 0;
2269	drive_info->raid_level = -1;
2270	memset(drive_info->serial_no, 0, sizeof(drive_info->serial_no));
2271	memset(drive_info->model, 0, sizeof(drive_info->model));
2272	memset(drive_info->rev, 0, sizeof(drive_info->rev));
2273	memset(drive_info->vendor, 0, sizeof(drive_info->vendor));
2274	/*
2275	 * don't clear the LUNID though, we need to remember which
2276	 * one this one is.
2277	 */
2278}
2279
2280/* This function will deregister the disk and it's queue from the
2281 * kernel.  It must be called with the controller lock held and the
2282 * drv structures busy_configuring flag set.  It's parameters are:
2283 *
2284 * disk = This is the disk to be deregistered
2285 * drv  = This is the drive_info_struct associated with the disk to be
2286 *        deregistered.  It contains information about the disk used
2287 *        by the driver.
2288 * clear_all = This flag determines whether or not the disk information
2289 *             is going to be completely cleared out and the highest_lun
2290 *             reset.  Sometimes we want to clear out information about
2291 *             the disk in preparation for re-adding it.  In this case
2292 *             the highest_lun should be left unchanged and the LunID
2293 *             should not be cleared.
2294 * via_ioctl
2295 *    This indicates whether we've reached this path via ioctl.
2296 *    This affects the maximum usage count allowed for c0d0 to be messed with.
2297 *    If this path is reached via ioctl(), then the max_usage_count will
2298 *    be 1, as the process calling ioctl() has got to have the device open.
2299 *    If we get here via sysfs, then the max usage count will be zero.
2300*/
2301static int deregister_disk(ctlr_info_t *h, int drv_index,
2302			   int clear_all, int via_ioctl)
2303{
2304	int i;
2305	struct gendisk *disk;
2306	drive_info_struct *drv;
2307	int recalculate_highest_lun;
2308
2309	if (!capable(CAP_SYS_RAWIO))
2310		return -EPERM;
2311
2312	drv = h->drv[drv_index];
2313	disk = h->gendisk[drv_index];
2314
2315	/* make sure logical volume is NOT is use */
2316	if (clear_all || (h->gendisk[0] == disk)) {
2317		if (drv->usage_count > via_ioctl)
2318			return -EBUSY;
2319	} else if (drv->usage_count > 0)
2320		return -EBUSY;
2321
2322	recalculate_highest_lun = (drv == h->drv[h->highest_lun]);
2323
2324	/* invalidate the devices and deregister the disk.  If it is disk
2325	 * zero do not deregister it but just zero out it's values.  This
2326	 * allows us to delete disk zero but keep the controller registered.
2327	 */
2328	if (h->gendisk[0] != disk) {
2329		struct request_queue *q = disk->queue;
2330		if (disk->flags & GENHD_FL_UP) {
2331			cciss_destroy_ld_sysfs_entry(h, drv_index, 0);
2332			del_gendisk(disk);
2333		}
2334		if (q)
2335			blk_cleanup_queue(q);
2336		/* If clear_all is set then we are deleting the logical
2337		 * drive, not just refreshing its info.  For drives
2338		 * other than disk 0 we will call put_disk.  We do not
2339		 * do this for disk 0 as we need it to be able to
2340		 * configure the controller.
2341		 */
2342		if (clear_all){
2343			/* This isn't pretty, but we need to find the
2344			 * disk in our array and NULL our the pointer.
2345			 * This is so that we will call alloc_disk if
2346			 * this index is used again later.
2347			 */
2348			for (i=0; i < CISS_MAX_LUN; i++){
2349				if (h->gendisk[i] == disk) {
2350					h->gendisk[i] = NULL;
2351					break;
2352				}
2353			}
2354			put_disk(disk);
2355		}
2356	} else {
2357		set_capacity(disk, 0);
2358		cciss_clear_drive_info(drv);
2359	}
2360
2361	--h->num_luns;
2362
2363	/* if it was the last disk, find the new hightest lun */
2364	if (clear_all && recalculate_highest_lun) {
2365		int i, newhighest = -1;
2366		for (i = 0; i <= h->highest_lun; i++) {
2367			/* if the disk has size > 0, it is available */
2368			if (h->drv[i] && h->drv[i]->heads)
2369				newhighest = i;
2370		}
2371		h->highest_lun = newhighest;
2372	}
2373	return 0;
2374}
2375
2376static int fill_cmd(CommandList_struct *c, __u8 cmd, int ctlr, void *buff,
2377		size_t size, __u8 page_code, unsigned char *scsi3addr,
2378		int cmd_type)
2379{
2380	ctlr_info_t *h = hba[ctlr];
2381	u64bit buff_dma_handle;
2382	int status = IO_OK;
2383
2384	c->cmd_type = CMD_IOCTL_PEND;
2385	c->Header.ReplyQueue = 0;
2386	if (buff != NULL) {
2387		c->Header.SGList = 1;
2388		c->Header.SGTotal = 1;
2389	} else {
2390		c->Header.SGList = 0;
2391		c->Header.SGTotal = 0;
2392	}
2393	c->Header.Tag.lower = c->busaddr;
2394	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2395
2396	c->Request.Type.Type = cmd_type;
2397	if (cmd_type == TYPE_CMD) {
2398		switch (cmd) {
2399		case CISS_INQUIRY:
2400			/* are we trying to read a vital product page */
2401			if (page_code != 0) {
2402				c->Request.CDB[1] = 0x01;
2403				c->Request.CDB[2] = page_code;
2404			}
2405			c->Request.CDBLen = 6;
2406			c->Request.Type.Attribute = ATTR_SIMPLE;
2407			c->Request.Type.Direction = XFER_READ;
2408			c->Request.Timeout = 0;
2409			c->Request.CDB[0] = CISS_INQUIRY;
2410			c->Request.CDB[4] = size & 0xFF;
2411			break;
2412		case CISS_REPORT_LOG:
2413		case CISS_REPORT_PHYS:
2414			/* Talking to controller so It's a physical command
2415			   mode = 00 target = 0.  Nothing to write.
2416			 */
2417			c->Request.CDBLen = 12;
2418			c->Request.Type.Attribute = ATTR_SIMPLE;
2419			c->Request.Type.Direction = XFER_READ;
2420			c->Request.Timeout = 0;
2421			c->Request.CDB[0] = cmd;
2422			c->Request.CDB[6] = (size >> 24) & 0xFF;	//MSB
2423			c->Request.CDB[7] = (size >> 16) & 0xFF;
2424			c->Request.CDB[8] = (size >> 8) & 0xFF;
2425			c->Request.CDB[9] = size & 0xFF;
2426			break;
2427
2428		case CCISS_READ_CAPACITY:
2429			c->Request.CDBLen = 10;
2430			c->Request.Type.Attribute = ATTR_SIMPLE;
2431			c->Request.Type.Direction = XFER_READ;
2432			c->Request.Timeout = 0;
2433			c->Request.CDB[0] = cmd;
2434			break;
2435		case CCISS_READ_CAPACITY_16:
2436			c->Request.CDBLen = 16;
2437			c->Request.Type.Attribute = ATTR_SIMPLE;
2438			c->Request.Type.Direction = XFER_READ;
2439			c->Request.Timeout = 0;
2440			c->Request.CDB[0] = cmd;
2441			c->Request.CDB[1] = 0x10;
2442			c->Request.CDB[10] = (size >> 24) & 0xFF;
2443			c->Request.CDB[11] = (size >> 16) & 0xFF;
2444			c->Request.CDB[12] = (size >> 8) & 0xFF;
2445			c->Request.CDB[13] = size & 0xFF;
2446			c->Request.Timeout = 0;
2447			c->Request.CDB[0] = cmd;
2448			break;
2449		case CCISS_CACHE_FLUSH:
2450			c->Request.CDBLen = 12;
2451			c->Request.Type.Attribute = ATTR_SIMPLE;
2452			c->Request.Type.Direction = XFER_WRITE;
2453			c->Request.Timeout = 0;
2454			c->Request.CDB[0] = BMIC_WRITE;
2455			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2456			break;
2457		case TEST_UNIT_READY:
2458			c->Request.CDBLen = 6;
2459			c->Request.Type.Attribute = ATTR_SIMPLE;
2460			c->Request.Type.Direction = XFER_NONE;
2461			c->Request.Timeout = 0;
2462			break;
2463		default:
2464			printk(KERN_WARNING
2465			       "cciss%d:  Unknown Command 0x%c\n", ctlr, cmd);
2466			return IO_ERROR;
2467		}
2468	} else if (cmd_type == TYPE_MSG) {
2469		switch (cmd) {
2470		case 0:	/* ABORT message */
2471			c->Request.CDBLen = 12;
2472			c->Request.Type.Attribute = ATTR_SIMPLE;
2473			c->Request.Type.Direction = XFER_WRITE;
2474			c->Request.Timeout = 0;
2475			c->Request.CDB[0] = cmd;	/* abort */
2476			c->Request.CDB[1] = 0;	/* abort a command */
2477			/* buff contains the tag of the command to abort */
2478			memcpy(&c->Request.CDB[4], buff, 8);
2479			break;
2480		case 1:	/* RESET message */
2481			c->Request.CDBLen = 16;
2482			c->Request.Type.Attribute = ATTR_SIMPLE;
2483			c->Request.Type.Direction = XFER_NONE;
2484			c->Request.Timeout = 0;
2485			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2486			c->Request.CDB[0] = cmd;	/* reset */
2487			c->Request.CDB[1] = 0x03;	/* reset a target */
2488			break;
2489		case 3:	/* No-Op message */
2490			c->Request.CDBLen = 1;
2491			c->Request.Type.Attribute = ATTR_SIMPLE;
2492			c->Request.Type.Direction = XFER_WRITE;
2493			c->Request.Timeout = 0;
2494			c->Request.CDB[0] = cmd;
2495			break;
2496		default:
2497			printk(KERN_WARNING
2498			       "cciss%d: unknown message type %d\n", ctlr, cmd);
2499			return IO_ERROR;
2500		}
2501	} else {
2502		printk(KERN_WARNING
2503		       "cciss%d: unknown command type %d\n", ctlr, cmd_type);
2504		return IO_ERROR;
2505	}
2506	/* Fill in the scatter gather information */
2507	if (size > 0) {
2508		buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
2509							     buff, size,
2510							     PCI_DMA_BIDIRECTIONAL);
2511		c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
2512		c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
2513		c->SG[0].Len = size;
2514		c->SG[0].Ext = 0;	/* we are not chaining */
2515	}
2516	return status;
2517}
2518
2519static int check_target_status(ctlr_info_t *h, CommandList_struct *c)
2520{
2521	switch (c->err_info->ScsiStatus) {
2522	case SAM_STAT_GOOD:
2523		return IO_OK;
2524	case SAM_STAT_CHECK_CONDITION:
2525		switch (0xf & c->err_info->SenseInfo[2]) {
2526		case 0: return IO_OK; /* no sense */
2527		case 1: return IO_OK; /* recovered error */
2528		default:
2529			printk(KERN_WARNING "cciss%d: cmd 0x%02x "
2530				"check condition, sense key = 0x%02x\n",
2531				h->ctlr, c->Request.CDB[0],
2532				c->err_info->SenseInfo[2]);
2533		}
2534		break;
2535	default:
2536		printk(KERN_WARNING "cciss%d: cmd 0x%02x"
2537			"scsi status = 0x%02x\n", h->ctlr,
