cciss.c revision da5503217d7421dbf04a0557d16cae6d5fc0960e
1/*
2 *    Disk Array driver for HP Smart Array controllers.
3 *    (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
4 *
5 *    This program is free software; you can redistribute it and/or modify
6 *    it under the terms of the GNU General Public License as published by
7 *    the Free Software Foundation; version 2 of the License.
8 *
9 *    This program is distributed in the hope that it will be useful,
10 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11 *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 *    General Public License for more details.
13 *
14 *    You should have received a copy of the GNU General Public License
15 *    along with this program; if not, write to the Free Software
16 *    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
17 *    02111-1307, USA.
18 *
19 *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
20 *
21 */
22
23#include <linux/module.h>
24#include <linux/interrupt.h>
25#include <linux/types.h>
26#include <linux/pci.h>
27#include <linux/kernel.h>
28#include <linux/slab.h>
29#include <linux/smp_lock.h>
30#include <linux/delay.h>
31#include <linux/major.h>
32#include <linux/fs.h>
33#include <linux/bio.h>
34#include <linux/blkpg.h>
35#include <linux/timer.h>
36#include <linux/proc_fs.h>
37#include <linux/seq_file.h>
38#include <linux/init.h>
39#include <linux/jiffies.h>
40#include <linux/hdreg.h>
41#include <linux/spinlock.h>
42#include <linux/compat.h>
43#include <linux/mutex.h>
44#include <asm/uaccess.h>
45#include <asm/io.h>
46
47#include <linux/dma-mapping.h>
48#include <linux/blkdev.h>
49#include <linux/genhd.h>
50#include <linux/completion.h>
51#include <scsi/scsi.h>
52#include <scsi/sg.h>
53#include <scsi/scsi_ioctl.h>
54#include <linux/cdrom.h>
55#include <linux/scatterlist.h>
56#include <linux/kthread.h>
57
58#define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
59#define DRIVER_NAME "HP CISS Driver (v 3.6.26)"
60#define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 26)
61
62/* Embedded module documentation macros - see modules.h */
63MODULE_AUTHOR("Hewlett-Packard Company");
64MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
65MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
66MODULE_VERSION("3.6.26");
67MODULE_LICENSE("GPL");
68
69static int cciss_allow_hpsa;
70module_param(cciss_allow_hpsa, int, S_IRUGO|S_IWUSR);
71MODULE_PARM_DESC(cciss_allow_hpsa,
72	"Prevent cciss driver from accessing hardware known to be "
73	" supported by the hpsa driver");
74
75#include "cciss_cmd.h"
76#include "cciss.h"
77#include <linux/cciss_ioctl.h>
78
79/* define the PCI info for the cards we can control */
80static const struct pci_device_id cciss_pci_device_id[] = {
81	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS,  0x0E11, 0x4070},
82	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
83	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
84	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
85	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
86	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
87	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
88	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
89	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
90	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSA,     0x103C, 0x3225},
91	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3223},
92	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3234},
93	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3235},
94	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3211},
95	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3212},
96	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3213},
97	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3214},
98	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3215},
99	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3237},
100	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x323D},
101	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
102	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
103	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
104	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
105	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
106	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
107	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
108	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3250},
109	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3251},
110	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3252},
111	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3253},
112	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3254},
113	{0,}
114};
115
116MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
117
118/*  board_id = Subsystem Device ID & Vendor ID
119 *  product = Marketing Name for the board
120 *  access = Address of the struct of function pointers
121 */
122static struct board_type products[] = {
123	{0x40700E11, "Smart Array 5300", &SA5_access},
124	{0x40800E11, "Smart Array 5i", &SA5B_access},
125	{0x40820E11, "Smart Array 532", &SA5B_access},
126	{0x40830E11, "Smart Array 5312", &SA5B_access},
127	{0x409A0E11, "Smart Array 641", &SA5_access},
128	{0x409B0E11, "Smart Array 642", &SA5_access},
129	{0x409C0E11, "Smart Array 6400", &SA5_access},
130	{0x409D0E11, "Smart Array 6400 EM", &SA5_access},
131	{0x40910E11, "Smart Array 6i", &SA5_access},
132	{0x3225103C, "Smart Array P600", &SA5_access},
133	{0x3235103C, "Smart Array P400i", &SA5_access},
134	{0x3211103C, "Smart Array E200i", &SA5_access},
135	{0x3212103C, "Smart Array E200", &SA5_access},
136	{0x3213103C, "Smart Array E200i", &SA5_access},
137	{0x3214103C, "Smart Array E200i", &SA5_access},
138	{0x3215103C, "Smart Array E200i", &SA5_access},
139	{0x3237103C, "Smart Array E500", &SA5_access},
140/* controllers below this line are also supported by the hpsa driver. */
141#define HPSA_BOUNDARY 0x3223103C
142	{0x3223103C, "Smart Array P800", &SA5_access},
143	{0x3234103C, "Smart Array P400", &SA5_access},
144	{0x323D103C, "Smart Array P700m", &SA5_access},
145	{0x3241103C, "Smart Array P212", &SA5_access},
146	{0x3243103C, "Smart Array P410", &SA5_access},
147	{0x3245103C, "Smart Array P410i", &SA5_access},
148	{0x3247103C, "Smart Array P411", &SA5_access},
149	{0x3249103C, "Smart Array P812", &SA5_access},
150	{0x324A103C, "Smart Array P712m", &SA5_access},
151	{0x324B103C, "Smart Array P711m", &SA5_access},
152	{0x3250103C, "Smart Array", &SA5_access},
153	{0x3251103C, "Smart Array", &SA5_access},
154	{0x3252103C, "Smart Array", &SA5_access},
155	{0x3253103C, "Smart Array", &SA5_access},
156	{0x3254103C, "Smart Array", &SA5_access},
157};
158
159/* How long to wait (in milliseconds) for board to go into simple mode */
160#define MAX_CONFIG_WAIT 30000
161#define MAX_IOCTL_CONFIG_WAIT 1000
162
163/*define how many times we will try a command because of bus resets */
164#define MAX_CMD_RETRIES 3
165
166#define MAX_CTLR	32
167
168/* Originally cciss driver only supports 8 major numbers */
169#define MAX_CTLR_ORIG 	8
170
171static ctlr_info_t *hba[MAX_CTLR];
172
173static struct task_struct *cciss_scan_thread;
174static DEFINE_MUTEX(scan_mutex);
175static LIST_HEAD(scan_q);
176
177static void do_cciss_request(struct request_queue *q);
178static irqreturn_t do_cciss_intx(int irq, void *dev_id);
179static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id);
180static int cciss_open(struct block_device *bdev, fmode_t mode);
181static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode);
182static int cciss_release(struct gendisk *disk, fmode_t mode);
183static int do_ioctl(struct block_device *bdev, fmode_t mode,
184		    unsigned int cmd, unsigned long arg);
185static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
186		       unsigned int cmd, unsigned long arg);
187static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
188
189static int cciss_revalidate(struct gendisk *disk);
190static int rebuild_lun_table(ctlr_info_t *h, int first_time, int via_ioctl);
191static int deregister_disk(ctlr_info_t *h, int drv_index,
192			   int clear_all, int via_ioctl);
193
194static void cciss_read_capacity(int ctlr, int logvol,
195			sector_t *total_size, unsigned int *block_size);
196static void cciss_read_capacity_16(int ctlr, int logvol,
197			sector_t *total_size, unsigned int *block_size);
198static void cciss_geometry_inquiry(int ctlr, int logvol,
199			sector_t total_size,
200			unsigned int block_size, InquiryData_struct *inq_buff,
201				   drive_info_struct *drv);
202static void __devinit cciss_interrupt_mode(ctlr_info_t *);
203static void start_io(ctlr_info_t *h);
204static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
205			__u8 page_code, unsigned char scsi3addr[],
206			int cmd_type);
207static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
208	int attempt_retry);
209static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c);
210
211static int add_to_scan_list(struct ctlr_info *h);
212static int scan_thread(void *data);
213static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c);
214static void cciss_hba_release(struct device *dev);
215static void cciss_device_release(struct device *dev);
216static void cciss_free_gendisk(ctlr_info_t *h, int drv_index);
217static void cciss_free_drive_info(ctlr_info_t *h, int drv_index);
218static inline u32 next_command(ctlr_info_t *h);
219
220/* performant mode helper functions */
221static void  calc_bucket_map(int *bucket, int num_buckets, int nsgs,
222				int *bucket_map);
223static void cciss_put_controller_into_performant_mode(ctlr_info_t *h);
224
225#ifdef CONFIG_PROC_FS
226static void cciss_procinit(int i);
227#else
228static void cciss_procinit(int i)
229{
230}
231#endif				/* CONFIG_PROC_FS */
232
233#ifdef CONFIG_COMPAT
234static int cciss_compat_ioctl(struct block_device *, fmode_t,
235			      unsigned, unsigned long);
236#endif
237
238static const struct block_device_operations cciss_fops = {
239	.owner = THIS_MODULE,
240	.open = cciss_unlocked_open,
241	.release = cciss_release,
242	.ioctl = do_ioctl,
243	.getgeo = cciss_getgeo,
244#ifdef CONFIG_COMPAT
245	.compat_ioctl = cciss_compat_ioctl,
246#endif
247	.revalidate_disk = cciss_revalidate,
248};
249
250/* set_performant_mode: Modify the tag for cciss performant
251 * set bit 0 for pull model, bits 3-1 for block fetch
252 * register number
253 */
254static void set_performant_mode(ctlr_info_t *h, CommandList_struct *c)
255{
256	if (likely(h->transMethod == CFGTBL_Trans_Performant))
257		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
258}
259
260/*
261 * Enqueuing and dequeuing functions for cmdlists.
262 */
263static inline void addQ(struct hlist_head *list, CommandList_struct *c)
264{
265	hlist_add_head(&c->list, list);
266}
267
268static inline void removeQ(CommandList_struct *c)
269{
270	/*
271	 * After kexec/dump some commands might still
272	 * be in flight, which the firmware will try
273	 * to complete. Resetting the firmware doesn't work
274	 * with old fw revisions, so we have to mark
275	 * them off as 'stale' to prevent the driver from
276	 * falling over.
277	 */
278	if (WARN_ON(hlist_unhashed(&c->list))) {
279		c->cmd_type = CMD_MSG_STALE;
280		return;
281	}
282
283	hlist_del_init(&c->list);
284}
285
286static void enqueue_cmd_and_start_io(ctlr_info_t *h,
287	CommandList_struct *c)
288{
289	unsigned long flags;
290	set_performant_mode(h, c);
291	spin_lock_irqsave(&h->lock, flags);
292	addQ(&h->reqQ, c);
293	h->Qdepth++;
294	start_io(h);
295	spin_unlock_irqrestore(&h->lock, flags);
296}
297
298static void cciss_free_sg_chain_blocks(SGDescriptor_struct **cmd_sg_list,
299	int nr_cmds)
300{
301	int i;
302
303	if (!cmd_sg_list)
304		return;
305	for (i = 0; i < nr_cmds; i++) {
306		kfree(cmd_sg_list[i]);
307		cmd_sg_list[i] = NULL;
308	}
309	kfree(cmd_sg_list);
310}
311
312static SGDescriptor_struct **cciss_allocate_sg_chain_blocks(
313	ctlr_info_t *h, int chainsize, int nr_cmds)
314{
315	int j;
316	SGDescriptor_struct **cmd_sg_list;
317
318	if (chainsize <= 0)
319		return NULL;
320
321	cmd_sg_list = kmalloc(sizeof(*cmd_sg_list) * nr_cmds, GFP_KERNEL);
322	if (!cmd_sg_list)
323		return NULL;
324
325	/* Build up chain blocks for each command */
326	for (j = 0; j < nr_cmds; j++) {
327		/* Need a block of chainsized s/g elements. */
328		cmd_sg_list[j] = kmalloc((chainsize *
329			sizeof(*cmd_sg_list[j])), GFP_KERNEL);
330		if (!cmd_sg_list[j]) {
331			dev_err(&h->pdev->dev, "Cannot get memory "
332				"for s/g chains.\n");
333			goto clean;
334		}
335	}
336	return cmd_sg_list;
337clean:
338	cciss_free_sg_chain_blocks(cmd_sg_list, nr_cmds);
339	return NULL;
340}
341
342static void cciss_unmap_sg_chain_block(ctlr_info_t *h, CommandList_struct *c)
343{
344	SGDescriptor_struct *chain_sg;
345	u64bit temp64;
346
347	if (c->Header.SGTotal <= h->max_cmd_sgentries)
348		return;
349
350	chain_sg = &c->SG[h->max_cmd_sgentries - 1];
351	temp64.val32.lower = chain_sg->Addr.lower;
352	temp64.val32.upper = chain_sg->Addr.upper;
353	pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
354}
355
356static void cciss_map_sg_chain_block(ctlr_info_t *h, CommandList_struct *c,
357	SGDescriptor_struct *chain_block, int len)
358{
359	SGDescriptor_struct *chain_sg;
360	u64bit temp64;
361
362	chain_sg = &c->SG[h->max_cmd_sgentries - 1];
363	chain_sg->Ext = CCISS_SG_CHAIN;
364	chain_sg->Len = len;
365	temp64.val = pci_map_single(h->pdev, chain_block, len,
366				PCI_DMA_TODEVICE);
367	chain_sg->Addr.lower = temp64.val32.lower;
368	chain_sg->Addr.upper = temp64.val32.upper;
369}
370
371#include "cciss_scsi.c"		/* For SCSI tape support */
372
373static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
374	"UNKNOWN"
375};
376#define RAID_UNKNOWN (sizeof(raid_label) / sizeof(raid_label[0])-1)
377
378#ifdef CONFIG_PROC_FS
379
380/*
381 * Report information about this controller.
