cciss.c revision 8ba95c69fe6eb65ff36b64136ae24844ddba16a1
1/*
2 *    Disk Array driver for HP Smart Array controllers.
3 *    (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
4 *
5 *    This program is free software; you can redistribute it and/or modify
6 *    it under the terms of the GNU General Public License as published by
7 *    the Free Software Foundation; version 2 of the License.
8 *
9 *    This program is distributed in the hope that it will be useful,
10 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11 *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 *    General Public License for more details.
13 *
14 *    You should have received a copy of the GNU General Public License
15 *    along with this program; if not, write to the Free Software
16 *    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
17 *    02111-1307, USA.
18 *
19 *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
20 *
21 */
22
23#include <linux/module.h>
24#include <linux/interrupt.h>
25#include <linux/types.h>
26#include <linux/pci.h>
27#include <linux/kernel.h>
28#include <linux/slab.h>
29#include <linux/smp_lock.h>
30#include <linux/delay.h>
31#include <linux/major.h>
32#include <linux/fs.h>
33#include <linux/bio.h>
34#include <linux/blkpg.h>
35#include <linux/timer.h>
36#include <linux/proc_fs.h>
37#include <linux/seq_file.h>
38#include <linux/init.h>
39#include <linux/jiffies.h>
40#include <linux/hdreg.h>
41#include <linux/spinlock.h>
42#include <linux/compat.h>
43#include <linux/mutex.h>
44#include <asm/uaccess.h>
45#include <asm/io.h>
46
47#include <linux/dma-mapping.h>
48#include <linux/blkdev.h>
49#include <linux/genhd.h>
50#include <linux/completion.h>
51#include <scsi/scsi.h>
52#include <scsi/sg.h>
53#include <scsi/scsi_ioctl.h>
54#include <linux/cdrom.h>
55#include <linux/scatterlist.h>
56#include <linux/kthread.h>
57
58#define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
59#define DRIVER_NAME "HP CISS Driver (v 3.6.20)"
60#define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 20)
61
62/* Embedded module documentation macros - see modules.h */
63MODULE_AUTHOR("Hewlett-Packard Company");
64MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
65MODULE_SUPPORTED_DEVICE("HP SA5i SA5i+ SA532 SA5300 SA5312 SA641 SA642 SA6400"
66			" SA6i P600 P800 P400 P400i E200 E200i E500 P700m"
67			" Smart Array G2 Series SAS/SATA Controllers");
68MODULE_VERSION("3.6.20");
69MODULE_LICENSE("GPL");
70
71static int cciss_allow_hpsa;
72module_param(cciss_allow_hpsa, int, S_IRUGO|S_IWUSR);
73MODULE_PARM_DESC(cciss_allow_hpsa,
74	"Prevent cciss driver from accessing hardware known to be "
75	" supported by the hpsa driver");
76
77#include "cciss_cmd.h"
78#include "cciss.h"
79#include <linux/cciss_ioctl.h>
80
81/* define the PCI info for the cards we can control */
82static const struct pci_device_id cciss_pci_device_id[] = {
83	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS,  0x0E11, 0x4070},
84	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
85	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
86	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
87	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
88	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
89	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
90	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
91	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
92	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSA,     0x103C, 0x3225},
93	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3223},
94	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3234},
95	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3235},
96	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3211},
97	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3212},
98	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3213},
99	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3214},
100	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3215},
101	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3237},
102	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x323D},
103	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
104	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
105	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
106	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
107	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
108	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
109	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
110	{0,}
111};
112
113MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
114
115/*  board_id = Subsystem Device ID & Vendor ID
116 *  product = Marketing Name for the board
117 *  access = Address of the struct of function pointers
118 */
119static struct board_type products[] = {
120	{0x40700E11, "Smart Array 5300", &SA5_access},
121	{0x40800E11, "Smart Array 5i", &SA5B_access},
122	{0x40820E11, "Smart Array 532", &SA5B_access},
123	{0x40830E11, "Smart Array 5312", &SA5B_access},
124	{0x409A0E11, "Smart Array 641", &SA5_access},
125	{0x409B0E11, "Smart Array 642", &SA5_access},
126	{0x409C0E11, "Smart Array 6400", &SA5_access},
127	{0x409D0E11, "Smart Array 6400 EM", &SA5_access},
128	{0x40910E11, "Smart Array 6i", &SA5_access},
129	{0x3225103C, "Smart Array P600", &SA5_access},
130	{0x3235103C, "Smart Array P400i", &SA5_access},
131	{0x3211103C, "Smart Array E200i", &SA5_access},
132	{0x3212103C, "Smart Array E200", &SA5_access},
133	{0x3213103C, "Smart Array E200i", &SA5_access},
134	{0x3214103C, "Smart Array E200i", &SA5_access},
135	{0x3215103C, "Smart Array E200i", &SA5_access},
136	{0x3237103C, "Smart Array E500", &SA5_access},
137/* controllers below this line are also supported by the hpsa driver. */
138#define HPSA_BOUNDARY 0x3223103C
139	{0x3223103C, "Smart Array P800", &SA5_access},
140	{0x3234103C, "Smart Array P400", &SA5_access},
141	{0x323D103C, "Smart Array P700m", &SA5_access},
142	{0x3241103C, "Smart Array P212", &SA5_access},
143	{0x3243103C, "Smart Array P410", &SA5_access},
144	{0x3245103C, "Smart Array P410i", &SA5_access},
145	{0x3247103C, "Smart Array P411", &SA5_access},
146	{0x3249103C, "Smart Array P812", &SA5_access},
147	{0x324A103C, "Smart Array P712m", &SA5_access},
148	{0x324B103C, "Smart Array P711m", &SA5_access},
149};
150
151/* How long to wait (in milliseconds) for board to go into simple mode */
152#define MAX_CONFIG_WAIT 30000
153#define MAX_IOCTL_CONFIG_WAIT 1000
154
155/*define how many times we will try a command because of bus resets */
156#define MAX_CMD_RETRIES 3
157
158#define MAX_CTLR	32
159
160/* Originally cciss driver only supports 8 major numbers */
161#define MAX_CTLR_ORIG 	8
162
163static ctlr_info_t *hba[MAX_CTLR];
164
165static struct task_struct *cciss_scan_thread;
166static DEFINE_MUTEX(scan_mutex);
167static LIST_HEAD(scan_q);
168
169static void do_cciss_request(struct request_queue *q);
170static irqreturn_t do_cciss_intr(int irq, void *dev_id);
171static int cciss_open(struct block_device *bdev, fmode_t mode);
172static int cciss_release(struct gendisk *disk, fmode_t mode);
173static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
174		       unsigned int cmd, unsigned long arg);
175static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
176
177static int cciss_revalidate(struct gendisk *disk);
178static int rebuild_lun_table(ctlr_info_t *h, int first_time, int via_ioctl);
179static int deregister_disk(ctlr_info_t *h, int drv_index,
180			   int clear_all, int via_ioctl);
181
182static void cciss_read_capacity(int ctlr, int logvol, int withirq,
183			sector_t *total_size, unsigned int *block_size);
184static void cciss_read_capacity_16(int ctlr, int logvol, int withirq,
185			sector_t *total_size, unsigned int *block_size);
186static void cciss_geometry_inquiry(int ctlr, int logvol,
187			int withirq, sector_t total_size,
188			unsigned int block_size, InquiryData_struct *inq_buff,
189				   drive_info_struct *drv);
190static void __devinit cciss_interrupt_mode(ctlr_info_t *, struct pci_dev *,
191					   __u32);
192static void start_io(ctlr_info_t *h);
193static int sendcmd(__u8 cmd, int ctlr, void *buff, size_t size,
194		   __u8 page_code, unsigned char *scsi3addr, int cmd_type);
195static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
196			__u8 page_code, unsigned char scsi3addr[],
197			int cmd_type);
198static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
199	int attempt_retry);
200static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c);
201
202static void fail_all_cmds(unsigned long ctlr);
203static int add_to_scan_list(struct ctlr_info *h);
204static int scan_thread(void *data);
205static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c);
206static void cciss_hba_release(struct device *dev);
207static void cciss_device_release(struct device *dev);
208static void cciss_free_gendisk(ctlr_info_t *h, int drv_index);
209static void cciss_free_drive_info(ctlr_info_t *h, int drv_index);
210
211#ifdef CONFIG_PROC_FS
212static void cciss_procinit(int i);
213#else
214static void cciss_procinit(int i)
215{
216}
217#endif				/* CONFIG_PROC_FS */
218
219#ifdef CONFIG_COMPAT
220static int cciss_compat_ioctl(struct block_device *, fmode_t,
221			      unsigned, unsigned long);
222#endif
223
224static const struct block_device_operations cciss_fops = {
225	.owner = THIS_MODULE,
226	.open = cciss_open,
227	.release = cciss_release,
228	.locked_ioctl = cciss_ioctl,
229	.getgeo = cciss_getgeo,
230#ifdef CONFIG_COMPAT
231	.compat_ioctl = cciss_compat_ioctl,
232#endif
233	.revalidate_disk = cciss_revalidate,
234};
235
236/*
237 * Enqueuing and dequeuing functions for cmdlists.
238 */
239static inline void addQ(struct hlist_head *list, CommandList_struct *c)
240{
241	hlist_add_head(&c->list, list);
242}
243
244static inline void removeQ(CommandList_struct *c)
245{
246	/*
247	 * After kexec/dump some commands might still
248	 * be in flight, which the firmware will try
249	 * to complete. Resetting the firmware doesn't work
250	 * with old fw revisions, so we have to mark
251	 * them off as 'stale' to prevent the driver from
252	 * falling over.
253	 */
254	if (WARN_ON(hlist_unhashed(&c->list))) {
255		c->cmd_type = CMD_MSG_STALE;
256		return;
257	}
258
259	hlist_del_init(&c->list);
260}
261
262#include "cciss_scsi.c"		/* For SCSI tape support */
263
264static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
265	"UNKNOWN"
266};
267#define RAID_UNKNOWN (sizeof(raid_label) / sizeof(raid_label[0])-1)
268
269#ifdef CONFIG_PROC_FS
270
271/*
272 * Report information about this controller.
273 */
274#define ENG_GIG 1000000000
275#define ENG_GIG_FACTOR (ENG_GIG/512)
276#define ENGAGE_SCSI	"engage scsi"
277
278static struct proc_dir_entry *proc_cciss;
279
280static void cciss_seq_show_header(struct seq_file *seq)
281{
282	ctlr_info_t *h = seq->private;
283
284	seq_printf(seq, "%s: HP %s Controller\n"
285		"Board ID: 0x%08lx\n"
286		"Firmware Version: %c%c%c%c\n"
287		"IRQ: %d\n"
288		"Logical drives: %d\n"
289		"Current Q depth: %d\n"
290		"Current # commands on controller: %d\n"
291		"Max Q depth since init: %d\n"
292		"Max # commands on controller since init: %d\n"
293		"Max SG entries since init: %d\n",
294		h->devname,
295		h->product_name,
296		(unsigned long)h->board_id,
297		h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
298		h->firm_ver[3], (unsigned int)h->intr[SIMPLE_MODE_INT],
299		h->num_luns,
300		h->Qdepth, h->commands_outstanding,
301		h->maxQsinceinit, h->max_outstanding, h->maxSG);
302
303#ifdef CONFIG_CISS_SCSI_TAPE
304	cciss_seq_tape_report(seq, h->ctlr);
305#endif /* CONFIG_CISS_SCSI_TAPE */
306}
307
308static void *cciss_seq_start(struct seq_file *seq, loff_t *pos)
309{
310	ctlr_info_t *h = seq->private;
311	unsigned ctlr = h->ctlr;
312	unsigned long flags;
313
314	/* prevent displaying bogus info during configuration
315	 * or deconfiguration of a logical volume
316	 */
317	spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
318	if (h->busy_configuring) {
319		spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
320		return ERR_PTR(-EBUSY);
321	}
322	h->busy_configuring = 1;
323	spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
324
325	if (*pos == 0)
326		cciss_seq_show_header(seq);
327
328	return pos;
329}
330
331static int cciss_seq_show(struct seq_file *seq, void *v)
332{
333	sector_t vol_sz, vol_sz_frac;
334	ctlr_info_t *h = seq->private;
335	unsigned ctlr = h->ctlr;
336	loff_t *pos = v;
337	drive_info_struct *drv = h->drv[*pos];
338
339	if (*pos > h->highest_lun)
340		return 0;
341
342	if (drv->heads == 0)
343		return 0;
344
345	vol_sz = drv->nr_blocks;
346	vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
347	vol_sz_frac *= 100;
348	sector_div(vol_sz_frac, ENG_GIG_FACTOR);
349
350	if (drv->raid_level < 0 || drv->raid_level > RAID_UNKNOWN)
351		drv->raid_level = RAID_UNKNOWN;
352	seq_printf(seq, "cciss/c%dd%d:"
353			"\t%4u.%02uGB\tRAID %s\n",
354			ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac,
355			raid_label[drv->raid_level]);
356	return 0;
357}
358
359static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos)
360{
361	ctlr_info_t *h = seq->private;
362
363	if (*pos > h->highest_lun)
364		return NULL;
365	*pos += 1;
366
367	return pos;
368}
369
370static void cciss_seq_stop(struct seq_file *seq, void *v)
371{
372	ctlr_info_t *h = seq->private;
373
374	/* Only reset h->busy_configuring if we succeeded in setting
375	 * it during cciss_seq_start. */
376	if (v == ERR_PTR(-EBUSY))
377		return;
378
379	h->busy_configuring = 0;
380}
381
382static const struct seq_operations cciss_seq_ops = {
383	.start = cciss_seq_start,
384	.show  = cciss_seq_show,
385	.next  = cciss_seq_next,
386	.stop  = cciss_seq_stop,
387};
388
389static int cciss_seq_open(struct inode *inode, struct file *file)
390{
391	int ret = seq_open(file, &cciss_seq_ops);
392	struct seq_file *seq = file->private_data;
393
394	if (!ret)
395		seq->private = PDE(inode)->data;
396
397	return ret;
398}
399
400static ssize_t
401cciss_proc_write(struct file *file, const char __user *buf,
402		 size_t length, loff_t *ppos)
403{
404	int err;
405	char *buffer;
406
407#ifndef CONFIG_CISS_SCSI_TAPE
408	return -EINVAL;
409#endif
410
411	if (!buf || length > PAGE_SIZE - 1)
412		return -EINVAL;
413
414	buffer = (char *)__get_free_page(GFP_KERNEL);
415	if (!buffer)
416		return -ENOMEM;
417
418	err = -EFAULT;
419	if (copy_from_user(buffer, buf, length))
420		goto out;
421	buffer[length] = '\0';
422
423#ifdef CONFIG_CISS_SCSI_TAPE
424	if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) {
425		struct seq_file *seq = file->private_data;
426		ctlr_info_t *h = seq->private;
427		int rc;
428
429		rc = cciss_engage_scsi(h->ctlr);
430		if (rc != 0)
431			err = -rc;
432		else
433			err = length;
434	} else
435#endif /* CONFIG_CISS_SCSI_TAPE */
436		err = -EINVAL;
437	/* might be nice to have "disengage" too, but it's not
438	   safely possible. (only 1 module use count, lock issues.) */
439
440out:
441	free_page((unsigned long)buffer);
442	return err;
443}
444
445static const struct file_operations cciss_proc_fops = {
446	.owner	 = THIS_MODULE,
447	.open    = cciss_seq_open,
448	.read    = seq_read,
449	.llseek  = seq_lseek,
450	.release = seq_release,
451	.write	 = cciss_proc_write,
452};
453
454static void __devinit cciss_procinit(int i)
455{
456	struct proc_dir_entry *pde;
457
458	if (proc_cciss == NULL)
459		proc_cciss = proc_mkdir("driver/cciss", NULL);
460	if (!proc_cciss)
461		return;
462	pde = proc_create_data(hba[i]->devname, S_IWUSR | S_IRUSR | S_IRGRP |
463					S_IROTH, proc_cciss,
464					&cciss_proc_fops, hba[i]);
465}
466#endif				/* CONFIG_PROC_FS */
467
468#define MAX_PRODUCT_NAME_LEN 19
469
470#define to_hba(n) container_of(n, struct ctlr_info, dev)
471#define to_drv(n) container_of(n, drive_info_struct, dev)
472
473static ssize_t host_store_rescan(struct device *dev,
474				 struct device_attribute *attr,
475				 const char *buf, size_t count)
476{
477	struct ctlr_info *h = to_hba(dev);
478
479	add_to_scan_list(h);
480	wake_up_process(cciss_scan_thread);
481	wait_for_completion_interruptible(&h->scan_wait);
482
483	return count;
484}
485static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
486
487static ssize_t dev_show_unique_id(struct device *dev,
488				 struct device_attribute *attr,
489				 char *buf)
490{
491	drive_info_struct *drv = to_drv(dev);
492	struct ctlr_info *h = to_hba(drv->dev.parent);
493	__u8 sn[16];
494	unsigned long flags;
495	int ret = 0;
496
497	spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
498	if (h->busy_configuring)
499		ret = -EBUSY;
500	else
501		memcpy(sn, drv->serial_no, sizeof(sn));
502	spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
503
504	if (ret)
505		return ret;
506	else
507		return snprintf(buf, 16 * 2 + 2,
508				"%02X%02X%02X%02X%02X%02X%02X%02X"
509				"%02X%02X%02X%02X%02X%02X%02X%02X\n",
510				sn[0], sn[1], sn[2], sn[3],
511				sn[4], sn[5], sn[6], sn[7],
512				sn[8], sn[9], sn[10], sn[11],
513				sn[12], sn[13], sn[14], sn[15]);
514}
515static DEVICE_ATTR(unique_id, S_IRUGO, dev_show_unique_id, NULL);
516
517static ssize_t dev_show_vendor(struct device *dev,
518			       struct device_attribute *attr,
519			       char *buf)
520{
521	drive_info_struct *drv = to_drv(dev);
522	struct ctlr_info *h = to_hba(drv->dev.parent);
523	char vendor[VENDOR_LEN + 1];
524	unsigned long flags;
525	int ret = 0;
526
527	spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
528	if (h->busy_configuring)
529		ret = -EBUSY;
530	else
531		memcpy(vendor, drv->vendor, VENDOR_LEN + 1);
532	spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
533
534	if (ret)
535		return ret;
536	else
537		return snprintf(buf, sizeof(vendor) + 1, "%s\n", drv->vendor);
538}
539static DEVICE_ATTR(vendor, S_IRUGO, dev_show_vendor, NULL);
540
541static ssize_t dev_show_model(struct device *dev,
542			      struct device_attribute *attr,
543			      char *buf)
544{
545	drive_info_struct *drv = to_drv(dev);
546	struct ctlr_info *h = to_hba(drv->dev.parent);
547	char model[MODEL_LEN + 1];
548	unsigned long flags;
549	int ret = 0;
550
551	spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
552	if (h->busy_configuring)
553		ret = -EBUSY;
554	else
555		memcpy(model, drv->model, MODEL_LEN + 1);
556	spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
557
558	if (ret)
559		return ret;
560	else
561		return snprintf(buf, sizeof(model) + 1, "%s\n", drv->model);
562}
563static DEVICE_ATTR(model, S_IRUGO, dev_show_model, NULL);
564
565static ssize_t dev_show_rev(struct device *dev,
566			    struct device_attribute *attr,
567			    char *buf)
568{
569	drive_info_struct *drv = to_drv(dev);
570	struct ctlr_info *h = to_hba(drv->dev.parent);
571	char rev[REV_LEN + 1];
572	unsigned long flags;
573	int ret = 0;
574
575	spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
576	if (h->busy_configuring)
577		ret = -EBUSY;
578	else
579		memcpy(rev, drv->rev, REV_LEN + 1);
580	spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
581
582	if (ret)
583		return ret;
584	else
585		return snprintf(buf, sizeof(rev) + 1, "%s\n", drv->rev);
586}
587static DEVICE_ATTR(rev, S_IRUGO, dev_show_rev, NULL);
588
589static ssize_t cciss_show_lunid(struct device *dev,
590				struct device_attribute *attr, char *buf)
591{
592	drive_info_struct *drv = to_drv(dev);
593	struct ctlr_info *h = to_hba(drv->dev.parent);
594	unsigned long flags;
595	unsigned char lunid[8];
596
597	spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
598	if (h->busy_configuring) {
599		spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
600		return -EBUSY;
601	}
602	if (!drv->heads) {
603		spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
604		return -ENOTTY;
605	}
606	memcpy(lunid, drv->LunID, sizeof(lunid));
607	spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
608	return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
609		lunid[0], lunid[1], lunid[2], lunid[3],
610		lunid[4], lunid[5], lunid[6], lunid[7]);
611}
612static DEVICE_ATTR(lunid, S_IRUGO, cciss_show_lunid, NULL);
613
614static ssize_t cciss_show_raid_level(struct device *dev,
615				     struct device_attribute *attr, char *buf)
616{
617	drive_info_struct *drv = to_drv(dev);
618	struct ctlr_info *h = to_hba(drv->dev.parent);
619	int raid;
620	unsigned long flags;
621
622	spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
623	if (h->busy_configuring) {
624		spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
625		return -EBUSY;
626	}
627	raid = drv->raid_level;
628	spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
629	if (raid < 0 || raid > RAID_UNKNOWN)
630		raid = RAID_UNKNOWN;
631
632	return snprintf(buf, strlen(raid_label[raid]) + 7, "RAID %s\n",
633			raid_label[raid]);
634}
635static DEVICE_ATTR(raid_level, S_IRUGO, cciss_show_raid_level, NULL);
636
637static ssize_t cciss_show_usage_count(struct device *dev,
638				      struct device_attribute *attr, char *buf)
639{
640	drive_info_struct *drv = to_drv(dev);
641	struct ctlr_info *h = to_hba(drv->dev.parent);
642	unsigned long flags;
643	int count;
644
645	spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
646	if (h->busy_configuring) {
647		spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
648		return -EBUSY;
649	}
650	count = drv->usage_count;
651	spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
652	return snprintf(buf, 20, "%d\n", count);
653}
654static DEVICE_ATTR(usage_count, S_IRUGO, cciss_show_usage_count, NULL);
655
656static struct attribute *cciss_host_attrs[] = {
657	&dev_attr_rescan.attr,
658	NULL
659};
660
661static struct attribute_group cciss_host_attr_group = {
662	.attrs = cciss_host_attrs,
663};
664
665static const struct attribute_group *cciss_host_attr_groups[] = {
666	&cciss_host_attr_group,
667	NULL
668};
669
670static struct device_type cciss_host_type = {
671	.name		= "cciss_host",
672	.groups		= cciss_host_attr_groups,
673	.release	= cciss_hba_release,
674};
675
676static struct attribute *cciss_dev_attrs[] = {
677	&dev_attr_unique_id.attr,
678	&dev_attr_model.attr,
679	&dev_attr_vendor.attr,
680	&dev_attr_rev.attr,
681	&dev_attr_lunid.attr,
682	&dev_attr_raid_level.attr,
683	&dev_attr_usage_count.attr,
684	NULL
685};
686
687static struct attribute_group cciss_dev_attr_group = {
688	.attrs = cciss_dev_attrs,
689};
690
691static const struct attribute_group *cciss_dev_attr_groups[] = {
692	&cciss_dev_attr_group,
693	NULL
694};
695
696static struct device_type cciss_dev_type = {
697	.name		= "cciss_device",
698	.groups		= cciss_dev_attr_groups,
699	.release	= cciss_device_release,
700};
701
702static struct bus_type cciss_bus_type = {
703	.name		= "cciss",
704};
705
706/*
707 * cciss_hba_release is called when the reference count
708 * of h->dev goes to zero.