2538			c->Request.CDB[0], c->err_info->ScsiStatus);
2539		break;
2540	}
2541	return IO_ERROR;
2542}
2543
2544static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c)
2545{
2546	int return_status = IO_OK;
2547
2548	if (c->err_info->CommandStatus == CMD_SUCCESS)
2549		return IO_OK;
2550
2551	switch (c->err_info->CommandStatus) {
2552	case CMD_TARGET_STATUS:
2553		return_status = check_target_status(h, c);
2554		break;
2555	case CMD_DATA_UNDERRUN:
2556	case CMD_DATA_OVERRUN:
2557		/* expected for inquiry and report lun commands */
2558		break;
2559	case CMD_INVALID:
2560		printk(KERN_WARNING "cciss: cmd 0x%02x is "
2561		       "reported invalid\n", c->Request.CDB[0]);
2562		return_status = IO_ERROR;
2563		break;
2564	case CMD_PROTOCOL_ERR:
2565		printk(KERN_WARNING "cciss: cmd 0x%02x has "
2566		       "protocol error \n", c->Request.CDB[0]);
2567		return_status = IO_ERROR;
2568		break;
2569	case CMD_HARDWARE_ERR:
2570		printk(KERN_WARNING "cciss: cmd 0x%02x had "
2571		       " hardware error\n", c->Request.CDB[0]);
2572		return_status = IO_ERROR;
2573		break;
2574	case CMD_CONNECTION_LOST:
2575		printk(KERN_WARNING "cciss: cmd 0x%02x had "
2576		       "connection lost\n", c->Request.CDB[0]);
2577		return_status = IO_ERROR;
2578		break;
2579	case CMD_ABORTED:
2580		printk(KERN_WARNING "cciss: cmd 0x%02x was "
2581		       "aborted\n", c->Request.CDB[0]);
2582		return_status = IO_ERROR;
2583		break;
2584	case CMD_ABORT_FAILED:
2585		printk(KERN_WARNING "cciss: cmd 0x%02x reports "
2586		       "abort failed\n", c->Request.CDB[0]);
2587		return_status = IO_ERROR;
2588		break;
2589	case CMD_UNSOLICITED_ABORT:
2590		printk(KERN_WARNING
2591		       "cciss%d: unsolicited abort 0x%02x\n", h->ctlr,
2592			c->Request.CDB[0]);
2593		return_status = IO_NEEDS_RETRY;
2594		break;
2595	default:
2596		printk(KERN_WARNING "cciss: cmd 0x%02x returned "
2597		       "unknown status %x\n", c->Request.CDB[0],
2598		       c->err_info->CommandStatus);
2599		return_status = IO_ERROR;
2600	}
2601	return return_status;
2602}
2603
2604static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
2605	int attempt_retry)
2606{
2607	DECLARE_COMPLETION_ONSTACK(wait);
2608	u64bit buff_dma_handle;
2609	unsigned long flags;
2610	int return_status = IO_OK;
2611
2612resend_cmd2:
2613	c->waiting = &wait;
2614	/* Put the request on the tail of the queue and send it */
2615	spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2616	addQ(&h->reqQ, c);
2617	h->Qdepth++;
2618	start_io(h);
2619	spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2620
2621	wait_for_completion(&wait);
2622
2623	if (c->err_info->CommandStatus == 0 || !attempt_retry)
2624		goto command_done;
2625
2626	return_status = process_sendcmd_error(h, c);
2627
2628	if (return_status == IO_NEEDS_RETRY &&
2629		c->retry_count < MAX_CMD_RETRIES) {
2630		printk(KERN_WARNING "cciss%d: retrying 0x%02x\n", h->ctlr,
2631			c->Request.CDB[0]);
2632		c->retry_count++;
2633		/* erase the old error information */
2634		memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2635		return_status = IO_OK;
2636		INIT_COMPLETION(wait);
2637		goto resend_cmd2;
2638	}
2639
2640command_done:
2641	/* unlock the buffers from DMA */
2642	buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2643	buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2644	pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
2645			 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2646	return return_status;
2647}
2648
2649static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
2650			   __u8 page_code, unsigned char scsi3addr[],
2651			int cmd_type)
2652{
2653	ctlr_info_t *h = hba[ctlr];
2654	CommandList_struct *c;
2655	int return_status;
2656
2657	c = cmd_alloc(h, 0);
2658	if (!c)
2659		return -ENOMEM;
2660	return_status = fill_cmd(c, cmd, ctlr, buff, size, page_code,
2661		scsi3addr, cmd_type);
2662	if (return_status == IO_OK)
2663		return_status = sendcmd_withirq_core(h, c, 1);
2664
2665	cmd_free(h, c, 0);
2666	return return_status;
2667}
2668
2669static void cciss_geometry_inquiry(int ctlr, int logvol,
2670				   int withirq, sector_t total_size,
2671				   unsigned int block_size,
2672				   InquiryData_struct *inq_buff,
2673				   drive_info_struct *drv)
2674{
2675	int return_code;
2676	unsigned long t;
2677	unsigned char scsi3addr[8];
2678
2679	memset(inq_buff, 0, sizeof(InquiryData_struct));
2680	log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
2681	if (withirq)
2682		return_code = sendcmd_withirq(CISS_INQUIRY, ctlr,
2683					      inq_buff, sizeof(*inq_buff),
2684					      0xC1, scsi3addr, TYPE_CMD);
2685	else
2686		return_code = sendcmd(CISS_INQUIRY, ctlr, inq_buff,
2687				      sizeof(*inq_buff), 0xC1, scsi3addr,
2688				      TYPE_CMD);
2689	if (return_code == IO_OK) {
2690		if (inq_buff->data_byte[8] == 0xFF) {
2691			printk(KERN_WARNING
2692			       "cciss: reading geometry failed, volume "
2693			       "does not support reading geometry\n");
2694			drv->heads = 255;
2695			drv->sectors = 32;	// Sectors per track
2696			drv->cylinders = total_size + 1;
2697			drv->raid_level = RAID_UNKNOWN;
2698		} else {
2699			drv->heads = inq_buff->data_byte[6];
2700			drv->sectors = inq_buff->data_byte[7];
2701			drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
2702			drv->cylinders += inq_buff->data_byte[5];
2703			drv->raid_level = inq_buff->data_byte[8];
2704		}
2705		drv->block_size = block_size;
2706		drv->nr_blocks = total_size + 1;
2707		t = drv->heads * drv->sectors;
2708		if (t > 1) {
2709			sector_t real_size = total_size + 1;
2710			unsigned long rem = sector_div(real_size, t);
2711			if (rem)
2712				real_size++;
2713			drv->cylinders = real_size;
2714		}
2715	} else {		/* Get geometry failed */
2716		printk(KERN_WARNING "cciss: reading geometry failed\n");
2717	}
2718}
2719
2720static void
2721cciss_read_capacity(int ctlr, int logvol, int withirq, sector_t *total_size,
2722		    unsigned int *block_size)
2723{
2724	ReadCapdata_struct *buf;
2725	int return_code;
2726	unsigned char scsi3addr[8];
2727
2728	buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
2729	if (!buf) {
2730		printk(KERN_WARNING "cciss: out of memory\n");
2731		return;
2732	}
2733
2734	log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
2735	if (withirq)
2736		return_code = sendcmd_withirq(CCISS_READ_CAPACITY,
2737				ctlr, buf, sizeof(ReadCapdata_struct),
2738					0, scsi3addr, TYPE_CMD);
2739	else
2740		return_code = sendcmd(CCISS_READ_CAPACITY,
2741				ctlr, buf, sizeof(ReadCapdata_struct),
2742					0, scsi3addr, TYPE_CMD);
2743	if (return_code == IO_OK) {
2744		*total_size = be32_to_cpu(*(__be32 *) buf->total_size);
2745		*block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2746	} else {		/* read capacity command failed */
2747		printk(KERN_WARNING "cciss: read capacity failed\n");
2748		*total_size = 0;
2749		*block_size = BLOCK_SIZE;
2750	}
2751	kfree(buf);
2752}
2753
2754static void
2755cciss_read_capacity_16(int ctlr, int logvol, int withirq, sector_t *total_size, 				unsigned int *block_size)
2756{
2757	ReadCapdata_struct_16 *buf;
2758	int return_code;
2759	unsigned char scsi3addr[8];
2760
2761	buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
2762	if (!buf) {
2763		printk(KERN_WARNING "cciss: out of memory\n");
2764		return;
2765	}
2766
2767	log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
2768	if (withirq) {
2769		return_code = sendcmd_withirq(CCISS_READ_CAPACITY_16,
2770			ctlr, buf, sizeof(ReadCapdata_struct_16),
2771				0, scsi3addr, TYPE_CMD);
2772	}
2773	else {
2774		return_code = sendcmd(CCISS_READ_CAPACITY_16,
2775			ctlr, buf, sizeof(ReadCapdata_struct_16),
2776				0, scsi3addr, TYPE_CMD);
2777	}
2778	if (return_code == IO_OK) {
2779		*total_size = be64_to_cpu(*(__be64 *) buf->total_size);
2780		*block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2781	} else {		/* read capacity command failed */
2782		printk(KERN_WARNING "cciss: read capacity failed\n");
2783		*total_size = 0;
2784		*block_size = BLOCK_SIZE;
2785	}
2786	printk(KERN_INFO "      blocks= %llu block_size= %d\n",
2787	       (unsigned long long)*total_size+1, *block_size);
2788	kfree(buf);
2789}
2790
2791static int cciss_revalidate(struct gendisk *disk)
2792{
2793	ctlr_info_t *h = get_host(disk);
2794	drive_info_struct *drv = get_drv(disk);
2795	int logvol;
2796	int FOUND = 0;
2797	unsigned int block_size;
2798	sector_t total_size;
2799	InquiryData_struct *inq_buff = NULL;
2800
2801	for (logvol = 0; logvol < CISS_MAX_LUN; logvol++) {
2802		if (memcmp(h->drv[logvol]->LunID, drv->LunID,
2803			sizeof(drv->LunID)) == 0) {
2804			FOUND = 1;
2805			break;
2806		}
2807	}
2808
2809	if (!FOUND)
2810		return 1;
2811
2812	inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2813	if (inq_buff == NULL) {
2814		printk(KERN_WARNING "cciss: out of memory\n");
2815		return 1;
2816	}
2817	if (h->cciss_read == CCISS_READ_10) {
2818		cciss_read_capacity(h->ctlr, logvol, 1,
2819					&total_size, &block_size);
2820	} else {
2821		cciss_read_capacity_16(h->ctlr, logvol, 1,
2822					&total_size, &block_size);
2823	}
2824	cciss_geometry_inquiry(h->ctlr, logvol, 1, total_size, block_size,
2825			       inq_buff, drv);
2826
2827	blk_queue_logical_block_size(drv->queue, drv->block_size);
2828	set_capacity(disk, drv->nr_blocks);
2829
2830	kfree(inq_buff);
2831	return 0;
2832}
2833
2834/*
2835 *   Wait polling for a command to complete.
2836 *   The memory mapped FIFO is polled for the completion.
2837 *   Used only at init time, interrupts from the HBA are disabled.