382 */
383#define ENG_GIG 1000000000
384#define ENG_GIG_FACTOR (ENG_GIG/512)
385#define ENGAGE_SCSI	"engage scsi"
386
387static struct proc_dir_entry *proc_cciss;
388
389static void cciss_seq_show_header(struct seq_file *seq)
390{
391	ctlr_info_t *h = seq->private;
392
393	seq_printf(seq, "%s: HP %s Controller\n"
394		"Board ID: 0x%08lx\n"
395		"Firmware Version: %c%c%c%c\n"
396		"IRQ: %d\n"
397		"Logical drives: %d\n"
398		"Current Q depth: %d\n"
399		"Current # commands on controller: %d\n"
400		"Max Q depth since init: %d\n"
401		"Max # commands on controller since init: %d\n"
402		"Max SG entries since init: %d\n",
403		h->devname,
404		h->product_name,
405		(unsigned long)h->board_id,
406		h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
407		h->firm_ver[3], (unsigned int)h->intr[PERF_MODE_INT],
408		h->num_luns,
409		h->Qdepth, h->commands_outstanding,
410		h->maxQsinceinit, h->max_outstanding, h->maxSG);
411
412#ifdef CONFIG_CISS_SCSI_TAPE
413	cciss_seq_tape_report(seq, h->ctlr);
414#endif /* CONFIG_CISS_SCSI_TAPE */
415}
416
417static void *cciss_seq_start(struct seq_file *seq, loff_t *pos)
418{
419	ctlr_info_t *h = seq->private;
420	unsigned ctlr = h->ctlr;
421	unsigned long flags;
422
423	/* prevent displaying bogus info during configuration
424	 * or deconfiguration of a logical volume
425	 */
426	spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
427	if (h->busy_configuring) {
428		spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
429		return ERR_PTR(-EBUSY);
430	}
431	h->busy_configuring = 1;
432	spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
433
434	if (*pos == 0)
435		cciss_seq_show_header(seq);
436
437	return pos;
438}
439
440static int cciss_seq_show(struct seq_file *seq, void *v)
441{
442	sector_t vol_sz, vol_sz_frac;
443	ctlr_info_t *h = seq->private;
444	unsigned ctlr = h->ctlr;
445	loff_t *pos = v;
446	drive_info_struct *drv = h->drv[*pos];
447
448	if (*pos > h->highest_lun)
449		return 0;
450
451	if (drv == NULL) /* it's possible for h->drv[] to have holes. */
452		return 0;
453
454	if (drv->heads == 0)
455		return 0;
456
457	vol_sz = drv->nr_blocks;
458	vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
459	vol_sz_frac *= 100;
460	sector_div(vol_sz_frac, ENG_GIG_FACTOR);
461
462	if (drv->raid_level < 0 || drv->raid_level > RAID_UNKNOWN)
463		drv->raid_level = RAID_UNKNOWN;
464	seq_printf(seq, "cciss/c%dd%d:"
465			"\t%4u.%02uGB\tRAID %s\n",
466			ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac,
467			raid_label[drv->raid_level]);
468	return 0;
469}
470
471static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos)
472{
473	ctlr_info_t *h = seq->private;
474
475	if (*pos > h->highest_lun)
476		return NULL;
477	*pos += 1;
478
479	return pos;
480}
481
482static void cciss_seq_stop(struct seq_file *seq, void *v)
483{
484	ctlr_info_t *h = seq->private;
485
486	/* Only reset h->busy_configuring if we succeeded in setting
487	 * it during cciss_seq_start. */
488	if (v == ERR_PTR(-EBUSY))
489		return;
490
491	h->busy_configuring = 0;
492}
493
494static const struct seq_operations cciss_seq_ops = {
495	.start = cciss_seq_start,
496	.show  = cciss_seq_show,
497	.next  = cciss_seq_next,
498	.stop  = cciss_seq_stop,
499};
500
501static int cciss_seq_open(struct inode *inode, struct file *file)
502{
503	int ret = seq_open(file, &cciss_seq_ops);
504	struct seq_file *seq = file->private_data;
505
506	if (!ret)
507		seq->private = PDE(inode)->data;
508
509	return ret;
510}
511
512static ssize_t
513cciss_proc_write(struct file *file, const char __user *buf,
514		 size_t length, loff_t *ppos)
515{
516	int err;
517	char *buffer;
518
519#ifndef CONFIG_CISS_SCSI_TAPE
520	return -EINVAL;
521#endif
522
523	if (!buf || length > PAGE_SIZE - 1)
524		return -EINVAL;
525
526	buffer = (char *)__get_free_page(GFP_KERNEL);
527	if (!buffer)
528		return -ENOMEM;
529
530	err = -EFAULT;
531	if (copy_from_user(buffer, buf, length))
532		goto out;
533	buffer[length] = '\0';
534
535#ifdef CONFIG_CISS_SCSI_TAPE
536	if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) {
537		struct seq_file *seq = file->private_data;
538		ctlr_info_t *h = seq->private;
539
540		err = cciss_engage_scsi(h->ctlr);
541		if (err == 0)
542			err = length;
543	} else
544#endif /* CONFIG_CISS_SCSI_TAPE */
545		err = -EINVAL;
546	/* might be nice to have "disengage" too, but it's not
547	   safely possible. (only 1 module use count, lock issues.) */
548
549out:
550	free_page((unsigned long)buffer);
551	return err;
552}
553
554static const struct file_operations cciss_proc_fops = {
555	.owner	 = THIS_MODULE,
556	.open    = cciss_seq_open,
557	.read    = seq_read,
558	.llseek  = seq_lseek,
559	.release = seq_release,
560	.write	 = cciss_proc_write,
561};
562
563static void __devinit cciss_procinit(int i)
564{
565	struct proc_dir_entry *pde;
566
567	if (proc_cciss == NULL)
568		proc_cciss = proc_mkdir("driver/cciss", NULL);
569	if (!proc_cciss)
570		return;
571	pde = proc_create_data(hba[i]->devname, S_IWUSR | S_IRUSR | S_IRGRP |
572					S_IROTH, proc_cciss,
573					&cciss_proc_fops, hba[i]);
574}
575#endif				/* CONFIG_PROC_FS */
576
577#define MAX_PRODUCT_NAME_LEN 19
578
579#define to_hba(n) container_of(n, struct ctlr_info, dev)
580#define to_drv(n) container_of(n, drive_info_struct, dev)
581
582static ssize_t host_store_rescan(struct device *dev,
583				 struct device_attribute *attr,
584				 const char *buf, size_t count)
585{
586	struct ctlr_info *h = to_hba(dev);
587
588	add_to_scan_list(h);
589	wake_up_process(cciss_scan_thread);
590	wait_for_completion_interruptible(&h->scan_wait);
591
592	return count;
593}
594static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
595
596static ssize_t dev_show_unique_id(struct device *dev,
597				 struct device_attribute *attr,
598				 char *buf)
599{
600	drive_info_struct *drv = to_drv(dev);
601	struct ctlr_info *h = to_hba(drv->dev.parent);
602	__u8 sn[16];
603	unsigned long flags;
604	int ret = 0;
605
606	spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
607	if (h->busy_configuring)
608		ret = -EBUSY;
609	else
610		memcpy(sn, drv->serial_no, sizeof(sn));
611	spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
612
613	if (ret)
614		return ret;
615	else
616		return snprintf(buf, 16 * 2 + 2,
617				"%02X%02X%02X%02X%02X%02X%02X%02X"
618				"%02X%02X%02X%02X%02X%02X%02X%02X\n",
619				sn[0], sn[1], sn[2], sn[3],
620				sn[4], sn[5], sn[6], sn[7],
621				sn[8], sn[9], sn[10], sn[11],
622				sn[12], sn[13], sn[14], sn[15]);
623}
624static DEVICE_ATTR(unique_id, S_IRUGO, dev_show_unique_id, NULL);
625
626static ssize_t dev_show_vendor(struct device *dev,
627			       struct device_attribute *attr,
628			       char *buf)
629{
630	drive_info_struct *drv = to_drv(dev);
631	struct ctlr_info *h = to_hba(drv->dev.parent);
632	char vendor[VENDOR_LEN + 1];
633	unsigned long flags;
634	int ret = 0;
635
636	spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
637	if (h->busy_configuring)
638		ret = -EBUSY;
639	else
640		memcpy(vendor, drv->vendor, VENDOR_LEN + 1);
641	spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
642
643	if (ret)
644		return ret;
645	else
646		return snprintf(buf, sizeof(vendor) + 1, "%s\n", drv->vendor);
647}
648static DEVICE_ATTR(vendor, S_IRUGO, dev_show_vendor, NULL);
649
650static ssize_t dev_show_model(struct device *dev,
651			      struct device_attribute *attr,
652			      char *buf)
653{
654	drive_info_struct *drv = to_drv(dev);
655	struct ctlr_info *h = to_hba(drv->dev.parent);
656	char model[MODEL_LEN + 1];
657	unsigned long flags;
658	int ret = 0;
659
660	spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
661	if (h->busy_configuring)
662		ret = -EBUSY;
663	else
664		memcpy(model, drv->model, MODEL_LEN + 1);
665	spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
666
667	if (ret)
668		return ret;
669	else
670		return snprintf(buf, sizeof(model) + 1, "%s\n", drv->model);
671}
672static DEVICE_ATTR(model, S_IRUGO, dev_show_model, NULL);
673
674static ssize_t dev_show_rev(struct device *dev,
675			    struct device_attribute *attr,
676			    char *buf)
677{
678	drive_info_struct *drv = to_drv(dev);
679	struct ctlr_info *h = to_hba(drv->dev.parent);
680	char rev[REV_LEN + 1];
681	unsigned long flags;
682	int ret = 0;
683
684	spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
685	if (h->busy_configuring)
686		ret = -EBUSY;
687	else
688		memcpy(rev, drv->rev, REV_LEN + 1);
689	spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
690
691	if (ret)
692		return ret;
693	else
694		return snprintf(buf, sizeof(rev) + 1, "%s\n", drv->rev);
695}
696static DEVICE_ATTR(rev, S_IRUGO, dev_show_rev, NULL);
697
698static ssize_t cciss_show_lunid(struct device *dev,
699				struct device_attribute *attr, char *buf)
700{
701	drive_info_struct *drv = to_drv(dev);
702	struct ctlr_info *h = to_hba(drv->dev.parent);
703	unsigned long flags;
704	unsigned char lunid[8];
705
706	spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
707	if (h->busy_configuring) {
708		spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
709		return -EBUSY;
710	}
711	if (!drv->heads) {
712		spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
713		return -ENOTTY;
714	}
715	memcpy(lunid, drv->LunID, sizeof(lunid));
716	spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
717	return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
718		lunid[0], lunid[1], lunid[2], lunid[3],
719		lunid[4], lunid[5], lunid[6], lunid[7]);
720}
721static DEVICE_ATTR(lunid, S_IRUGO, cciss_show_lunid, NULL);
722
723static ssize_t cciss_show_raid_level(struct device *dev,
724				     struct device_attribute *attr, char *buf)
725{
726	drive_info_struct *drv = to_drv(dev);