709 */
710static void cciss_hba_release(struct device *dev)
711{
712	/*
713	 * nothing to do, but need this to avoid a warning
714	 * about not having a release handler from lib/kref.c.
715	 */
716}
717
718/*
719 * Initialize sysfs entry for each controller.  This sets up and registers
720 * the 'cciss#' directory for each individual controller under
721 * /sys/bus/pci/devices/<dev>/.
722 */
723static int cciss_create_hba_sysfs_entry(struct ctlr_info *h)
724{
725	device_initialize(&h->dev);
726	h->dev.type = &cciss_host_type;
727	h->dev.bus = &cciss_bus_type;
728	dev_set_name(&h->dev, "%s", h->devname);
729	h->dev.parent = &h->pdev->dev;
730
731	return device_add(&h->dev);
732}
733
734/*
735 * Remove sysfs entries for an hba.
736 */
737static void cciss_destroy_hba_sysfs_entry(struct ctlr_info *h)
738{
739	device_del(&h->dev);
740	put_device(&h->dev); /* final put. */
741}
742
743/* cciss_device_release is called when the reference count
744 * of h->drv[x]dev goes to zero.
745 */
746static void cciss_device_release(struct device *dev)
747{
748	drive_info_struct *drv = to_drv(dev);
749	kfree(drv);
750}
751
752/*
753 * Initialize sysfs for each logical drive.  This sets up and registers
754 * the 'c#d#' directory for each individual logical drive under
755 * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
756 * /sys/block/cciss!c#d# to this entry.
757 */
758static long cciss_create_ld_sysfs_entry(struct ctlr_info *h,
759				       int drv_index)
760{
761	struct device *dev;
762
763	if (h->drv[drv_index]->device_initialized)
764		return 0;
765
766	dev = &h->drv[drv_index]->dev;
767	device_initialize(dev);
768	dev->type = &cciss_dev_type;
769	dev->bus = &cciss_bus_type;
770	dev_set_name(dev, "c%dd%d", h->ctlr, drv_index);
771	dev->parent = &h->dev;
772	h->drv[drv_index]->device_initialized = 1;
773	return device_add(dev);
774}
775
776/*
777 * Remove sysfs entries for a logical drive.
778 */
779static void cciss_destroy_ld_sysfs_entry(struct ctlr_info *h, int drv_index,
780	int ctlr_exiting)
781{
782	struct device *dev = &h->drv[drv_index]->dev;
783
784	/* special case for c*d0, we only destroy it on controller exit */
785	if (drv_index == 0 && !ctlr_exiting)
786		return;
787
788	device_del(dev);
789	put_device(dev); /* the "final" put. */
790	h->drv[drv_index] = NULL;
791}
792
793/*
794 * For operations that cannot sleep, a command block is allocated at init,
795 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
796 * which ones are free or in use.  For operations that can wait for kmalloc
797 * to possible sleep, this routine can be called with get_from_pool set to 0.
798 * cmd_free() MUST be called with a got_from_pool set to 0 if cmd_alloc was.
799 */
800static CommandList_struct *cmd_alloc(ctlr_info_t *h, int get_from_pool)
801{
802	CommandList_struct *c;
803	int i;
804	u64bit temp64;
805	dma_addr_t cmd_dma_handle, err_dma_handle;
806
807	if (!get_from_pool) {
808		c = (CommandList_struct *) pci_alloc_consistent(h->pdev,
809			sizeof(CommandList_struct), &cmd_dma_handle);
810		if (c == NULL)
811			return NULL;
812		memset(c, 0, sizeof(CommandList_struct));
813
814		c->cmdindex = -1;
815
816		c->err_info = (ErrorInfo_struct *)
817		    pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
818			    &err_dma_handle);
819
820		if (c->err_info == NULL) {
821			pci_free_consistent(h->pdev,
822				sizeof(CommandList_struct), c, cmd_dma_handle);
823			return NULL;
824		}
825		memset(c->err_info, 0, sizeof(ErrorInfo_struct));
826	} else {		/* get it out of the controllers pool */
827
828		do {
829			i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
830			if (i == h->nr_cmds)
831				return NULL;
832		} while (test_and_set_bit
833			 (i & (BITS_PER_LONG - 1),
834			  h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
835#ifdef CCISS_DEBUG
836		printk(KERN_DEBUG "cciss: using command buffer %d\n", i);
837#endif
838		c = h->cmd_pool + i;
839		memset(c, 0, sizeof(CommandList_struct));
840		cmd_dma_handle = h->cmd_pool_dhandle
841		    + i * sizeof(CommandList_struct);
842		c->err_info = h->errinfo_pool + i;
843		memset(c->err_info, 0, sizeof(ErrorInfo_struct));
844		err_dma_handle = h->errinfo_pool_dhandle
845		    + i * sizeof(ErrorInfo_struct);
846		h->nr_allocs++;
847
848		c->cmdindex = i;
849	}
850
851	INIT_HLIST_NODE(&c->list);
852	c->busaddr = (__u32) cmd_dma_handle;
853	temp64.val = (__u64) err_dma_handle;
854	c->ErrDesc.Addr.lower = temp64.val32.lower;
855	c->ErrDesc.Addr.upper = temp64.val32.upper;
856	c->ErrDesc.Len = sizeof(ErrorInfo_struct);
857
858	c->ctlr = h->ctlr;
859	return c;
860}
861
862/*
863 * Frees a command block that was previously allocated with cmd_alloc().
864 */
865static void cmd_free(ctlr_info_t *h, CommandList_struct *c, int got_from_pool)
866{
867	int i;
868	u64bit temp64;
869
870	if (!got_from_pool) {
871		temp64.val32.lower = c->ErrDesc.Addr.lower;
872		temp64.val32.upper = c->ErrDesc.Addr.upper;
873		pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
874				    c->err_info, (dma_addr_t) temp64.val);
875		pci_free_consistent(h->pdev, sizeof(CommandList_struct),
876				    c, (dma_addr_t) c->busaddr);
877	} else {
878		i = c - h->cmd_pool;
879		clear_bit(i & (BITS_PER_LONG - 1),
880			  h->cmd_pool_bits + (i / BITS_PER_LONG));
881		h->nr_frees++;
882	}
883}
884
885static inline ctlr_info_t *get_host(struct gendisk *disk)
886{
887	return disk->queue->queuedata;
888}
889
890static inline drive_info_struct *get_drv(struct gendisk *disk)
891{
892	return disk->private_data;
893}
894
895/*
896 * Open.  Make sure the device is really there.
897 */
898static int cciss_open(struct block_device *bdev, fmode_t mode)
899{
900	ctlr_info_t *host = get_host(bdev->bd_disk);
901	drive_info_struct *drv = get_drv(bdev->bd_disk);
902
903#ifdef CCISS_DEBUG
904	printk(KERN_DEBUG "cciss_open %s\n", bdev->bd_disk->disk_name);
905#endif				/* CCISS_DEBUG */
906
907	if (drv->busy_configuring)
908		return -EBUSY;
909	/*
910	 * Root is allowed to open raw volume zero even if it's not configured
911	 * so array config can still work. Root is also allowed to open any
912	 * volume that has a LUN ID, so it can issue IOCTL to reread the
913	 * disk information.  I don't think I really like this
914	 * but I'm already using way to many device nodes to claim another one
915	 * for "raw controller".
916	 */
917	if (drv->heads == 0) {
918		if (MINOR(bdev->bd_dev) != 0) {	/* not node 0? */
919			/* if not node 0 make sure it is a partition = 0 */
920			if (MINOR(bdev->bd_dev) & 0x0f) {
921				return -ENXIO;
922				/* if it is, make sure we have a LUN ID */
923			} else if (memcmp(drv->LunID, CTLR_LUNID,
924				sizeof(drv->LunID))) {
925				return -ENXIO;
926			}
927		}
928		if (!capable(CAP_SYS_ADMIN))
929			return -EPERM;
930	}
931	drv->usage_count++;
932	host->usage_count++;
933	return 0;
934}
935
936/*
937 * Close.  Sync first.
938 */
939static int cciss_release(struct gendisk *disk, fmode_t mode)
940{
941	ctlr_info_t *host = get_host(disk);
942	drive_info_struct *drv = get_drv(disk);
943
944#ifdef CCISS_DEBUG
945	printk(KERN_DEBUG "cciss_release %s\n", disk->disk_name);
946#endif				/* CCISS_DEBUG */
947
948	drv->usage_count--;
949	host->usage_count--;
950	return 0;
951}
952
953#ifdef CONFIG_COMPAT
954
955static int do_ioctl(struct block_device *bdev, fmode_t mode,
956		    unsigned cmd, unsigned long arg)
957{
958	int ret;
959	lock_kernel();
960	ret = cciss_ioctl(bdev, mode, cmd, arg);
961	unlock_kernel();
962	return ret;
963}
964
965static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
966				  unsigned cmd, unsigned long arg);
967static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
968				      unsigned cmd, unsigned long arg);
969
970static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode,
971			      unsigned cmd, unsigned long arg)
972{
973	switch (cmd) {
974	case CCISS_GETPCIINFO:
975	case CCISS_GETINTINFO:
976	case CCISS_SETINTINFO:
977	case CCISS_GETNODENAME:
978	case CCISS_SETNODENAME:
979	case CCISS_GETHEARTBEAT:
980	case CCISS_GETBUSTYPES:
981	case CCISS_GETFIRMVER:
982	case CCISS_GETDRIVVER:
983	case CCISS_REVALIDVOLS:
984	case CCISS_DEREGDISK:
985	case CCISS_REGNEWDISK:
986	case CCISS_REGNEWD:
987	case CCISS_RESCANDISK:
988	case CCISS_GETLUNINFO:
989		return do_ioctl(bdev, mode, cmd, arg);
990
991	case CCISS_PASSTHRU32:
992		return cciss_ioctl32_passthru(bdev, mode, cmd, arg);
993	case CCISS_BIG_PASSTHRU32:
994		return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg);
995
996	default:
997		return -ENOIOCTLCMD;
998	}
999}
1000
1001static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1002				  unsigned cmd, unsigned long arg)
1003{
1004	IOCTL32_Command_struct __user *arg32 =
1005	    (IOCTL32_Command_struct __user *) arg;
1006	IOCTL_Command_struct arg64;
1007	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
1008	int err;
1009	u32 cp;
1010
1011	err = 0;
1012	err |=
1013	    copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1014			   sizeof(arg64.LUN_info));
1015	err |=
1016	    copy_from_user(&arg64.Request, &arg32->Request,
1017			   sizeof(arg64.Request));
1018	err |=
1019	    copy_from_user(&arg64.error_info, &arg32->error_info,
1020			   sizeof(arg64.error_info));
1021	err |= get_user(arg64.buf_size, &arg32->buf_size);
1022	err |= get_user(cp, &arg32->buf);
1023	arg64.buf = compat_ptr(cp);
1024	err |= copy_to_user(p, &arg64, sizeof(arg64));
1025
1026	if (err)
1027		return -EFAULT;
1028
1029	err = do_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p);
1030	if (err)
1031		return err;
1032	err |=
1033	    copy_in_user(&arg32->error_info, &p->error_info,
1034			 sizeof(arg32->error_info));
1035	if (err)
1036		return -EFAULT;
1037	return err;
1038}
1039
1040static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1041				      unsigned cmd, unsigned long arg)
1042{
1043	BIG_IOCTL32_Command_struct __user *arg32 =
1044	    (BIG_IOCTL32_Command_struct __user *) arg;
1045	BIG_IOCTL_Command_struct arg64;
1046	BIG_IOCTL_Command_struct __user *p =
1047	    compat_alloc_user_space(sizeof(arg64));
1048	int err;
1049	u32 cp;
1050
1051	err = 0;
1052	err |=
1053	    copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1054			   sizeof(arg64.LUN_info));
1055	err |=
1056	    copy_from_user(&arg64.Request, &arg32->Request,
1057			   sizeof(arg64.Request));
1058	err |=
1059	    copy_from_user(&arg64.error_info, &arg32->error_info,
1060			   sizeof(arg64.error_info));
1061	err |= get_user(arg64.buf_size, &arg32->buf_size);
1062	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
1063	err |= get_user(cp, &arg32->buf);
1064	arg64.buf = compat_ptr(cp);
1065	err |= copy_to_user(p, &arg64, sizeof(arg64));
1066
1067	if (err)
1068		return -EFAULT;
1069
1070	err = do_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p);
1071	if (err)
1072		return err;
1073	err |=
1074	    copy_in_user(&arg32->error_info, &p->error_info,
1075			 sizeof(arg32->error_info));
1076	if (err)
1077		return -EFAULT;
1078	return err;
1079}
1080#endif
1081
1082static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1083{
1084	drive_info_struct *drv = get_drv(bdev->bd_disk);
1085
1086	if (!drv->cylinders)
1087		return -ENXIO;
1088
1089	geo->heads = drv->heads;
1090	geo->sectors = drv->sectors;
1091	geo->cylinders = drv->cylinders;
1092	return 0;
1093}
1094
1095static void check_ioctl_unit_attention(ctlr_info_t *host, CommandList_struct *c)
1096{
1097	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
1098			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
1099		(void)check_for_unit_attention(host, c);
1100}
1101/*
1102 * ioctl
1103 */
1104static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
1105		       unsigned int cmd, unsigned long arg)
1106{
1107	struct gendisk *disk = bdev->bd_disk;
1108	ctlr_info_t *host = get_host(disk);
1109	drive_info_struct *drv = get_drv(disk);
1110	int ctlr = host->ctlr;
1111	void __user *argp = (void __user *)arg;
1112
1113#ifdef CCISS_DEBUG
1114	printk(KERN_DEBUG "cciss_ioctl: Called with cmd=%x %lx\n", cmd, arg);
1115#endif				/* CCISS_DEBUG */
1116
1117	switch (cmd) {
1118	case CCISS_GETPCIINFO:
1119		{
1120			cciss_pci_info_struct pciinfo;
1121
1122			if (!arg)
1123				return -EINVAL;
1124			pciinfo.domain = pci_domain_nr(host->pdev->bus);
1125			pciinfo.bus = host->pdev->bus->number;
1126			pciinfo.dev_fn = host->pdev->devfn;
1127			pciinfo.board_id = host->board_id;
1128			if (copy_to_user
1129			    (argp, &pciinfo, sizeof(cciss_pci_info_struct)))
1130				return -EFAULT;
1131			return 0;
1132		}
1133	case CCISS_GETINTINFO:
1134		{
1135			cciss_coalint_struct intinfo;
1136			if (!arg)
1137				return -EINVAL;
1138			intinfo.delay =
1139			    readl(&host->cfgtable->HostWrite.CoalIntDelay);
1140			intinfo.count =
1141			    readl(&host->cfgtable->HostWrite.CoalIntCount);
1142			if (copy_to_user
1143			    (argp, &intinfo, sizeof(cciss_coalint_struct)))
1144				return -EFAULT;
1145			return 0;
1146		}
1147	case CCISS_SETINTINFO:
1148		{
1149			cciss_coalint_struct intinfo;
1150			unsigned long flags;
1151			int i;
1152
1153			if (!arg)
1154				return -EINVAL;
1155			if (!capable(CAP_SYS_ADMIN))
1156				return -EPERM;
1157			if (copy_from_user
1158			    (&intinfo, argp, sizeof(cciss_coalint_struct)))
1159				return -EFAULT;
1160			if ((intinfo.delay == 0) && (intinfo.count == 0))
1161			{
1162//                      printk("cciss_ioctl: delay and count cannot be 0\n");
1163				return -EINVAL;
1164			}
1165			spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1166			/* Update the field, and then ring the doorbell */
1167			writel(intinfo.delay,
1168			       &(host->cfgtable->HostWrite.CoalIntDelay));
1169			writel(intinfo.count,
1170			       &(host->cfgtable->HostWrite.CoalIntCount));
1171			writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
1172
1173			for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1174				if (!(readl(host->vaddr + SA5_DOORBELL)
1175				      & CFGTBL_ChangeReq))
1176					break;
1177				/* delay and try again */
1178				udelay(1000);
1179			}
1180			spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1181			if (i >= MAX_IOCTL_CONFIG_WAIT)
1182				return -EAGAIN;
1183			return 0;
1184		}
1185	case CCISS_GETNODENAME:
1186		{
1187			NodeName_type NodeName;
1188			int i;
1189
1190			if (!arg)
1191				return -EINVAL;
1192			for (i = 0; i < 16; i++)
1193				NodeName[i] =
1194				    readb(&host->cfgtable->ServerName[i]);
1195			if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
1196				return -EFAULT;
1197			return 0;
1198		}
1199	case CCISS_SETNODENAME:
1200		{
1201			NodeName_type NodeName;
1202			unsigned long flags;
1203			int i;
1204
1205			if (!arg)
1206				return -EINVAL;
1207			if (!capable(CAP_SYS_ADMIN))
1208				return -EPERM;
1209
1210			if (copy_from_user
1211			    (NodeName, argp, sizeof(NodeName_type)))
1212				return -EFAULT;
1213
1214			spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1215
1216			/* Update the field, and then ring the doorbell */
1217			for (i = 0; i < 16; i++)
1218				writeb(NodeName[i],
1219				       &host->cfgtable->ServerName[i]);
1220
1221			writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
1222
1223			for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1224				if (!(readl(host->vaddr + SA5_DOORBELL)
1225				      & CFGTBL_ChangeReq))
1226					break;
1227				/* delay and try again */
1228				udelay(1000);
1229			}
1230			spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1231			if (i >= MAX_IOCTL_CONFIG_WAIT)
1232				return -EAGAIN;
1233			return 0;
1234		}
1235
1236	case CCISS_GETHEARTBEAT:
1237		{
1238			Heartbeat_type heartbeat;
1239
1240			if (!arg)
1241				return -EINVAL;
1242			heartbeat = readl(&host->cfgtable->HeartBeat);
1243			if (copy_to_user
1244			    (argp, &heartbeat, sizeof(Heartbeat_type)))
1245				return -EFAULT;
1246			return 0;
1247		}
1248	case CCISS_GETBUSTYPES:
1249		{
1250			BusTypes_type BusTypes;
1251
1252			if (!arg)
1253				return -EINVAL;
1254			BusTypes = readl(&host->cfgtable->BusTypes);
1255			if (copy_to_user
1256			    (argp, &BusTypes, sizeof(BusTypes_type)))
1257				return -EFAULT;
1258			return 0;
1259		}
1260	case CCISS_GETFIRMVER:
1261		{
1262			FirmwareVer_type firmware;
1263
1264			if (!arg)
1265				return -EINVAL;
1266			memcpy(firmware, host->firm_ver, 4);
1267
1268			if (copy_to_user
1269			    (argp, firmware, sizeof(FirmwareVer_type)))
1270				return -EFAULT;
1271			return 0;
1272		}
1273	case CCISS_GETDRIVVER:
1274		{
1275			DriverVer_type DriverVer = DRIVER_VERSION;
1276
1277			if (!arg)
1278				return -EINVAL;
1279
1280			if (copy_to_user
1281			    (argp, &DriverVer, sizeof(DriverVer_type)))
1282				return -EFAULT;
1283			return 0;
1284		}
1285
1286	case CCISS_DEREGDISK:
1287	case CCISS_REGNEWD:
1288	case CCISS_REVALIDVOLS:
1289		return rebuild_lun_table(host, 0, 1);
1290
1291	case CCISS_GETLUNINFO:{
1292			LogvolInfo_struct luninfo;
1293
1294			memcpy(&luninfo.LunID, drv->LunID,
1295				sizeof(luninfo.LunID));
1296			luninfo.num_opens = drv->usage_count;