2838 */
2839static unsigned long pollcomplete(int ctlr)
2840{
2841	unsigned long done;
2842	int i;
2843
2844	/* Wait (up to 20 seconds) for a command to complete */
2845
2846	for (i = 20 * HZ; i > 0; i--) {
2847		done = hba[ctlr]->access.command_completed(hba[ctlr]);
2848		if (done == FIFO_EMPTY)
2849			schedule_timeout_uninterruptible(1);
2850		else
2851			return done;
2852	}
2853	/* Invalid address to tell caller we ran out of time */
2854	return 1;
2855}
2856
2857/* Send command c to controller h and poll for it to complete.
2858 * Turns interrupts off on the board.  Used at driver init time
2859 * and during SCSI error recovery.
2860 */
2861static int sendcmd_core(ctlr_info_t *h, CommandList_struct *c)
2862{
2863	int i;
2864	unsigned long complete;
2865	int status = IO_ERROR;
2866	u64bit buff_dma_handle;
2867
2868resend_cmd1:
2869
2870	/* Disable interrupt on the board. */
2871	h->access.set_intr_mask(h, CCISS_INTR_OFF);
2872
2873	/* Make sure there is room in the command FIFO */
2874	/* Actually it should be completely empty at this time */
2875	/* unless we are in here doing error handling for the scsi */
2876	/* tape side of the driver. */
2877	for (i = 200000; i > 0; i--) {
2878		/* if fifo isn't full go */
2879		if (!(h->access.fifo_full(h)))
2880			break;
2881		udelay(10);
2882		printk(KERN_WARNING "cciss cciss%d: SendCmd FIFO full,"
2883		       " waiting!\n", h->ctlr);
2884	}
2885	h->access.submit_command(h, c); /* Send the cmd */
2886	do {
2887		complete = pollcomplete(h->ctlr);
2888
2889#ifdef CCISS_DEBUG
2890		printk(KERN_DEBUG "cciss: command completed\n");
2891#endif				/* CCISS_DEBUG */
2892
2893		if (complete == 1) {
2894			printk(KERN_WARNING
2895			       "cciss cciss%d: SendCmd Timeout out, "
2896			       "No command list address returned!\n", h->ctlr);
2897			status = IO_ERROR;
2898			break;
2899		}
2900
2901		/* Make sure it's the command we're expecting. */
2902		if ((complete & ~CISS_ERROR_BIT) != c->busaddr) {
2903			printk(KERN_WARNING "cciss%d: Unexpected command "
2904				"completion.\n", h->ctlr);
2905			continue;
2906		}
2907
2908		/* It is our command.  If no error, we're done. */
2909		if (!(complete & CISS_ERROR_BIT)) {
2910			status = IO_OK;
2911			break;
2912		}
2913
2914		/* There is an error... */
2915
2916		/* if data overrun or underun on Report command ignore it */
2917		if (((c->Request.CDB[0] == CISS_REPORT_LOG) ||
2918		     (c->Request.CDB[0] == CISS_REPORT_PHYS) ||
2919		     (c->Request.CDB[0] == CISS_INQUIRY)) &&
2920			((c->err_info->CommandStatus == CMD_DATA_OVERRUN) ||
2921			 (c->err_info->CommandStatus == CMD_DATA_UNDERRUN))) {
2922			complete = c->busaddr;
2923			status = IO_OK;
2924			break;
2925		}
2926
2927		if (c->err_info->CommandStatus == CMD_UNSOLICITED_ABORT) {
2928			printk(KERN_WARNING "cciss%d: unsolicited abort %p\n",
2929				h->ctlr, c);
2930			if (c->retry_count < MAX_CMD_RETRIES) {
2931				printk(KERN_WARNING "cciss%d: retrying %p\n",
2932				   h->ctlr, c);
2933				c->retry_count++;
2934				/* erase the old error information */
2935				memset(c->err_info, 0, sizeof(c->err_info));
2936				goto resend_cmd1;
2937			}
2938			printk(KERN_WARNING "cciss%d: retried %p too many "
2939				"times\n", h->ctlr, c);
2940			status = IO_ERROR;
2941			break;
2942		}
2943
2944		if (c->err_info->CommandStatus == CMD_UNABORTABLE) {
2945			printk(KERN_WARNING "cciss%d: command could not be "
2946				"aborted.\n", h->ctlr);
2947			status = IO_ERROR;
2948			break;
2949		}
2950
2951		if (c->err_info->CommandStatus == CMD_TARGET_STATUS) {
2952			status = check_target_status(h, c);
2953			break;
2954		}
2955
2956		printk(KERN_WARNING "cciss%d: sendcmd error\n", h->ctlr);
2957		printk(KERN_WARNING "cmd = 0x%02x, CommandStatus = 0x%02x\n",
2958			c->Request.CDB[0], c->err_info->CommandStatus);
2959		status = IO_ERROR;
2960		break;
2961
2962	} while (1);
2963
2964	/* unlock the data buffer from DMA */
2965	buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2966	buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2967	pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
2968			 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2969	return status;
2970}
2971
2972/*
2973 * Send a command to the controller, and wait for it to complete.
2974 * Used at init time, and during SCSI error recovery.
2975 */
2976static int sendcmd(__u8 cmd, int ctlr, void *buff, size_t size,
2977	__u8 page_code, unsigned char *scsi3addr, int cmd_type)
2978{
2979	CommandList_struct *c;
2980	int status;
2981
2982	c = cmd_alloc(hba[ctlr], 1);
2983	if (!c) {
2984		printk(KERN_WARNING "cciss: unable to get memory");
2985		return IO_ERROR;
2986	}
2987	status = fill_cmd(c, cmd, ctlr, buff, size, page_code,
2988		scsi3addr, cmd_type);
2989	if (status == IO_OK)
2990		status = sendcmd_core(hba[ctlr], c);
2991	cmd_free(hba[ctlr], c, 1);
2992	return status;
2993}
2994
2995/*
2996 * Map (physical) PCI mem into (virtual) kernel space
2997 */
2998static void __iomem *remap_pci_mem(ulong base, ulong size)
2999{
3000	ulong page_base = ((ulong) base) & PAGE_MASK;
3001	ulong page_offs = ((ulong) base) - page_base;
3002	void __iomem *page_remapped = ioremap(page_base, page_offs + size);
3003
3004	return page_remapped ? (page_remapped + page_offs) : NULL;
3005}
3006
3007/*
3008 * Takes jobs of the Q and sends them to the hardware, then puts it on
3009 * the Q to wait for completion.
3010 */
3011static void start_io(ctlr_info_t *h)
3012{
3013	CommandList_struct *c;
3014
3015	while (!hlist_empty(&h->reqQ)) {
3016		c = hlist_entry(h->reqQ.first, CommandList_struct, list);
3017		/* can't do anything if fifo is full */
3018		if ((h->access.fifo_full(h))) {
3019			printk(KERN_WARNING "cciss: fifo full\n");
3020			break;
3021		}
3022
3023		/* Get the first entry from the Request Q */
3024		removeQ(c);
3025		h->Qdepth--;
3026
3027		/* Tell the controller execute command */
3028		h->access.submit_command(h, c);
3029
3030		/* Put job onto the completed Q */
3031		addQ(&h->cmpQ, c);
3032	}
3033}
3034
3035/* Assumes that CCISS_LOCK(h->ctlr) is held. */
3036/* Zeros out the error record and then resends the command back */
3037/* to the controller */
3038static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
3039{
3040	/* erase the old error information */
3041	memset(c->err_info, 0, sizeof(ErrorInfo_struct));
3042
3043	/* add it to software queue and then send it to the controller */
3044	addQ(&h->reqQ, c);
3045	h->Qdepth++;
3046	if (h->Qdepth > h->maxQsinceinit)
3047		h->maxQsinceinit = h->Qdepth;
3048
3049	start_io(h);
3050}
3051
3052static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
3053	unsigned int msg_byte, unsigned int host_byte,
3054	unsigned int driver_byte)
3055{
3056	/* inverse of macros in scsi.h */
3057	return (scsi_status_byte & 0xff) |
3058		((msg_byte & 0xff) << 8) |
3059		((host_byte & 0xff) << 16) |
3060		((driver_byte & 0xff) << 24);
3061}
3062
3063static inline int evaluate_target_status(ctlr_info_t *h,
3064			CommandList_struct *cmd, int *retry_cmd)
3065{
3066	unsigned char sense_key;
3067	unsigned char status_byte, msg_byte, host_byte, driver_byte;
3068	int error_value;
3069
3070	*retry_cmd = 0;
3071	/* If we get in here, it means we got "target status", that is, scsi status */
3072	status_byte = cmd->err_info->ScsiStatus;
3073	driver_byte = DRIVER_OK;
3074	msg_byte = cmd->err_info->CommandStatus; /* correct?  seems too device specific */
3075
3076	if (blk_pc_request(cmd->rq))
3077		host_byte = DID_PASSTHROUGH;
3078	else
3079		host_byte = DID_OK;
3080
3081	error_value = make_status_bytes(status_byte, msg_byte,
3082		host_byte, driver_byte);
3083
3084	if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) {
3085		if (!blk_pc_request(cmd->rq))
3086			printk(KERN_WARNING "cciss: cmd %p "
3087			       "has SCSI Status 0x%x\n",
3088			       cmd, cmd->err_info->ScsiStatus);
3089		return error_value;
3090	}
3091
3092	/* check the sense key */
3093	sense_key = 0xf & cmd->err_info->SenseInfo[2];
3094	/* no status or recovered error */
3095	if (((sense_key == 0x0) || (sense_key == 0x1)) && !blk_pc_request(cmd->rq))
3096		error_value = 0;
3097
3098	if (check_for_unit_attention(h, cmd)) {
3099		*retry_cmd = !blk_pc_request(cmd->rq);
3100		return 0;
3101	}
3102
3103	if (!blk_pc_request(cmd->rq)) { /* Not SG_IO or similar? */
3104		if (error_value != 0)
3105			printk(KERN_WARNING "cciss: cmd %p has CHECK CONDITION"
3106			       " sense key = 0x%x\n", cmd, sense_key);
3107		return error_value;
3108	}
3109
3110	/* SG_IO or similar, copy sense data back */
3111	if (cmd->rq->sense) {
3112		if (cmd->rq->sense_len > cmd->err_info->SenseLen)
3113			cmd->rq->sense_len = cmd->err_info->SenseLen;
3114		memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
3115			cmd->rq->sense_len);
3116	} else
3117		cmd->rq->sense_len = 0;
3118
3119	return error_value;
3120}
3121
3122/* checks the status of the job and calls complete buffers to mark all
3123 * buffers for the completed job. Note that this function does not need
3124 * to hold the hba/queue lock.