727	struct ctlr_info *h = to_hba(drv->dev.parent);
728	int raid;
729	unsigned long flags;
730
731	spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
732	if (h->busy_configuring) {
733		spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
734		return -EBUSY;
735	}
736	raid = drv->raid_level;
737	spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
738	if (raid < 0 || raid > RAID_UNKNOWN)
739		raid = RAID_UNKNOWN;
740
741	return snprintf(buf, strlen(raid_label[raid]) + 7, "RAID %s\n",
742			raid_label[raid]);
743}
744static DEVICE_ATTR(raid_level, S_IRUGO, cciss_show_raid_level, NULL);
745
746static ssize_t cciss_show_usage_count(struct device *dev,
747				      struct device_attribute *attr, char *buf)
748{
749	drive_info_struct *drv = to_drv(dev);
750	struct ctlr_info *h = to_hba(drv->dev.parent);
751	unsigned long flags;
752	int count;
753
754	spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
755	if (h->busy_configuring) {
756		spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
757		return -EBUSY;
758	}
759	count = drv->usage_count;
760	spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
761	return snprintf(buf, 20, "%d\n", count);
762}
763static DEVICE_ATTR(usage_count, S_IRUGO, cciss_show_usage_count, NULL);
764
765static struct attribute *cciss_host_attrs[] = {
766	&dev_attr_rescan.attr,
767	NULL
768};
769
770static struct attribute_group cciss_host_attr_group = {
771	.attrs = cciss_host_attrs,
772};
773
774static const struct attribute_group *cciss_host_attr_groups[] = {
775	&cciss_host_attr_group,
776	NULL
777};
778
779static struct device_type cciss_host_type = {
780	.name		= "cciss_host",
781	.groups		= cciss_host_attr_groups,
782	.release	= cciss_hba_release,
783};
784
785static struct attribute *cciss_dev_attrs[] = {
786	&dev_attr_unique_id.attr,
787	&dev_attr_model.attr,
788	&dev_attr_vendor.attr,
789	&dev_attr_rev.attr,
790	&dev_attr_lunid.attr,
791	&dev_attr_raid_level.attr,
792	&dev_attr_usage_count.attr,
793	NULL
794};
795
796static struct attribute_group cciss_dev_attr_group = {
797	.attrs = cciss_dev_attrs,
798};
799
800static const struct attribute_group *cciss_dev_attr_groups[] = {
801	&cciss_dev_attr_group,
802	NULL
803};
804
805static struct device_type cciss_dev_type = {
806	.name		= "cciss_device",
807	.groups		= cciss_dev_attr_groups,
808	.release	= cciss_device_release,
809};
810
811static struct bus_type cciss_bus_type = {
812	.name		= "cciss",
813};
814
815/*
816 * cciss_hba_release is called when the reference count
817 * of h->dev goes to zero.
818 */
819static void cciss_hba_release(struct device *dev)
820{
821	/*
822	 * nothing to do, but need this to avoid a warning
823	 * about not having a release handler from lib/kref.c.
824	 */
825}
826
827/*
828 * Initialize sysfs entry for each controller.  This sets up and registers
829 * the 'cciss#' directory for each individual controller under
830 * /sys/bus/pci/devices/<dev>/.
831 */
832static int cciss_create_hba_sysfs_entry(struct ctlr_info *h)
833{
834	device_initialize(&h->dev);
835	h->dev.type = &cciss_host_type;
836	h->dev.bus = &cciss_bus_type;
837	dev_set_name(&h->dev, "%s", h->devname);
838	h->dev.parent = &h->pdev->dev;
839
840	return device_add(&h->dev);
841}
842
843/*
844 * Remove sysfs entries for an hba.
845 */
846static void cciss_destroy_hba_sysfs_entry(struct ctlr_info *h)
847{
848	device_del(&h->dev);
849	put_device(&h->dev); /* final put. */
850}
851
852/* cciss_device_release is called when the reference count
853 * of h->drv[x]dev goes to zero.
854 */
855static void cciss_device_release(struct device *dev)
856{
857	drive_info_struct *drv = to_drv(dev);
858	kfree(drv);
859}
860
861/*
862 * Initialize sysfs for each logical drive.  This sets up and registers
863 * the 'c#d#' directory for each individual logical drive under
864 * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
865 * /sys/block/cciss!c#d# to this entry.
866 */
867static long cciss_create_ld_sysfs_entry(struct ctlr_info *h,
868				       int drv_index)
869{
870	struct device *dev;
871
872	if (h->drv[drv_index]->device_initialized)
873		return 0;
874
875	dev = &h->drv[drv_index]->dev;
876	device_initialize(dev);
877	dev->type = &cciss_dev_type;
878	dev->bus = &cciss_bus_type;
879	dev_set_name(dev, "c%dd%d", h->ctlr, drv_index);
880	dev->parent = &h->dev;
881	h->drv[drv_index]->device_initialized = 1;
882	return device_add(dev);
883}
884
885/*
886 * Remove sysfs entries for a logical drive.
887 */
888static void cciss_destroy_ld_sysfs_entry(struct ctlr_info *h, int drv_index,
889	int ctlr_exiting)
890{
891	struct device *dev = &h->drv[drv_index]->dev;
892
893	/* special case for c*d0, we only destroy it on controller exit */
894	if (drv_index == 0 && !ctlr_exiting)
895		return;
896
897	device_del(dev);
898	put_device(dev); /* the "final" put. */
899	h->drv[drv_index] = NULL;
900}
901
902/*
903 * For operations that cannot sleep, a command block is allocated at init,
904 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
905 * which ones are free or in use.  For operations that can wait for kmalloc
906 * to possible sleep, this routine can be called with get_from_pool set to 0.
907 * cmd_free() MUST be called with a got_from_pool set to 0 if cmd_alloc was.
908 */
909static CommandList_struct *cmd_alloc(ctlr_info_t *h, int get_from_pool)
910{
911	CommandList_struct *c;
912	int i;
913	u64bit temp64;
914	dma_addr_t cmd_dma_handle, err_dma_handle;
915
916	if (!get_from_pool) {
917		c = (CommandList_struct *) pci_alloc_consistent(h->pdev,
918			sizeof(CommandList_struct), &cmd_dma_handle);
919		if (c == NULL)
920			return NULL;
921		memset(c, 0, sizeof(CommandList_struct));
922
923		c->cmdindex = -1;
924
925		c->err_info = (ErrorInfo_struct *)
926		    pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
927			    &err_dma_handle);
928
929		if (c->err_info == NULL) {
930			pci_free_consistent(h->pdev,
931				sizeof(CommandList_struct), c, cmd_dma_handle);
932			return NULL;
933		}
934		memset(c->err_info, 0, sizeof(ErrorInfo_struct));
935	} else {		/* get it out of the controllers pool */
936
937		do {
938			i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
939			if (i == h->nr_cmds)
940				return NULL;
941		} while (test_and_set_bit
942			 (i & (BITS_PER_LONG - 1),
943			  h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
944#ifdef CCISS_DEBUG
945		printk(KERN_DEBUG "cciss: using command buffer %d\n", i);
946#endif
947		c = h->cmd_pool + i;
948		memset(c, 0, sizeof(CommandList_struct));
949		cmd_dma_handle = h->cmd_pool_dhandle
950		    + i * sizeof(CommandList_struct);
951		c->err_info = h->errinfo_pool + i;
952		memset(c->err_info, 0, sizeof(ErrorInfo_struct));
953		err_dma_handle = h->errinfo_pool_dhandle
954		    + i * sizeof(ErrorInfo_struct);
955		h->nr_allocs++;
956
957		c->cmdindex = i;
958	}
959
960	INIT_HLIST_NODE(&c->list);
961	c->busaddr = (__u32) cmd_dma_handle;
962	temp64.val = (__u64) err_dma_handle;
963	c->ErrDesc.Addr.lower = temp64.val32.lower;
964	c->ErrDesc.Addr.upper = temp64.val32.upper;
965	c->ErrDesc.Len = sizeof(ErrorInfo_struct);
966
967	c->ctlr = h->ctlr;
968	return c;
969}
970
971/*
972 * Frees a command block that was previously allocated with cmd_alloc().
973 */
974static void cmd_free(ctlr_info_t *h, CommandList_struct *c, int got_from_pool)
975{
976	int i;
977	u64bit temp64;
978
979	if (!got_from_pool) {
980		temp64.val32.lower = c->ErrDesc.Addr.lower;
981		temp64.val32.upper = c->ErrDesc.Addr.upper;
982		pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
983				    c->err_info, (dma_addr_t) temp64.val);
984		pci_free_consistent(h->pdev, sizeof(CommandList_struct),
985				    c, (dma_addr_t) c->busaddr);
986	} else {
987		i = c - h->cmd_pool;
988		clear_bit(i & (BITS_PER_LONG - 1),
989			  h->cmd_pool_bits + (i / BITS_PER_LONG));
990		h->nr_frees++;
991	}
992}
993
994static inline ctlr_info_t *get_host(struct gendisk *disk)
995{
996	return disk->queue->queuedata;
997}
998
999static inline drive_info_struct *get_drv(struct gendisk *disk)
1000{
1001	return disk->private_data;
1002}
1003
1004/*
1005 * Open.  Make sure the device is really there.
1006 */
1007static int cciss_open(struct block_device *bdev, fmode_t mode)
1008{
1009	ctlr_info_t *host = get_host(bdev->bd_disk);
1010	drive_info_struct *drv = get_drv(bdev->bd_disk);
1011
1012#ifdef CCISS_DEBUG
1013	printk(KERN_DEBUG "cciss_open %s\n", bdev->bd_disk->disk_name);
1014#endif				/* CCISS_DEBUG */
1015
1016	if (drv->busy_configuring)
1017		return -EBUSY;
1018	/*
1019	 * Root is allowed to open raw volume zero even if it's not configured
1020	 * so array config can still work. Root is also allowed to open any
1021	 * volume that has a LUN ID, so it can issue IOCTL to reread the
1022	 * disk information.  I don't think I really like this
1023	 * but I'm already using way to many device nodes to claim another one
1024	 * for "raw controller".
1025	 */
1026	if (drv->heads == 0) {
1027		if (MINOR(bdev->bd_dev) != 0) {	/* not node 0? */
1028			/* if not node 0 make sure it is a partition = 0 */
1029			if (MINOR(bdev->bd_dev) & 0x0f) {
1030				return -ENXIO;
1031				/* if it is, make sure we have a LUN ID */
1032			} else if (memcmp(drv->LunID, CTLR_LUNID,
1033				sizeof(drv->LunID))) {
1034				return -ENXIO;
1035			}
1036		}
1037		if (!capable(CAP_SYS_ADMIN))
1038			return -EPERM;
1039	}
1040	drv->usage_count++;
1041	host->usage_count++;
1042	return 0;
1043}
1044
1045static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode)
1046{
1047	int ret;
1048
1049	lock_kernel();
1050	ret = cciss_open(bdev, mode);
1051	unlock_kernel();
1052
1053	return ret;
1054}
1055
1056/*
1057 * Close.  Sync first.