1297			luninfo.num_parts = 0;
1298			if (copy_to_user(argp, &luninfo,
1299					 sizeof(LogvolInfo_struct)))
1300				return -EFAULT;
1301			return 0;
1302		}
1303	case CCISS_PASSTHRU:
1304		{
1305			IOCTL_Command_struct iocommand;
1306			CommandList_struct *c;
1307			char *buff = NULL;
1308			u64bit temp64;
1309			unsigned long flags;
1310			DECLARE_COMPLETION_ONSTACK(wait);
1311
1312			if (!arg)
1313				return -EINVAL;
1314
1315			if (!capable(CAP_SYS_RAWIO))
1316				return -EPERM;
1317
1318			if (copy_from_user
1319			    (&iocommand, argp, sizeof(IOCTL_Command_struct)))
1320				return -EFAULT;
1321			if ((iocommand.buf_size < 1) &&
1322			    (iocommand.Request.Type.Direction != XFER_NONE)) {
1323				return -EINVAL;
1324			}
1325#if 0				/* 'buf_size' member is 16-bits, and always smaller than kmalloc limit */
1326			/* Check kmalloc limits */
1327			if (iocommand.buf_size > 128000)
1328				return -EINVAL;
1329#endif
1330			if (iocommand.buf_size > 0) {
1331				buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
1332				if (buff == NULL)
1333					return -EFAULT;
1334			}
1335			if (iocommand.Request.Type.Direction == XFER_WRITE) {
1336				/* Copy the data into the buffer we created */
1337				if (copy_from_user
1338				    (buff, iocommand.buf, iocommand.buf_size)) {
1339					kfree(buff);
1340					return -EFAULT;
1341				}
1342			} else {
1343				memset(buff, 0, iocommand.buf_size);
1344			}
1345			if ((c = cmd_alloc(host, 0)) == NULL) {
1346				kfree(buff);
1347				return -ENOMEM;
1348			}
1349			// Fill in the command type
1350			c->cmd_type = CMD_IOCTL_PEND;
1351			// Fill in Command Header
1352			c->Header.ReplyQueue = 0;	// unused in simple mode
1353			if (iocommand.buf_size > 0)	// buffer to fill
1354			{
1355				c->Header.SGList = 1;
1356				c->Header.SGTotal = 1;
1357			} else	// no buffers to fill
1358			{
1359				c->Header.SGList = 0;
1360				c->Header.SGTotal = 0;
1361			}
1362			c->Header.LUN = iocommand.LUN_info;
1363			c->Header.Tag.lower = c->busaddr;	// use the kernel address the cmd block for tag
1364
1365			// Fill in Request block
1366			c->Request = iocommand.Request;
1367
1368			// Fill in the scatter gather information
1369			if (iocommand.buf_size > 0) {
1370				temp64.val = pci_map_single(host->pdev, buff,
1371					iocommand.buf_size,
1372					PCI_DMA_BIDIRECTIONAL);
1373				c->SG[0].Addr.lower = temp64.val32.lower;
1374				c->SG[0].Addr.upper = temp64.val32.upper;
1375				c->SG[0].Len = iocommand.buf_size;
1376				c->SG[0].Ext = 0;	// we are not chaining
1377			}
1378			c->waiting = &wait;
1379
1380			/* Put the request on the tail of the request queue */
1381			spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1382			addQ(&host->reqQ, c);
1383			host->Qdepth++;
1384			start_io(host);
1385			spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1386
1387			wait_for_completion(&wait);
1388
1389			/* unlock the buffers from DMA */
1390			temp64.val32.lower = c->SG[0].Addr.lower;
1391			temp64.val32.upper = c->SG[0].Addr.upper;
1392			pci_unmap_single(host->pdev, (dma_addr_t) temp64.val,
1393					 iocommand.buf_size,
1394					 PCI_DMA_BIDIRECTIONAL);
1395
1396			check_ioctl_unit_attention(host, c);
1397
1398			/* Copy the error information out */
1399			iocommand.error_info = *(c->err_info);
1400			if (copy_to_user
1401			    (argp, &iocommand, sizeof(IOCTL_Command_struct))) {
1402				kfree(buff);
1403				cmd_free(host, c, 0);
1404				return -EFAULT;
1405			}
1406
1407			if (iocommand.Request.Type.Direction == XFER_READ) {
1408				/* Copy the data out of the buffer we created */
1409				if (copy_to_user
1410				    (iocommand.buf, buff, iocommand.buf_size)) {
1411					kfree(buff);
1412					cmd_free(host, c, 0);
1413					return -EFAULT;
1414				}
1415			}
1416			kfree(buff);
1417			cmd_free(host, c, 0);
1418			return 0;
1419		}
1420	case CCISS_BIG_PASSTHRU:{
1421			BIG_IOCTL_Command_struct *ioc;
1422			CommandList_struct *c;
1423			unsigned char **buff = NULL;
1424			int *buff_size = NULL;
1425			u64bit temp64;
1426			unsigned long flags;
1427			BYTE sg_used = 0;
1428			int status = 0;
1429			int i;
1430			DECLARE_COMPLETION_ONSTACK(wait);
1431			__u32 left;
1432			__u32 sz;
1433			BYTE __user *data_ptr;
1434
1435			if (!arg)
1436				return -EINVAL;
1437			if (!capable(CAP_SYS_RAWIO))
1438				return -EPERM;
1439			ioc = (BIG_IOCTL_Command_struct *)
1440			    kmalloc(sizeof(*ioc), GFP_KERNEL);
1441			if (!ioc) {
1442				status = -ENOMEM;
1443				goto cleanup1;
1444			}
1445			if (copy_from_user(ioc, argp, sizeof(*ioc))) {
1446				status = -EFAULT;
1447				goto cleanup1;
1448			}
1449			if ((ioc->buf_size < 1) &&
1450			    (ioc->Request.Type.Direction != XFER_NONE)) {
1451				status = -EINVAL;
1452				goto cleanup1;
1453			}
1454			/* Check kmalloc limits  using all SGs */
1455			if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
1456				status = -EINVAL;
1457				goto cleanup1;
1458			}
1459			if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
1460				status = -EINVAL;
1461				goto cleanup1;
1462			}
1463			buff =
1464			    kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
1465			if (!buff) {
1466				status = -ENOMEM;
1467				goto cleanup1;
1468			}
1469			buff_size = kmalloc(MAXSGENTRIES * sizeof(int),
1470						   GFP_KERNEL);
1471			if (!buff_size) {
1472				status = -ENOMEM;
1473				goto cleanup1;
1474			}
1475			left = ioc->buf_size;
1476			data_ptr = ioc->buf;
1477			while (left) {
1478				sz = (left >
1479				      ioc->malloc_size) ? ioc->
1480				    malloc_size : left;
1481				buff_size[sg_used] = sz;
1482				buff[sg_used] = kmalloc(sz, GFP_KERNEL);
1483				if (buff[sg_used] == NULL) {
1484					status = -ENOMEM;
1485					goto cleanup1;
1486				}
1487				if (ioc->Request.Type.Direction == XFER_WRITE) {
1488					if (copy_from_user
1489					    (buff[sg_used], data_ptr, sz)) {
1490						status = -EFAULT;
1491						goto cleanup1;
1492					}
1493				} else {
1494					memset(buff[sg_used], 0, sz);
1495				}
1496				left -= sz;
1497				data_ptr += sz;
1498				sg_used++;
1499			}
1500			if ((c = cmd_alloc(host, 0)) == NULL) {
1501				status = -ENOMEM;
1502				goto cleanup1;
1503			}
1504			c->cmd_type = CMD_IOCTL_PEND;
1505			c->Header.ReplyQueue = 0;
1506
1507			if (ioc->buf_size > 0) {
1508				c->Header.SGList = sg_used;
1509				c->Header.SGTotal = sg_used;
1510			} else {
1511				c->Header.SGList = 0;
1512				c->Header.SGTotal = 0;
1513			}
1514			c->Header.LUN = ioc->LUN_info;
1515			c->Header.Tag.lower = c->busaddr;
1516
1517			c->Request = ioc->Request;
1518			if (ioc->buf_size > 0) {
1519				int i;
1520				for (i = 0; i < sg_used; i++) {
1521					temp64.val =
1522					    pci_map_single(host->pdev, buff[i],
1523						    buff_size[i],
1524						    PCI_DMA_BIDIRECTIONAL);
1525					c->SG[i].Addr.lower =
1526					    temp64.val32.lower;
1527					c->SG[i].Addr.upper =
1528					    temp64.val32.upper;
1529					c->SG[i].Len = buff_size[i];
1530					c->SG[i].Ext = 0;	/* we are not chaining */
1531				}
1532			}
1533			c->waiting = &wait;
1534			/* Put the request on the tail of the request queue */
1535			spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1536			addQ(&host->reqQ, c);
1537			host->Qdepth++;
1538			start_io(host);
1539			spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1540			wait_for_completion(&wait);
1541			/* unlock the buffers from DMA */
1542			for (i = 0; i < sg_used; i++) {
1543				temp64.val32.lower = c->SG[i].Addr.lower;
1544				temp64.val32.upper = c->SG[i].Addr.upper;
1545				pci_unmap_single(host->pdev,
1546					(dma_addr_t) temp64.val, buff_size[i],
1547					PCI_DMA_BIDIRECTIONAL);
1548			}
1549			check_ioctl_unit_attention(host, c);
1550			/* Copy the error information out */
1551			ioc->error_info = *(c->err_info);
1552			if (copy_to_user(argp, ioc, sizeof(*ioc))) {
1553				cmd_free(host, c, 0);
1554				status = -EFAULT;
1555				goto cleanup1;
1556			}
1557			if (ioc->Request.Type.Direction == XFER_READ) {
1558				/* Copy the data out of the buffer we created */
1559				BYTE __user *ptr = ioc->buf;
1560				for (i = 0; i < sg_used; i++) {
1561					if (copy_to_user
1562					    (ptr, buff[i], buff_size[i])) {
1563						cmd_free(host, c, 0);
1564						status = -EFAULT;
1565						goto cleanup1;
1566					}
1567					ptr += buff_size[i];
1568				}
1569			}
1570			cmd_free(host, c, 0);
1571			status = 0;
1572		      cleanup1:
1573			if (buff) {
1574				for (i = 0; i < sg_used; i++)
1575					kfree(buff[i]);
1576				kfree(buff);
1577			}
1578			kfree(buff_size);
1579			kfree(ioc);
1580			return status;
1581		}
1582
1583	/* scsi_cmd_ioctl handles these, below, though some are not */
1584	/* very meaningful for cciss.  SG_IO is the main one people want. */
1585
1586	case SG_GET_VERSION_NUM:
1587	case SG_SET_TIMEOUT:
1588	case SG_GET_TIMEOUT:
1589	case SG_GET_RESERVED_SIZE:
1590	case SG_SET_RESERVED_SIZE:
1591	case SG_EMULATED_HOST:
1592	case SG_IO:
1593	case SCSI_IOCTL_SEND_COMMAND:
1594		return scsi_cmd_ioctl(disk->queue, disk, mode, cmd, argp);
1595
1596	/* scsi_cmd_ioctl would normally handle these, below, but */
1597	/* they aren't a good fit for cciss, as CD-ROMs are */
1598	/* not supported, and we don't have any bus/target/lun */
1599	/* which we present to the kernel. */
1600
1601	case CDROM_SEND_PACKET:
1602	case CDROMCLOSETRAY:
1603	case CDROMEJECT:
1604	case SCSI_IOCTL_GET_IDLUN:
1605	case SCSI_IOCTL_GET_BUS_NUMBER:
1606	default:
1607		return -ENOTTY;
1608	}
1609}
1610
1611static void cciss_check_queues(ctlr_info_t *h)
1612{
1613	int start_queue = h->next_to_run;
1614	int i;
1615
1616	/* check to see if we have maxed out the number of commands that can
1617	 * be placed on the queue.  If so then exit.  We do this check here
1618	 * in case the interrupt we serviced was from an ioctl and did not
1619	 * free any new commands.
1620	 */
1621	if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
1622		return;
1623
1624	/* We have room on the queue for more commands.  Now we need to queue
1625	 * them up.  We will also keep track of the next queue to run so
1626	 * that every queue gets a chance to be started first.
1627	 */
1628	for (i = 0; i < h->highest_lun + 1; i++) {
1629		int curr_queue = (start_queue + i) % (h->highest_lun + 1);
1630		/* make sure the disk has been added and the drive is real
1631		 * because this can be called from the middle of init_one.
1632		 */
1633		if (!h->drv[curr_queue])
1634			continue;
1635		if (!(h->drv[curr_queue]->queue) ||
1636			!(h->drv[curr_queue]->heads))
1637			continue;
1638		blk_start_queue(h->gendisk[curr_queue]->queue);
1639
1640		/* check to see if we have maxed out the number of commands
1641		 * that can be placed on the queue.
1642		 */
1643		if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
1644			if (curr_queue == start_queue) {
1645				h->next_to_run =
1646				    (start_queue + 1) % (h->highest_lun + 1);
1647				break;
1648			} else {
1649				h->next_to_run = curr_queue;
1650				break;
1651			}
1652		}
1653	}
1654}
1655
1656static void cciss_softirq_done(struct request *rq)
1657{
1658	CommandList_struct *cmd = rq->completion_data;
1659	ctlr_info_t *h = hba[cmd->ctlr];
1660	unsigned long flags;
1661	u64bit temp64;
1662	int i, ddir;
1663
1664	if (cmd->Request.Type.Direction == XFER_READ)
1665		ddir = PCI_DMA_FROMDEVICE;
1666	else
1667		ddir = PCI_DMA_TODEVICE;
1668
1669	/* command did not need to be retried */
1670	/* unmap the DMA mapping for all the scatter gather elements */
1671	for (i = 0; i < cmd->Header.SGList; i++) {
1672		temp64.val32.lower = cmd->SG[i].Addr.lower;
1673		temp64.val32.upper = cmd->SG[i].Addr.upper;
1674		pci_unmap_page(h->pdev, temp64.val, cmd->SG[i].Len, ddir);
1675	}
1676
1677#ifdef CCISS_DEBUG
1678	printk("Done with %p\n", rq);
1679#endif				/* CCISS_DEBUG */
1680
1681	/* set the residual count for pc requests */
1682	if (blk_pc_request(rq))
1683		rq->resid_len = cmd->err_info->ResidualCnt;
1684
1685	blk_end_request_all(rq, (rq->errors == 0) ? 0 : -EIO);
1686
1687	spin_lock_irqsave(&h->lock, flags);
1688	cmd_free(h, cmd, 1);
1689	cciss_check_queues(h);
1690	spin_unlock_irqrestore(&h->lock, flags);
1691}
1692
1693static inline void log_unit_to_scsi3addr(ctlr_info_t *h,
1694	unsigned char scsi3addr[], uint32_t log_unit)
1695{
1696	memcpy(scsi3addr, h->drv[log_unit]->LunID,
1697		sizeof(h->drv[log_unit]->LunID));
1698}
1699
1700/* This function gets the SCSI vendor, model, and revision of a logical drive
1701 * via the inquiry page 0.  Model, vendor, and rev are set to empty strings if
1702 * they cannot be read.
1703 */
1704static void cciss_get_device_descr(int ctlr, int logvol, int withirq,
1705				   char *vendor, char *model, char *rev)
1706{
1707	int rc;
1708	InquiryData_struct *inq_buf;
1709	unsigned char scsi3addr[8];
1710
1711	*vendor = '\0';
1712	*model = '\0';
1713	*rev = '\0';
1714
1715	inq_buf = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1716	if (!inq_buf)
1717		return;
1718
1719	log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
1720	if (withirq)
1721		rc = sendcmd_withirq(CISS_INQUIRY, ctlr, inq_buf,
1722			     sizeof(InquiryData_struct), 0,
1723				scsi3addr, TYPE_CMD);
1724	else
1725		rc = sendcmd(CISS_INQUIRY, ctlr, inq_buf,
1726			     sizeof(InquiryData_struct), 0,
1727				scsi3addr, TYPE_CMD);
1728	if (rc == IO_OK) {
1729		memcpy(vendor, &inq_buf->data_byte[8], VENDOR_LEN);
1730		vendor[VENDOR_LEN] = '\0';
1731		memcpy(model, &inq_buf->data_byte[16], MODEL_LEN);
1732		model[MODEL_LEN] = '\0';
1733		memcpy(rev, &inq_buf->data_byte[32], REV_LEN);
1734		rev[REV_LEN] = '\0';
1735	}
1736
1737	kfree(inq_buf);
1738	return;
1739}
1740
1741/* This function gets the serial number of a logical drive via
1742 * inquiry page 0x83.  Serial no. is 16 bytes.  If the serial
1743 * number cannot be had, for whatever reason, 16 bytes of 0xff
1744 * are returned instead.
1745 */
1746static void cciss_get_serial_no(int ctlr, int logvol, int withirq,
1747				unsigned char *serial_no, int buflen)
1748{
1749#define PAGE_83_INQ_BYTES 64
1750	int rc;
1751	unsigned char *buf;
1752	unsigned char scsi3addr[8];
1753
1754	if (buflen > 16)
1755		buflen = 16;
1756	memset(serial_no, 0xff, buflen);
1757	buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL);
1758	if (!buf)
1759		return;
1760	memset(serial_no, 0, buflen);
1761	log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
1762	if (withirq)
1763		rc = sendcmd_withirq(CISS_INQUIRY, ctlr, buf,
1764			PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
1765	else
1766		rc = sendcmd(CISS_INQUIRY, ctlr, buf,
1767			PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
1768	if (rc == IO_OK)
1769		memcpy(serial_no, &buf[8], buflen);
1770	kfree(buf);
1771	return;
1772}
1773
1774/*
1775 * cciss_add_disk sets up the block device queue for a logical drive
1776 */
1777static int cciss_add_disk(ctlr_info_t *h, struct gendisk *disk,
1778				int drv_index)
1779{
1780	disk->queue = blk_init_queue(do_cciss_request, &h->lock);
1781	if (!disk->queue)
1782		goto init_queue_failure;
1783	sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index);
1784	disk->major = h->major;
1785	disk->first_minor = drv_index << NWD_SHIFT;
1786	disk->fops = &cciss_fops;
1787	if (cciss_create_ld_sysfs_entry(h, drv_index))
1788		goto cleanup_queue;
1789	disk->private_data = h->drv[drv_index];
1790	disk->driverfs_dev = &h->drv[drv_index]->dev;
1791
1792	/* Set up queue information */
1793	blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask);
1794
1795	/* This is a hardware imposed limit. */
1796	blk_queue_max_hw_segments(disk->queue, MAXSGENTRIES);
1797
1798	/* This is a limit in the driver and could be eliminated. */
1799	blk_queue_max_phys_segments(disk->queue, MAXSGENTRIES);
1800
1801	blk_queue_max_sectors(disk->queue, h->cciss_max_sectors);
1802
1803	blk_queue_softirq_done(disk->queue, cciss_softirq_done);
1804
1805	disk->queue->queuedata = h;
1806
1807	blk_queue_logical_block_size(disk->queue,
1808				     h->drv[drv_index]->block_size);
1809
1810	/* Make sure all queue data is written out before */
1811	/* setting h->drv[drv_index]->queue, as setting this */
1812	/* allows the interrupt handler to start the queue */
1813	wmb();
1814	h->drv[drv_index]->queue = disk->queue;
1815	add_disk(disk);
1816	return 0;
1817
1818cleanup_queue:
1819	blk_cleanup_queue(disk->queue);
1820	disk->queue = NULL;
1821init_queue_failure:
1822	return -1;
1823}
1824
1825/* This function will check the usage_count of the drive to be updated/added.
1826 * If the usage_count is zero and it is a heretofore unknown drive, or,
1827 * the drive's capacity, geometry, or serial number has changed,
1828 * then the drive information will be updated and the disk will be
1829 * re-registered with the kernel.  If these conditions don't hold,
1830 * then it will be left alone for the next reboot.  The exception to this
1831 * is disk 0 which will always be left registered with the kernel since it
1832 * is also the controller node.  Any changes to disk 0 will show up on
1833 * the next reboot.