3125 */
3126static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
3127				    int timeout)
3128{
3129	int retry_cmd = 0;
3130	struct request *rq = cmd->rq;
3131
3132	rq->errors = 0;
3133
3134	if (timeout)
3135		rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);
3136
3137	if (cmd->err_info->CommandStatus == 0)	/* no error has occurred */
3138		goto after_error_processing;
3139
3140	switch (cmd->err_info->CommandStatus) {
3141	case CMD_TARGET_STATUS:
3142		rq->errors = evaluate_target_status(h, cmd, &retry_cmd);
3143		break;
3144	case CMD_DATA_UNDERRUN:
3145		if (blk_fs_request(cmd->rq)) {
3146			printk(KERN_WARNING "cciss: cmd %p has"
3147			       " completed with data underrun "
3148			       "reported\n", cmd);
3149			cmd->rq->resid_len = cmd->err_info->ResidualCnt;
3150		}
3151		break;
3152	case CMD_DATA_OVERRUN:
3153		if (blk_fs_request(cmd->rq))
3154			printk(KERN_WARNING "cciss: cmd %p has"
3155			       " completed with data overrun "
3156			       "reported\n", cmd);
3157		break;
3158	case CMD_INVALID:
3159		printk(KERN_WARNING "cciss: cmd %p is "
3160		       "reported invalid\n", cmd);
3161		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3162			cmd->err_info->CommandStatus, DRIVER_OK,
3163			blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3164		break;
3165	case CMD_PROTOCOL_ERR:
3166		printk(KERN_WARNING "cciss: cmd %p has "
3167		       "protocol error \n", cmd);
3168		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3169			cmd->err_info->CommandStatus, DRIVER_OK,
3170			blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3171		break;
3172	case CMD_HARDWARE_ERR:
3173		printk(KERN_WARNING "cciss: cmd %p had "
3174		       " hardware error\n", cmd);
3175		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3176			cmd->err_info->CommandStatus, DRIVER_OK,
3177			blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3178		break;
3179	case CMD_CONNECTION_LOST:
3180		printk(KERN_WARNING "cciss: cmd %p had "
3181		       "connection lost\n", cmd);
3182		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3183			cmd->err_info->CommandStatus, DRIVER_OK,
3184			blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3185		break;
3186	case CMD_ABORTED:
3187		printk(KERN_WARNING "cciss: cmd %p was "
3188		       "aborted\n", cmd);
3189		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3190			cmd->err_info->CommandStatus, DRIVER_OK,
3191			blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
3192		break;
3193	case CMD_ABORT_FAILED:
3194		printk(KERN_WARNING "cciss: cmd %p reports "
3195		       "abort failed\n", cmd);
3196		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3197			cmd->err_info->CommandStatus, DRIVER_OK,
3198			blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3199		break;
3200	case CMD_UNSOLICITED_ABORT:
3201		printk(KERN_WARNING "cciss%d: unsolicited "
3202		       "abort %p\n", h->ctlr, cmd);
3203		if (cmd->retry_count < MAX_CMD_RETRIES) {
3204			retry_cmd = 1;
3205			printk(KERN_WARNING
3206			       "cciss%d: retrying %p\n", h->ctlr, cmd);
3207			cmd->retry_count++;
3208		} else
3209			printk(KERN_WARNING
3210			       "cciss%d: %p retried too "
3211			       "many times\n", h->ctlr, cmd);
3212		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3213			cmd->err_info->CommandStatus, DRIVER_OK,
3214			blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
3215		break;
3216	case CMD_TIMEOUT:
3217		printk(KERN_WARNING "cciss: cmd %p timedout\n", cmd);
3218		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3219			cmd->err_info->CommandStatus, DRIVER_OK,
3220			blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3221		break;
3222	default:
3223		printk(KERN_WARNING "cciss: cmd %p returned "
3224		       "unknown status %x\n", cmd,
3225		       cmd->err_info->CommandStatus);
3226		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3227			cmd->err_info->CommandStatus, DRIVER_OK,
3228			blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3229	}
3230
3231after_error_processing:
3232
3233	/* We need to return this command */
3234	if (retry_cmd) {
3235		resend_cciss_cmd(h, cmd);
3236		return;
3237	}
3238	cmd->rq->completion_data = cmd;
3239	blk_complete_request(cmd->rq);
3240}
3241
3242/*
3243 * Get a request and submit it to the controller.
3244 */
3245static void do_cciss_request(struct request_queue *q)
3246{
3247	ctlr_info_t *h = q->queuedata;
3248	CommandList_struct *c;
3249	sector_t start_blk;
3250	int seg;
3251	struct request *creq;
3252	u64bit temp64;
3253	struct scatterlist tmp_sg[MAXSGENTRIES];
3254	drive_info_struct *drv;
3255	int i, dir;
3256
3257	/* We call start_io here in case there is a command waiting on the
3258	 * queue that has not been sent.
3259	 */
3260	if (blk_queue_plugged(q))
3261		goto startio;
3262
3263      queue:
3264	creq = blk_peek_request(q);
3265	if (!creq)
3266		goto startio;
3267
3268	BUG_ON(creq->nr_phys_segments > MAXSGENTRIES);
3269
3270	if ((c = cmd_alloc(h, 1)) == NULL)
3271		goto full;
3272
3273	blk_start_request(creq);
3274
3275	spin_unlock_irq(q->queue_lock);
3276
3277	c->cmd_type = CMD_RWREQ;
3278	c->rq = creq;
3279
3280	/* fill in the request */
3281	drv = creq->rq_disk->private_data;
3282	c->Header.ReplyQueue = 0;	// unused in simple mode
3283	/* got command from pool, so use the command block index instead */
3284	/* for direct lookups. */
3285	/* The first 2 bits are reserved for controller error reporting. */
3286	c->Header.Tag.lower = (c->cmdindex << 3);
3287	c->Header.Tag.lower |= 0x04;	/* flag for direct lookup. */
3288	memcpy(&c->Header.LUN, drv->LunID, sizeof(drv->LunID));
3289	c->Request.CDBLen = 10;	// 12 byte commands not in FW yet;
3290	c->Request.Type.Type = TYPE_CMD;	// It is a command.
3291	c->Request.Type.Attribute = ATTR_SIMPLE;
3292	c->Request.Type.Direction =
3293	    (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
3294	c->Request.Timeout = 0;	// Don't time out
3295	c->Request.CDB[0] =
3296	    (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
3297	start_blk = blk_rq_pos(creq);
3298#ifdef CCISS_DEBUG
3299	printk(KERN_DEBUG "ciss: sector =%d nr_sectors=%d\n",
3300	       (int)blk_rq_pos(creq), (int)blk_rq_sectors(creq));
3301#endif				/* CCISS_DEBUG */
3302
3303	sg_init_table(tmp_sg, MAXSGENTRIES);
3304	seg = blk_rq_map_sg(q, creq, tmp_sg);
3305
3306	/* get the DMA records for the setup */
3307	if (c->Request.Type.Direction == XFER_READ)
3308		dir = PCI_DMA_FROMDEVICE;
3309	else
3310		dir = PCI_DMA_TODEVICE;
3311
3312	for (i = 0; i < seg; i++) {
3313		c->SG[i].Len = tmp_sg[i].length;
3314		temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]),
3315						  tmp_sg[i].offset,
3316						  tmp_sg[i].length, dir);
3317		c->SG[i].Addr.lower = temp64.val32.lower;
3318		c->SG[i].Addr.upper = temp64.val32.upper;
3319		c->SG[i].Ext = 0;	// we are not chaining
3320	}
3321	/* track how many SG entries we are using */
3322	if (seg > h->maxSG)
3323		h->maxSG = seg;
3324
3325#ifdef CCISS_DEBUG
3326	printk(KERN_DEBUG "cciss: Submitting %u sectors in %d segments\n",
3327	       blk_rq_sectors(creq), seg);
3328#endif				/* CCISS_DEBUG */
3329
3330	c->Header.SGList = c->Header.SGTotal = seg;
3331	if (likely(blk_fs_request(creq))) {
3332		if(h->cciss_read == CCISS_READ_10) {
3333			c->Request.CDB[1] = 0;
3334			c->Request.CDB[2] = (start_blk >> 24) & 0xff;	//MSB
3335			c->Request.CDB[3] = (start_blk >> 16) & 0xff;
3336			c->Request.CDB[4] = (start_blk >> 8) & 0xff;
3337			c->Request.CDB[5] = start_blk & 0xff;
3338			c->Request.CDB[6] = 0;	// (sect >> 24) & 0xff; MSB
3339			c->Request.CDB[7] = (blk_rq_sectors(creq) >> 8) & 0xff;
3340			c->Request.CDB[8] = blk_rq_sectors(creq) & 0xff;
3341			c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
3342		} else {
3343			u32 upper32 = upper_32_bits(start_blk);
3344
3345			c->Request.CDBLen = 16;
3346			c->Request.CDB[1]= 0;
3347			c->Request.CDB[2]= (upper32 >> 24) & 0xff;	//MSB
3348			c->Request.CDB[3]= (upper32 >> 16) & 0xff;
3349			c->Request.CDB[4]= (upper32 >>  8) & 0xff;
3350			c->Request.CDB[5]= upper32 & 0xff;
3351			c->Request.CDB[6]= (start_blk >> 24) & 0xff;
3352			c->Request.CDB[7]= (start_blk >> 16) & 0xff;
3353			c->Request.CDB[8]= (start_blk >>  8) & 0xff;
3354			c->Request.CDB[9]= start_blk & 0xff;
3355			c->Request.CDB[10]= (blk_rq_sectors(creq) >> 24) & 0xff;
3356			c->Request.CDB[11]= (blk_rq_sectors(creq) >> 16) & 0xff;
3357			c->Request.CDB[12]= (blk_rq_sectors(creq) >>  8) & 0xff;
3358			c->Request.CDB[13]= blk_rq_sectors(creq) & 0xff;
3359			c->Request.CDB[14] = c->Request.CDB[15] = 0;
3360		}
3361	} else if (blk_pc_request(creq)) {
3362		c->Request.CDBLen = creq->cmd_len;
3363		memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB);
3364	} else {
3365		printk(KERN_WARNING "cciss%d: bad request type %d\n", h->ctlr, creq->cmd_type);
3366		BUG();
3367	}
3368
3369	spin_lock_irq(q->queue_lock);
3370
3371	addQ(&h->reqQ, c);
3372	h->Qdepth++;
3373	if (h->Qdepth > h->maxQsinceinit)
3374		h->maxQsinceinit = h->Qdepth;
3375
3376	goto queue;
3377full:
3378	blk_stop_queue(q);
3379startio:
3380	/* We will already have the driver lock here so not need
3381	 * to lock it.
3382	 */
3383	start_io(h);
3384}
3385
3386static inline unsigned long get_next_completion(ctlr_info_t *h)
3387{
3388	return h->access.command_completed(h);
3389}
3390
3391static inline int interrupt_pending(ctlr_info_t *h)
3392{
3393	return h->access.intr_pending(h);
3394}
3395
3396static inline long interrupt_not_for_us(ctlr_info_t *h)
3397{
3398	return (((h->access.intr_pending(h) == 0) ||
3399		 (h->interrupts_enabled == 0)));
3400}
3401
3402static irqreturn_t do_cciss_intr(int irq, void *dev_id)
3403{
3404	ctlr_info_t *h = dev_id;
3405	CommandList_struct *c;
3406	unsigned long flags;
3407	__u32 a, a1, a2;
3408
3409	if (interrupt_not_for_us(h))
3410		return IRQ_NONE;
3411	/*
3412	 * If there are completed commands in the completion queue,
3413	 * we had better do something about it.