1058 */
1059static int cciss_release(struct gendisk *disk, fmode_t mode)
1060{
1061	ctlr_info_t *host;
1062	drive_info_struct *drv;
1063
1064	lock_kernel();
1065	host = get_host(disk);
1066	drv = get_drv(disk);
1067
1068#ifdef CCISS_DEBUG
1069	printk(KERN_DEBUG "cciss_release %s\n", disk->disk_name);
1070#endif				/* CCISS_DEBUG */
1071
1072	drv->usage_count--;
1073	host->usage_count--;
1074	unlock_kernel();
1075	return 0;
1076}
1077
1078static int do_ioctl(struct block_device *bdev, fmode_t mode,
1079		    unsigned cmd, unsigned long arg)
1080{
1081	int ret;
1082	lock_kernel();
1083	ret = cciss_ioctl(bdev, mode, cmd, arg);
1084	unlock_kernel();
1085	return ret;
1086}
1087
1088#ifdef CONFIG_COMPAT
1089
1090static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1091				  unsigned cmd, unsigned long arg);
1092static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1093				      unsigned cmd, unsigned long arg);
1094
1095static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode,
1096			      unsigned cmd, unsigned long arg)
1097{
1098	switch (cmd) {
1099	case CCISS_GETPCIINFO:
1100	case CCISS_GETINTINFO:
1101	case CCISS_SETINTINFO:
1102	case CCISS_GETNODENAME:
1103	case CCISS_SETNODENAME:
1104	case CCISS_GETHEARTBEAT:
1105	case CCISS_GETBUSTYPES:
1106	case CCISS_GETFIRMVER:
1107	case CCISS_GETDRIVVER:
1108	case CCISS_REVALIDVOLS:
1109	case CCISS_DEREGDISK:
1110	case CCISS_REGNEWDISK:
1111	case CCISS_REGNEWD:
1112	case CCISS_RESCANDISK:
1113	case CCISS_GETLUNINFO:
1114		return do_ioctl(bdev, mode, cmd, arg);
1115
1116	case CCISS_PASSTHRU32:
1117		return cciss_ioctl32_passthru(bdev, mode, cmd, arg);
1118	case CCISS_BIG_PASSTHRU32:
1119		return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg);
1120
1121	default:
1122		return -ENOIOCTLCMD;
1123	}
1124}
1125
1126static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1127				  unsigned cmd, unsigned long arg)
1128{
1129	IOCTL32_Command_struct __user *arg32 =
1130	    (IOCTL32_Command_struct __user *) arg;
1131	IOCTL_Command_struct arg64;
1132	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
1133	int err;
1134	u32 cp;
1135
1136	err = 0;
1137	err |=
1138	    copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1139			   sizeof(arg64.LUN_info));
1140	err |=
1141	    copy_from_user(&arg64.Request, &arg32->Request,
1142			   sizeof(arg64.Request));
1143	err |=
1144	    copy_from_user(&arg64.error_info, &arg32->error_info,
1145			   sizeof(arg64.error_info));
1146	err |= get_user(arg64.buf_size, &arg32->buf_size);
1147	err |= get_user(cp, &arg32->buf);
1148	arg64.buf = compat_ptr(cp);
1149	err |= copy_to_user(p, &arg64, sizeof(arg64));
1150
1151	if (err)
1152		return -EFAULT;
1153
1154	err = do_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p);
1155	if (err)
1156		return err;
1157	err |=
1158	    copy_in_user(&arg32->error_info, &p->error_info,
1159			 sizeof(arg32->error_info));
1160	if (err)
1161		return -EFAULT;
1162	return err;
1163}
1164
1165static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1166				      unsigned cmd, unsigned long arg)
1167{
1168	BIG_IOCTL32_Command_struct __user *arg32 =
1169	    (BIG_IOCTL32_Command_struct __user *) arg;
1170	BIG_IOCTL_Command_struct arg64;
1171	BIG_IOCTL_Command_struct __user *p =
1172	    compat_alloc_user_space(sizeof(arg64));
1173	int err;
1174	u32 cp;
1175
1176	err = 0;
1177	err |=
1178	    copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1179			   sizeof(arg64.LUN_info));
1180	err |=
1181	    copy_from_user(&arg64.Request, &arg32->Request,
1182			   sizeof(arg64.Request));
1183	err |=
1184	    copy_from_user(&arg64.error_info, &arg32->error_info,
1185			   sizeof(arg64.error_info));
1186	err |= get_user(arg64.buf_size, &arg32->buf_size);
1187	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
1188	err |= get_user(cp, &arg32->buf);
1189	arg64.buf = compat_ptr(cp);
1190	err |= copy_to_user(p, &arg64, sizeof(arg64));
1191
1192	if (err)
1193		return -EFAULT;
1194
1195	err = do_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p);
1196	if (err)
1197		return err;
1198	err |=
1199	    copy_in_user(&arg32->error_info, &p->error_info,
1200			 sizeof(arg32->error_info));
1201	if (err)
1202		return -EFAULT;
1203	return err;
1204}
1205#endif
1206
1207static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1208{
1209	drive_info_struct *drv = get_drv(bdev->bd_disk);
1210
1211	if (!drv->cylinders)
1212		return -ENXIO;
1213
1214	geo->heads = drv->heads;
1215	geo->sectors = drv->sectors;
1216	geo->cylinders = drv->cylinders;
1217	return 0;
1218}
1219
1220static void check_ioctl_unit_attention(ctlr_info_t *host, CommandList_struct *c)
1221{
1222	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
1223			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
1224		(void)check_for_unit_attention(host, c);
1225}
1226/*
1227 * ioctl
1228 */
1229static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
1230		       unsigned int cmd, unsigned long arg)
1231{
1232	struct gendisk *disk = bdev->bd_disk;
1233	ctlr_info_t *host = get_host(disk);
1234	drive_info_struct *drv = get_drv(disk);
1235	int ctlr = host->ctlr;
1236	void __user *argp = (void __user *)arg;
1237
1238#ifdef CCISS_DEBUG
1239	printk(KERN_DEBUG "cciss_ioctl: Called with cmd=%x %lx\n", cmd, arg);
1240#endif				/* CCISS_DEBUG */
1241
1242	switch (cmd) {
1243	case CCISS_GETPCIINFO:
1244		{
1245			cciss_pci_info_struct pciinfo;
1246
1247			if (!arg)
1248				return -EINVAL;
1249			pciinfo.domain = pci_domain_nr(host->pdev->bus);
1250			pciinfo.bus = host->pdev->bus->number;
1251			pciinfo.dev_fn = host->pdev->devfn;
1252			pciinfo.board_id = host->board_id;
1253			if (copy_to_user
1254			    (argp, &pciinfo, sizeof(cciss_pci_info_struct)))
1255				return -EFAULT;
1256			return 0;
1257		}
1258	case CCISS_GETINTINFO:
1259		{
1260			cciss_coalint_struct intinfo;
1261			if (!arg)
1262				return -EINVAL;
1263			intinfo.delay =
1264			    readl(&host->cfgtable->HostWrite.CoalIntDelay);
1265			intinfo.count =
1266			    readl(&host->cfgtable->HostWrite.CoalIntCount);
1267			if (copy_to_user
1268			    (argp, &intinfo, sizeof(cciss_coalint_struct)))
1269				return -EFAULT;
1270			return 0;
1271		}
1272	case CCISS_SETINTINFO:
1273		{
1274			cciss_coalint_struct intinfo;
1275			unsigned long flags;
1276			int i;
1277
1278			if (!arg)
1279				return -EINVAL;
1280			if (!capable(CAP_SYS_ADMIN))
1281				return -EPERM;
1282			if (copy_from_user
1283			    (&intinfo, argp, sizeof(cciss_coalint_struct)))
1284				return -EFAULT;
1285			if ((intinfo.delay == 0) && (intinfo.count == 0))
1286			{
1287//                      printk("cciss_ioctl: delay and count cannot be 0\n");
1288				return -EINVAL;
1289			}
1290			spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1291			/* Update the field, and then ring the doorbell */
1292			writel(intinfo.delay,
1293			       &(host->cfgtable->HostWrite.CoalIntDelay));
1294			writel(intinfo.count,
1295			       &(host->cfgtable->HostWrite.CoalIntCount));
1296			writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
1297
1298			for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1299				if (!(readl(host->vaddr + SA5_DOORBELL)
1300				      & CFGTBL_ChangeReq))
1301					break;
1302				/* delay and try again */
1303				udelay(1000);
1304			}
1305			spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1306			if (i >= MAX_IOCTL_CONFIG_WAIT)
1307				return -EAGAIN;
1308			return 0;
1309		}
1310	case CCISS_GETNODENAME:
1311		{
1312			NodeName_type NodeName;
1313			int i;
1314
1315			if (!arg)
1316				return -EINVAL;
1317			for (i = 0; i < 16; i++)
1318				NodeName[i] =
1319				    readb(&host->cfgtable->ServerName[i]);
1320			if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
1321				return -EFAULT;
1322			return 0;
1323		}
1324	case CCISS_SETNODENAME:
1325		{
1326			NodeName_type NodeName;
1327			unsigned long flags;
1328			int i;
1329
1330			if (!arg)
1331				return -EINVAL;
1332			if (!capable(CAP_SYS_ADMIN))
1333				return -EPERM;
1334
1335			if (copy_from_user
1336			    (NodeName, argp, sizeof(NodeName_type)))
1337				return -EFAULT;
1338
1339			spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1340
1341			/* Update the field, and then ring the doorbell */
1342			for (i = 0; i < 16; i++)
1343				writeb(NodeName[i],
1344				       &host->cfgtable->ServerName[i]);
1345
1346			writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
1347
1348			for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1349				if (!(readl(host->vaddr + SA5_DOORBELL)
1350				      & CFGTBL_ChangeReq))
1351					break;
1352				/* delay and try again */
1353				udelay(1000);
1354			}
1355			spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1356			if (i >= MAX_IOCTL_CONFIG_WAIT)
1357				return -EAGAIN;
1358			return 0;
1359		}
1360
1361	case CCISS_GETHEARTBEAT:
1362		{
1363			Heartbeat_type heartbeat;
1364
1365			if (!arg)
1366				return -EINVAL;
1367			heartbeat = readl(&host->cfgtable->HeartBeat);
1368			if (copy_to_user
1369			    (argp, &heartbeat, sizeof(Heartbeat_type)))
1370				return -EFAULT;
1371			return 0;
1372		}
1373	case CCISS_GETBUSTYPES:
1374		{
1375			BusTypes_type BusTypes;
1376
1377			if (!arg)
1378				return -EINVAL;
1379			BusTypes = readl(&host->cfgtable->BusTypes);
1380			if (copy_to_user
1381			    (argp, &BusTypes, sizeof(BusTypes_type)))
1382				return -EFAULT;
1383			return 0;
1384		}
1385	case CCISS_GETFIRMVER:
1386		{
1387			FirmwareVer_type firmware;
1388
1389			if (!arg)
1390				return -EINVAL;
1391			memcpy(firmware, host->firm_ver, 4);
1392
1393			if (copy_to_user
1394			    (argp, firmware, sizeof(FirmwareVer_type)))
1395				return -EFAULT;
1396			return 0;
1397		}
1398	case CCISS_GETDRIVVER:
1399		{
1400			DriverVer_type DriverVer = DRIVER_VERSION;
1401
1402			if (!arg)