1834 */
1835static void cciss_update_drive_info(int ctlr, int drv_index, int first_time,
1836	int via_ioctl)
1837{
1838	ctlr_info_t *h = hba[ctlr];
1839	struct gendisk *disk;
1840	InquiryData_struct *inq_buff = NULL;
1841	unsigned int block_size;
1842	sector_t total_size;
1843	unsigned long flags = 0;
1844	int ret = 0;
1845	drive_info_struct *drvinfo;
1846
1847	/* Get information about the disk and modify the driver structure */
1848	inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1849	drvinfo = kzalloc(sizeof(*drvinfo), GFP_KERNEL);
1850	if (inq_buff == NULL || drvinfo == NULL)
1851		goto mem_msg;
1852
1853	/* testing to see if 16-byte CDBs are already being used */
1854	if (h->cciss_read == CCISS_READ_16) {
1855		cciss_read_capacity_16(h->ctlr, drv_index, 1,
1856			&total_size, &block_size);
1857
1858	} else {
1859		cciss_read_capacity(ctlr, drv_index, 1,
1860				    &total_size, &block_size);
1861
1862		/* if read_capacity returns all F's this volume is >2TB */
1863		/* in size so we switch to 16-byte CDB's for all */
1864		/* read/write ops */
1865		if (total_size == 0xFFFFFFFFULL) {
1866			cciss_read_capacity_16(ctlr, drv_index, 1,
1867			&total_size, &block_size);
1868			h->cciss_read = CCISS_READ_16;
1869			h->cciss_write = CCISS_WRITE_16;
1870		} else {
1871			h->cciss_read = CCISS_READ_10;
1872			h->cciss_write = CCISS_WRITE_10;
1873		}
1874	}
1875
1876	cciss_geometry_inquiry(ctlr, drv_index, 1, total_size, block_size,
1877			       inq_buff, drvinfo);
1878	drvinfo->block_size = block_size;
1879	drvinfo->nr_blocks = total_size + 1;
1880
1881	cciss_get_device_descr(ctlr, drv_index, 1, drvinfo->vendor,
1882				drvinfo->model, drvinfo->rev);
1883	cciss_get_serial_no(ctlr, drv_index, 1, drvinfo->serial_no,
1884			sizeof(drvinfo->serial_no));
1885	/* Save the lunid in case we deregister the disk, below. */
1886	memcpy(drvinfo->LunID, h->drv[drv_index]->LunID,
1887		sizeof(drvinfo->LunID));
1888
1889	/* Is it the same disk we already know, and nothing's changed? */
1890	if (h->drv[drv_index]->raid_level != -1 &&
1891		((memcmp(drvinfo->serial_no,
1892				h->drv[drv_index]->serial_no, 16) == 0) &&
1893		drvinfo->block_size == h->drv[drv_index]->block_size &&
1894		drvinfo->nr_blocks == h->drv[drv_index]->nr_blocks &&
1895		drvinfo->heads == h->drv[drv_index]->heads &&
1896		drvinfo->sectors == h->drv[drv_index]->sectors &&
1897		drvinfo->cylinders == h->drv[drv_index]->cylinders))
1898			/* The disk is unchanged, nothing to update */
1899			goto freeret;
1900
1901	/* If we get here it's not the same disk, or something's changed,
1902	 * so we need to * deregister it, and re-register it, if it's not
1903	 * in use.
1904	 * If the disk already exists then deregister it before proceeding
1905	 * (unless it's the first disk (for the controller node).
1906	 */
1907	if (h->drv[drv_index]->raid_level != -1 && drv_index != 0) {
1908		printk(KERN_WARNING "disk %d has changed.\n", drv_index);
1909		spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
1910		h->drv[drv_index]->busy_configuring = 1;
1911		spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1912
1913		/* deregister_disk sets h->drv[drv_index]->queue = NULL
1914		 * which keeps the interrupt handler from starting
1915		 * the queue.
1916		 */
1917		ret = deregister_disk(h, drv_index, 0, via_ioctl);
1918	}
1919
1920	/* If the disk is in use return */
1921	if (ret)
1922		goto freeret;
1923
1924	/* Save the new information from cciss_geometry_inquiry
1925	 * and serial number inquiry.  If the disk was deregistered
1926	 * above, then h->drv[drv_index] will be NULL.
1927	 */
1928	if (h->drv[drv_index] == NULL) {
1929		drvinfo->device_initialized = 0;
1930		h->drv[drv_index] = drvinfo;
1931		drvinfo = NULL; /* so it won't be freed below. */
1932	} else {
1933		/* special case for cxd0 */
1934		h->drv[drv_index]->block_size = drvinfo->block_size;
1935		h->drv[drv_index]->nr_blocks = drvinfo->nr_blocks;
1936		h->drv[drv_index]->heads = drvinfo->heads;
1937		h->drv[drv_index]->sectors = drvinfo->sectors;
1938		h->drv[drv_index]->cylinders = drvinfo->cylinders;
1939		h->drv[drv_index]->raid_level = drvinfo->raid_level;
1940		memcpy(h->drv[drv_index]->serial_no, drvinfo->serial_no, 16);
1941		memcpy(h->drv[drv_index]->vendor, drvinfo->vendor,
1942			VENDOR_LEN + 1);
1943		memcpy(h->drv[drv_index]->model, drvinfo->model, MODEL_LEN + 1);
1944		memcpy(h->drv[drv_index]->rev, drvinfo->rev, REV_LEN + 1);
1945	}
1946
1947	++h->num_luns;
1948	disk = h->gendisk[drv_index];
1949	set_capacity(disk, h->drv[drv_index]->nr_blocks);
1950
1951	/* If it's not disk 0 (drv_index != 0)
1952	 * or if it was disk 0, but there was previously
1953	 * no actual corresponding configured logical drive
1954	 * (raid_leve == -1) then we want to update the
1955	 * logical drive's information.
1956	 */
1957	if (drv_index || first_time) {
1958		if (cciss_add_disk(h, disk, drv_index) != 0) {
1959			cciss_free_gendisk(h, drv_index);
1960			cciss_free_drive_info(h, drv_index);
1961			printk(KERN_WARNING "cciss:%d could not update "
1962				"disk %d\n", h->ctlr, drv_index);
1963			--h->num_luns;
1964		}
1965	}
1966
1967freeret:
1968	kfree(inq_buff);
1969	kfree(drvinfo);
1970	return;
1971mem_msg:
1972	printk(KERN_ERR "cciss: out of memory\n");
1973	goto freeret;
1974}
1975
1976/* This function will find the first index of the controllers drive array
1977 * that has a null drv pointer and allocate the drive info struct and
1978 * will return that index   This is where new drives will be added.
1979 * If the index to be returned is greater than the highest_lun index for
1980 * the controller then highest_lun is set * to this new index.
1981 * If there are no available indexes or if tha allocation fails, then -1
1982 * is returned.  * "controller_node" is used to know if this is a real
1983 * logical drive, or just the controller node, which determines if this
1984 * counts towards highest_lun.
1985 */
1986static int cciss_alloc_drive_info(ctlr_info_t *h, int controller_node)
1987{
1988	int i;
1989	drive_info_struct *drv;
1990
1991	/* Search for an empty slot for our drive info */
1992	for (i = 0; i < CISS_MAX_LUN; i++) {
1993
1994		/* if not cxd0 case, and it's occupied, skip it. */
1995		if (h->drv[i] && i != 0)
1996			continue;
1997		/*
1998		 * If it's cxd0 case, and drv is alloc'ed already, and a
1999		 * disk is configured there, skip it.
2000		 */
2001		if (i == 0 && h->drv[i] && h->drv[i]->raid_level != -1)
2002			continue;
2003
2004		/*
2005		 * We've found an empty slot.  Update highest_lun
2006		 * provided this isn't just the fake cxd0 controller node.
2007		 */
2008		if (i > h->highest_lun && !controller_node)
2009			h->highest_lun = i;
2010
2011		/* If adding a real disk at cxd0, and it's already alloc'ed */
2012		if (i == 0 && h->drv[i] != NULL)
2013			return i;
2014
2015		/*
2016		 * Found an empty slot, not already alloc'ed.  Allocate it.
2017		 * Mark it with raid_level == -1, so we know it's new later on.
2018		 */
2019		drv = kzalloc(sizeof(*drv), GFP_KERNEL);
2020		if (!drv)
2021			return -1;
2022		drv->raid_level = -1; /* so we know it's new */
2023		h->drv[i] = drv;
2024		return i;
2025	}
2026	return -1;
2027}
2028
2029static void cciss_free_drive_info(ctlr_info_t *h, int drv_index)
2030{
2031	kfree(h->drv[drv_index]);
2032	h->drv[drv_index] = NULL;
2033}
2034
2035static void cciss_free_gendisk(ctlr_info_t *h, int drv_index)
2036{
2037	put_disk(h->gendisk[drv_index]);
2038	h->gendisk[drv_index] = NULL;
2039}
2040
2041/* cciss_add_gendisk finds a free hba[]->drv structure
2042 * and allocates a gendisk if needed, and sets the lunid
2043 * in the drvinfo structure.   It returns the index into
2044 * the ->drv[] array, or -1 if none are free.
2045 * is_controller_node indicates whether highest_lun should
2046 * count this disk, or if it's only being added to provide
2047 * a means to talk to the controller in case no logical
2048 * drives have yet been configured.
2049 */
2050static int cciss_add_gendisk(ctlr_info_t *h, unsigned char lunid[],
2051	int controller_node)
2052{
2053	int drv_index;
2054
2055	drv_index = cciss_alloc_drive_info(h, controller_node);
2056	if (drv_index == -1)
2057		return -1;
2058
2059	/*Check if the gendisk needs to be allocated */
2060	if (!h->gendisk[drv_index]) {
2061		h->gendisk[drv_index] =
2062			alloc_disk(1 << NWD_SHIFT);
2063		if (!h->gendisk[drv_index]) {
2064			printk(KERN_ERR "cciss%d: could not "
2065				"allocate a new disk %d\n",
2066				h->ctlr, drv_index);
2067			goto err_free_drive_info;
2068		}
2069	}
2070	memcpy(h->drv[drv_index]->LunID, lunid,
2071		sizeof(h->drv[drv_index]->LunID));
2072	if (cciss_create_ld_sysfs_entry(h, drv_index))
2073		goto err_free_disk;
2074	/* Don't need to mark this busy because nobody */
2075	/* else knows about this disk yet to contend */
2076	/* for access to it. */
2077	h->drv[drv_index]->busy_configuring = 0;
2078	wmb();
2079	return drv_index;
2080
2081err_free_disk:
2082	cciss_free_gendisk(h, drv_index);
2083err_free_drive_info:
2084	cciss_free_drive_info(h, drv_index);
2085	return -1;
2086}
2087
2088/* This is for the special case of a controller which
2089 * has no logical drives.  In this case, we still need
2090 * to register a disk so the controller can be accessed
2091 * by the Array Config Utility.
2092 */
2093static void cciss_add_controller_node(ctlr_info_t *h)
2094{
2095	struct gendisk *disk;
2096	int drv_index;
2097
2098	if (h->gendisk[0] != NULL) /* already did this? Then bail. */
2099		return;
2100
2101	drv_index = cciss_add_gendisk(h, CTLR_LUNID, 1);
2102	if (drv_index == -1)
2103		goto error;
2104	h->drv[drv_index]->block_size = 512;
2105	h->drv[drv_index]->nr_blocks = 0;
2106	h->drv[drv_index]->heads = 0;
2107	h->drv[drv_index]->sectors = 0;
2108	h->drv[drv_index]->cylinders = 0;
2109	h->drv[drv_index]->raid_level = -1;
2110	memset(h->drv[drv_index]->serial_no, 0, 16);
2111	disk = h->gendisk[drv_index];
2112	if (cciss_add_disk(h, disk, drv_index) == 0)
2113		return;
2114	cciss_free_gendisk(h, drv_index);
2115	cciss_free_drive_info(h, drv_index);
2116error:
2117	printk(KERN_WARNING "cciss%d: could not "
2118		"add disk 0.\n", h->ctlr);
2119	return;
2120}
2121
2122/* This function will add and remove logical drives from the Logical
2123 * drive array of the controller and maintain persistency of ordering
2124 * so that mount points are preserved until the next reboot.  This allows
2125 * for the removal of logical drives in the middle of the drive array
2126 * without a re-ordering of those drives.
2127 * INPUT
2128 * h		= The controller to perform the operations on
2129 */
2130static int rebuild_lun_table(ctlr_info_t *h, int first_time,
2131	int via_ioctl)
2132{
2133	int ctlr = h->ctlr;
2134	int num_luns;
2135	ReportLunData_struct *ld_buff = NULL;
2136	int return_code;
2137	int listlength = 0;
2138	int i;
2139	int drv_found;
2140	int drv_index = 0;
2141	unsigned char lunid[8] = CTLR_LUNID;
2142	unsigned long flags;
2143
2144	if (!capable(CAP_SYS_RAWIO))
2145		return -EPERM;
2146
2147	/* Set busy_configuring flag for this operation */
2148	spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2149	if (h->busy_configuring) {
2150		spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2151		return -EBUSY;
2152	}
2153	h->busy_configuring = 1;
2154	spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2155
2156	ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
2157	if (ld_buff == NULL)
2158		goto mem_msg;
2159
2160	return_code = sendcmd_withirq(CISS_REPORT_LOG, ctlr, ld_buff,
2161				      sizeof(ReportLunData_struct),
2162				      0, CTLR_LUNID, TYPE_CMD);
2163
2164	if (return_code == IO_OK)
2165		listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
2166	else {	/* reading number of logical volumes failed */
2167		printk(KERN_WARNING "cciss: report logical volume"
2168		       " command failed\n");
2169		listlength = 0;
2170		goto freeret;
2171	}
2172
2173	num_luns = listlength / 8;	/* 8 bytes per entry */
2174	if (num_luns > CISS_MAX_LUN) {
2175		num_luns = CISS_MAX_LUN;
2176		printk(KERN_WARNING "cciss: more luns configured"
2177		       " on controller than can be handled by"
2178		       " this driver.\n");
2179	}
2180
2181	if (num_luns == 0)
2182		cciss_add_controller_node(h);
2183
2184	/* Compare controller drive array to driver's drive array
2185	 * to see if any drives are missing on the controller due
2186	 * to action of Array Config Utility (user deletes drive)
2187	 * and deregister logical drives which have disappeared.
2188	 */
2189	for (i = 0; i <= h->highest_lun; i++) {
2190		int j;
2191		drv_found = 0;
2192
2193		/* skip holes in the array from already deleted drives */
2194		if (h->drv[i] == NULL)
2195			continue;
2196
2197		for (j = 0; j < num_luns; j++) {
2198			memcpy(lunid, &ld_buff->LUN[j][0], sizeof(lunid));
2199			if (memcmp(h->drv[i]->LunID, lunid,
2200				sizeof(lunid)) == 0) {
2201				drv_found = 1;
2202				break;
2203			}
2204		}
2205		if (!drv_found) {
2206			/* Deregister it from the OS, it's gone. */
2207			spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2208			h->drv[i]->busy_configuring = 1;
2209			spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2210			return_code = deregister_disk(h, i, 1, via_ioctl);
2211			if (h->drv[i] != NULL)
2212				h->drv[i]->busy_configuring = 0;
2213		}
2214	}
2215
2216	/* Compare controller drive array to driver's drive array.
2217	 * Check for updates in the drive information and any new drives
2218	 * on the controller due to ACU adding logical drives, or changing
2219	 * a logical drive's size, etc.  Reregister any new/changed drives
2220	 */
2221	for (i = 0; i < num_luns; i++) {
2222		int j;
2223
2224		drv_found = 0;
2225
2226		memcpy(lunid, &ld_buff->LUN[i][0], sizeof(lunid));
2227		/* Find if the LUN is already in the drive array
2228		 * of the driver.  If so then update its info
2229		 * if not in use.  If it does not exist then find
2230		 * the first free index and add it.
2231		 */
2232		for (j = 0; j <= h->highest_lun; j++) {
2233			if (h->drv[j] != NULL &&
2234				memcmp(h->drv[j]->LunID, lunid,
2235					sizeof(h->drv[j]->LunID)) == 0) {
2236				drv_index = j;
2237				drv_found = 1;
2238				break;
2239			}
2240		}
2241
2242		/* check if the drive was found already in the array */
2243		if (!drv_found) {
2244			drv_index = cciss_add_gendisk(h, lunid, 0);
2245			if (drv_index == -1)
2246				goto freeret;
2247		}
2248		cciss_update_drive_info(ctlr, drv_index, first_time,
2249			via_ioctl);
2250	}		/* end for */
2251
2252freeret:
2253	kfree(ld_buff);
2254	h->busy_configuring = 0;
2255	/* We return -1 here to tell the ACU that we have registered/updated
2256	 * all of the drives that we can and to keep it from calling us
2257	 * additional times.
2258	 */
2259	return -1;
2260mem_msg:
2261	printk(KERN_ERR "cciss: out of memory\n");
2262	h->busy_configuring = 0;
2263	goto freeret;
2264}
2265
2266static void cciss_clear_drive_info(drive_info_struct *drive_info)
2267{
2268	/* zero out the disk size info */
2269	drive_info->nr_blocks = 0;
2270	drive_info->block_size = 0;
2271	drive_info->heads = 0;
2272	drive_info->sectors = 0;
2273	drive_info->cylinders = 0;
2274	drive_info->raid_level = -1;
2275	memset(drive_info->serial_no, 0, sizeof(drive_info->serial_no));
2276	memset(drive_info->model, 0, sizeof(drive_info->model));
2277	memset(drive_info->rev, 0, sizeof(drive_info->rev));
2278	memset(drive_info->vendor, 0, sizeof(drive_info->vendor));
2279	/*
2280	 * don't clear the LUNID though, we need to remember which
2281	 * one this one is.
2282	 */
2283}
2284
2285/* This function will deregister the disk and it's queue from the
2286 * kernel.  It must be called with the controller lock held and the
2287 * drv structures busy_configuring flag set.  It's parameters are:
2288 *
2289 * disk = This is the disk to be deregistered
2290 * drv  = This is the drive_info_struct associated with the disk to be
2291 *        deregistered.  It contains information about the disk used
2292 *        by the driver.
2293 * clear_all = This flag determines whether or not the disk information
2294 *             is going to be completely cleared out and the highest_lun
2295 *             reset.  Sometimes we want to clear out information about
2296 *             the disk in preparation for re-adding it.  In this case
2297 *             the highest_lun should be left unchanged and the LunID
2298 *             should not be cleared.
2299 * via_ioctl
2300 *    This indicates whether we've reached this path via ioctl.
2301 *    This affects the maximum usage count allowed for c0d0 to be messed with.
2302 *    If this path is reached via ioctl(), then the max_usage_count will
2303 *    be 1, as the process calling ioctl() has got to have the device open.
2304 *    If we get here via sysfs, then the max usage count will be zero.
2305*/
2306static int deregister_disk(ctlr_info_t *h, int drv_index,
2307			   int clear_all, int via_ioctl)
2308{
2309	int i;
2310	struct gendisk *disk;
2311	drive_info_struct *drv;
2312	int recalculate_highest_lun;
2313
2314	if (!capable(CAP_SYS_RAWIO))
2315		return -EPERM;
2316
2317	drv = h->drv[drv_index];
2318	disk = h->gendisk[drv_index];
2319
2320	/* make sure logical volume is NOT is use */
2321	if (clear_all || (h->gendisk[0] == disk)) {
2322		if (drv->usage_count > via_ioctl)
2323			return -EBUSY;
2324	} else if (drv->usage_count > 0)
2325		return -EBUSY;
2326
2327	recalculate_highest_lun = (drv == h->drv[h->highest_lun]);
2328
2329	/* invalidate the devices and deregister the disk.  If it is disk
2330	 * zero do not deregister it but just zero out it's values.  This
2331	 * allows us to delete disk zero but keep the controller registered.
2332	 */
2333	if (h->gendisk[0] != disk) {
2334		struct request_queue *q = disk->queue;
2335		if (disk->flags & GENHD_FL_UP) {
2336			cciss_destroy_ld_sysfs_entry(h, drv_index, 0);
2337			del_gendisk(disk);
2338		}
2339		if (q)
2340			blk_cleanup_queue(q);
2341		/* If clear_all is set then we are deleting the logical
2342		 * drive, not just refreshing its info.  For drives
2343		 * other than disk 0 we will call put_disk.  We do not
2344		 * do this for disk 0 as we need it to be able to
2345		 * configure the controller.
2346		 */
2347		if (clear_all){
2348			/* This isn't pretty, but we need to find the
2349			 * disk in our array and NULL our the pointer.
2350			 * This is so that we will call alloc_disk if
2351			 * this index is used again later.