3414	 */
3415	spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
3416	while (interrupt_pending(h)) {
3417		while ((a = get_next_completion(h)) != FIFO_EMPTY) {
3418			a1 = a;
3419			if ((a & 0x04)) {
3420				a2 = (a >> 3);
3421				if (a2 >= h->nr_cmds) {
3422					printk(KERN_WARNING
3423					       "cciss: controller cciss%d failed, stopping.\n",
3424					       h->ctlr);
3425					fail_all_cmds(h->ctlr);
3426					return IRQ_HANDLED;
3427				}
3428
3429				c = h->cmd_pool + a2;
3430				a = c->busaddr;
3431
3432			} else {
3433				struct hlist_node *tmp;
3434
3435				a &= ~3;
3436				c = NULL;
3437				hlist_for_each_entry(c, tmp, &h->cmpQ, list) {
3438					if (c->busaddr == a)
3439						break;
3440				}
3441			}
3442			/*
3443			 * If we've found the command, take it off the
3444			 * completion Q and free it
3445			 */
3446			if (c && c->busaddr == a) {
3447				removeQ(c);
3448				if (c->cmd_type == CMD_RWREQ) {
3449					complete_command(h, c, 0);
3450				} else if (c->cmd_type == CMD_IOCTL_PEND) {
3451					complete(c->waiting);
3452				}
3453#				ifdef CONFIG_CISS_SCSI_TAPE
3454				else if (c->cmd_type == CMD_SCSI)
3455					complete_scsi_command(c, 0, a1);
3456#				endif
3457				continue;
3458			}
3459		}
3460	}
3461
3462	spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
3463	return IRQ_HANDLED;
3464}
3465
3466/**
3467 * add_to_scan_list() - add controller to rescan queue
3468 * @h:		      Pointer to the controller.
3469 *
3470 * Adds the controller to the rescan queue if not already on the queue.
3471 *
3472 * returns 1 if added to the queue, 0 if skipped (could be on the
3473 * queue already, or the controller could be initializing or shutting
3474 * down).
3475 **/
3476static int add_to_scan_list(struct ctlr_info *h)
3477{
3478	struct ctlr_info *test_h;
3479	int found = 0;
3480	int ret = 0;
3481
3482	if (h->busy_initializing)
3483		return 0;
3484
3485	if (!mutex_trylock(&h->busy_shutting_down))
3486		return 0;
3487
3488	mutex_lock(&scan_mutex);
3489	list_for_each_entry(test_h, &scan_q, scan_list) {
3490		if (test_h == h) {
3491			found = 1;
3492			break;
3493		}
3494	}
3495	if (!found && !h->busy_scanning) {
3496		INIT_COMPLETION(h->scan_wait);
3497		list_add_tail(&h->scan_list, &scan_q);
3498		ret = 1;
3499	}
3500	mutex_unlock(&scan_mutex);
3501	mutex_unlock(&h->busy_shutting_down);
3502
3503	return ret;
3504}
3505
3506/**
3507 * remove_from_scan_list() - remove controller from rescan queue
3508 * @h:			   Pointer to the controller.
3509 *
3510 * Removes the controller from the rescan queue if present. Blocks if
3511 * the controller is currently conducting a rescan.
3512 **/
3513static void remove_from_scan_list(struct ctlr_info *h)
3514{
3515	struct ctlr_info *test_h, *tmp_h;
3516	int scanning = 0;
3517
3518	mutex_lock(&scan_mutex);
3519	list_for_each_entry_safe(test_h, tmp_h, &scan_q, scan_list) {
3520		if (test_h == h) {
3521			list_del(&h->scan_list);
3522			complete_all(&h->scan_wait);
3523			mutex_unlock(&scan_mutex);
3524			return;
3525		}
3526	}
3527	if (&h->busy_scanning)
3528		scanning = 0;
3529	mutex_unlock(&scan_mutex);
3530
3531	if (scanning)
3532		wait_for_completion(&h->scan_wait);
3533}
3534
3535/**
3536 * scan_thread() - kernel thread used to rescan controllers
3537 * @data:	 Ignored.
3538 *
3539 * A kernel thread used scan for drive topology changes on
3540 * controllers. The thread processes only one controller at a time
3541 * using a queue.  Controllers are added to the queue using
3542 * add_to_scan_list() and removed from the queue either after done
3543 * processing or using remove_from_scan_list().
3544 *
3545 * returns 0.
3546 **/
3547static int scan_thread(void *data)
3548{
3549	struct ctlr_info *h;
3550
3551	while (1) {
3552		set_current_state(TASK_INTERRUPTIBLE);
3553		schedule();
3554		if (kthread_should_stop())
3555			break;
3556
3557		while (1) {
3558			mutex_lock(&scan_mutex);
3559			if (list_empty(&scan_q)) {
3560				mutex_unlock(&scan_mutex);
3561				break;
3562			}
3563
3564			h = list_entry(scan_q.next,
3565				       struct ctlr_info,
3566				       scan_list);
3567			list_del(&h->scan_list);
3568			h->busy_scanning = 1;
3569			mutex_unlock(&scan_mutex);
3570
3571			if (h) {
3572				rebuild_lun_table(h, 0, 0);
3573				complete_all(&h->scan_wait);
3574				mutex_lock(&scan_mutex);
3575				h->busy_scanning = 0;
3576				mutex_unlock(&scan_mutex);
3577			}
3578		}
3579	}
3580
3581	return 0;
3582}
3583
3584static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c)
3585{
3586	if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
3587		return 0;
3588
3589	switch (c->err_info->SenseInfo[12]) {
3590	case STATE_CHANGED:
3591		printk(KERN_WARNING "cciss%d: a state change "
3592			"detected, command retried\n", h->ctlr);
3593		return 1;
3594	break;
3595	case LUN_FAILED:
3596		printk(KERN_WARNING "cciss%d: LUN failure "
3597			"detected, action required\n", h->ctlr);
3598		return 1;
3599	break;
3600	case REPORT_LUNS_CHANGED:
3601		printk(KERN_WARNING "cciss%d: report LUN data "
3602			"changed\n", h->ctlr);
3603		add_to_scan_list(h);
3604		wake_up_process(cciss_scan_thread);
3605		return 1;
3606	break;
3607	case POWER_OR_RESET:
3608		printk(KERN_WARNING "cciss%d: a power on "
3609			"or device reset detected\n", h->ctlr);
3610		return 1;
3611	break;
3612	case UNIT_ATTENTION_CLEARED:
3613		printk(KERN_WARNING "cciss%d: unit attention "
3614		    "cleared by another initiator\n", h->ctlr);
3615		return 1;
3616	break;
3617	default:
3618		printk(KERN_WARNING "cciss%d: unknown "
3619			"unit attention detected\n", h->ctlr);
3620				return 1;
3621	}
3622}
3623
3624/*
3625 *  We cannot read the structure directly, for portability we must use
3626 *   the io functions.
3627 *   This is for debug only.
3628 */
3629#ifdef CCISS_DEBUG
3630static void print_cfg_table(CfgTable_struct *tb)
3631{
3632	int i;
3633	char temp_name[17];
3634
3635	printk("Controller Configuration information\n");
3636	printk("------------------------------------\n");
3637	for (i = 0; i < 4; i++)
3638		temp_name[i] = readb(&(tb->Signature[i]));
3639	temp_name[4] = '\0';
3640	printk("   Signature = %s\n", temp_name);
3641	printk("   Spec Number = %d\n", readl(&(tb->SpecValence)));
3642	printk("   Transport methods supported = 0x%x\n",
3643	       readl(&(tb->TransportSupport)));
3644	printk("   Transport methods active = 0x%x\n",
3645	       readl(&(tb->TransportActive)));
3646	printk("   Requested transport Method = 0x%x\n",
3647	       readl(&(tb->HostWrite.TransportRequest)));
3648	printk("   Coalesce Interrupt Delay = 0x%x\n",
3649	       readl(&(tb->HostWrite.CoalIntDelay)));
3650	printk("   Coalesce Interrupt Count = 0x%x\n",
3651	       readl(&(tb->HostWrite.CoalIntCount)));
3652	printk("   Max outstanding commands = 0x%d\n",
3653	       readl(&(tb->CmdsOutMax)));
3654	printk("   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3655	for (i = 0; i < 16; i++)
3656		temp_name[i] = readb(&(tb->ServerName[i]));
3657	temp_name[16] = '\0';
3658	printk("   Server Name = %s\n", temp_name);
3659	printk("   Heartbeat Counter = 0x%x\n\n\n", readl(&(tb->HeartBeat)));
3660}
3661#endif				/* CCISS_DEBUG */
3662
3663static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3664{
3665	int i, offset, mem_type, bar_type;
3666	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
3667		return 0;
3668	offset = 0;
3669	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3670		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3671		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3672			offset += 4;
3673		else {
3674			mem_type = pci_resource_flags(pdev, i) &
3675			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3676			switch (mem_type) {
3677			case PCI_BASE_ADDRESS_MEM_TYPE_32:
3678			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3679				offset += 4;	/* 32 bit */
3680				break;
3681			case PCI_BASE_ADDRESS_MEM_TYPE_64:
3682				offset += 8;
3683				break;
3684			default:	/* reserved in PCI 2.2 */
3685				printk(KERN_WARNING
3686				       "Base address is invalid\n");
3687				return -1;
3688				break;
3689			}
3690		}
3691		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3692			return i + 1;
3693	}
3694	return -1;
3695}
3696
3697/* If MSI/MSI-X is supported by the kernel we will try to enable it on
3698 * controllers that are capable. If not, we use IO-APIC mode.
3699 */
3700
3701static void __devinit cciss_interrupt_mode(ctlr_info_t *c,
3702					   struct pci_dev *pdev, __u32 board_id)
3703{
3704#ifdef CONFIG_PCI_MSI
3705	int err;
3706	struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1},
3707	{0, 2}, {0, 3}
3708	};
3709
3710	/* Some boards advertise MSI but don't really support it */
3711	if ((board_id == 0x40700E11) ||
3712	    (board_id == 0x40800E11) ||
3713	    (board_id == 0x40820E11) || (board_id == 0x40830E11))
3714		goto default_int_mode;
3715
3716	if (pci_find_capability(pdev, PCI_CAP_ID_MSIX)) {
3717		err = pci_enable_msix(pdev, cciss_msix_entries, 4);
3718		if (!err) {
3719			c->intr[0] = cciss_msix_entries[0].vector;
3720			c->intr[1] = cciss_msix_entries[1].vector;
3721			c->intr[2] = cciss_msix_entries[2].vector;
3722			c->intr[3] = cciss_msix_entries[3].vector;
3723			c->msix_vector = 1;
3724			return;
3725		}
3726		if (err > 0) {
3727			printk(KERN_WARNING "cciss: only %d MSI-X vectors "
3728			       "available\n", err);
3729			goto default_int_mode;
3730		} else {
3731			printk(KERN_WARNING "cciss: MSI-X init failed %d\n",
3732			       err);
3733			goto default_int_mode;
3734		}
3735	}
3736	if (pci_find_capability(pdev, PCI_CAP_ID_MSI)) {
3737		if (!pci_enable_msi(pdev)) {
3738			c->msi_vector = 1;
3739		} else {
3740			printk(KERN_WARNING "cciss: MSI init failed\n");
3741		}
3742	}
3743default_int_mode:
3744#endif				/* CONFIG_PCI_MSI */
3745	/* if we get here we're going to use the default interrupt mode */
3746	c->intr[SIMPLE_MODE_INT] = pdev->irq;
3747	return;
3748}
3749
3750static int __devinit cciss_pci_init(ctlr_info_t *c, struct pci_dev *pdev)
3751{
3752	ushort subsystem_vendor_id, subsystem_device_id, command;
3753	__u32 board_id, scratchpad = 0;
3754	__u64 cfg_offset;
3755	__u32 cfg_base_addr;
3756	__u64 cfg_base_addr_index;
3757	int i, err;
3758
3759	/* check to see if controller has been disabled */
3760	/* BEFORE trying to enable it */
3761	(void)pci_read_config_word(pdev, PCI_COMMAND, &command);
3762	if (!(command & 0x02)) {
3763		printk(KERN_WARNING
3764		       "cciss: controller appears to be disabled\n");
3765		return -ENODEV;
3766	}
3767
3768	err = pci_enable_device(pdev);
3769	if (err) {
3770		printk(KERN_ERR "cciss: Unable to Enable PCI device\n");
3771		return err;
3772	}
3773
3774	err = pci_request_regions(pdev, "cciss");
3775	if (err) {
3776		printk(KERN_ERR "cciss: Cannot obtain PCI resources, "
3777		       "aborting\n");
3778		return err;
3779	}
3780
3781	subsystem_vendor_id = pdev->subsystem_vendor;
3782	subsystem_device_id = pdev->subsystem_device;
3783	board_id = (((__u32) (subsystem_device_id << 16) & 0xffff0000) |
3784		    subsystem_vendor_id);
3785
3786#ifdef CCISS_DEBUG
3787	printk("command = %x\n", command);
3788	printk("irq = %x\n", pdev->irq);
3789	printk("board_id = %x\n", board_id);
3790#endif				/* CCISS_DEBUG */
3791
3792/* If the kernel supports MSI/MSI-X we will try to enable that functionality,
3793 * else we use the IO-APIC interrupt assigned to us by system ROM.