1403				return -EINVAL;
1404
1405			if (copy_to_user
1406			    (argp, &DriverVer, sizeof(DriverVer_type)))
1407				return -EFAULT;
1408			return 0;
1409		}
1410
1411	case CCISS_DEREGDISK:
1412	case CCISS_REGNEWD:
1413	case CCISS_REVALIDVOLS:
1414		return rebuild_lun_table(host, 0, 1);
1415
1416	case CCISS_GETLUNINFO:{
1417			LogvolInfo_struct luninfo;
1418
1419			memcpy(&luninfo.LunID, drv->LunID,
1420				sizeof(luninfo.LunID));
1421			luninfo.num_opens = drv->usage_count;
1422			luninfo.num_parts = 0;
1423			if (copy_to_user(argp, &luninfo,
1424					 sizeof(LogvolInfo_struct)))
1425				return -EFAULT;
1426			return 0;
1427		}
1428	case CCISS_PASSTHRU:
1429		{
1430			IOCTL_Command_struct iocommand;
1431			CommandList_struct *c;
1432			char *buff = NULL;
1433			u64bit temp64;
1434			DECLARE_COMPLETION_ONSTACK(wait);
1435
1436			if (!arg)
1437				return -EINVAL;
1438
1439			if (!capable(CAP_SYS_RAWIO))
1440				return -EPERM;
1441
1442			if (copy_from_user
1443			    (&iocommand, argp, sizeof(IOCTL_Command_struct)))
1444				return -EFAULT;
1445			if ((iocommand.buf_size < 1) &&
1446			    (iocommand.Request.Type.Direction != XFER_NONE)) {
1447				return -EINVAL;
1448			}
1449#if 0				/* 'buf_size' member is 16-bits, and always smaller than kmalloc limit */
1450			/* Check kmalloc limits */
1451			if (iocommand.buf_size > 128000)
1452				return -EINVAL;
1453#endif
1454			if (iocommand.buf_size > 0) {
1455				buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
1456				if (buff == NULL)
1457					return -EFAULT;
1458			}
1459			if (iocommand.Request.Type.Direction == XFER_WRITE) {
1460				/* Copy the data into the buffer we created */
1461				if (copy_from_user
1462				    (buff, iocommand.buf, iocommand.buf_size)) {
1463					kfree(buff);
1464					return -EFAULT;
1465				}
1466			} else {
1467				memset(buff, 0, iocommand.buf_size);
1468			}
1469			if ((c = cmd_alloc(host, 0)) == NULL) {
1470				kfree(buff);
1471				return -ENOMEM;
1472			}
1473			/* Fill in the command type */
1474			c->cmd_type = CMD_IOCTL_PEND;
1475			/* Fill in Command Header */
1476			c->Header.ReplyQueue = 0;   /* unused in simple mode */
1477			if (iocommand.buf_size > 0) /* buffer to fill */
1478			{
1479				c->Header.SGList = 1;
1480				c->Header.SGTotal = 1;
1481			} else /* no buffers to fill */
1482			{
1483				c->Header.SGList = 0;
1484				c->Header.SGTotal = 0;
1485			}
1486			c->Header.LUN = iocommand.LUN_info;
1487			/* use the kernel address the cmd block for tag */
1488			c->Header.Tag.lower = c->busaddr;
1489
1490			/* Fill in Request block */
1491			c->Request = iocommand.Request;
1492
1493			/* Fill in the scatter gather information */
1494			if (iocommand.buf_size > 0) {
1495				temp64.val = pci_map_single(host->pdev, buff,
1496					iocommand.buf_size,
1497					PCI_DMA_BIDIRECTIONAL);
1498				c->SG[0].Addr.lower = temp64.val32.lower;
1499				c->SG[0].Addr.upper = temp64.val32.upper;
1500				c->SG[0].Len = iocommand.buf_size;
1501				c->SG[0].Ext = 0;  /* we are not chaining */
1502			}
1503			c->waiting = &wait;
1504
1505			enqueue_cmd_and_start_io(host, c);
1506			wait_for_completion(&wait);
1507
1508			/* unlock the buffers from DMA */
1509			temp64.val32.lower = c->SG[0].Addr.lower;
1510			temp64.val32.upper = c->SG[0].Addr.upper;
1511			pci_unmap_single(host->pdev, (dma_addr_t) temp64.val,
1512					 iocommand.buf_size,
1513					 PCI_DMA_BIDIRECTIONAL);
1514
1515			check_ioctl_unit_attention(host, c);
1516
1517			/* Copy the error information out */
1518			iocommand.error_info = *(c->err_info);
1519			if (copy_to_user
1520			    (argp, &iocommand, sizeof(IOCTL_Command_struct))) {
1521				kfree(buff);
1522				cmd_free(host, c, 0);
1523				return -EFAULT;
1524			}
1525
1526			if (iocommand.Request.Type.Direction == XFER_READ) {
1527				/* Copy the data out of the buffer we created */
1528				if (copy_to_user
1529				    (iocommand.buf, buff, iocommand.buf_size)) {
1530					kfree(buff);
1531					cmd_free(host, c, 0);
1532					return -EFAULT;
1533				}
1534			}
1535			kfree(buff);
1536			cmd_free(host, c, 0);
1537			return 0;
1538		}
1539	case CCISS_BIG_PASSTHRU:{
1540			BIG_IOCTL_Command_struct *ioc;
1541			CommandList_struct *c;
1542			unsigned char **buff = NULL;
1543			int *buff_size = NULL;
1544			u64bit temp64;
1545			BYTE sg_used = 0;
1546			int status = 0;
1547			int i;
1548			DECLARE_COMPLETION_ONSTACK(wait);
1549			__u32 left;
1550			__u32 sz;
1551			BYTE __user *data_ptr;
1552
1553			if (!arg)
1554				return -EINVAL;
1555			if (!capable(CAP_SYS_RAWIO))
1556				return -EPERM;
1557			ioc = (BIG_IOCTL_Command_struct *)
1558			    kmalloc(sizeof(*ioc), GFP_KERNEL);
1559			if (!ioc) {
1560				status = -ENOMEM;
1561				goto cleanup1;
1562			}
1563			if (copy_from_user(ioc, argp, sizeof(*ioc))) {
1564				status = -EFAULT;
1565				goto cleanup1;
1566			}
1567			if ((ioc->buf_size < 1) &&
1568			    (ioc->Request.Type.Direction != XFER_NONE)) {
1569				status = -EINVAL;
1570				goto cleanup1;
1571			}
1572			/* Check kmalloc limits  using all SGs */
1573			if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
1574				status = -EINVAL;
1575				goto cleanup1;
1576			}
1577			if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
1578				status = -EINVAL;
1579				goto cleanup1;
1580			}
1581			buff =
1582			    kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
1583			if (!buff) {
1584				status = -ENOMEM;
1585				goto cleanup1;
1586			}
1587			buff_size = kmalloc(MAXSGENTRIES * sizeof(int),
1588						   GFP_KERNEL);
1589			if (!buff_size) {
1590				status = -ENOMEM;
1591				goto cleanup1;
1592			}
1593			left = ioc->buf_size;
1594			data_ptr = ioc->buf;
1595			while (left) {
1596				sz = (left >
1597				      ioc->malloc_size) ? ioc->
1598				    malloc_size : left;
1599				buff_size[sg_used] = sz;
1600				buff[sg_used] = kmalloc(sz, GFP_KERNEL);
1601				if (buff[sg_used] == NULL) {
1602					status = -ENOMEM;
1603					goto cleanup1;
1604				}
1605				if (ioc->Request.Type.Direction == XFER_WRITE) {
1606					if (copy_from_user
1607					    (buff[sg_used], data_ptr, sz)) {
1608						status = -EFAULT;
1609						goto cleanup1;
1610					}
1611				} else {
1612					memset(buff[sg_used], 0, sz);
1613				}
1614				left -= sz;
1615				data_ptr += sz;
1616				sg_used++;
1617			}
1618			if ((c = cmd_alloc(host, 0)) == NULL) {
1619				status = -ENOMEM;
1620				goto cleanup1;
1621			}
1622			c->cmd_type = CMD_IOCTL_PEND;
1623			c->Header.ReplyQueue = 0;
1624
1625			if (ioc->buf_size > 0) {
1626				c->Header.SGList = sg_used;
1627				c->Header.SGTotal = sg_used;
1628			} else {
1629				c->Header.SGList = 0;
1630				c->Header.SGTotal = 0;
1631			}
1632			c->Header.LUN = ioc->LUN_info;
1633			c->Header.Tag.lower = c->busaddr;
1634
1635			c->Request = ioc->Request;
1636			if (ioc->buf_size > 0) {
1637				for (i = 0; i < sg_used; i++) {
1638					temp64.val =
1639					    pci_map_single(host->pdev, buff[i],
1640						    buff_size[i],
1641						    PCI_DMA_BIDIRECTIONAL);
1642					c->SG[i].Addr.lower =
1643					    temp64.val32.lower;
1644					c->SG[i].Addr.upper =
1645					    temp64.val32.upper;
1646					c->SG[i].Len = buff_size[i];
1647					c->SG[i].Ext = 0;	/* we are not chaining */
1648				}
1649			}
1650			c->waiting = &wait;
1651			enqueue_cmd_and_start_io(host, c);
1652			wait_for_completion(&wait);
1653			/* unlock the buffers from DMA */
1654			for (i = 0; i < sg_used; i++) {
1655				temp64.val32.lower = c->SG[i].Addr.lower;
1656				temp64.val32.upper = c->SG[i].Addr.upper;
1657				pci_unmap_single(host->pdev,
1658					(dma_addr_t) temp64.val, buff_size[i],
1659					PCI_DMA_BIDIRECTIONAL);
1660			}
1661			check_ioctl_unit_attention(host, c);
1662			/* Copy the error information out */
1663			ioc->error_info = *(c->err_info);
1664			if (copy_to_user(argp, ioc, sizeof(*ioc))) {
1665				cmd_free(host, c, 0);
1666				status = -EFAULT;
1667				goto cleanup1;
1668			}
1669			if (ioc->Request.Type.Direction == XFER_READ) {
1670				/* Copy the data out of the buffer we created */
1671				BYTE __user *ptr = ioc->buf;
1672				for (i = 0; i < sg_used; i++) {
1673					if (copy_to_user
1674					    (ptr, buff[i], buff_size[i])) {
1675						cmd_free(host, c, 0);
1676						status = -EFAULT;
1677						goto cleanup1;
1678					}
1679					ptr += buff_size[i];
1680				}
1681			}
1682			cmd_free(host, c, 0);
1683			status = 0;
1684		      cleanup1:
1685			if (buff) {
1686				for (i = 0; i < sg_used; i++)
1687					kfree(buff[i]);
1688				kfree(buff);
1689			}
1690			kfree(buff_size);
1691			kfree(ioc);
1692			return status;
1693		}
1694
1695	/* scsi_cmd_ioctl handles these, below, though some are not */
1696	/* very meaningful for cciss.  SG_IO is the main one people want. */
1697
1698	case SG_GET_VERSION_NUM:
1699	case SG_SET_TIMEOUT:
1700	case SG_GET_TIMEOUT:
1701	case SG_GET_RESERVED_SIZE:
1702	case SG_SET_RESERVED_SIZE:
1703	case SG_EMULATED_HOST:
1704	case SG_IO:
1705	case SCSI_IOCTL_SEND_COMMAND:
1706		return scsi_cmd_ioctl(disk->queue, disk, mode, cmd, argp);
1707
1708	/* scsi_cmd_ioctl would normally handle these, below, but */
1709	/* they aren't a good fit for cciss, as CD-ROMs are */
1710	/* not supported, and we don't have any bus/target/lun */
1711	/* which we present to the kernel. */
1712
1713	case CDROM_SEND_PACKET:
1714	case CDROMCLOSETRAY:
1715	case CDROMEJECT:
1716	case SCSI_IOCTL_GET_IDLUN:
1717	case SCSI_IOCTL_GET_BUS_NUMBER:
1718	default:
1719		return -ENOTTY;
1720	}
1721}
1722
1723static void cciss_check_queues(ctlr_info_t *h)
1724{
1725	int start_queue = h->next_to_run;
1726	int i;
1727
1728	/* check to see if we have maxed out the number of commands that can
1729	 * be placed on the queue.  If so then exit.  We do this check here
1730	 * in case the interrupt we serviced was from an ioctl and did not
1731	 * free any new commands.