2352			 */
2353			for (i=0; i < CISS_MAX_LUN; i++){
2354				if (h->gendisk[i] == disk) {
2355					h->gendisk[i] = NULL;
2356					break;
2357				}
2358			}
2359			put_disk(disk);
2360		}
2361	} else {
2362		set_capacity(disk, 0);
2363		cciss_clear_drive_info(drv);
2364	}
2365
2366	--h->num_luns;
2367
2368	/* if it was the last disk, find the new hightest lun */
2369	if (clear_all && recalculate_highest_lun) {
2370		int i, newhighest = -1;
2371		for (i = 0; i <= h->highest_lun; i++) {
2372			/* if the disk has size > 0, it is available */
2373			if (h->drv[i] && h->drv[i]->heads)
2374				newhighest = i;
2375		}
2376		h->highest_lun = newhighest;
2377	}
2378	return 0;
2379}
2380
2381static int fill_cmd(CommandList_struct *c, __u8 cmd, int ctlr, void *buff,
2382		size_t size, __u8 page_code, unsigned char *scsi3addr,
2383		int cmd_type)
2384{
2385	ctlr_info_t *h = hba[ctlr];
2386	u64bit buff_dma_handle;
2387	int status = IO_OK;
2388
2389	c->cmd_type = CMD_IOCTL_PEND;
2390	c->Header.ReplyQueue = 0;
2391	if (buff != NULL) {
2392		c->Header.SGList = 1;
2393		c->Header.SGTotal = 1;
2394	} else {
2395		c->Header.SGList = 0;
2396		c->Header.SGTotal = 0;
2397	}
2398	c->Header.Tag.lower = c->busaddr;
2399	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2400
2401	c->Request.Type.Type = cmd_type;
2402	if (cmd_type == TYPE_CMD) {
2403		switch (cmd) {
2404		case CISS_INQUIRY:
2405			/* are we trying to read a vital product page */
2406			if (page_code != 0) {
2407				c->Request.CDB[1] = 0x01;
2408				c->Request.CDB[2] = page_code;
2409			}
2410			c->Request.CDBLen = 6;
2411			c->Request.Type.Attribute = ATTR_SIMPLE;
2412			c->Request.Type.Direction = XFER_READ;
2413			c->Request.Timeout = 0;
2414			c->Request.CDB[0] = CISS_INQUIRY;
2415			c->Request.CDB[4] = size & 0xFF;
2416			break;
2417		case CISS_REPORT_LOG:
2418		case CISS_REPORT_PHYS:
2419			/* Talking to controller so It's a physical command
2420			   mode = 00 target = 0.  Nothing to write.
2421			 */
2422			c->Request.CDBLen = 12;
2423			c->Request.Type.Attribute = ATTR_SIMPLE;
2424			c->Request.Type.Direction = XFER_READ;
2425			c->Request.Timeout = 0;
2426			c->Request.CDB[0] = cmd;
2427			c->Request.CDB[6] = (size >> 24) & 0xFF;	//MSB
2428			c->Request.CDB[7] = (size >> 16) & 0xFF;
2429			c->Request.CDB[8] = (size >> 8) & 0xFF;
2430			c->Request.CDB[9] = size & 0xFF;
2431			break;
2432
2433		case CCISS_READ_CAPACITY:
2434			c->Request.CDBLen = 10;
2435			c->Request.Type.Attribute = ATTR_SIMPLE;
2436			c->Request.Type.Direction = XFER_READ;
2437			c->Request.Timeout = 0;
2438			c->Request.CDB[0] = cmd;
2439			break;
2440		case CCISS_READ_CAPACITY_16:
2441			c->Request.CDBLen = 16;
2442			c->Request.Type.Attribute = ATTR_SIMPLE;
2443			c->Request.Type.Direction = XFER_READ;
2444			c->Request.Timeout = 0;
2445			c->Request.CDB[0] = cmd;
2446			c->Request.CDB[1] = 0x10;
2447			c->Request.CDB[10] = (size >> 24) & 0xFF;
2448			c->Request.CDB[11] = (size >> 16) & 0xFF;
2449			c->Request.CDB[12] = (size >> 8) & 0xFF;
2450			c->Request.CDB[13] = size & 0xFF;
2451			c->Request.Timeout = 0;
2452			c->Request.CDB[0] = cmd;
2453			break;
2454		case CCISS_CACHE_FLUSH:
2455			c->Request.CDBLen = 12;
2456			c->Request.Type.Attribute = ATTR_SIMPLE;
2457			c->Request.Type.Direction = XFER_WRITE;
2458			c->Request.Timeout = 0;
2459			c->Request.CDB[0] = BMIC_WRITE;
2460			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2461			break;
2462		case TEST_UNIT_READY:
2463			c->Request.CDBLen = 6;
2464			c->Request.Type.Attribute = ATTR_SIMPLE;
2465			c->Request.Type.Direction = XFER_NONE;
2466			c->Request.Timeout = 0;
2467			break;
2468		default:
2469			printk(KERN_WARNING
2470			       "cciss%d:  Unknown Command 0x%c\n", ctlr, cmd);
2471			return IO_ERROR;
2472		}
2473	} else if (cmd_type == TYPE_MSG) {
2474		switch (cmd) {
2475		case 0:	/* ABORT message */
2476			c->Request.CDBLen = 12;
2477			c->Request.Type.Attribute = ATTR_SIMPLE;
2478			c->Request.Type.Direction = XFER_WRITE;
2479			c->Request.Timeout = 0;
2480			c->Request.CDB[0] = cmd;	/* abort */
2481			c->Request.CDB[1] = 0;	/* abort a command */
2482			/* buff contains the tag of the command to abort */
2483			memcpy(&c->Request.CDB[4], buff, 8);
2484			break;
2485		case 1:	/* RESET message */
2486			c->Request.CDBLen = 16;
2487			c->Request.Type.Attribute = ATTR_SIMPLE;
2488			c->Request.Type.Direction = XFER_NONE;
2489			c->Request.Timeout = 0;
2490			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2491			c->Request.CDB[0] = cmd;	/* reset */
2492			c->Request.CDB[1] = 0x03;	/* reset a target */
2493			break;
2494		case 3:	/* No-Op message */
2495			c->Request.CDBLen = 1;
2496			c->Request.Type.Attribute = ATTR_SIMPLE;
2497			c->Request.Type.Direction = XFER_WRITE;
2498			c->Request.Timeout = 0;
2499			c->Request.CDB[0] = cmd;
2500			break;
2501		default:
2502			printk(KERN_WARNING
2503			       "cciss%d: unknown message type %d\n", ctlr, cmd);
2504			return IO_ERROR;
2505		}
2506	} else {
2507		printk(KERN_WARNING
2508		       "cciss%d: unknown command type %d\n", ctlr, cmd_type);
2509		return IO_ERROR;
2510	}
2511	/* Fill in the scatter gather information */
2512	if (size > 0) {
2513		buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
2514							     buff, size,
2515							     PCI_DMA_BIDIRECTIONAL);
2516		c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
2517		c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
2518		c->SG[0].Len = size;
2519		c->SG[0].Ext = 0;	/* we are not chaining */
2520	}
2521	return status;
2522}
2523
2524static int check_target_status(ctlr_info_t *h, CommandList_struct *c)
2525{
2526	switch (c->err_info->ScsiStatus) {
2527	case SAM_STAT_GOOD:
2528		return IO_OK;
2529	case SAM_STAT_CHECK_CONDITION:
2530		switch (0xf & c->err_info->SenseInfo[2]) {
2531		case 0: return IO_OK; /* no sense */
2532		case 1: return IO_OK; /* recovered error */
2533		default:
2534			printk(KERN_WARNING "cciss%d: cmd 0x%02x "
2535				"check condition, sense key = 0x%02x\n",
2536				h->ctlr, c->Request.CDB[0],
2537				c->err_info->SenseInfo[2]);
2538		}
2539		break;
2540	default:
2541		printk(KERN_WARNING "cciss%d: cmd 0x%02x"
2542			"scsi status = 0x%02x\n", h->ctlr,
2543			c->Request.CDB[0], c->err_info->ScsiStatus);
2544		break;
2545	}
2546	return IO_ERROR;
2547}
2548
2549static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c)
2550{
2551	int return_status = IO_OK;
2552
2553	if (c->err_info->CommandStatus == CMD_SUCCESS)
2554		return IO_OK;
2555
2556	switch (c->err_info->CommandStatus) {
2557	case CMD_TARGET_STATUS:
2558		return_status = check_target_status(h, c);
2559		break;
2560	case CMD_DATA_UNDERRUN:
2561	case CMD_DATA_OVERRUN:
2562		/* expected for inquiry and report lun commands */
2563		break;
2564	case CMD_INVALID:
2565		printk(KERN_WARNING "cciss: cmd 0x%02x is "
2566		       "reported invalid\n", c->Request.CDB[0]);
2567		return_status = IO_ERROR;
2568		break;
2569	case CMD_PROTOCOL_ERR:
2570		printk(KERN_WARNING "cciss: cmd 0x%02x has "
2571		       "protocol error \n", c->Request.CDB[0]);
2572		return_status = IO_ERROR;
2573		break;
2574	case CMD_HARDWARE_ERR:
2575		printk(KERN_WARNING "cciss: cmd 0x%02x had "
2576		       " hardware error\n", c->Request.CDB[0]);
2577		return_status = IO_ERROR;
2578		break;
2579	case CMD_CONNECTION_LOST:
2580		printk(KERN_WARNING "cciss: cmd 0x%02x had "
2581		       "connection lost\n", c->Request.CDB[0]);
2582		return_status = IO_ERROR;
2583		break;
2584	case CMD_ABORTED:
2585		printk(KERN_WARNING "cciss: cmd 0x%02x was "
2586		       "aborted\n", c->Request.CDB[0]);
2587		return_status = IO_ERROR;
2588		break;
2589	case CMD_ABORT_FAILED:
2590		printk(KERN_WARNING "cciss: cmd 0x%02x reports "
2591		       "abort failed\n", c->Request.CDB[0]);
2592		return_status = IO_ERROR;
2593		break;
2594	case CMD_UNSOLICITED_ABORT:
2595		printk(KERN_WARNING
2596		       "cciss%d: unsolicited abort 0x%02x\n", h->ctlr,
2597			c->Request.CDB[0]);
2598		return_status = IO_NEEDS_RETRY;
2599		break;
2600	default:
2601		printk(KERN_WARNING "cciss: cmd 0x%02x returned "
2602		       "unknown status %x\n", c->Request.CDB[0],
2603		       c->err_info->CommandStatus);
2604		return_status = IO_ERROR;
2605	}
2606	return return_status;
2607}
2608
2609static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
2610	int attempt_retry)
2611{
2612	DECLARE_COMPLETION_ONSTACK(wait);
2613	u64bit buff_dma_handle;
2614	unsigned long flags;
2615	int return_status = IO_OK;
2616
2617resend_cmd2:
2618	c->waiting = &wait;
2619	/* Put the request on the tail of the queue and send it */
2620	spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2621	addQ(&h->reqQ, c);
2622	h->Qdepth++;
2623	start_io(h);
2624	spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2625
2626	wait_for_completion(&wait);
2627
2628	if (c->err_info->CommandStatus == 0 || !attempt_retry)
2629		goto command_done;
2630
2631	return_status = process_sendcmd_error(h, c);
2632
2633	if (return_status == IO_NEEDS_RETRY &&
2634		c->retry_count < MAX_CMD_RETRIES) {
2635		printk(KERN_WARNING "cciss%d: retrying 0x%02x\n", h->ctlr,
2636			c->Request.CDB[0]);
2637		c->retry_count++;
2638		/* erase the old error information */
2639		memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2640		return_status = IO_OK;
2641		INIT_COMPLETION(wait);
2642		goto resend_cmd2;
2643	}
2644
2645command_done:
2646	/* unlock the buffers from DMA */
2647	buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2648	buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2649	pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
2650			 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2651	return return_status;
2652}
2653
2654static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
2655			   __u8 page_code, unsigned char scsi3addr[],
2656			int cmd_type)
2657{
2658	ctlr_info_t *h = hba[ctlr];
2659	CommandList_struct *c;
2660	int return_status;
2661
2662	c = cmd_alloc(h, 0);
2663	if (!c)
2664		return -ENOMEM;
2665	return_status = fill_cmd(c, cmd, ctlr, buff, size, page_code,
2666		scsi3addr, cmd_type);
2667	if (return_status == IO_OK)
2668		return_status = sendcmd_withirq_core(h, c, 1);
2669
2670	cmd_free(h, c, 0);
2671	return return_status;
2672}
2673
2674static void cciss_geometry_inquiry(int ctlr, int logvol,
2675				   int withirq, sector_t total_size,
2676				   unsigned int block_size,
2677				   InquiryData_struct *inq_buff,
2678				   drive_info_struct *drv)
2679{
2680	int return_code;
2681	unsigned long t;
2682	unsigned char scsi3addr[8];
2683
2684	memset(inq_buff, 0, sizeof(InquiryData_struct));
2685	log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
2686	if (withirq)
2687		return_code = sendcmd_withirq(CISS_INQUIRY, ctlr,
2688					      inq_buff, sizeof(*inq_buff),
2689					      0xC1, scsi3addr, TYPE_CMD);
2690	else
2691		return_code = sendcmd(CISS_INQUIRY, ctlr, inq_buff,
2692				      sizeof(*inq_buff), 0xC1, scsi3addr,
2693				      TYPE_CMD);
2694	if (return_code == IO_OK) {
2695		if (inq_buff->data_byte[8] == 0xFF) {
2696			printk(KERN_WARNING
2697			       "cciss: reading geometry failed, volume "
2698			       "does not support reading geometry\n");
2699			drv->heads = 255;
2700			drv->sectors = 32;	// Sectors per track
2701			drv->cylinders = total_size + 1;
2702			drv->raid_level = RAID_UNKNOWN;
2703		} else {
2704			drv->heads = inq_buff->data_byte[6];
2705			drv->sectors = inq_buff->data_byte[7];
2706			drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
2707			drv->cylinders += inq_buff->data_byte[5];
2708			drv->raid_level = inq_buff->data_byte[8];
2709		}
2710		drv->block_size = block_size;
2711		drv->nr_blocks = total_size + 1;
2712		t = drv->heads * drv->sectors;
2713		if (t > 1) {
2714			sector_t real_size = total_size + 1;
2715			unsigned long rem = sector_div(real_size, t);
2716			if (rem)
2717				real_size++;
2718			drv->cylinders = real_size;
2719		}
2720	} else {		/* Get geometry failed */
2721		printk(KERN_WARNING "cciss: reading geometry failed\n");
2722	}
2723}
2724
2725static void
2726cciss_read_capacity(int ctlr, int logvol, int withirq, sector_t *total_size,
2727		    unsigned int *block_size)
2728{
2729	ReadCapdata_struct *buf;
2730	int return_code;
2731	unsigned char scsi3addr[8];
2732
2733	buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
2734	if (!buf) {
2735		printk(KERN_WARNING "cciss: out of memory\n");
2736		return;
2737	}
2738
2739	log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
2740	if (withirq)
2741		return_code = sendcmd_withirq(CCISS_READ_CAPACITY,
2742				ctlr, buf, sizeof(ReadCapdata_struct),
2743					0, scsi3addr, TYPE_CMD);
2744	else
2745		return_code = sendcmd(CCISS_READ_CAPACITY,
2746				ctlr, buf, sizeof(ReadCapdata_struct),
2747					0, scsi3addr, TYPE_CMD);
2748	if (return_code == IO_OK) {
2749		*total_size = be32_to_cpu(*(__be32 *) buf->total_size);
2750		*block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2751	} else {		/* read capacity command failed */
2752		printk(KERN_WARNING "cciss: read capacity failed\n");
2753		*total_size = 0;
2754		*block_size = BLOCK_SIZE;
2755	}
2756	kfree(buf);
2757}
2758
2759static void
2760cciss_read_capacity_16(int ctlr, int logvol, int withirq, sector_t *total_size, 				unsigned int *block_size)
2761{
2762	ReadCapdata_struct_16 *buf;
2763	int return_code;
2764	unsigned char scsi3addr[8];
2765
2766	buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
2767	if (!buf) {
2768		printk(KERN_WARNING "cciss: out of memory\n");
2769		return;
2770	}
2771
2772	log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
2773	if (withirq) {
2774		return_code = sendcmd_withirq(CCISS_READ_CAPACITY_16,
2775			ctlr, buf, sizeof(ReadCapdata_struct_16),
2776				0, scsi3addr, TYPE_CMD);
2777	}
2778	else {
2779		return_code = sendcmd(CCISS_READ_CAPACITY_16,
2780			ctlr, buf, sizeof(ReadCapdata_struct_16),
2781				0, scsi3addr, TYPE_CMD);
2782	}
2783	if (return_code == IO_OK) {
2784		*total_size = be64_to_cpu(*(__be64 *) buf->total_size);
2785		*block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2786	} else {		/* read capacity command failed */
2787		printk(KERN_WARNING "cciss: read capacity failed\n");
2788		*total_size = 0;
2789		*block_size = BLOCK_SIZE;
2790	}
2791	printk(KERN_INFO "      blocks= %llu block_size= %d\n",
2792	       (unsigned long long)*total_size+1, *block_size);
2793	kfree(buf);
2794}
2795
2796static int cciss_revalidate(struct gendisk *disk)
2797{
2798	ctlr_info_t *h = get_host(disk);
2799	drive_info_struct *drv = get_drv(disk);
2800	int logvol;
2801	int FOUND = 0;
2802	unsigned int block_size;
2803	sector_t total_size;
2804	InquiryData_struct *inq_buff = NULL;
2805
2806	for (logvol = 0; logvol < CISS_MAX_LUN; logvol++) {
2807		if (memcmp(h->drv[logvol]->LunID, drv->LunID,
2808			sizeof(drv->LunID)) == 0) {
2809			FOUND = 1;
2810			break;
2811		}
2812	}
2813
2814	if (!FOUND)
2815		return 1;
2816
2817	inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2818	if (inq_buff == NULL) {
2819		printk(KERN_WARNING "cciss: out of memory\n");
2820		return 1;
2821	}
2822	if (h->cciss_read == CCISS_READ_10) {
2823		cciss_read_capacity(h->ctlr, logvol, 1,
2824					&total_size, &block_size);
2825	} else {
2826		cciss_read_capacity_16(h->ctlr, logvol, 1,
2827					&total_size, &block_size);
2828	}
2829	cciss_geometry_inquiry(h->ctlr, logvol, 1, total_size, block_size,
2830			       inq_buff, drv);
2831
2832	blk_queue_logical_block_size(drv->queue, drv->block_size);
2833	set_capacity(disk, drv->nr_blocks);
2834
2835	kfree(inq_buff);
2836	return 0;
2837}
2838
2839/*
2840 *   Wait polling for a command to complete.
2841 *   The memory mapped FIFO is polled for the completion.
2842 *   Used only at init time, interrupts from the HBA are disabled.
2843 */
2844static unsigned long pollcomplete(int ctlr)
2845{
2846	unsigned long done;
2847	int i;
2848
2849	/* Wait (up to 20 seconds) for a command to complete */
2850
2851	for (i = 20 * HZ; i > 0; i--) {
2852		done = hba[ctlr]->access.command_completed(hba[ctlr]);
2853		if (done == FIFO_EMPTY)
2854			schedule_timeout_uninterruptible(1);
2855		else
2856			return done;
2857	}
2858	/* Invalid address to tell caller we ran out of time */
2859	return 1;
2860}
2861
2862/* Send command c to controller h and poll for it to complete.
2863 * Turns interrupts off on the board.  Used at driver init time
2864 * and during SCSI error recovery.
2865 */
2866static int sendcmd_core(ctlr_info_t *h, CommandList_struct *c)
2867{
2868	int i;
2869	unsigned long complete;
2870	int status = IO_ERROR;
2871	u64bit buff_dma_handle;
2872
2873resend_cmd1:
2874
2875	/* Disable interrupt on the board. */
2876	h->access.set_intr_mask(h, CCISS_INTR_OFF);
2877
2878	/* Make sure there is room in the command FIFO */
2879	/* Actually it should be completely empty at this time */
2880	/* unless we are in here doing error handling for the scsi */
2881	/* tape side of the driver. */
2882	for (i = 200000; i > 0; i--) {
2883		/* if fifo isn't full go */
2884		if (!(h->access.fifo_full(h)))
2885			break;
2886		udelay(10);
2887		printk(KERN_WARNING "cciss cciss%d: SendCmd FIFO full,"
2888		       " waiting!\n", h->ctlr);
2889	}
2890	h->access.submit_command(h, c); /* Send the cmd */
2891	do {
2892		complete = pollcomplete(h->ctlr);
2893
2894#ifdef CCISS_DEBUG
2895		printk(KERN_DEBUG "cciss: command completed\n");
2896#endif				/* CCISS_DEBUG */
2897
2898		if (complete == 1) {
2899			printk(KERN_WARNING
2900			       "cciss cciss%d: SendCmd Timeout out, "
2901			       "No command list address returned!\n", h->ctlr);
2902			status = IO_ERROR;
2903			break;
2904		}
2905
2906		/* Make sure it's the command we're expecting. */
2907		if ((complete & ~CISS_ERROR_BIT) != c->busaddr) {
2908			printk(KERN_WARNING "cciss%d: Unexpected command "
2909				"completion.\n", h->ctlr);
2910			continue;
2911		}
2912
2913		/* It is our command.  If no error, we're done. */
2914		if (!(complete & CISS_ERROR_BIT)) {
2915			status = IO_OK;
2916			break;
2917		}
2918
2919		/* There is an error... */
2920
2921		/* if data overrun or underun on Report command ignore it */
2922		if (((c->Request.CDB[0] == CISS_REPORT_LOG) ||
2923		     (c->Request.CDB[0] == CISS_REPORT_PHYS) ||
2924		     (c->Request.CDB[0] == CISS_INQUIRY)) &&
2925			((c->err_info->CommandStatus == CMD_DATA_OVERRUN) ||
2926			 (c->err_info->CommandStatus == CMD_DATA_UNDERRUN))) {
2927			complete = c->busaddr;
2928			status = IO_OK;
2929			break;
2930		}
2931
2932		if (c->err_info->CommandStatus == CMD_UNSOLICITED_ABORT) {
2933			printk(KERN_WARNING "cciss%d: unsolicited abort %p\n",
2934				h->ctlr, c);
2935			if (c->retry_count < MAX_CMD_RETRIES) {
2936				printk(KERN_WARNING "cciss%d: retrying %p\n",
2937				   h->ctlr, c);
2938				c->retry_count++;
2939				/* erase the old error information */
2940				memset(c->err_info, 0, sizeof(c->err_info));
2941				goto resend_cmd1;
2942			}
2943			printk(KERN_WARNING "cciss%d: retried %p too many "
2944				"times\n", h->ctlr, c);
2945			status = IO_ERROR;
2946			break;
2947		}
2948
2949		if (c->err_info->CommandStatus == CMD_UNABORTABLE) {
2950			printk(KERN_WARNING "cciss%d: command could not be "
2951				"aborted.\n", h->ctlr);
2952			status = IO_ERROR;
2953			break;
2954		}
2955
2956		if (c->err_info->CommandStatus == CMD_TARGET_STATUS) {
2957			status = check_target_status(h, c);
2958			break;
2959		}
2960
2961		printk(KERN_WARNING "cciss%d: sendcmd error\n", h->ctlr);
2962		printk(KERN_WARNING "cmd = 0x%02x, CommandStatus = 0x%02x\n",
2963			c->Request.CDB[0], c->err_info->CommandStatus);
2964		status = IO_ERROR;
2965		break;
2966
2967	} while (1);
2968
2969	/* unlock the data buffer from DMA */
2970	buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2971	buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2972	pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
2973			 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2974	return status;
2975}
2976
2977/*
2978 * Send a command to the controller, and wait for it to complete.