3794 */
3795	cciss_interrupt_mode(c, pdev, board_id);
3796
3797	/* find the memory BAR */
3798	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3799		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM)
3800			break;
3801	}
3802	if (i == DEVICE_COUNT_RESOURCE) {
3803		printk(KERN_WARNING "cciss: No memory BAR found\n");
3804		err = -ENODEV;
3805		goto err_out_free_res;
3806	}
3807
3808	c->paddr = pci_resource_start(pdev, i); /* addressing mode bits
3809						 * already removed
3810						 */
3811
3812#ifdef CCISS_DEBUG
3813	printk("address 0 = %lx\n", c->paddr);
3814#endif				/* CCISS_DEBUG */
3815	c->vaddr = remap_pci_mem(c->paddr, 0x250);
3816
3817	/* Wait for the board to become ready.  (PCI hotplug needs this.)
3818	 * We poll for up to 120 secs, once per 100ms. */
3819	for (i = 0; i < 1200; i++) {
3820		scratchpad = readl(c->vaddr + SA5_SCRATCHPAD_OFFSET);
3821		if (scratchpad == CCISS_FIRMWARE_READY)
3822			break;
3823		set_current_state(TASK_INTERRUPTIBLE);
3824		schedule_timeout(msecs_to_jiffies(100));	/* wait 100ms */
3825	}
3826	if (scratchpad != CCISS_FIRMWARE_READY) {
3827		printk(KERN_WARNING "cciss: Board not ready.  Timed out.\n");
3828		err = -ENODEV;
3829		goto err_out_free_res;
3830	}
3831
3832	/* get the address index number */
3833	cfg_base_addr = readl(c->vaddr + SA5_CTCFG_OFFSET);
3834	cfg_base_addr &= (__u32) 0x0000ffff;
3835#ifdef CCISS_DEBUG
3836	printk("cfg base address = %x\n", cfg_base_addr);
3837#endif				/* CCISS_DEBUG */
3838	cfg_base_addr_index = find_PCI_BAR_index(pdev, cfg_base_addr);
3839#ifdef CCISS_DEBUG
3840	printk("cfg base address index = %llx\n",
3841		(unsigned long long)cfg_base_addr_index);
3842#endif				/* CCISS_DEBUG */
3843	if (cfg_base_addr_index == -1) {
3844		printk(KERN_WARNING "cciss: Cannot find cfg_base_addr_index\n");
3845		err = -ENODEV;
3846		goto err_out_free_res;
3847	}
3848
3849	cfg_offset = readl(c->vaddr + SA5_CTMEM_OFFSET);
3850#ifdef CCISS_DEBUG
3851	printk("cfg offset = %llx\n", (unsigned long long)cfg_offset);
3852#endif				/* CCISS_DEBUG */
3853	c->cfgtable = remap_pci_mem(pci_resource_start(pdev,
3854						       cfg_base_addr_index) +
3855				    cfg_offset, sizeof(CfgTable_struct));
3856	c->board_id = board_id;
3857
3858#ifdef CCISS_DEBUG
3859	print_cfg_table(c->cfgtable);
3860#endif				/* CCISS_DEBUG */
3861
3862	/* Some controllers support Zero Memory Raid (ZMR).
3863	 * When configured in ZMR mode the number of supported
3864	 * commands drops to 64. So instead of just setting an
3865	 * arbitrary value we make the driver a little smarter.
3866	 * We read the config table to tell us how many commands
3867	 * are supported on the controller then subtract 4 to
3868	 * leave a little room for ioctl calls.
3869	 */
3870	c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
3871	for (i = 0; i < ARRAY_SIZE(products); i++) {
3872		if (board_id == products[i].board_id) {
3873			c->product_name = products[i].product_name;
3874			c->access = *(products[i].access);
3875			c->nr_cmds = c->max_commands - 4;
3876			break;
3877		}
3878	}
3879	if ((readb(&c->cfgtable->Signature[0]) != 'C') ||
3880	    (readb(&c->cfgtable->Signature[1]) != 'I') ||
3881	    (readb(&c->cfgtable->Signature[2]) != 'S') ||
3882	    (readb(&c->cfgtable->Signature[3]) != 'S')) {
3883		printk("Does not appear to be a valid CISS config table\n");
3884		err = -ENODEV;
3885		goto err_out_free_res;
3886	}
3887	/* We didn't find the controller in our list. We know the
3888	 * signature is valid. If it's an HP device let's try to
3889	 * bind to the device and fire it up. Otherwise we bail.
3890	 */
3891	if (i == ARRAY_SIZE(products)) {
3892		if (subsystem_vendor_id == PCI_VENDOR_ID_HP) {
3893			c->product_name = products[i-1].product_name;
3894			c->access = *(products[i-1].access);
3895			c->nr_cmds = c->max_commands - 4;
3896			printk(KERN_WARNING "cciss: This is an unknown "
3897				"Smart Array controller.\n"
3898				"cciss: Please update to the latest driver "
3899				"available from www.hp.com.\n");
3900		} else {
3901			printk(KERN_WARNING "cciss: Sorry, I don't know how"
3902				" to access the Smart Array controller %08lx\n"
3903					, (unsigned long)board_id);
3904			err = -ENODEV;
3905			goto err_out_free_res;
3906		}
3907	}
3908#ifdef CONFIG_X86
3909	{
3910		/* Need to enable prefetch in the SCSI core for 6400 in x86 */
3911		__u32 prefetch;
3912		prefetch = readl(&(c->cfgtable->SCSI_Prefetch));
3913		prefetch |= 0x100;
3914		writel(prefetch, &(c->cfgtable->SCSI_Prefetch));
3915	}
3916#endif
3917
3918	/* Disabling DMA prefetch and refetch for the P600.
3919	 * An ASIC bug may result in accesses to invalid memory addresses.
3920	 * We've disabled prefetch for some time now. Testing with XEN
3921	 * kernels revealed a bug in the refetch if dom0 resides on a P600.
3922	 */
3923	if(board_id == 0x3225103C) {
3924		__u32 dma_prefetch;
3925		__u32 dma_refetch;
3926		dma_prefetch = readl(c->vaddr + I2O_DMA1_CFG);
3927		dma_prefetch |= 0x8000;
3928		writel(dma_prefetch, c->vaddr + I2O_DMA1_CFG);
3929		pci_read_config_dword(pdev, PCI_COMMAND_PARITY, &dma_refetch);
3930		dma_refetch |= 0x1;
3931		pci_write_config_dword(pdev, PCI_COMMAND_PARITY, dma_refetch);
3932	}
3933
3934#ifdef CCISS_DEBUG
3935	printk("Trying to put board into Simple mode\n");
3936#endif				/* CCISS_DEBUG */
3937	c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
3938	/* Update the field, and then ring the doorbell */
3939	writel(CFGTBL_Trans_Simple, &(c->cfgtable->HostWrite.TransportRequest));
3940	writel(CFGTBL_ChangeReq, c->vaddr + SA5_DOORBELL);
3941
3942	/* under certain very rare conditions, this can take awhile.
3943	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3944	 * as we enter this code.) */
3945	for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3946		if (!(readl(c->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3947			break;
3948		/* delay and try again */
3949		set_current_state(TASK_INTERRUPTIBLE);
3950		schedule_timeout(msecs_to_jiffies(1));
3951	}
3952
3953#ifdef CCISS_DEBUG
3954	printk(KERN_DEBUG "I counter got to %d %x\n", i,
3955	       readl(c->vaddr + SA5_DOORBELL));
3956#endif				/* CCISS_DEBUG */
3957#ifdef CCISS_DEBUG
3958	print_cfg_table(c->cfgtable);
3959#endif				/* CCISS_DEBUG */
3960
3961	if (!(readl(&(c->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3962		printk(KERN_WARNING "cciss: unable to get board into"
3963		       " simple mode\n");
3964		err = -ENODEV;
3965		goto err_out_free_res;
3966	}
3967	return 0;
3968
3969err_out_free_res:
3970	/*
3971	 * Deliberately omit pci_disable_device(): it does something nasty to
3972	 * Smart Array controllers that pci_enable_device does not undo
3973	 */
3974	pci_release_regions(pdev);
3975	return err;
3976}
3977
3978/* Function to find the first free pointer into our hba[] array
3979 * Returns -1 if no free entries are left.