1732	 */
1733	if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
1734		return;
1735
1736	/* We have room on the queue for more commands.  Now we need to queue
1737	 * them up.  We will also keep track of the next queue to run so
1738	 * that every queue gets a chance to be started first.
1739	 */
1740	for (i = 0; i < h->highest_lun + 1; i++) {
1741		int curr_queue = (start_queue + i) % (h->highest_lun + 1);
1742		/* make sure the disk has been added and the drive is real
1743		 * because this can be called from the middle of init_one.
1744		 */
1745		if (!h->drv[curr_queue])
1746			continue;
1747		if (!(h->drv[curr_queue]->queue) ||
1748			!(h->drv[curr_queue]->heads))
1749			continue;
1750		blk_start_queue(h->gendisk[curr_queue]->queue);
1751
1752		/* check to see if we have maxed out the number of commands
1753		 * that can be placed on the queue.
1754		 */
1755		if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
1756			if (curr_queue == start_queue) {
1757				h->next_to_run =
1758				    (start_queue + 1) % (h->highest_lun + 1);
1759				break;
1760			} else {
1761				h->next_to_run = curr_queue;
1762				break;
1763			}
1764		}
1765	}
1766}
1767
1768static void cciss_softirq_done(struct request *rq)
1769{
1770	CommandList_struct *cmd = rq->completion_data;
1771	ctlr_info_t *h = hba[cmd->ctlr];
1772	SGDescriptor_struct *curr_sg = cmd->SG;
1773	u64bit temp64;
1774	unsigned long flags;
1775	int i, ddir;
1776	int sg_index = 0;
1777
1778	if (cmd->Request.Type.Direction == XFER_READ)
1779		ddir = PCI_DMA_FROMDEVICE;
1780	else
1781		ddir = PCI_DMA_TODEVICE;
1782
1783	/* command did not need to be retried */
1784	/* unmap the DMA mapping for all the scatter gather elements */
1785	for (i = 0; i < cmd->Header.SGList; i++) {
1786		if (curr_sg[sg_index].Ext == CCISS_SG_CHAIN) {
1787			cciss_unmap_sg_chain_block(h, cmd);
1788			/* Point to the next block */
1789			curr_sg = h->cmd_sg_list[cmd->cmdindex];
1790			sg_index = 0;
1791		}
1792		temp64.val32.lower = curr_sg[sg_index].Addr.lower;
1793		temp64.val32.upper = curr_sg[sg_index].Addr.upper;
1794		pci_unmap_page(h->pdev, temp64.val, curr_sg[sg_index].Len,
1795				ddir);
1796		++sg_index;
1797	}
1798
1799#ifdef CCISS_DEBUG
1800	printk("Done with %p\n", rq);
1801#endif				/* CCISS_DEBUG */
1802
1803	/* set the residual count for pc requests */
1804	if (rq->cmd_type == REQ_TYPE_BLOCK_PC)
1805		rq->resid_len = cmd->err_info->ResidualCnt;
1806
1807	blk_end_request_all(rq, (rq->errors == 0) ? 0 : -EIO);
1808
1809	spin_lock_irqsave(&h->lock, flags);
1810	cmd_free(h, cmd, 1);
1811	cciss_check_queues(h);
1812	spin_unlock_irqrestore(&h->lock, flags);
1813}
1814
1815static inline void log_unit_to_scsi3addr(ctlr_info_t *h,
1816	unsigned char scsi3addr[], uint32_t log_unit)
1817{
1818	memcpy(scsi3addr, h->drv[log_unit]->LunID,
1819		sizeof(h->drv[log_unit]->LunID));
1820}
1821
1822/* This function gets the SCSI vendor, model, and revision of a logical drive
1823 * via the inquiry page 0.  Model, vendor, and rev are set to empty strings if
1824 * they cannot be read.
1825 */
1826static void cciss_get_device_descr(int ctlr, int logvol,
1827				   char *vendor, char *model, char *rev)
1828{
1829	int rc;
1830	InquiryData_struct *inq_buf;
1831	unsigned char scsi3addr[8];
1832
1833	*vendor = '\0';
1834	*model = '\0';
1835	*rev = '\0';
1836
1837	inq_buf = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1838	if (!inq_buf)
1839		return;
1840
1841	log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
1842	rc = sendcmd_withirq(CISS_INQUIRY, ctlr, inq_buf, sizeof(*inq_buf), 0,
1843			scsi3addr, TYPE_CMD);
1844	if (rc == IO_OK) {
1845		memcpy(vendor, &inq_buf->data_byte[8], VENDOR_LEN);
1846		vendor[VENDOR_LEN] = '\0';
1847		memcpy(model, &inq_buf->data_byte[16], MODEL_LEN);
1848		model[MODEL_LEN] = '\0';
1849		memcpy(rev, &inq_buf->data_byte[32], REV_LEN);
1850		rev[REV_LEN] = '\0';
1851	}
1852
1853	kfree(inq_buf);
1854	return;
1855}
1856
1857/* This function gets the serial number of a logical drive via
1858 * inquiry page 0x83.  Serial no. is 16 bytes.  If the serial
1859 * number cannot be had, for whatever reason, 16 bytes of 0xff
1860 * are returned instead.
1861 */
1862static void cciss_get_serial_no(int ctlr, int logvol,
1863				unsigned char *serial_no, int buflen)
1864{
1865#define PAGE_83_INQ_BYTES 64
1866	int rc;
1867	unsigned char *buf;
1868	unsigned char scsi3addr[8];
1869
1870	if (buflen > 16)
1871		buflen = 16;
1872	memset(serial_no, 0xff, buflen);
1873	buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL);
1874	if (!buf)
1875		return;
1876	memset(serial_no, 0, buflen);
1877	log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
1878	rc = sendcmd_withirq(CISS_INQUIRY, ctlr, buf,
1879		PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
1880	if (rc == IO_OK)
1881		memcpy(serial_no, &buf[8], buflen);
1882	kfree(buf);
1883	return;
1884}
1885
1886/*
1887 * cciss_add_disk sets up the block device queue for a logical drive
1888 */
1889static int cciss_add_disk(ctlr_info_t *h, struct gendisk *disk,
1890				int drv_index)
1891{
1892	disk->queue = blk_init_queue(do_cciss_request, &h->lock);
1893	if (!disk->queue)
1894		goto init_queue_failure;
1895	sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index);
1896	disk->major = h->major;
1897	disk->first_minor = drv_index << NWD_SHIFT;
1898	disk->fops = &cciss_fops;
1899	if (cciss_create_ld_sysfs_entry(h, drv_index))
1900		goto cleanup_queue;
1901	disk->private_data = h->drv[drv_index];
1902	disk->driverfs_dev = &h->drv[drv_index]->dev;
1903
1904	/* Set up queue information */
1905	blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask);
1906
1907	/* This is a hardware imposed limit. */
1908	blk_queue_max_segments(disk->queue, h->maxsgentries);
1909
1910	blk_queue_max_hw_sectors(disk->queue, h->cciss_max_sectors);
1911
1912	blk_queue_softirq_done(disk->queue, cciss_softirq_done);
1913
1914	disk->queue->queuedata = h;
1915
1916	blk_queue_logical_block_size(disk->queue,
1917				     h->drv[drv_index]->block_size);
1918
1919	/* Make sure all queue data is written out before */
1920	/* setting h->drv[drv_index]->queue, as setting this */
1921	/* allows the interrupt handler to start the queue */
1922	wmb();
1923	h->drv[drv_index]->queue = disk->queue;
1924	add_disk(disk);
1925	return 0;
1926
1927cleanup_queue:
1928	blk_cleanup_queue(disk->queue);
1929	disk->queue = NULL;
1930init_queue_failure:
1931	return -1;
1932}
1933
1934/* This function will check the usage_count of the drive to be updated/added.
1935 * If the usage_count is zero and it is a heretofore unknown drive, or,
1936 * the drive's capacity, geometry, or serial number has changed,
1937 * then the drive information will be updated and the disk will be
1938 * re-registered with the kernel.  If these conditions don't hold,
1939 * then it will be left alone for the next reboot.  The exception to this
1940 * is disk 0 which will always be left registered with the kernel since it
1941 * is also the controller node.  Any changes to disk 0 will show up on
1942 * the next reboot.
1943 */
1944static void cciss_update_drive_info(int ctlr, int drv_index, int first_time,
1945	int via_ioctl)
1946{
1947	ctlr_info_t *h = hba[ctlr];
1948	struct gendisk *disk;
1949	InquiryData_struct *inq_buff = NULL;
1950	unsigned int block_size;
1951	sector_t total_size;
1952	unsigned long flags = 0;
1953	int ret = 0;
1954	drive_info_struct *drvinfo;
1955
1956	/* Get information about the disk and modify the driver structure */
1957	inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1958	drvinfo = kzalloc(sizeof(*drvinfo), GFP_KERNEL);
1959	if (inq_buff == NULL || drvinfo == NULL)
1960		goto mem_msg;
1961
1962	/* testing to see if 16-byte CDBs are already being used */
1963	if (h->cciss_read == CCISS_READ_16) {
1964		cciss_read_capacity_16(h->ctlr, drv_index,
1965			&total_size, &block_size);
1966
1967	} else {
1968		cciss_read_capacity(ctlr, drv_index, &total_size, &block_size);
1969		/* if read_capacity returns all F's this volume is >2TB */
1970		/* in size so we switch to 16-byte CDB's for all */
1971		/* read/write ops */
1972		if (total_size == 0xFFFFFFFFULL) {
1973			cciss_read_capacity_16(ctlr, drv_index,
1974			&total_size, &block_size);
1975			h->cciss_read = CCISS_READ_16;
1976			h->cciss_write = CCISS_WRITE_16;
1977		} else {
1978			h->cciss_read = CCISS_READ_10;
1979			h->cciss_write = CCISS_WRITE_10;
1980		}
1981	}
1982
1983	cciss_geometry_inquiry(ctlr, drv_index, total_size, block_size,
1984			       inq_buff, drvinfo);
1985	drvinfo->block_size = block_size;
1986	drvinfo->nr_blocks = total_size + 1;
1987
1988	cciss_get_device_descr(ctlr, drv_index, drvinfo->vendor,
1989				drvinfo->model, drvinfo->rev);
1990	cciss_get_serial_no(ctlr, drv_index, drvinfo->serial_no,
1991			sizeof(drvinfo->serial_no));
1992	/* Save the lunid in case we deregister the disk, below. */
1993	memcpy(drvinfo->LunID, h->drv[drv_index]->LunID,
1994		sizeof(drvinfo->LunID));
1995
1996	/* Is it the same disk we already know, and nothing's changed? */
1997	if (h->drv[drv_index]->raid_level != -1 &&
1998		((memcmp(drvinfo->serial_no,
1999				h->drv[drv_index]->serial_no, 16) == 0) &&
2000		drvinfo->block_size == h->drv[drv_index]->block_size &&
2001		drvinfo->nr_blocks == h->drv[drv_index]->nr_blocks &&
2002		drvinfo->heads == h->drv[drv_index]->heads &&
2003		drvinfo->sectors == h->drv[drv_index]->sectors &&
2004		drvinfo->cylinders == h->drv[drv_index]->cylinders))
2005			/* The disk is unchanged, nothing to update */
2006			goto freeret;
2007
2008	/* If we get here it's not the same disk, or something's changed,
2009	 * so we need to * deregister it, and re-register it, if it's not
2010	 * in use.
2011	 * If the disk already exists then deregister it before proceeding
2012	 * (unless it's the first disk (for the controller node).
2013	 */
2014	if (h->drv[drv_index]->raid_level != -1 && drv_index != 0) {
2015		printk(KERN_WARNING "disk %d has changed.\n", drv_index);
2016		spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2017		h->drv[drv_index]->busy_configuring = 1;
2018		spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2019
2020		/* deregister_disk sets h->drv[drv_index]->queue = NULL
2021		 * which keeps the interrupt handler from starting
2022		 * the queue.