2979 * Used at init time, and during SCSI error recovery.
2980 */
2981static int sendcmd(__u8 cmd, int ctlr, void *buff, size_t size,
2982	__u8 page_code, unsigned char *scsi3addr, int cmd_type)
2983{
2984	CommandList_struct *c;
2985	int status;
2986
2987	c = cmd_alloc(hba[ctlr], 1);
2988	if (!c) {
2989		printk(KERN_WARNING "cciss: unable to get memory");
2990		return IO_ERROR;
2991	}
2992	status = fill_cmd(c, cmd, ctlr, buff, size, page_code,
2993		scsi3addr, cmd_type);
2994	if (status == IO_OK)
2995		status = sendcmd_core(hba[ctlr], c);
2996	cmd_free(hba[ctlr], c, 1);
2997	return status;
2998}
2999
3000/*
3001 * Map (physical) PCI mem into (virtual) kernel space
3002 */
3003static void __iomem *remap_pci_mem(ulong base, ulong size)
3004{
3005	ulong page_base = ((ulong) base) & PAGE_MASK;
3006	ulong page_offs = ((ulong) base) - page_base;
3007	void __iomem *page_remapped = ioremap(page_base, page_offs + size);
3008
3009	return page_remapped ? (page_remapped + page_offs) : NULL;
3010}
3011
3012/*
3013 * Takes jobs of the Q and sends them to the hardware, then puts it on
3014 * the Q to wait for completion.
3015 */
3016static void start_io(ctlr_info_t *h)
3017{
3018	CommandList_struct *c;
3019
3020	while (!hlist_empty(&h->reqQ)) {
3021		c = hlist_entry(h->reqQ.first, CommandList_struct, list);
3022		/* can't do anything if fifo is full */
3023		if ((h->access.fifo_full(h))) {
3024			printk(KERN_WARNING "cciss: fifo full\n");
3025			break;
3026		}
3027
3028		/* Get the first entry from the Request Q */
3029		removeQ(c);
3030		h->Qdepth--;
3031
3032		/* Tell the controller execute command */
3033		h->access.submit_command(h, c);
3034
3035		/* Put job onto the completed Q */
3036		addQ(&h->cmpQ, c);
3037	}
3038}
3039
3040/* Assumes that CCISS_LOCK(h->ctlr) is held. */
3041/* Zeros out the error record and then resends the command back */
3042/* to the controller */
3043static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
3044{
3045	/* erase the old error information */
3046	memset(c->err_info, 0, sizeof(ErrorInfo_struct));
3047
3048	/* add it to software queue and then send it to the controller */
3049	addQ(&h->reqQ, c);
3050	h->Qdepth++;
3051	if (h->Qdepth > h->maxQsinceinit)
3052		h->maxQsinceinit = h->Qdepth;
3053
3054	start_io(h);
3055}
3056
3057static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
3058	unsigned int msg_byte, unsigned int host_byte,
3059	unsigned int driver_byte)
3060{
3061	/* inverse of macros in scsi.h */
3062	return (scsi_status_byte & 0xff) |
3063		((msg_byte & 0xff) << 8) |
3064		((host_byte & 0xff) << 16) |
3065		((driver_byte & 0xff) << 24);
3066}
3067
3068static inline int evaluate_target_status(ctlr_info_t *h,
3069			CommandList_struct *cmd, int *retry_cmd)
3070{
3071	unsigned char sense_key;
3072	unsigned char status_byte, msg_byte, host_byte, driver_byte;
3073	int error_value;
3074
3075	*retry_cmd = 0;
3076	/* If we get in here, it means we got "target status", that is, scsi status */
3077	status_byte = cmd->err_info->ScsiStatus;
3078	driver_byte = DRIVER_OK;
3079	msg_byte = cmd->err_info->CommandStatus; /* correct?  seems too device specific */
3080
3081	if (blk_pc_request(cmd->rq))
3082		host_byte = DID_PASSTHROUGH;
3083	else
3084		host_byte = DID_OK;
3085
3086	error_value = make_status_bytes(status_byte, msg_byte,
3087		host_byte, driver_byte);
3088
3089	if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) {
3090		if (!blk_pc_request(cmd->rq))
3091			printk(KERN_WARNING "cciss: cmd %p "
3092			       "has SCSI Status 0x%x\n",
3093			       cmd, cmd->err_info->ScsiStatus);
3094		return error_value;
3095	}
3096
3097	/* check the sense key */
3098	sense_key = 0xf & cmd->err_info->SenseInfo[2];
3099	/* no status or recovered error */
3100	if (((sense_key == 0x0) || (sense_key == 0x1)) && !blk_pc_request(cmd->rq))
3101		error_value = 0;
3102
3103	if (check_for_unit_attention(h, cmd)) {
3104		*retry_cmd = !blk_pc_request(cmd->rq);
3105		return 0;
3106	}
3107
3108	if (!blk_pc_request(cmd->rq)) { /* Not SG_IO or similar? */
3109		if (error_value != 0)
3110			printk(KERN_WARNING "cciss: cmd %p has CHECK CONDITION"
3111			       " sense key = 0x%x\n", cmd, sense_key);
3112		return error_value;
3113	}
3114
3115	/* SG_IO or similar, copy sense data back */
3116	if (cmd->rq->sense) {
3117		if (cmd->rq->sense_len > cmd->err_info->SenseLen)
3118			cmd->rq->sense_len = cmd->err_info->SenseLen;
3119		memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
3120			cmd->rq->sense_len);
3121	} else
3122		cmd->rq->sense_len = 0;
3123
3124	return error_value;
3125}
3126
3127/* checks the status of the job and calls complete buffers to mark all
3128 * buffers for the completed job. Note that this function does not need
3129 * to hold the hba/queue lock.
3130 */
3131static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
3132				    int timeout)
3133{
3134	int retry_cmd = 0;
3135	struct request *rq = cmd->rq;
3136
3137	rq->errors = 0;
3138
3139	if (timeout)
3140		rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);
3141
3142	if (cmd->err_info->CommandStatus == 0)	/* no error has occurred */
3143		goto after_error_processing;
3144
3145	switch (cmd->err_info->CommandStatus) {
3146	case CMD_TARGET_STATUS:
3147		rq->errors = evaluate_target_status(h, cmd, &retry_cmd);
3148		break;
3149	case CMD_DATA_UNDERRUN:
3150		if (blk_fs_request(cmd->rq)) {
3151			printk(KERN_WARNING "cciss: cmd %p has"
3152			       " completed with data underrun "
3153			       "reported\n", cmd);
3154			cmd->rq->resid_len = cmd->err_info->ResidualCnt;
3155		}
3156		break;
3157	case CMD_DATA_OVERRUN:
3158		if (blk_fs_request(cmd->rq))
3159			printk(KERN_WARNING "cciss: cmd %p has"
3160			       " completed with data overrun "
3161			       "reported\n", cmd);
3162		break;
3163	case CMD_INVALID:
3164		printk(KERN_WARNING "cciss: cmd %p is "
3165		       "reported invalid\n", cmd);
3166		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3167			cmd->err_info->CommandStatus, DRIVER_OK,
3168			blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3169		break;
3170	case CMD_PROTOCOL_ERR:
3171		printk(KERN_WARNING "cciss: cmd %p has "
3172		       "protocol error \n", cmd);
3173		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3174			cmd->err_info->CommandStatus, DRIVER_OK,
3175			blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3176		break;
3177	case CMD_HARDWARE_ERR:
3178		printk(KERN_WARNING "cciss: cmd %p had "
3179		       " hardware error\n", cmd);
3180		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3181			cmd->err_info->CommandStatus, DRIVER_OK,
3182			blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3183		break;
3184	case CMD_CONNECTION_LOST:
3185		printk(KERN_WARNING "cciss: cmd %p had "
3186		       "connection lost\n", cmd);
3187		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3188			cmd->err_info->CommandStatus, DRIVER_OK,
3189			blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3190		break;
3191	case CMD_ABORTED:
3192		printk(KERN_WARNING "cciss: cmd %p was "
3193		       "aborted\n", cmd);
3194		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3195			cmd->err_info->CommandStatus, DRIVER_OK,
3196			blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
3197		break;
3198	case CMD_ABORT_FAILED:
3199		printk(KERN_WARNING "cciss: cmd %p reports "
3200		       "abort failed\n", cmd);
3201		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3202			cmd->err_info->CommandStatus, DRIVER_OK,
3203			blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3204		break;
3205	case CMD_UNSOLICITED_ABORT:
3206		printk(KERN_WARNING "cciss%d: unsolicited "
3207		       "abort %p\n", h->ctlr, cmd);
3208		if (cmd->retry_count < MAX_CMD_RETRIES) {
3209			retry_cmd = 1;
3210			printk(KERN_WARNING
3211			       "cciss%d: retrying %p\n", h->ctlr, cmd);
3212			cmd->retry_count++;
3213		} else
3214			printk(KERN_WARNING
3215			       "cciss%d: %p retried too "
3216			       "many times\n", h->ctlr, cmd);
3217		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3218			cmd->err_info->CommandStatus, DRIVER_OK,
3219			blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
3220		break;
3221	case CMD_TIMEOUT:
3222		printk(KERN_WARNING "cciss: cmd %p timedout\n", cmd);
3223		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3224			cmd->err_info->CommandStatus, DRIVER_OK,
3225			blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3226		break;
3227	default:
3228		printk(KERN_WARNING "cciss: cmd %p returned "
3229		       "unknown status %x\n", cmd,
3230		       cmd->err_info->CommandStatus);
3231		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3232			cmd->err_info->CommandStatus, DRIVER_OK,
3233			blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3234	}
3235
3236after_error_processing:
3237
3238	/* We need to return this command */
3239	if (retry_cmd) {
3240		resend_cciss_cmd(h, cmd);
3241		return;
3242	}
3243	cmd->rq->completion_data = cmd;
3244	blk_complete_request(cmd->rq);
3245}
3246
3247/*
3248 * Get a request and submit it to the controller.
3249 */
3250static void do_cciss_request(struct request_queue *q)
3251{
3252	ctlr_info_t *h = q->queuedata;
3253	CommandList_struct *c;
3254	sector_t start_blk;
3255	int seg;
3256	struct request *creq;
3257	u64bit temp64;
3258	struct scatterlist tmp_sg[MAXSGENTRIES];
3259	drive_info_struct *drv;
3260	int i, dir;
3261
3262	/* We call start_io here in case there is a command waiting on the
3263	 * queue that has not been sent.
3264	 */
3265	if (blk_queue_plugged(q))
3266		goto startio;
3267
3268      queue:
3269	creq = blk_peek_request(q);
3270	if (!creq)
3271		goto startio;
3272
3273	BUG_ON(creq->nr_phys_segments > MAXSGENTRIES);
3274
3275	if ((c = cmd_alloc(h, 1)) == NULL)
3276		goto full;
3277
3278	blk_start_request(creq);
3279
3280	spin_unlock_irq(q->queue_lock);
3281
3282	c->cmd_type = CMD_RWREQ;
3283	c->rq = creq;
3284
3285	/* fill in the request */
3286	drv = creq->rq_disk->private_data;
3287	c->Header.ReplyQueue = 0;	// unused in simple mode
3288	/* got command from pool, so use the command block index instead */
3289	/* for direct lookups. */
3290	/* The first 2 bits are reserved for controller error reporting. */
3291	c->Header.Tag.lower = (c->cmdindex << 3);
3292	c->Header.Tag.lower |= 0x04;	/* flag for direct lookup. */
3293	memcpy(&c->Header.LUN, drv->LunID, sizeof(drv->LunID));
3294	c->Request.CDBLen = 10;	// 12 byte commands not in FW yet;
3295	c->Request.Type.Type = TYPE_CMD;	// It is a command.
3296	c->Request.Type.Attribute = ATTR_SIMPLE;
3297	c->Request.Type.Direction =
3298	    (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
3299	c->Request.Timeout = 0;	// Don't time out
3300	c->Request.CDB[0] =
3301	    (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
3302	start_blk = blk_rq_pos(creq);
3303#ifdef CCISS_DEBUG
3304	printk(KERN_DEBUG "ciss: sector =%d nr_sectors=%d\n",
3305	       (int)blk_rq_pos(creq), (int)blk_rq_sectors(creq));
3306#endif				/* CCISS_DEBUG */
3307
3308	sg_init_table(tmp_sg, MAXSGENTRIES);
3309	seg = blk_rq_map_sg(q, creq, tmp_sg);
3310
3311	/* get the DMA records for the setup */
3312	if (c->Request.Type.Direction == XFER_READ)
3313		dir = PCI_DMA_FROMDEVICE;
3314	else
3315		dir = PCI_DMA_TODEVICE;
3316
3317	for (i = 0; i < seg; i++) {
3318		c->SG[i].Len = tmp_sg[i].length;
3319		temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]),
3320						  tmp_sg[i].offset,
3321						  tmp_sg[i].length, dir);
3322		c->SG[i].Addr.lower = temp64.val32.lower;
3323		c->SG[i].Addr.upper = temp64.val32.upper;
3324		c->SG[i].Ext = 0;	// we are not chaining
3325	}
3326	/* track how many SG entries we are using */
3327	if (seg > h->maxSG)
3328		h->maxSG = seg;
3329
3330#ifdef CCISS_DEBUG
3331	printk(KERN_DEBUG "cciss: Submitting %u sectors in %d segments\n",
3332	       blk_rq_sectors(creq), seg);
3333#endif				/* CCISS_DEBUG */
3334
3335	c->Header.SGList = c->Header.SGTotal = seg;
3336	if (likely(blk_fs_request(creq))) {
3337		if(h->cciss_read == CCISS_READ_10) {
3338			c->Request.CDB[1] = 0;
3339			c->Request.CDB[2] = (start_blk >> 24) & 0xff;	//MSB
3340			c->Request.CDB[3] = (start_blk >> 16) & 0xff;
3341			c->Request.CDB[4] = (start_blk >> 8) & 0xff;
3342			c->Request.CDB[5] = start_blk & 0xff;
3343			c->Request.CDB[6] = 0;	// (sect >> 24) & 0xff; MSB
3344			c->Request.CDB[7] = (blk_rq_sectors(creq) >> 8) & 0xff;
3345			c->Request.CDB[8] = blk_rq_sectors(creq) & 0xff;
3346			c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
3347		} else {
3348			u32 upper32 = upper_32_bits(start_blk);
3349
3350			c->Request.CDBLen = 16;
3351			c->Request.CDB[1]= 0;
3352			c->Request.CDB[2]= (upper32 >> 24) & 0xff;	//MSB
3353			c->Request.CDB[3]= (upper32 >> 16) & 0xff;
3354			c->Request.CDB[4]= (upper32 >>  8) & 0xff;
3355			c->Request.CDB[5]= upper32 & 0xff;
3356			c->Request.CDB[6]= (start_blk >> 24) & 0xff;
3357			c->Request.CDB[7]= (start_blk >> 16) & 0xff;
3358			c->Request.CDB[8]= (start_blk >>  8) & 0xff;
3359			c->Request.CDB[9]= start_blk & 0xff;
3360			c->Request.CDB[10]= (blk_rq_sectors(creq) >> 24) & 0xff;
3361			c->Request.CDB[11]= (blk_rq_sectors(creq) >> 16) & 0xff;
3362			c->Request.CDB[12]= (blk_rq_sectors(creq) >>  8) & 0xff;
3363			c->Request.CDB[13]= blk_rq_sectors(creq) & 0xff;
3364			c->Request.CDB[14] = c->Request.CDB[15] = 0;
3365		}
3366	} else if (blk_pc_request(creq)) {
3367		c->Request.CDBLen = creq->cmd_len;
3368		memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB);
3369	} else {
3370		printk(KERN_WARNING "cciss%d: bad request type %d\n", h->ctlr, creq->cmd_type);
3371		BUG();
3372	}
3373
3374	spin_lock_irq(q->queue_lock);
3375
3376	addQ(&h->reqQ, c);
3377	h->Qdepth++;
3378	if (h->Qdepth > h->maxQsinceinit)
3379		h->maxQsinceinit = h->Qdepth;
3380
3381	goto queue;
3382full:
3383	blk_stop_queue(q);
3384startio:
3385	/* We will already have the driver lock here so not need
3386	 * to lock it.
3387	 */
3388	start_io(h);
3389}
3390
3391static inline unsigned long get_next_completion(ctlr_info_t *h)
3392{
3393	return h->access.command_completed(h);
3394}
3395
3396static inline int interrupt_pending(ctlr_info_t *h)
3397{
3398	return h->access.intr_pending(h);
3399}
3400
3401static inline long interrupt_not_for_us(ctlr_info_t *h)
3402{
3403	return (((h->access.intr_pending(h) == 0) ||
3404		 (h->interrupts_enabled == 0)));
3405}
3406
3407static irqreturn_t do_cciss_intr(int irq, void *dev_id)
3408{
3409	ctlr_info_t *h = dev_id;
3410	CommandList_struct *c;
3411	unsigned long flags;
3412	__u32 a, a1, a2;
3413
3414	if (interrupt_not_for_us(h))
3415		return IRQ_NONE;
3416	/*
3417	 * If there are completed commands in the completion queue,
3418	 * we had better do something about it.
3419	 */
3420	spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
3421	while (interrupt_pending(h)) {
3422		while ((a = get_next_completion(h)) != FIFO_EMPTY) {
3423			a1 = a;
3424			if ((a & 0x04)) {
3425				a2 = (a >> 3);
3426				if (a2 >= h->nr_cmds) {
3427					printk(KERN_WARNING
3428					       "cciss: controller cciss%d failed, stopping.\n",
3429					       h->ctlr);
3430					fail_all_cmds(h->ctlr);
3431					return IRQ_HANDLED;
3432				}
3433
3434				c = h->cmd_pool + a2;
3435				a = c->busaddr;
3436
3437			} else {
3438				struct hlist_node *tmp;
3439
3440				a &= ~3;
3441				c = NULL;
3442				hlist_for_each_entry(c, tmp, &h->cmpQ, list) {
3443					if (c->busaddr == a)
3444						break;
3445				}
3446			}
3447			/*
3448			 * If we've found the command, take it off the
3449			 * completion Q and free it
3450			 */
3451			if (c && c->busaddr == a) {
3452				removeQ(c);
3453				if (c->cmd_type == CMD_RWREQ) {
3454					complete_command(h, c, 0);
3455				} else if (c->cmd_type == CMD_IOCTL_PEND) {
3456					complete(c->waiting);
3457				}
3458#				ifdef CONFIG_CISS_SCSI_TAPE
3459				else if (c->cmd_type == CMD_SCSI)
3460					complete_scsi_command(c, 0, a1);
3461#				endif
3462				continue;
3463			}
3464		}
3465	}
3466
3467	spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
3468	return IRQ_HANDLED;
3469}
3470
3471/**
3472 * add_to_scan_list() - add controller to rescan queue
3473 * @h:		      Pointer to the controller.
3474 *
3475 * Adds the controller to the rescan queue if not already on the queue.
3476 *
3477 * returns 1 if added to the queue, 0 if skipped (could be on the
3478 * queue already, or the controller could be initializing or shutting
3479 * down).