3980 */
3981static int alloc_cciss_hba(void)
3982{
3983	int i;
3984
3985	for (i = 0; i < MAX_CTLR; i++) {
3986		if (!hba[i]) {
3987			ctlr_info_t *p;
3988
3989			p = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
3990			if (!p)
3991				goto Enomem;
3992			hba[i] = p;
3993			return i;
3994		}
3995	}
3996	printk(KERN_WARNING "cciss: This driver supports a maximum"
3997	       " of %d controllers.\n", MAX_CTLR);
3998	return -1;
3999Enomem:
4000	printk(KERN_ERR "cciss: out of memory.\n");
4001	return -1;
4002}
4003
4004static void free_hba(int n)
4005{
4006	ctlr_info_t *h = hba[n];
4007	int i;
4008
4009	hba[n] = NULL;
4010	for (i = 0; i < h->highest_lun + 1; i++)
4011		if (h->gendisk[i] != NULL)
4012			put_disk(h->gendisk[i]);
4013	kfree(h);
4014}
4015
4016/* Send a message CDB to the firmware. */
4017static __devinit int cciss_message(struct pci_dev *pdev, unsigned char opcode, unsigned char type)
4018{
4019	typedef struct {
4020		CommandListHeader_struct CommandHeader;
4021		RequestBlock_struct Request;
4022		ErrDescriptor_struct ErrorDescriptor;
4023	} Command;
4024	static const size_t cmd_sz = sizeof(Command) + sizeof(ErrorInfo_struct);
4025	Command *cmd;
4026	dma_addr_t paddr64;
4027	uint32_t paddr32, tag;
4028	void __iomem *vaddr;
4029	int i, err;
4030
4031	vaddr = ioremap_nocache(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
4032	if (vaddr == NULL)
4033		return -ENOMEM;
4034
4035	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
4036	   CCISS commands, so they must be allocated from the lower 4GiB of
4037	   memory. */
4038	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4039	if (err) {
4040		iounmap(vaddr);
4041		return -ENOMEM;
4042	}
4043
4044	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
4045	if (cmd == NULL) {
4046		iounmap(vaddr);
4047		return -ENOMEM;
4048	}
4049
4050	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
4051	   although there's no guarantee, we assume that the address is at
4052	   least 4-byte aligned (most likely, it's page-aligned). */
4053	paddr32 = paddr64;
4054
4055	cmd->CommandHeader.ReplyQueue = 0;
4056	cmd->CommandHeader.SGList = 0;
4057	cmd->CommandHeader.SGTotal = 0;
4058	cmd->CommandHeader.Tag.lower = paddr32;
4059	cmd->CommandHeader.Tag.upper = 0;
4060	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
4061
4062	cmd->Request.CDBLen = 16;
4063	cmd->Request.Type.Type = TYPE_MSG;
4064	cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
4065	cmd->Request.Type.Direction = XFER_NONE;
4066	cmd->Request.Timeout = 0; /* Don't time out */
4067	cmd->Request.CDB[0] = opcode;
4068	cmd->Request.CDB[1] = type;
4069	memset(&cmd->Request.CDB[2], 0, 14); /* the rest of the CDB is reserved */
4070
4071	cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(Command);
4072	cmd->ErrorDescriptor.Addr.upper = 0;
4073	cmd->ErrorDescriptor.Len = sizeof(ErrorInfo_struct);
4074
4075	writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
4076
4077	for (i = 0; i < 10; i++) {
4078		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
4079		if ((tag & ~3) == paddr32)
4080			break;
4081		schedule_timeout_uninterruptible(HZ);
4082	}
4083
4084	iounmap(vaddr);
4085
4086	/* we leak the DMA buffer here ... no choice since the controller could
4087	   still complete the command. */
4088	if (i == 10) {
4089		printk(KERN_ERR "cciss: controller message %02x:%02x timed out\n",
4090			opcode, type);
4091		return -ETIMEDOUT;
4092	}
4093
4094	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
4095
4096	if (tag & 2) {
4097		printk(KERN_ERR "cciss: controller message %02x:%02x failed\n",
4098			opcode, type);
4099		return -EIO;
4100	}
4101
4102	printk(KERN_INFO "cciss: controller message %02x:%02x succeeded\n",
4103		opcode, type);
4104	return 0;
4105}
4106
4107#define cciss_soft_reset_controller(p) cciss_message(p, 1, 0)
4108#define cciss_noop(p) cciss_message(p, 3, 0)
4109
4110static __devinit int cciss_reset_msi(struct pci_dev *pdev)
4111{
4112/* the #defines are stolen from drivers/pci/msi.h. */
4113#define msi_control_reg(base)		(base + PCI_MSI_FLAGS)
4114#define PCI_MSIX_FLAGS_ENABLE		(1 << 15)
4115
4116	int pos;
4117	u16 control = 0;
4118
4119	pos = pci_find_capability(pdev, PCI_CAP_ID_MSI);
4120	if (pos) {
4121		pci_read_config_word(pdev, msi_control_reg(pos), &control);
4122		if (control & PCI_MSI_FLAGS_ENABLE) {
4123			printk(KERN_INFO "cciss: resetting MSI\n");
4124			pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSI_FLAGS_ENABLE);
4125		}
4126	}
4127
4128	pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
4129	if (pos) {
4130		pci_read_config_word(pdev, msi_control_reg(pos), &control);
4131		if (control & PCI_MSIX_FLAGS_ENABLE) {
4132			printk(KERN_INFO "cciss: resetting MSI-X\n");
4133			pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSIX_FLAGS_ENABLE);
4134		}
4135	}
4136
4137	return 0;
4138}
4139
4140/* This does a hard reset of the controller using PCI power management
4141 * states. */
4142static __devinit int cciss_hard_reset_controller(struct pci_dev *pdev)
4143{
4144	u16 pmcsr, saved_config_space[32];
4145	int i, pos;
4146
4147	printk(KERN_INFO "cciss: using PCI PM to reset controller\n");
4148
4149	/* This is very nearly the same thing as
4150
4151	   pci_save_state(pci_dev);
4152	   pci_set_power_state(pci_dev, PCI_D3hot);
4153	   pci_set_power_state(pci_dev, PCI_D0);
4154	   pci_restore_state(pci_dev);
4155
4156	   but we can't use these nice canned kernel routines on
4157	   kexec, because they also check the MSI/MSI-X state in PCI
4158	   configuration space and do the wrong thing when it is
4159	   set/cleared.  Also, the pci_save/restore_state functions
4160	   violate the ordering requirements for restoring the
4161	   configuration space from the CCISS document (see the
4162	   comment below).  So we roll our own .... */
4163
4164	for (i = 0; i < 32; i++)
4165		pci_read_config_word(pdev, 2*i, &saved_config_space[i]);
4166
4167	pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
4168	if (pos == 0) {
4169		printk(KERN_ERR "cciss_reset_controller: PCI PM not supported\n");
4170		return -ENODEV;
4171	}
4172
4173	/* Quoting from the Open CISS Specification: "The Power
4174	 * Management Control/Status Register (CSR) controls the power
4175	 * state of the device.  The normal operating state is D0,
4176	 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
4177	 * the controller, place the interface device in D3 then to
4178	 * D0, this causes a secondary PCI reset which will reset the
4179	 * controller." */
4180
4181	/* enter the D3hot power management state */
4182	pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
4183	pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4184	pmcsr |= PCI_D3hot;
4185	pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4186
4187	schedule_timeout_uninterruptible(HZ >> 1);
4188
4189	/* enter the D0 power management state */
4190	pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4191	pmcsr |= PCI_D0;
4192	pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4193
4194	schedule_timeout_uninterruptible(HZ >> 1);
4195
4196	/* Restore the PCI configuration space.  The Open CISS
4197	 * Specification says, "Restore the PCI Configuration
4198	 * Registers, offsets 00h through 60h. It is important to
4199	 * restore the command register, 16-bits at offset 04h,
4200	 * last. Do not restore the configuration status register,
4201	 * 16-bits at offset 06h."  Note that the offset is 2*i. */
4202	for (i = 0; i < 32; i++) {
4203		if (i == 2 || i == 3)
4204			continue;
4205		pci_write_config_word(pdev, 2*i, saved_config_space[i]);
4206	}
4207	wmb();
4208	pci_write_config_word(pdev, 4, saved_config_space[2]);
4209
4210	return 0;
4211}
4212
4213/*
4214 *  This is it.  Find all the controllers and register them.  I really hate
4215 *  stealing all these major device numbers.
4216 *  returns the number of block devices registered.
4217 */
4218static int __devinit cciss_init_one(struct pci_dev *pdev,
4219				    const struct pci_device_id *ent)
4220{
4221	int i;
4222	int j = 0;
4223	int rc;
4224	int dac, return_code;
4225	InquiryData_struct *inq_buff;
4226
4227	if (reset_devices) {
4228		/* Reset the controller with a PCI power-cycle */
4229		if (cciss_hard_reset_controller(pdev) || cciss_reset_msi(pdev))
4230			return -ENODEV;
4231
4232		/* Now try to get the controller to respond to a no-op. Some
4233		   devices (notably the HP Smart Array 5i Controller) need
4234		   up to 30 seconds to respond. */
4235		for (i=0; i<30; i++) {
4236			if (cciss_noop(pdev) == 0)
4237				break;
4238
4239			schedule_timeout_uninterruptible(HZ);
4240		}
4241		if (i == 30) {
4242			printk(KERN_ERR "cciss: controller seems dead\n");
4243			return -EBUSY;
4244		}
4245	}
4246
4247	i = alloc_cciss_hba();
4248	if (i < 0)
4249		return -1;
4250
4251	hba[i]->busy_initializing = 1;
4252	INIT_HLIST_HEAD(&hba[i]->cmpQ);
4253	INIT_HLIST_HEAD(&hba[i]->reqQ);
4254	mutex_init(&hba[i]->busy_shutting_down);
4255
4256	if (cciss_pci_init(hba[i], pdev) != 0)
4257		goto clean_no_release_regions;
4258
4259	sprintf(hba[i]->devname, "cciss%d", i);
4260	hba[i]->ctlr = i;
4261	hba[i]->pdev = pdev;
4262
4263	init_completion(&hba[i]->scan_wait);
4264
4265	if (cciss_create_hba_sysfs_entry(hba[i]))
4266		goto clean0;
4267
4268	/* configure PCI DMA stuff */
4269	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)))
4270		dac = 1;
4271	else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))
4272		dac = 0;
4273	else {
4274		printk(KERN_ERR "cciss: no suitable DMA available\n");
4275		goto clean1;
4276	}
4277
4278	/*
4279	 * register with the major number, or get a dynamic major number
4280	 * by passing 0 as argument.  This is done for greater than
4281	 * 8 controller support.
4282	 */
4283	if (i < MAX_CTLR_ORIG)
4284		hba[i]->major = COMPAQ_CISS_MAJOR + i;
4285	rc = register_blkdev(hba[i]->major, hba[i]->devname);
4286	if (rc == -EBUSY || rc == -EINVAL) {
4287		printk(KERN_ERR
4288		       "cciss:  Unable to get major number %d for %s "
4289		       "on hba %d\n", hba[i]->major, hba[i]->devname, i);
4290		goto clean1;
4291	} else {
4292		if (i >= MAX_CTLR_ORIG)
4293			hba[i]->major = rc;
4294	}
4295
4296	/* make sure the board interrupts are off */
4297	hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_OFF);
4298	if (request_irq(hba[i]->intr[SIMPLE_MODE_INT], do_cciss_intr,
4299			IRQF_DISABLED | IRQF_SHARED, hba[i]->devname, hba[i])) {
4300		printk(KERN_ERR "cciss: Unable to get irq %d for %s\n",
4301		       hba[i]->intr[SIMPLE_MODE_INT], hba[i]->devname);
4302		goto clean2;
4303	}
4304
4305	printk(KERN_INFO "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
4306	       hba[i]->devname, pdev->device, pci_name(pdev),
4307	       hba[i]->intr[SIMPLE_MODE_INT], dac ? "" : " not");
4308
4309	hba[i]->cmd_pool_bits =
4310	    kmalloc(DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG)
4311			* sizeof(unsigned long), GFP_KERNEL);
4312	hba[i]->cmd_pool = (CommandList_struct *)
4313	    pci_alloc_consistent(hba[i]->pdev,
4314		    hba[i]->nr_cmds * sizeof(CommandList_struct),
4315		    &(hba[i]->cmd_pool_dhandle));
4316	hba[i]->errinfo_pool = (ErrorInfo_struct *)
4317	    pci_alloc_consistent(hba[i]->pdev,
4318		    hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
4319		    &(hba[i]->errinfo_pool_dhandle));
4320	if ((hba[i]->cmd_pool_bits == NULL)
4321	    || (hba[i]->cmd_pool == NULL)
4322	    || (hba[i]->errinfo_pool == NULL)) {
4323		printk(KERN_ERR "cciss: out of memory");
4324		goto clean4;
4325	}
4326	spin_lock_init(&hba[i]->lock);
4327
4328	/* Initialize the pdev driver private data.