2023		 */
2024		ret = deregister_disk(h, drv_index, 0, via_ioctl);
2025	}
2026
2027	/* If the disk is in use return */
2028	if (ret)
2029		goto freeret;
2030
2031	/* Save the new information from cciss_geometry_inquiry
2032	 * and serial number inquiry.  If the disk was deregistered
2033	 * above, then h->drv[drv_index] will be NULL.
2034	 */
2035	if (h->drv[drv_index] == NULL) {
2036		drvinfo->device_initialized = 0;
2037		h->drv[drv_index] = drvinfo;
2038		drvinfo = NULL; /* so it won't be freed below. */
2039	} else {
2040		/* special case for cxd0 */
2041		h->drv[drv_index]->block_size = drvinfo->block_size;
2042		h->drv[drv_index]->nr_blocks = drvinfo->nr_blocks;
2043		h->drv[drv_index]->heads = drvinfo->heads;
2044		h->drv[drv_index]->sectors = drvinfo->sectors;
2045		h->drv[drv_index]->cylinders = drvinfo->cylinders;
2046		h->drv[drv_index]->raid_level = drvinfo->raid_level;
2047		memcpy(h->drv[drv_index]->serial_no, drvinfo->serial_no, 16);
2048		memcpy(h->drv[drv_index]->vendor, drvinfo->vendor,
2049			VENDOR_LEN + 1);
2050		memcpy(h->drv[drv_index]->model, drvinfo->model, MODEL_LEN + 1);
2051		memcpy(h->drv[drv_index]->rev, drvinfo->rev, REV_LEN + 1);
2052	}
2053
2054	++h->num_luns;
2055	disk = h->gendisk[drv_index];
2056	set_capacity(disk, h->drv[drv_index]->nr_blocks);
2057
2058	/* If it's not disk 0 (drv_index != 0)
2059	 * or if it was disk 0, but there was previously
2060	 * no actual corresponding configured logical drive
2061	 * (raid_leve == -1) then we want to update the
2062	 * logical drive's information.
2063	 */
2064	if (drv_index || first_time) {
2065		if (cciss_add_disk(h, disk, drv_index) != 0) {
2066			cciss_free_gendisk(h, drv_index);
2067			cciss_free_drive_info(h, drv_index);
2068			printk(KERN_WARNING "cciss:%d could not update "
2069				"disk %d\n", h->ctlr, drv_index);
2070			--h->num_luns;
2071		}
2072	}
2073
2074freeret:
2075	kfree(inq_buff);
2076	kfree(drvinfo);
2077	return;
2078mem_msg:
2079	printk(KERN_ERR "cciss: out of memory\n");
2080	goto freeret;
2081}
2082
2083/* This function will find the first index of the controllers drive array
2084 * that has a null drv pointer and allocate the drive info struct and
2085 * will return that index   This is where new drives will be added.
2086 * If the index to be returned is greater than the highest_lun index for
2087 * the controller then highest_lun is set * to this new index.
2088 * If there are no available indexes or if tha allocation fails, then -1
2089 * is returned.  * "controller_node" is used to know if this is a real
2090 * logical drive, or just the controller node, which determines if this
2091 * counts towards highest_lun.
2092 */
2093static int cciss_alloc_drive_info(ctlr_info_t *h, int controller_node)
2094{
2095	int i;
2096	drive_info_struct *drv;
2097
2098	/* Search for an empty slot for our drive info */
2099	for (i = 0; i < CISS_MAX_LUN; i++) {
2100
2101		/* if not cxd0 case, and it's occupied, skip it. */
2102		if (h->drv[i] && i != 0)
2103			continue;
2104		/*
2105		 * If it's cxd0 case, and drv is alloc'ed already, and a
2106		 * disk is configured there, skip it.
2107		 */
2108		if (i == 0 && h->drv[i] && h->drv[i]->raid_level != -1)
2109			continue;
2110
2111		/*
2112		 * We've found an empty slot.  Update highest_lun
2113		 * provided this isn't just the fake cxd0 controller node.
2114		 */
2115		if (i > h->highest_lun && !controller_node)
2116			h->highest_lun = i;
2117
2118		/* If adding a real disk at cxd0, and it's already alloc'ed */
2119		if (i == 0 && h->drv[i] != NULL)
2120			return i;
2121
2122		/*
2123		 * Found an empty slot, not already alloc'ed.  Allocate it.
2124		 * Mark it with raid_level == -1, so we know it's new later on.
2125		 */
2126		drv = kzalloc(sizeof(*drv), GFP_KERNEL);
2127		if (!drv)
2128			return -1;
2129		drv->raid_level = -1; /* so we know it's new */
2130		h->drv[i] = drv;
2131		return i;
2132	}
2133	return -1;
2134}
2135
2136static void cciss_free_drive_info(ctlr_info_t *h, int drv_index)
2137{
2138	kfree(h->drv[drv_index]);
2139	h->drv[drv_index] = NULL;
2140}
2141
2142static void cciss_free_gendisk(ctlr_info_t *h, int drv_index)
2143{
2144	put_disk(h->gendisk[drv_index]);
2145	h->gendisk[drv_index] = NULL;
2146}
2147
2148/* cciss_add_gendisk finds a free hba[]->drv structure
2149 * and allocates a gendisk if needed, and sets the lunid
2150 * in the drvinfo structure.   It returns the index into
2151 * the ->drv[] array, or -1 if none are free.
2152 * is_controller_node indicates whether highest_lun should
2153 * count this disk, or if it's only being added to provide
2154 * a means to talk to the controller in case no logical
2155 * drives have yet been configured.
2156 */
2157static int cciss_add_gendisk(ctlr_info_t *h, unsigned char lunid[],
2158	int controller_node)
2159{
2160	int drv_index;
2161
2162	drv_index = cciss_alloc_drive_info(h, controller_node);
2163	if (drv_index == -1)
2164		return -1;
2165
2166	/*Check if the gendisk needs to be allocated */
2167	if (!h->gendisk[drv_index]) {
2168		h->gendisk[drv_index] =
2169			alloc_disk(1 << NWD_SHIFT);
2170		if (!h->gendisk[drv_index]) {
2171			printk(KERN_ERR "cciss%d: could not "
2172				"allocate a new disk %d\n",
2173				h->ctlr, drv_index);
2174			goto err_free_drive_info;
2175		}
2176	}
2177	memcpy(h->drv[drv_index]->LunID, lunid,
2178		sizeof(h->drv[drv_index]->LunID));
2179	if (cciss_create_ld_sysfs_entry(h, drv_index))
2180		goto err_free_disk;
2181	/* Don't need to mark this busy because nobody */
2182	/* else knows about this disk yet to contend */
2183	/* for access to it. */
2184	h->drv[drv_index]->busy_configuring = 0;
2185	wmb();
2186	return drv_index;
2187
2188err_free_disk:
2189	cciss_free_gendisk(h, drv_index);
2190err_free_drive_info:
2191	cciss_free_drive_info(h, drv_index);
2192	return -1;
2193}
2194
2195/* This is for the special case of a controller which
2196 * has no logical drives.  In this case, we still need
2197 * to register a disk so the controller can be accessed
2198 * by the Array Config Utility.
2199 */
2200static void cciss_add_controller_node(ctlr_info_t *h)
2201{
2202	struct gendisk *disk;
2203	int drv_index;
2204
2205	if (h->gendisk[0] != NULL) /* already did this? Then bail. */
2206		return;
2207
2208	drv_index = cciss_add_gendisk(h, CTLR_LUNID, 1);
2209	if (drv_index == -1)
2210		goto error;
2211	h->drv[drv_index]->block_size = 512;
2212	h->drv[drv_index]->nr_blocks = 0;
2213	h->drv[drv_index]->heads = 0;
2214	h->drv[drv_index]->sectors = 0;
2215	h->drv[drv_index]->cylinders = 0;
2216	h->drv[drv_index]->raid_level = -1;
2217	memset(h->drv[drv_index]->serial_no, 0, 16);
2218	disk = h->gendisk[drv_index];
2219	if (cciss_add_disk(h, disk, drv_index) == 0)
2220		return;
2221	cciss_free_gendisk(h, drv_index);
2222	cciss_free_drive_info(h, drv_index);
2223error:
2224	printk(KERN_WARNING "cciss%d: could not "
2225		"add disk 0.\n", h->ctlr);
2226	return;
2227}
2228
2229/* This function will add and remove logical drives from the Logical
2230 * drive array of the controller and maintain persistency of ordering
2231 * so that mount points are preserved until the next reboot.  This allows
2232 * for the removal of logical drives in the middle of the drive array
2233 * without a re-ordering of those drives.
2234 * INPUT
2235 * h		= The controller to perform the operations on
2236 */
2237static int rebuild_lun_table(ctlr_info_t *h, int first_time,
2238	int via_ioctl)
2239{
2240	int ctlr = h->ctlr;
2241	int num_luns;
2242	ReportLunData_struct *ld_buff = NULL;
2243	int return_code;
2244	int listlength = 0;
2245	int i;
2246	int drv_found;
2247	int drv_index = 0;
2248	unsigned char lunid[8] = CTLR_LUNID;
2249	unsigned long flags;
2250
2251	if (!capable(CAP_SYS_RAWIO))
2252		return -EPERM;
2253
2254	/* Set busy_configuring flag for this operation */
2255	spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2256	if (h->busy_configuring) {
2257		spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2258		return -EBUSY;
2259	}
2260	h->busy_configuring = 1;
2261	spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2262
2263	ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
2264	if (ld_buff == NULL)
2265		goto mem_msg;
2266
2267	return_code = sendcmd_withirq(CISS_REPORT_LOG, ctlr, ld_buff,
2268				      sizeof(ReportLunData_struct),
2269				      0, CTLR_LUNID, TYPE_CMD);
2270
2271	if (return_code == IO_OK)
2272		listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
2273	else {	/* reading number of logical volumes failed */
2274		printk(KERN_WARNING "cciss: report logical volume"
2275		       " command failed\n");
2276		listlength = 0;
2277		goto freeret;
2278	}
2279
2280	num_luns = listlength / 8;	/* 8 bytes per entry */
2281	if (num_luns > CISS_MAX_LUN) {
2282		num_luns = CISS_MAX_LUN;
2283		printk(KERN_WARNING "cciss: more luns configured"
2284		       " on controller than can be handled by"
2285		       " this driver.\n");
2286	}
2287
2288	if (num_luns == 0)
2289		cciss_add_controller_node(h);
2290
2291	/* Compare controller drive array to driver's drive array
2292	 * to see if any drives are missing on the controller due
2293	 * to action of Array Config Utility (user deletes drive)
2294	 * and deregister logical drives which have disappeared.
2295	 */
2296	for (i = 0; i <= h->highest_lun; i++) {
2297		int j;
2298		drv_found = 0;
2299
2300		/* skip holes in the array from already deleted drives */
2301		if (h->drv[i] == NULL)
2302			continue;
2303
2304		for (j = 0; j < num_luns; j++) {
2305			memcpy(lunid, &ld_buff->LUN[j][0], sizeof(lunid));
2306			if (memcmp(h->drv[i]->LunID, lunid,
2307				sizeof(lunid)) == 0) {
2308				drv_found = 1;
2309				break;
2310			}
2311		}
2312		if (!drv_found) {
2313			/* Deregister it from the OS, it's gone. */
2314			spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2315			h->drv[i]->busy_configuring = 1;
2316			spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2317			return_code = deregister_disk(h, i, 1, via_ioctl);
2318			if (h->drv[i] != NULL)
2319				h->drv[i]->busy_configuring = 0;
2320		}
2321	}
2322
2323	/* Compare controller drive array to driver's drive array.
2324	 * Check for updates in the drive information and any new drives
2325	 * on the controller due to ACU adding logical drives, or changing
2326	 * a logical drive's size, etc.  Reregister any new/changed drives
2327	 */
2328	for (i = 0; i < num_luns; i++) {
2329		int j;
2330
2331		drv_found = 0;
2332
2333		memcpy(lunid, &ld_buff->LUN[i][0], sizeof(lunid));
2334		/* Find if the LUN is already in the drive array
2335		 * of the driver.  If so then update its info
2336		 * if not in use.  If it does not exist then find
2337		 * the first free index and add it.