3480 **/
3481static int add_to_scan_list(struct ctlr_info *h)
3482{
3483	struct ctlr_info *test_h;
3484	int found = 0;
3485	int ret = 0;
3486
3487	if (h->busy_initializing)
3488		return 0;
3489
3490	if (!mutex_trylock(&h->busy_shutting_down))
3491		return 0;
3492
3493	mutex_lock(&scan_mutex);
3494	list_for_each_entry(test_h, &scan_q, scan_list) {
3495		if (test_h == h) {
3496			found = 1;
3497			break;
3498		}
3499	}
3500	if (!found && !h->busy_scanning) {
3501		INIT_COMPLETION(h->scan_wait);
3502		list_add_tail(&h->scan_list, &scan_q);
3503		ret = 1;
3504	}
3505	mutex_unlock(&scan_mutex);
3506	mutex_unlock(&h->busy_shutting_down);
3507
3508	return ret;
3509}
3510
3511/**
3512 * remove_from_scan_list() - remove controller from rescan queue
3513 * @h:			   Pointer to the controller.
3514 *
3515 * Removes the controller from the rescan queue if present. Blocks if
3516 * the controller is currently conducting a rescan.
3517 **/
3518static void remove_from_scan_list(struct ctlr_info *h)
3519{
3520	struct ctlr_info *test_h, *tmp_h;
3521	int scanning = 0;
3522
3523	mutex_lock(&scan_mutex);
3524	list_for_each_entry_safe(test_h, tmp_h, &scan_q, scan_list) {
3525		if (test_h == h) {
3526			list_del(&h->scan_list);
3527			complete_all(&h->scan_wait);
3528			mutex_unlock(&scan_mutex);
3529			return;
3530		}
3531	}
3532	if (&h->busy_scanning)
3533		scanning = 0;
3534	mutex_unlock(&scan_mutex);
3535
3536	if (scanning)
3537		wait_for_completion(&h->scan_wait);
3538}
3539
3540/**
3541 * scan_thread() - kernel thread used to rescan controllers
3542 * @data:	 Ignored.
3543 *
3544 * A kernel thread used scan for drive topology changes on
3545 * controllers. The thread processes only one controller at a time
3546 * using a queue.  Controllers are added to the queue using
3547 * add_to_scan_list() and removed from the queue either after done
3548 * processing or using remove_from_scan_list().
3549 *
3550 * returns 0.
3551 **/
3552static int scan_thread(void *data)
3553{
3554	struct ctlr_info *h;
3555
3556	while (1) {
3557		set_current_state(TASK_INTERRUPTIBLE);
3558		schedule();
3559		if (kthread_should_stop())
3560			break;
3561
3562		while (1) {
3563			mutex_lock(&scan_mutex);
3564			if (list_empty(&scan_q)) {
3565				mutex_unlock(&scan_mutex);
3566				break;
3567			}
3568
3569			h = list_entry(scan_q.next,
3570				       struct ctlr_info,
3571				       scan_list);
3572			list_del(&h->scan_list);
3573			h->busy_scanning = 1;
3574			mutex_unlock(&scan_mutex);
3575
3576			if (h) {
3577				rebuild_lun_table(h, 0, 0);
3578				complete_all(&h->scan_wait);
3579				mutex_lock(&scan_mutex);
3580				h->busy_scanning = 0;
3581				mutex_unlock(&scan_mutex);
3582			}
3583		}
3584	}
3585
3586	return 0;
3587}
3588
3589static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c)
3590{
3591	if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
3592		return 0;
3593
3594	switch (c->err_info->SenseInfo[12]) {
3595	case STATE_CHANGED:
3596		printk(KERN_WARNING "cciss%d: a state change "
3597			"detected, command retried\n", h->ctlr);
3598		return 1;
3599	break;
3600	case LUN_FAILED:
3601		printk(KERN_WARNING "cciss%d: LUN failure "
3602			"detected, action required\n", h->ctlr);
3603		return 1;
3604	break;
3605	case REPORT_LUNS_CHANGED:
3606		printk(KERN_WARNING "cciss%d: report LUN data "
3607			"changed\n", h->ctlr);
3608		add_to_scan_list(h);
3609		wake_up_process(cciss_scan_thread);
3610		return 1;
3611	break;
3612	case POWER_OR_RESET:
3613		printk(KERN_WARNING "cciss%d: a power on "
3614			"or device reset detected\n", h->ctlr);
3615		return 1;
3616	break;
3617	case UNIT_ATTENTION_CLEARED:
3618		printk(KERN_WARNING "cciss%d: unit attention "
3619		    "cleared by another initiator\n", h->ctlr);
3620		return 1;
3621	break;
3622	default:
3623		printk(KERN_WARNING "cciss%d: unknown "
3624			"unit attention detected\n", h->ctlr);
3625				return 1;
3626	}
3627}
3628
3629/*
3630 *  We cannot read the structure directly, for portability we must use
3631 *   the io functions.
3632 *   This is for debug only.
3633 */
3634#ifdef CCISS_DEBUG
3635static void print_cfg_table(CfgTable_struct *tb)
3636{
3637	int i;
3638	char temp_name[17];
3639
3640	printk("Controller Configuration information\n");
3641	printk("------------------------------------\n");
3642	for (i = 0; i < 4; i++)
3643		temp_name[i] = readb(&(tb->Signature[i]));
3644	temp_name[4] = '\0';
3645	printk("   Signature = %s\n", temp_name);
3646	printk("   Spec Number = %d\n", readl(&(tb->SpecValence)));
3647	printk("   Transport methods supported = 0x%x\n",
3648	       readl(&(tb->TransportSupport)));
3649	printk("   Transport methods active = 0x%x\n",
3650	       readl(&(tb->TransportActive)));
3651	printk("   Requested transport Method = 0x%x\n",
3652	       readl(&(tb->HostWrite.TransportRequest)));
3653	printk("   Coalesce Interrupt Delay = 0x%x\n",
3654	       readl(&(tb->HostWrite.CoalIntDelay)));
3655	printk("   Coalesce Interrupt Count = 0x%x\n",
3656	       readl(&(tb->HostWrite.CoalIntCount)));
3657	printk("   Max outstanding commands = 0x%d\n",
3658	       readl(&(tb->CmdsOutMax)));
3659	printk("   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3660	for (i = 0; i < 16; i++)
3661		temp_name[i] = readb(&(tb->ServerName[i]));
3662	temp_name[16] = '\0';
3663	printk("   Server Name = %s\n", temp_name);
3664	printk("   Heartbeat Counter = 0x%x\n\n\n", readl(&(tb->HeartBeat)));
3665}
3666#endif				/* CCISS_DEBUG */
3667
3668static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3669{
3670	int i, offset, mem_type, bar_type;
3671	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
3672		return 0;
3673	offset = 0;
3674	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3675		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3676		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3677			offset += 4;
3678		else {
3679			mem_type = pci_resource_flags(pdev, i) &
3680			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3681			switch (mem_type) {
3682			case PCI_BASE_ADDRESS_MEM_TYPE_32:
3683			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3684				offset += 4;	/* 32 bit */
3685				break;
3686			case PCI_BASE_ADDRESS_MEM_TYPE_64:
3687				offset += 8;
3688				break;
3689			default:	/* reserved in PCI 2.2 */
3690				printk(KERN_WARNING
3691				       "Base address is invalid\n");
3692				return -1;
3693				break;
3694			}
3695		}
3696		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3697			return i + 1;
3698	}
3699	return -1;
3700}
3701
3702/* If MSI/MSI-X is supported by the kernel we will try to enable it on
3703 * controllers that are capable. If not, we use IO-APIC mode.
3704 */
3705
3706static void __devinit cciss_interrupt_mode(ctlr_info_t *c,
3707					   struct pci_dev *pdev, __u32 board_id)
3708{
3709#ifdef CONFIG_PCI_MSI
3710	int err;
3711	struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1},
3712	{0, 2}, {0, 3}
3713	};
3714
3715	/* Some boards advertise MSI but don't really support it */
3716	if ((board_id == 0x40700E11) ||
3717	    (board_id == 0x40800E11) ||
3718	    (board_id == 0x40820E11) || (board_id == 0x40830E11))
3719		goto default_int_mode;
3720
3721	if (pci_find_capability(pdev, PCI_CAP_ID_MSIX)) {
3722		err = pci_enable_msix(pdev, cciss_msix_entries, 4);
3723		if (!err) {
3724			c->intr[0] = cciss_msix_entries[0].vector;
3725			c->intr[1] = cciss_msix_entries[1].vector;
3726			c->intr[2] = cciss_msix_entries[2].vector;
3727			c->intr[3] = cciss_msix_entries[3].vector;
3728			c->msix_vector = 1;
3729			return;
3730		}
3731		if (err > 0) {
3732			printk(KERN_WARNING "cciss: only %d MSI-X vectors "
3733			       "available\n", err);
3734			goto default_int_mode;
3735		} else {
3736			printk(KERN_WARNING "cciss: MSI-X init failed %d\n",
3737			       err);
3738			goto default_int_mode;
3739		}
3740	}
3741	if (pci_find_capability(pdev, PCI_CAP_ID_MSI)) {
3742		if (!pci_enable_msi(pdev)) {
3743			c->msi_vector = 1;
3744		} else {
3745			printk(KERN_WARNING "cciss: MSI init failed\n");
3746		}
3747	}
3748default_int_mode:
3749#endif				/* CONFIG_PCI_MSI */
3750	/* if we get here we're going to use the default interrupt mode */
3751	c->intr[SIMPLE_MODE_INT] = pdev->irq;
3752	return;
3753}
3754
3755static int __devinit cciss_pci_init(ctlr_info_t *c, struct pci_dev *pdev)
3756{
3757	ushort subsystem_vendor_id, subsystem_device_id, command;
3758	__u32 board_id, scratchpad = 0;
3759	__u64 cfg_offset;
3760	__u32 cfg_base_addr;
3761	__u64 cfg_base_addr_index;
3762	int i, prod_index, err;
3763
3764	subsystem_vendor_id = pdev->subsystem_vendor;
3765	subsystem_device_id = pdev->subsystem_device;
3766	board_id = (((__u32) (subsystem_device_id << 16) & 0xffff0000) |
3767		    subsystem_vendor_id);
3768
3769	for (i = 0; i < ARRAY_SIZE(products); i++) {
3770		/* Stand aside for hpsa driver on request */
3771		if (cciss_allow_hpsa && products[i].board_id == HPSA_BOUNDARY)
3772			return -ENODEV;
3773		if (board_id == products[i].board_id)
3774			break;
3775	}
3776	prod_index = i;
3777	if (prod_index == ARRAY_SIZE(products)) {
3778		dev_warn(&pdev->dev,
3779			"unrecognized board ID: 0x%08lx, ignoring.\n",
3780			(unsigned long) board_id);
3781		return -ENODEV;
3782	}
3783
3784	/* check to see if controller has been disabled */
3785	/* BEFORE trying to enable it */
3786	(void)pci_read_config_word(pdev, PCI_COMMAND, &command);
3787	if (!(command & 0x02)) {
3788		printk(KERN_WARNING
3789		       "cciss: controller appears to be disabled\n");
3790		return -ENODEV;
3791	}
3792
3793	err = pci_enable_device(pdev);
3794	if (err) {
3795		printk(KERN_ERR "cciss: Unable to Enable PCI device\n");
3796		return err;
3797	}
3798
3799	err = pci_request_regions(pdev, "cciss");
3800	if (err) {
3801		printk(KERN_ERR "cciss: Cannot obtain PCI resources, "
3802		       "aborting\n");
3803		return err;
3804	}
3805
3806#ifdef CCISS_DEBUG
3807	printk("command = %x\n", command);
3808	printk("irq = %x\n", pdev->irq);
3809	printk("board_id = %x\n", board_id);
3810#endif				/* CCISS_DEBUG */
3811
3812/* If the kernel supports MSI/MSI-X we will try to enable that functionality,
3813 * else we use the IO-APIC interrupt assigned to us by system ROM.
3814 */
3815	cciss_interrupt_mode(c, pdev, board_id);
3816
3817	/* find the memory BAR */
3818	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3819		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM)
3820			break;
3821	}
3822	if (i == DEVICE_COUNT_RESOURCE) {
3823		printk(KERN_WARNING "cciss: No memory BAR found\n");
3824		err = -ENODEV;
3825		goto err_out_free_res;
3826	}
3827
3828	c->paddr = pci_resource_start(pdev, i); /* addressing mode bits
3829						 * already removed
3830						 */
3831
3832#ifdef CCISS_DEBUG
3833	printk("address 0 = %lx\n", c->paddr);
3834#endif				/* CCISS_DEBUG */
3835	c->vaddr = remap_pci_mem(c->paddr, 0x250);
3836
3837	/* Wait for the board to become ready.  (PCI hotplug needs this.)
3838	 * We poll for up to 120 secs, once per 100ms. */
3839	for (i = 0; i < 1200; i++) {
3840		scratchpad = readl(c->vaddr + SA5_SCRATCHPAD_OFFSET);
3841		if (scratchpad == CCISS_FIRMWARE_READY)
3842			break;
3843		set_current_state(TASK_INTERRUPTIBLE);
3844		schedule_timeout(msecs_to_jiffies(100));	/* wait 100ms */
3845	}
3846	if (scratchpad != CCISS_FIRMWARE_READY) {
3847		printk(KERN_WARNING "cciss: Board not ready.  Timed out.\n");
3848		err = -ENODEV;
3849		goto err_out_free_res;
3850	}
3851
3852	/* get the address index number */
3853	cfg_base_addr = readl(c->vaddr + SA5_CTCFG_OFFSET);
3854	cfg_base_addr &= (__u32) 0x0000ffff;
3855#ifdef CCISS_DEBUG
3856	printk("cfg base address = %x\n", cfg_base_addr);
3857#endif				/* CCISS_DEBUG */
3858	cfg_base_addr_index = find_PCI_BAR_index(pdev, cfg_base_addr);
3859#ifdef CCISS_DEBUG
3860	printk("cfg base address index = %llx\n",
3861		(unsigned long long)cfg_base_addr_index);
3862#endif				/* CCISS_DEBUG */
3863	if (cfg_base_addr_index == -1) {
3864		printk(KERN_WARNING "cciss: Cannot find cfg_base_addr_index\n");
3865		err = -ENODEV;
3866		goto err_out_free_res;
3867	}
3868
3869	cfg_offset = readl(c->vaddr + SA5_CTMEM_OFFSET);
3870#ifdef CCISS_DEBUG
3871	printk("cfg offset = %llx\n", (unsigned long long)cfg_offset);
3872#endif				/* CCISS_DEBUG */
3873	c->cfgtable = remap_pci_mem(pci_resource_start(pdev,
3874						       cfg_base_addr_index) +
3875				    cfg_offset, sizeof(CfgTable_struct));
3876	c->board_id = board_id;
3877
3878#ifdef CCISS_DEBUG
3879	print_cfg_table(c->cfgtable);
3880#endif				/* CCISS_DEBUG */
3881
3882	/* Some controllers support Zero Memory Raid (ZMR).
3883	 * When configured in ZMR mode the number of supported
3884	 * commands drops to 64. So instead of just setting an
3885	 * arbitrary value we make the driver a little smarter.
3886	 * We read the config table to tell us how many commands
3887	 * are supported on the controller then subtract 4 to
3888	 * leave a little room for ioctl calls.
3889	 */
3890	c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
3891	c->product_name = products[prod_index].product_name;
3892	c->access = *(products[prod_index].access);
3893	c->nr_cmds = c->max_commands - 4;
3894	if ((readb(&c->cfgtable->Signature[0]) != 'C') ||
3895	    (readb(&c->cfgtable->Signature[1]) != 'I') ||
3896	    (readb(&c->cfgtable->Signature[2]) != 'S') ||
3897	    (readb(&c->cfgtable->Signature[3]) != 'S')) {
3898		printk("Does not appear to be a valid CISS config table\n");
3899		err = -ENODEV;
3900		goto err_out_free_res;
3901	}
3902#ifdef CONFIG_X86
3903	{
3904		/* Need to enable prefetch in the SCSI core for 6400 in x86 */
3905		__u32 prefetch;
3906		prefetch = readl(&(c->cfgtable->SCSI_Prefetch));
3907		prefetch |= 0x100;
3908		writel(prefetch, &(c->cfgtable->SCSI_Prefetch));
3909	}
3910#endif
3911
3912	/* Disabling DMA prefetch and refetch for the P600.
3913	 * An ASIC bug may result in accesses to invalid memory addresses.
3914	 * We've disabled prefetch for some time now. Testing with XEN
3915	 * kernels revealed a bug in the refetch if dom0 resides on a P600.
3916	 */
3917	if(board_id == 0x3225103C) {
3918		__u32 dma_prefetch;
3919		__u32 dma_refetch;
3920		dma_prefetch = readl(c->vaddr + I2O_DMA1_CFG);
3921		dma_prefetch |= 0x8000;
3922		writel(dma_prefetch, c->vaddr + I2O_DMA1_CFG);
3923		pci_read_config_dword(pdev, PCI_COMMAND_PARITY, &dma_refetch);
3924		dma_refetch |= 0x1;
3925		pci_write_config_dword(pdev, PCI_COMMAND_PARITY, dma_refetch);
3926	}
3927
3928#ifdef CCISS_DEBUG
3929	printk("Trying to put board into Simple mode\n");
3930#endif				/* CCISS_DEBUG */
3931	c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
3932	/* Update the field, and then ring the doorbell */
3933	writel(CFGTBL_Trans_Simple, &(c->cfgtable->HostWrite.TransportRequest));
3934	writel(CFGTBL_ChangeReq, c->vaddr + SA5_DOORBELL);
3935
3936	/* under certain very rare conditions, this can take awhile.
3937	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3938	 * as we enter this code.) */
3939	for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3940		if (!(readl(c->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3941			break;
3942		/* delay and try again */
3943		set_current_state(TASK_INTERRUPTIBLE);
3944		schedule_timeout(msecs_to_jiffies(1));
3945	}
3946
3947#ifdef CCISS_DEBUG
3948	printk(KERN_DEBUG "I counter got to %d %x\n", i,
3949	       readl(c->vaddr + SA5_DOORBELL));
3950#endif				/* CCISS_DEBUG */
3951#ifdef CCISS_DEBUG
3952	print_cfg_table(c->cfgtable);
3953#endif				/* CCISS_DEBUG */
3954
3955	if (!(readl(&(c->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3956		printk(KERN_WARNING "cciss: unable to get board into"
3957		       " simple mode\n");
3958		err = -ENODEV;
3959		goto err_out_free_res;
3960	}
3961	return 0;
3962
3963err_out_free_res:
3964	/*
3965	 * Deliberately omit pci_disable_device(): it does something nasty to
3966	 * Smart Array controllers that pci_enable_device does not undo
3967	 */
3968	pci_release_regions(pdev);
3969	return err;
3970}
3971
3972/* Function to find the first free pointer into our hba[] array
3973 * Returns -1 if no free entries are left.