4329	   have it point to hba[i].  */
4330	pci_set_drvdata(pdev, hba[i]);
4331	/* command and error info recs zeroed out before
4332	   they are used */
4333	memset(hba[i]->cmd_pool_bits, 0,
4334	       DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG)
4335			* sizeof(unsigned long));
4336
4337	hba[i]->num_luns = 0;
4338	hba[i]->highest_lun = -1;
4339	for (j = 0; j < CISS_MAX_LUN; j++) {
4340		hba[i]->drv[j] = NULL;
4341		hba[i]->gendisk[j] = NULL;
4342	}
4343
4344	cciss_scsi_setup(i);
4345
4346	/* Turn the interrupts on so we can service requests */
4347	hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_ON);
4348
4349	/* Get the firmware version */
4350	inq_buff = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
4351	if (inq_buff == NULL) {
4352		printk(KERN_ERR "cciss: out of memory\n");
4353		goto clean4;
4354	}
4355
4356	return_code = sendcmd_withirq(CISS_INQUIRY, i, inq_buff,
4357		sizeof(InquiryData_struct), 0, CTLR_LUNID, TYPE_CMD);
4358	if (return_code == IO_OK) {
4359		hba[i]->firm_ver[0] = inq_buff->data_byte[32];
4360		hba[i]->firm_ver[1] = inq_buff->data_byte[33];
4361		hba[i]->firm_ver[2] = inq_buff->data_byte[34];
4362		hba[i]->firm_ver[3] = inq_buff->data_byte[35];
4363	} else {	 /* send command failed */
4364		printk(KERN_WARNING "cciss: unable to determine firmware"
4365			" version of controller\n");
4366	}
4367	kfree(inq_buff);
4368
4369	cciss_procinit(i);
4370
4371	hba[i]->cciss_max_sectors = 2048;
4372
4373	rebuild_lun_table(hba[i], 1, 0);
4374	hba[i]->busy_initializing = 0;
4375	return 1;
4376
4377clean4:
4378	kfree(hba[i]->cmd_pool_bits);
4379	if (hba[i]->cmd_pool)
4380		pci_free_consistent(hba[i]->pdev,
4381				    hba[i]->nr_cmds * sizeof(CommandList_struct),
4382				    hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
4383	if (hba[i]->errinfo_pool)
4384		pci_free_consistent(hba[i]->pdev,
4385				    hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
4386				    hba[i]->errinfo_pool,
4387				    hba[i]->errinfo_pool_dhandle);
4388	free_irq(hba[i]->intr[SIMPLE_MODE_INT], hba[i]);
4389clean2:
4390	unregister_blkdev(hba[i]->major, hba[i]->devname);
4391clean1:
4392	cciss_destroy_hba_sysfs_entry(hba[i]);
4393clean0:
4394	pci_release_regions(pdev);
4395clean_no_release_regions:
4396	hba[i]->busy_initializing = 0;
4397
4398	/*
4399	 * Deliberately omit pci_disable_device(): it does something nasty to
4400	 * Smart Array controllers that pci_enable_device does not undo
4401	 */
4402	pci_set_drvdata(pdev, NULL);
4403	free_hba(i);
4404	return -1;
4405}
4406
4407static void cciss_shutdown(struct pci_dev *pdev)
4408{
4409	ctlr_info_t *tmp_ptr;
4410	int i;
4411	char flush_buf[4];
4412	int return_code;
4413
4414	tmp_ptr = pci_get_drvdata(pdev);
4415	if (tmp_ptr == NULL)
4416		return;
4417	i = tmp_ptr->ctlr;
4418	if (hba[i] == NULL)
4419		return;
4420
4421	/* Turn board interrupts off  and send the flush cache command */
4422	/* sendcmd will turn off interrupt, and send the flush...
4423	 * To write all data in the battery backed cache to disks */
4424	memset(flush_buf, 0, 4);
4425	return_code = sendcmd(CCISS_CACHE_FLUSH, i, flush_buf, 4, 0,
4426		CTLR_LUNID, TYPE_CMD);
4427	if (return_code == IO_OK) {
4428		printk(KERN_INFO "Completed flushing cache on controller %d\n", i);
4429	} else {
4430		printk(KERN_WARNING "Error flushing cache on controller %d\n", i);
4431	}
4432	free_irq(hba[i]->intr[2], hba[i]);
4433}
4434
4435static void __devexit cciss_remove_one(struct pci_dev *pdev)
4436{
4437	ctlr_info_t *tmp_ptr;
4438	int i, j;
4439
4440	if (pci_get_drvdata(pdev) == NULL) {
4441		printk(KERN_ERR "cciss: Unable to remove device \n");
4442		return;
4443	}
4444
4445	tmp_ptr = pci_get_drvdata(pdev);
4446	i = tmp_ptr->ctlr;
4447	if (hba[i] == NULL) {
4448		printk(KERN_ERR "cciss: device appears to "
4449		       "already be removed \n");
4450		return;
4451	}
4452
4453	mutex_lock(&hba[i]->busy_shutting_down);
4454
4455	remove_from_scan_list(hba[i]);
4456	remove_proc_entry(hba[i]->devname, proc_cciss);
4457	unregister_blkdev(hba[i]->major, hba[i]->devname);
4458
4459	/* remove it from the disk list */
4460	for (j = 0; j < CISS_MAX_LUN; j++) {
4461		struct gendisk *disk = hba[i]->gendisk[j];
4462		if (disk) {
4463			struct request_queue *q = disk->queue;
4464
4465			if (disk->flags & GENHD_FL_UP) {
4466				cciss_destroy_ld_sysfs_entry(hba[i], j, 1);
4467				del_gendisk(disk);
4468			}
4469			if (q)
4470				blk_cleanup_queue(q);
4471		}
4472	}
4473
4474#ifdef CONFIG_CISS_SCSI_TAPE
4475	cciss_unregister_scsi(i);	/* unhook from SCSI subsystem */
4476#endif
4477
4478	cciss_shutdown(pdev);
4479
4480#ifdef CONFIG_PCI_MSI
4481	if (hba[i]->msix_vector)
4482		pci_disable_msix(hba[i]->pdev);
4483	else if (hba[i]->msi_vector)
4484		pci_disable_msi(hba[i]->pdev);
4485#endif				/* CONFIG_PCI_MSI */
4486
4487	iounmap(hba[i]->vaddr);
4488
4489	pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(CommandList_struct),
4490			    hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
4491	pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
4492			    hba[i]->errinfo_pool, hba[i]->errinfo_pool_dhandle);
4493	kfree(hba[i]->cmd_pool_bits);
4494	/*
4495	 * Deliberately omit pci_disable_device(): it does something nasty to
4496	 * Smart Array controllers that pci_enable_device does not undo
4497	 */
4498	pci_release_regions(pdev);
4499	pci_set_drvdata(pdev, NULL);
4500	cciss_destroy_hba_sysfs_entry(hba[i]);
4501	mutex_unlock(&hba[i]->busy_shutting_down);
4502	free_hba(i);
4503}
4504
4505static struct pci_driver cciss_pci_driver = {
4506	.name = "cciss",
4507	.probe = cciss_init_one,
4508	.remove = __devexit_p(cciss_remove_one),
4509	.id_table = cciss_pci_device_id,	/* id_table */
4510	.shutdown = cciss_shutdown,
4511};
4512
4513/*
4514 *  This is it.  Register the PCI driver information for the cards we control
4515 *  the OS will call our registered routines when it finds one of our cards.
4516 */
4517static int __init cciss_init(void)
4518{
4519	int err;
4520
4521	/*
4522	 * The hardware requires that commands are aligned on a 64-bit
4523	 * boundary. Given that we use pci_alloc_consistent() to allocate an
4524	 * array of them, the size must be a multiple of 8 bytes.
4525	 */
4526	BUILD_BUG_ON(sizeof(CommandList_struct) % 8);
4527
4528	printk(KERN_INFO DRIVER_NAME "\n");
4529
4530	err = bus_register(&cciss_bus_type);
4531	if (err)
4532		return err;
4533
4534	/* Start the scan thread */
4535	cciss_scan_thread = kthread_run(scan_thread, NULL, "cciss_scan");
4536	if (IS_ERR(cciss_scan_thread)) {
4537		err = PTR_ERR(cciss_scan_thread);
4538		goto err_bus_unregister;
4539	}
4540
4541	/* Register for our PCI devices */
4542	err = pci_register_driver(&cciss_pci_driver);
4543	if (err)
4544		goto err_thread_stop;
4545
4546	return err;
4547
4548err_thread_stop:
4549	kthread_stop(cciss_scan_thread);
4550err_bus_unregister:
4551	bus_unregister(&cciss_bus_type);
4552
4553	return err;
4554}
4555
4556static void __exit cciss_cleanup(void)
4557{
4558	int i;
4559
4560	pci_unregister_driver(&cciss_pci_driver);
4561	/* double check that all controller entrys have been removed */
4562	for (i = 0; i < MAX_CTLR; i++) {
4563		if (hba[i] != NULL) {
4564			printk(KERN_WARNING "cciss: had to remove"
4565			       " controller %d\n", i);
4566			cciss_remove_one(hba[i]->pdev);
4567		}
4568	}
4569	kthread_stop(cciss_scan_thread);
4570	remove_proc_entry("driver/cciss", NULL);
4571	bus_unregister(&cciss_bus_type);
4572}
4573
4574static void fail_all_cmds(unsigned long ctlr)
4575{
4576	/* If we get here, the board is apparently dead. */
4577	ctlr_info_t *h = hba[ctlr];
4578	CommandList_struct *c;
4579	unsigned long flags;
4580
4581	printk(KERN_WARNING "cciss%d: controller not responding.\n", h->ctlr);
4582	h->alive = 0;		/* the controller apparently died... */
4583
4584	spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
4585
4586	pci_disable_device(h->pdev);	/* Make sure it is really dead. */
4587
4588	/* move everything off the request queue onto the completed queue */
4589	while (!hlist_empty(&h->reqQ)) {
4590		c = hlist_entry(h->reqQ.first, CommandList_struct, list);
4591		removeQ(c);
4592		h->Qdepth--;
4593		addQ(&h->cmpQ, c);
4594	}
4595
4596	/* Now, fail everything on the completed queue with a HW error */
4597	while (!hlist_empty(&h->cmpQ)) {
4598		c = hlist_entry(h->cmpQ.first, CommandList_struct, list);
4599		removeQ(c);
4600		if (c->cmd_type != CMD_MSG_STALE)
4601			c->err_info->CommandStatus = CMD_HARDWARE_ERR;
4602		if (c->cmd_type == CMD_RWREQ) {
4603			complete_command(h, c, 0);
4604		} else if (c->cmd_type == CMD_IOCTL_PEND)
4605			complete(c->waiting);
4606#ifdef CONFIG_CISS_SCSI_TAPE
4607		else if (c->cmd_type == CMD_SCSI)
4608			complete_scsi_command(c, 0, 0);
4609#endif
4610	}
4611	spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
4612	return;
4613}
4614
4615module_init(cciss_init);
4616module_exit(cciss_cleanup);
4617