3974 */
3975static int alloc_cciss_hba(void)
3976{
3977	int i;
3978
3979	for (i = 0; i < MAX_CTLR; i++) {
3980		if (!hba[i]) {
3981			ctlr_info_t *p;
3982
3983			p = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
3984			if (!p)
3985				goto Enomem;
3986			hba[i] = p;
3987			return i;
3988		}
3989	}
3990	printk(KERN_WARNING "cciss: This driver supports a maximum"
3991	       " of %d controllers.\n", MAX_CTLR);
3992	return -1;
3993Enomem:
3994	printk(KERN_ERR "cciss: out of memory.\n");
3995	return -1;
3996}
3997
3998static void free_hba(int n)
3999{
4000	ctlr_info_t *h = hba[n];
4001	int i;
4002
4003	hba[n] = NULL;
4004	for (i = 0; i < h->highest_lun + 1; i++)
4005		if (h->gendisk[i] != NULL)
4006			put_disk(h->gendisk[i]);
4007	kfree(h);
4008}
4009
4010/* Send a message CDB to the firmware. */
4011static __devinit int cciss_message(struct pci_dev *pdev, unsigned char opcode, unsigned char type)
4012{
4013	typedef struct {
4014		CommandListHeader_struct CommandHeader;
4015		RequestBlock_struct Request;
4016		ErrDescriptor_struct ErrorDescriptor;
4017	} Command;
4018	static const size_t cmd_sz = sizeof(Command) + sizeof(ErrorInfo_struct);
4019	Command *cmd;
4020	dma_addr_t paddr64;
4021	uint32_t paddr32, tag;
4022	void __iomem *vaddr;
4023	int i, err;
4024
4025	vaddr = ioremap_nocache(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
4026	if (vaddr == NULL)
4027		return -ENOMEM;
4028
4029	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
4030	   CCISS commands, so they must be allocated from the lower 4GiB of
4031	   memory. */
4032	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4033	if (err) {
4034		iounmap(vaddr);
4035		return -ENOMEM;
4036	}
4037
4038	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
4039	if (cmd == NULL) {
4040		iounmap(vaddr);
4041		return -ENOMEM;
4042	}
4043
4044	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
4045	   although there's no guarantee, we assume that the address is at
4046	   least 4-byte aligned (most likely, it's page-aligned). */
4047	paddr32 = paddr64;
4048
4049	cmd->CommandHeader.ReplyQueue = 0;
4050	cmd->CommandHeader.SGList = 0;
4051	cmd->CommandHeader.SGTotal = 0;
4052	cmd->CommandHeader.Tag.lower = paddr32;
4053	cmd->CommandHeader.Tag.upper = 0;
4054	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
4055
4056	cmd->Request.CDBLen = 16;
4057	cmd->Request.Type.Type = TYPE_MSG;
4058	cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
4059	cmd->Request.Type.Direction = XFER_NONE;
4060	cmd->Request.Timeout = 0; /* Don't time out */
4061	cmd->Request.CDB[0] = opcode;
4062	cmd->Request.CDB[1] = type;
4063	memset(&cmd->Request.CDB[2], 0, 14); /* the rest of the CDB is reserved */
4064
4065	cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(Command);
4066	cmd->ErrorDescriptor.Addr.upper = 0;
4067	cmd->ErrorDescriptor.Len = sizeof(ErrorInfo_struct);
4068
4069	writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
4070
4071	for (i = 0; i < 10; i++) {
4072		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
4073		if ((tag & ~3) == paddr32)
4074			break;
4075		schedule_timeout_uninterruptible(HZ);
4076	}
4077
4078	iounmap(vaddr);
4079
4080	/* we leak the DMA buffer here ... no choice since the controller could
4081	   still complete the command. */
4082	if (i == 10) {
4083		printk(KERN_ERR "cciss: controller message %02x:%02x timed out\n",
4084			opcode, type);
4085		return -ETIMEDOUT;
4086	}
4087
4088	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
4089
4090	if (tag & 2) {
4091		printk(KERN_ERR "cciss: controller message %02x:%02x failed\n",
4092			opcode, type);
4093		return -EIO;
4094	}
4095
4096	printk(KERN_INFO "cciss: controller message %02x:%02x succeeded\n",
4097		opcode, type);
4098	return 0;
4099}
4100
4101#define cciss_soft_reset_controller(p) cciss_message(p, 1, 0)
4102#define cciss_noop(p) cciss_message(p, 3, 0)
4103
4104static __devinit int cciss_reset_msi(struct pci_dev *pdev)
4105{
4106/* the #defines are stolen from drivers/pci/msi.h. */
4107#define msi_control_reg(base)		(base + PCI_MSI_FLAGS)
4108#define PCI_MSIX_FLAGS_ENABLE		(1 << 15)
4109
4110	int pos;
4111	u16 control = 0;
4112
4113	pos = pci_find_capability(pdev, PCI_CAP_ID_MSI);
4114	if (pos) {
4115		pci_read_config_word(pdev, msi_control_reg(pos), &control);
4116		if (control & PCI_MSI_FLAGS_ENABLE) {
4117			printk(KERN_INFO "cciss: resetting MSI\n");
4118			pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSI_FLAGS_ENABLE);
4119		}
4120	}
4121
4122	pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
4123	if (pos) {
4124		pci_read_config_word(pdev, msi_control_reg(pos), &control);
4125		if (control & PCI_MSIX_FLAGS_ENABLE) {
4126			printk(KERN_INFO "cciss: resetting MSI-X\n");
4127			pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSIX_FLAGS_ENABLE);
4128		}
4129	}
4130
4131	return 0;
4132}
4133
4134/* This does a hard reset of the controller using PCI power management
4135 * states. */
4136static __devinit int cciss_hard_reset_controller(struct pci_dev *pdev)
4137{
4138	u16 pmcsr, saved_config_space[32];
4139	int i, pos;
4140
4141	printk(KERN_INFO "cciss: using PCI PM to reset controller\n");
4142
4143	/* This is very nearly the same thing as
4144
4145	   pci_save_state(pci_dev);
4146	   pci_set_power_state(pci_dev, PCI_D3hot);
4147	   pci_set_power_state(pci_dev, PCI_D0);
4148	   pci_restore_state(pci_dev);
4149
4150	   but we can't use these nice canned kernel routines on
4151	   kexec, because they also check the MSI/MSI-X state in PCI
4152	   configuration space and do the wrong thing when it is
4153	   set/cleared.  Also, the pci_save/restore_state functions
4154	   violate the ordering requirements for restoring the
4155	   configuration space from the CCISS document (see the
4156	   comment below).  So we roll our own .... */
4157
4158	for (i = 0; i < 32; i++)
4159		pci_read_config_word(pdev, 2*i, &saved_config_space[i]);
4160
4161	pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
4162	if (pos == 0) {
4163		printk(KERN_ERR "cciss_reset_controller: PCI PM not supported\n");
4164		return -ENODEV;
4165	}
4166
4167	/* Quoting from the Open CISS Specification: "The Power
4168	 * Management Control/Status Register (CSR) controls the power
4169	 * state of the device.  The normal operating state is D0,
4170	 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
4171	 * the controller, place the interface device in D3 then to
4172	 * D0, this causes a secondary PCI reset which will reset the
4173	 * controller." */
4174
4175	/* enter the D3hot power management state */
4176	pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
4177	pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4178	pmcsr |= PCI_D3hot;
4179	pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4180
4181	schedule_timeout_uninterruptible(HZ >> 1);
4182
4183	/* enter the D0 power management state */
4184	pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4185	pmcsr |= PCI_D0;
4186	pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4187
4188	schedule_timeout_uninterruptible(HZ >> 1);
4189
4190	/* Restore the PCI configuration space.  The Open CISS
4191	 * Specification says, "Restore the PCI Configuration
4192	 * Registers, offsets 00h through 60h. It is important to
4193	 * restore the command register, 16-bits at offset 04h,
4194	 * last. Do not restore the configuration status register,
4195	 * 16-bits at offset 06h."  Note that the offset is 2*i. */
4196	for (i = 0; i < 32; i++) {
4197		if (i == 2 || i == 3)
4198			continue;
4199		pci_write_config_word(pdev, 2*i, saved_config_space[i]);
4200	}
4201	wmb();
4202	pci_write_config_word(pdev, 4, saved_config_space[2]);
4203
4204	return 0;
4205}
4206
4207/*
4208 *  This is it.  Find all the controllers and register them.  I really hate
4209 *  stealing all these major device numbers.
4210 *  returns the number of block devices registered.
4211 */
4212static int __devinit cciss_init_one(struct pci_dev *pdev,
4213				    const struct pci_device_id *ent)
4214{
4215	int i;
4216	int j = 0;
4217	int rc;
4218	int dac, return_code;
4219	InquiryData_struct *inq_buff;
4220
4221	if (reset_devices) {
4222		/* Reset the controller with a PCI power-cycle */
4223		if (cciss_hard_reset_controller(pdev) || cciss_reset_msi(pdev))
4224			return -ENODEV;
4225
4226		/* Now try to get the controller to respond to a no-op. Some
4227		   devices (notably the HP Smart Array 5i Controller) need
4228		   up to 30 seconds to respond. */
4229		for (i=0; i<30; i++) {
4230			if (cciss_noop(pdev) == 0)
4231				break;
4232
4233			schedule_timeout_uninterruptible(HZ);
4234		}
4235		if (i == 30) {
4236			printk(KERN_ERR "cciss: controller seems dead\n");
4237			return -EBUSY;
4238		}
4239	}
4240
4241	i = alloc_cciss_hba();
4242	if (i < 0)
4243		return -1;
4244
4245	hba[i]->busy_initializing = 1;
4246	INIT_HLIST_HEAD(&hba[i]->cmpQ);
4247	INIT_HLIST_HEAD(&hba[i]->reqQ);
4248	mutex_init(&hba[i]->busy_shutting_down);
4249
4250	if (cciss_pci_init(hba[i], pdev) != 0)
4251		goto clean_no_release_regions;
4252
4253	sprintf(hba[i]->devname, "cciss%d", i);
4254	hba[i]->ctlr = i;
4255	hba[i]->pdev = pdev;
4256
4257	init_completion(&hba[i]->scan_wait);
4258
4259	if (cciss_create_hba_sysfs_entry(hba[i]))
4260		goto clean0;
4261
4262	/* configure PCI DMA stuff */
4263	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)))
4264		dac = 1;
4265	else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))
4266		dac = 0;
4267	else {
4268		printk(KERN_ERR "cciss: no suitable DMA available\n");
4269		goto clean1;
4270	}
4271
4272	/*
4273	 * register with the major number, or get a dynamic major number
4274	 * by passing 0 as argument.  This is done for greater than
4275	 * 8 controller support.
4276	 */
4277	if (i < MAX_CTLR_ORIG)
4278		hba[i]->major = COMPAQ_CISS_MAJOR + i;
4279	rc = register_blkdev(hba[i]->major, hba[i]->devname);
4280	if (rc == -EBUSY || rc == -EINVAL) {
4281		printk(KERN_ERR
4282		       "cciss:  Unable to get major number %d for %s "
4283		       "on hba %d\n", hba[i]->major, hba[i]->devname, i);
4284		goto clean1;
4285	} else {
4286		if (i >= MAX_CTLR_ORIG)
4287			hba[i]->major = rc;
4288	}
4289
4290	/* make sure the board interrupts are off */
4291	hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_OFF);
4292	if (request_irq(hba[i]->intr[SIMPLE_MODE_INT], do_cciss_intr,
4293			IRQF_DISABLED | IRQF_SHARED, hba[i]->devname, hba[i])) {
4294		printk(KERN_ERR "cciss: Unable to get irq %d for %s\n",
4295		       hba[i]->intr[SIMPLE_MODE_INT], hba[i]->devname);
4296		goto clean2;
4297	}
4298
4299	printk(KERN_INFO "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
4300	       hba[i]->devname, pdev->device, pci_name(pdev),
4301	       hba[i]->intr[SIMPLE_MODE_INT], dac ? "" : " not");
4302
4303	hba[i]->cmd_pool_bits =
4304	    kmalloc(DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG)
4305			* sizeof(unsigned long), GFP_KERNEL);
4306	hba[i]->cmd_pool = (CommandList_struct *)
4307	    pci_alloc_consistent(hba[i]->pdev,
4308		    hba[i]->nr_cmds * sizeof(CommandList_struct),
4309		    &(hba[i]->cmd_pool_dhandle));
4310	hba[i]->errinfo_pool = (ErrorInfo_struct *)
4311	    pci_alloc_consistent(hba[i]->pdev,
4312		    hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
4313		    &(hba[i]->errinfo_pool_dhandle));
4314	if ((hba[i]->cmd_pool_bits == NULL)
4315	    || (hba[i]->cmd_pool == NULL)
4316	    || (hba[i]->errinfo_pool == NULL)) {
4317		printk(KERN_ERR "cciss: out of memory");
4318		goto clean4;
4319	}
4320	spin_lock_init(&hba[i]->lock);
4321
4322	/* Initialize the pdev driver private data.
4323	   have it point to hba[i].  */
4324	pci_set_drvdata(pdev, hba[i]);
4325	/* command and error info recs zeroed out before
4326	   they are used */
4327	memset(hba[i]->cmd_pool_bits, 0,
4328	       DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG)
4329			* sizeof(unsigned long));
4330
4331	hba[i]->num_luns = 0;
4332	hba[i]->highest_lun = -1;
4333	for (j = 0; j < CISS_MAX_LUN; j++) {
4334		hba[i]->drv[j] = NULL;
4335		hba[i]->gendisk[j] = NULL;
4336	}
4337
4338	cciss_scsi_setup(i);
4339
4340	/* Turn the interrupts on so we can service requests */
4341	hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_ON);
4342
4343	/* Get the firmware version */
4344	inq_buff = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
4345	if (inq_buff == NULL) {
4346		printk(KERN_ERR "cciss: out of memory\n");
4347		goto clean4;
4348	}
4349
4350	return_code = sendcmd_withirq(CISS_INQUIRY, i, inq_buff,
4351		sizeof(InquiryData_struct), 0, CTLR_LUNID, TYPE_CMD);
4352	if (return_code == IO_OK) {
4353		hba[i]->firm_ver[0] = inq_buff->data_byte[32];
4354		hba[i]->firm_ver[1] = inq_buff->data_byte[33];
4355		hba[i]->firm_ver[2] = inq_buff->data_byte[34];
4356		hba[i]->firm_ver[3] = inq_buff->data_byte[35];
4357	} else {	 /* send command failed */
4358		printk(KERN_WARNING "cciss: unable to determine firmware"
4359			" version of controller\n");
4360	}
4361	kfree(inq_buff);
4362
4363	cciss_procinit(i);
4364
4365	hba[i]->cciss_max_sectors = 2048;
4366
4367	rebuild_lun_table(hba[i], 1, 0);
4368	hba[i]->busy_initializing = 0;
4369	return 1;
4370
4371clean4:
4372	kfree(hba[i]->cmd_pool_bits);
4373	if (hba[i]->cmd_pool)
4374		pci_free_consistent(hba[i]->pdev,
4375				    hba[i]->nr_cmds * sizeof(CommandList_struct),
4376				    hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
4377	if (hba[i]->errinfo_pool)
4378		pci_free_consistent(hba[i]->pdev,
4379				    hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
4380				    hba[i]->errinfo_pool,
4381				    hba[i]->errinfo_pool_dhandle);
4382	free_irq(hba[i]->intr[SIMPLE_MODE_INT], hba[i]);
4383clean2:
4384	unregister_blkdev(hba[i]->major, hba[i]->devname);
4385clean1:
4386	cciss_destroy_hba_sysfs_entry(hba[i]);
4387clean0:
4388	pci_release_regions(pdev);
4389clean_no_release_regions:
4390	hba[i]->busy_initializing = 0;
4391
4392	/*
4393	 * Deliberately omit pci_disable_device(): it does something nasty to
4394	 * Smart Array controllers that pci_enable_device does not undo
4395	 */
4396	pci_set_drvdata(pdev, NULL);
4397	free_hba(i);
4398	return -1;
4399}
4400
4401static void cciss_shutdown(struct pci_dev *pdev)
4402{
4403	ctlr_info_t *tmp_ptr;
4404	int i;
4405	char flush_buf[4];
4406	int return_code;
4407
4408	tmp_ptr = pci_get_drvdata(pdev);
4409	if (tmp_ptr == NULL)
4410		return;
4411	i = tmp_ptr->ctlr;
4412	if (hba[i] == NULL)
4413		return;
4414
4415	/* Turn board interrupts off  and send the flush cache command */
4416	/* sendcmd will turn off interrupt, and send the flush...
4417	 * To write all data in the battery backed cache to disks */
4418	memset(flush_buf, 0, 4);
4419	return_code = sendcmd(CCISS_CACHE_FLUSH, i, flush_buf, 4, 0,
4420		CTLR_LUNID, TYPE_CMD);
4421	if (return_code == IO_OK) {
4422		printk(KERN_INFO "Completed flushing cache on controller %d\n", i);
4423	} else {
4424		printk(KERN_WARNING "Error flushing cache on controller %d\n", i);
4425	}
4426	free_irq(hba[i]->intr[2], hba[i]);
4427}
4428
4429static void __devexit cciss_remove_one(struct pci_dev *pdev)
4430{
4431	ctlr_info_t *tmp_ptr;
4432	int i, j;
4433
4434	if (pci_get_drvdata(pdev) == NULL) {
4435		printk(KERN_ERR "cciss: Unable to remove device \n");
4436		return;
4437	}
4438
4439	tmp_ptr = pci_get_drvdata(pdev);
4440	i = tmp_ptr->ctlr;
4441	if (hba[i] == NULL) {
4442		printk(KERN_ERR "cciss: device appears to "
4443		       "already be removed \n");
4444		return;
4445	}
4446
4447	mutex_lock(&hba[i]->busy_shutting_down);
4448
4449	remove_from_scan_list(hba[i]);
4450	remove_proc_entry(hba[i]->devname, proc_cciss);
4451	unregister_blkdev(hba[i]->major, hba[i]->devname);
4452
4453	/* remove it from the disk list */
4454	for (j = 0; j < CISS_MAX_LUN; j++) {
4455		struct gendisk *disk = hba[i]->gendisk[j];
4456		if (disk) {
4457			struct request_queue *q = disk->queue;
4458
4459			if (disk->flags & GENHD_FL_UP) {
4460				cciss_destroy_ld_sysfs_entry(hba[i], j, 1);
4461				del_gendisk(disk);
4462			}
4463			if (q)
4464				blk_cleanup_queue(q);
4465		}
4466	}
4467
4468#ifdef CONFIG_CISS_SCSI_TAPE
4469	cciss_unregister_scsi(i);	/* unhook from SCSI subsystem */
4470#endif
4471
4472	cciss_shutdown(pdev);
4473
4474#ifdef CONFIG_PCI_MSI
4475	if (hba[i]->msix_vector)
4476		pci_disable_msix(hba[i]->pdev);
4477	else if (hba[i]->msi_vector)
4478		pci_disable_msi(hba[i]->pdev);
4479#endif				/* CONFIG_PCI_MSI */
4480
4481	iounmap(hba[i]->vaddr);
4482
4483	pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(CommandList_struct),
4484			    hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
4485	pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
4486			    hba[i]->errinfo_pool, hba[i]->errinfo_pool_dhandle);
4487	kfree(hba[i]->cmd_pool_bits);
4488	/*
4489	 * Deliberately omit pci_disable_device(): it does something nasty to
4490	 * Smart Array controllers that pci_enable_device does not undo
4491	 */
4492	pci_release_regions(pdev);
4493	pci_set_drvdata(pdev, NULL);
4494	cciss_destroy_hba_sysfs_entry(hba[i]);
4495	mutex_unlock(&hba[i]->busy_shutting_down);
4496	free_hba(i);
4497}
4498
4499static struct pci_driver cciss_pci_driver = {
4500	.name = "cciss",
4501	.probe = cciss_init_one,
4502	.remove = __devexit_p(cciss_remove_one),
4503	.id_table = cciss_pci_device_id,	/* id_table */
4504	.shutdown = cciss_shutdown,
4505};
4506
4507/*
4508 *  This is it.  Register the PCI driver information for the cards we control
4509 *  the OS will call our registered routines when it finds one of our cards.
4510 */
4511static int __init cciss_init(void)
4512{
4513	int err;
4514
4515	/*
4516	 * The hardware requires that commands are aligned on a 64-bit
4517	 * boundary. Given that we use pci_alloc_consistent() to allocate an
4518	 * array of them, the size must be a multiple of 8 bytes.
4519	 */
4520	BUILD_BUG_ON(sizeof(CommandList_struct) % 8);
4521
4522	printk(KERN_INFO DRIVER_NAME "\n");
4523
4524	err = bus_register(&cciss_bus_type);
4525	if (err)
4526		return err;
4527
4528	/* Start the scan thread */
4529	cciss_scan_thread = kthread_run(scan_thread, NULL, "cciss_scan");
4530	if (IS_ERR(cciss_scan_thread)) {
4531		err = PTR_ERR(cciss_scan_thread);
4532		goto err_bus_unregister;
4533	}
4534
4535	/* Register for our PCI devices */
4536	err = pci_register_driver(&cciss_pci_driver);
4537	if (err)
4538		goto err_thread_stop;
4539
4540	return err;
4541
4542err_thread_stop:
4543	kthread_stop(cciss_scan_thread);
4544err_bus_unregister:
4545	bus_unregister(&cciss_bus_type);
4546
4547	return err;
4548}
4549
4550static void __exit cciss_cleanup(void)
4551{
4552	int i;
4553
4554	pci_unregister_driver(&cciss_pci_driver);
4555	/* double check that all controller entrys have been removed */
4556	for (i = 0; i < MAX_CTLR; i++) {
4557		if (hba[i] != NULL) {
4558			printk(KERN_WARNING "cciss: had to remove"
4559			       " controller %d\n", i);
4560			cciss_remove_one(hba[i]->pdev);
4561		}
4562	}
4563	kthread_stop(cciss_scan_thread);
4564	remove_proc_entry("driver/cciss", NULL);
4565	bus_unregister(&cciss_bus_type);
4566}
4567
4568static void fail_all_cmds(unsigned long ctlr)
4569{
4570	/* If we get here, the board is apparently dead. */
4571	ctlr_info_t *h = hba[ctlr];
4572	CommandList_struct *c;
4573	unsigned long flags;
4574
4575	printk(KERN_WARNING "cciss%d: controller not responding.\n", h->ctlr);
4576	h->alive = 0;		/* the controller apparently died... */
4577
4578	spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
4579
4580	pci_disable_device(h->pdev);	/* Make sure it is really dead. */
4581
4582	/* move everything off the request queue onto the completed queue */
4583	while (!hlist_empty(&h->reqQ)) {
4584		c = hlist_entry(h->reqQ.first, CommandList_struct, list);
4585		removeQ(c);
4586		h->Qdepth--;
4587		addQ(&h->cmpQ, c);
4588	}
4589
4590	/* Now, fail everything on the completed queue with a HW error */
4591	while (!hlist_empty(&h->cmpQ)) {
4592		c = hlist_entry(h->cmpQ.first, CommandList_struct, list);
4593		removeQ(c);
4594		if (c->cmd_type != CMD_MSG_STALE)
4595			c->err_info->CommandStatus = CMD_HARDWARE_ERR;
4596		if (c->cmd_type == CMD_RWREQ) {
4597			complete_command(h, c, 0);
4598		} else if (c->cmd_type == CMD_IOCTL_PEND)
4599			complete(c->waiting);
4600#ifdef CONFIG_CISS_SCSI_TAPE
4601		else if (c->cmd_type == CMD_SCSI)
4602			complete_scsi_command(c, 0, 0);
4603#endif
4604	}
4605	spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
4606	return;
4607}
4608
4609module_init(cciss_init);
4610module_exit(cciss_cleanup);
4611