2338		 */
2339		for (j = 0; j <= h->highest_lun; j++) {
2340			if (h->drv[j] != NULL &&
2341				memcmp(h->drv[j]->LunID, lunid,
2342					sizeof(h->drv[j]->LunID)) == 0) {
2343				drv_index = j;
2344				drv_found = 1;
2345				break;
2346			}
2347		}
2348
2349		/* check if the drive was found already in the array */
2350		if (!drv_found) {
2351			drv_index = cciss_add_gendisk(h, lunid, 0);
2352			if (drv_index == -1)
2353				goto freeret;
2354		}
2355		cciss_update_drive_info(ctlr, drv_index, first_time,
2356			via_ioctl);
2357	}		/* end for */
2358
2359freeret:
2360	kfree(ld_buff);
2361	h->busy_configuring = 0;
2362	/* We return -1 here to tell the ACU that we have registered/updated
2363	 * all of the drives that we can and to keep it from calling us
2364	 * additional times.
2365	 */
2366	return -1;
2367mem_msg:
2368	printk(KERN_ERR "cciss: out of memory\n");
2369	h->busy_configuring = 0;
2370	goto freeret;
2371}
2372
2373static void cciss_clear_drive_info(drive_info_struct *drive_info)
2374{
2375	/* zero out the disk size info */
2376	drive_info->nr_blocks = 0;
2377	drive_info->block_size = 0;
2378	drive_info->heads = 0;
2379	drive_info->sectors = 0;
2380	drive_info->cylinders = 0;
2381	drive_info->raid_level = -1;
2382	memset(drive_info->serial_no, 0, sizeof(drive_info->serial_no));
2383	memset(drive_info->model, 0, sizeof(drive_info->model));
2384	memset(drive_info->rev, 0, sizeof(drive_info->rev));
2385	memset(drive_info->vendor, 0, sizeof(drive_info->vendor));
2386	/*
2387	 * don't clear the LUNID though, we need to remember which
2388	 * one this one is.
2389	 */
2390}
2391
2392/* This function will deregister the disk and it's queue from the
2393 * kernel.  It must be called with the controller lock held and the
2394 * drv structures busy_configuring flag set.  It's parameters are:
2395 *
2396 * disk = This is the disk to be deregistered
2397 * drv  = This is the drive_info_struct associated with the disk to be
2398 *        deregistered.  It contains information about the disk used
2399 *        by the driver.
2400 * clear_all = This flag determines whether or not the disk information
2401 *             is going to be completely cleared out and the highest_lun
2402 *             reset.  Sometimes we want to clear out information about
2403 *             the disk in preparation for re-adding it.  In this case
2404 *             the highest_lun should be left unchanged and the LunID
2405 *             should not be cleared.
2406 * via_ioctl
2407 *    This indicates whether we've reached this path via ioctl.
2408 *    This affects the maximum usage count allowed for c0d0 to be messed with.
2409 *    If this path is reached via ioctl(), then the max_usage_count will
2410 *    be 1, as the process calling ioctl() has got to have the device open.
2411 *    If we get here via sysfs, then the max usage count will be zero.
2412*/
2413static int deregister_disk(ctlr_info_t *h, int drv_index,
2414			   int clear_all, int via_ioctl)
2415{
2416	int i;
2417	struct gendisk *disk;
2418	drive_info_struct *drv;
2419	int recalculate_highest_lun;
2420
2421	if (!capable(CAP_SYS_RAWIO))
2422		return -EPERM;
2423
2424	drv = h->drv[drv_index];
2425	disk = h->gendisk[drv_index];
2426
2427	/* make sure logical volume is NOT is use */
2428	if (clear_all || (h->gendisk[0] == disk)) {
2429		if (drv->usage_count > via_ioctl)
2430			return -EBUSY;
2431	} else if (drv->usage_count > 0)
2432		return -EBUSY;
2433
2434	recalculate_highest_lun = (drv == h->drv[h->highest_lun]);
2435
2436	/* invalidate the devices and deregister the disk.  If it is disk
2437	 * zero do not deregister it but just zero out it's values.  This
2438	 * allows us to delete disk zero but keep the controller registered.
2439	 */
2440	if (h->gendisk[0] != disk) {
2441		struct request_queue *q = disk->queue;
2442		if (disk->flags & GENHD_FL_UP) {
2443			cciss_destroy_ld_sysfs_entry(h, drv_index, 0);
2444			del_gendisk(disk);
2445		}
2446		if (q)
2447			blk_cleanup_queue(q);
2448		/* If clear_all is set then we are deleting the logical
2449		 * drive, not just refreshing its info.  For drives
2450		 * other than disk 0 we will call put_disk.  We do not
2451		 * do this for disk 0 as we need it to be able to
2452		 * configure the controller.
2453		 */
2454		if (clear_all){
2455			/* This isn't pretty, but we need to find the
2456			 * disk in our array and NULL our the pointer.
2457			 * This is so that we will call alloc_disk if
2458			 * this index is used again later.
2459			 */
2460			for (i=0; i < CISS_MAX_LUN; i++){
2461				if (h->gendisk[i] == disk) {
2462					h->gendisk[i] = NULL;
2463					break;
2464				}
2465			}
2466			put_disk(disk);
2467		}
2468	} else {
2469		set_capacity(disk, 0);
2470		cciss_clear_drive_info(drv);
2471	}
2472
2473	--h->num_luns;
2474
2475	/* if it was the last disk, find the new hightest lun */
2476	if (clear_all && recalculate_highest_lun) {
2477		int newhighest = -1;
2478		for (i = 0; i <= h->highest_lun; i++) {
2479			/* if the disk has size > 0, it is available */
2480			if (h->drv[i] && h->drv[i]->heads)
2481				newhighest = i;
2482		}
2483		h->highest_lun = newhighest;
2484	}
2485	return 0;
2486}
2487
2488static int fill_cmd(CommandList_struct *c, __u8 cmd, int ctlr, void *buff,
2489		size_t size, __u8 page_code, unsigned char *scsi3addr,
2490		int cmd_type)
2491{
2492	ctlr_info_t *h = hba[ctlr];
2493	u64bit buff_dma_handle;
2494	int status = IO_OK;
2495
2496	c->cmd_type = CMD_IOCTL_PEND;
2497	c->Header.ReplyQueue = 0;
2498	if (buff != NULL) {
2499		c->Header.SGList = 1;
2500		c->Header.SGTotal = 1;
2501	} else {
2502		c->Header.SGList = 0;
2503		c->Header.SGTotal = 0;
2504	}
2505	c->Header.Tag.lower = c->busaddr;
2506	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2507
2508	c->Request.Type.Type = cmd_type;
2509	if (cmd_type == TYPE_CMD) {
2510		switch (cmd) {
2511		case CISS_INQUIRY:
2512			/* are we trying to read a vital product page */
2513			if (page_code != 0) {
2514				c->Request.CDB[1] = 0x01;
2515				c->Request.CDB[2] = page_code;
2516			}
2517			c->Request.CDBLen = 6;
2518			c->Request.Type.Attribute = ATTR_SIMPLE;
2519			c->Request.Type.Direction = XFER_READ;
2520			c->Request.Timeout = 0;
2521			c->Request.CDB[0] = CISS_INQUIRY;
2522			c->Request.CDB[4] = size & 0xFF;
2523			break;
2524		case CISS_REPORT_LOG:
2525		case CISS_REPORT_PHYS:
2526			/* Talking to controller so It's a physical command
2527			   mode = 00 target = 0.  Nothing to write.
2528			 */
2529			c->Request.CDBLen = 12;
2530			c->Request.Type.Attribute = ATTR_SIMPLE;
2531			c->Request.Type.Direction = XFER_READ;
2532			c->Request.Timeout = 0;
2533			c->Request.CDB[0] = cmd;
2534			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2535			c->Request.CDB[7] = (size >> 16) & 0xFF;
2536			c->Request.CDB[8] = (size >> 8) & 0xFF;
2537			c->Request.CDB[9] = size & 0xFF;
2538			break;
2539
2540		case CCISS_READ_CAPACITY:
2541			c->Request.CDBLen = 10;
2542			c->Request.Type.Attribute = ATTR_SIMPLE;
2543			c->Request.Type.Direction = XFER_READ;
2544			c->Request.Timeout = 0;
2545			c->Request.CDB[0] = cmd;
2546			break;
2547		case CCISS_READ_CAPACITY_16:
2548			c->Request.CDBLen = 16;
2549			c->Request.Type.Attribute = ATTR_SIMPLE;
2550			c->Request.Type.Direction = XFER_READ;
2551			c->Request.Timeout = 0;
2552			c->Request.CDB[0] = cmd;
2553			c->Request.CDB[1] = 0x10;
2554			c->Request.CDB[10] = (size >> 24) & 0xFF;
2555			c->Request.CDB[11] = (size >> 16) & 0xFF;
2556			c->Request.CDB[12] = (size >> 8) & 0xFF;
2557			c->Request.CDB[13] = size & 0xFF;
2558			c->Request.Timeout = 0;
2559			c->Request.CDB[0] = cmd;
2560			break;
2561		case CCISS_CACHE_FLUSH:
2562			c->Request.CDBLen = 12;
2563			c->Request.Type.Attribute = ATTR_SIMPLE;
2564			c->Request.Type.Direction = XFER_WRITE;
2565			c->Request.Timeout = 0;
2566			c->Request.CDB[0] = BMIC_WRITE;
2567			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2568			break;
2569		case TEST_UNIT_READY:
2570			c->Request.CDBLen = 6;
2571			c->Request.Type.Attribute = ATTR_SIMPLE;
2572			c->Request.Type.Direction = XFER_NONE;
2573			c->Request.Timeout = 0;
2574			break;
2575		default:
2576			printk(KERN_WARNING
2577			       "cciss%d:  Unknown Command 0x%c\n", ctlr, cmd);
2578			return IO_ERROR;
2579		}
2580	} else if (cmd_type == TYPE_MSG) {
2581		switch (cmd) {
2582		case 0:	/* ABORT message */
2583			c->Request.CDBLen = 12;
2584			c->Request.Type.Attribute = ATTR_SIMPLE;
2585			c->Request.Type.Direction = XFER_WRITE;
2586			c->Request.Timeout = 0;
2587			c->Request.CDB[0] = cmd;	/* abort */
2588			c->Request.CDB[1] = 0;	/* abort a command */
2589			/* buff contains the tag of the command to abort */
2590			memcpy(&c->Request.CDB[4], buff, 8);
2591			break;
2592		case 1:	/* RESET message */
2593			c->Request.CDBLen = 16;
2594			c->Request.Type.Attribute = ATTR_SIMPLE;
2595			c->Request.Type.Direction = XFER_NONE;
2596			c->Request.Timeout = 0;
2597			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2598			c->Request.CDB[0] = cmd;	/* reset */
2599			c->Request.CDB[1] = 0x03;	/* reset a target */
2600			break;
2601		case 3:	/* No-Op message */
2602			c->Request.CDBLen = 1;
2603			c->Request.Type.Attribute = ATTR_SIMPLE;
2604			c->Request.Type.Direction = XFER_WRITE;
2605			c->Request.Timeout = 0;
2606			c->Request.CDB[0] = cmd;
2607			break;
2608		default:
2609			printk(KERN_WARNING
2610			       "cciss%d: unknown message type %d\n", ctlr, cmd);
2611			return IO_ERROR;
2612		}
2613	} else {
2614		printk(KERN_WARNING
2615		       "cciss%d: unknown command type %d\n", ctlr, cmd_type);
2616		return IO_ERROR;
2617	}
2618	/* Fill in the scatter gather information */
2619	if (size > 0) {
2620		buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
2621							     buff, size,
2622							     PCI_DMA_BIDIRECTIONAL);
2623		c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
2624		c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
2625		c->SG[0].Len = size;
2626		c->SG[0].Ext = 0;	/* we are not chaining */
2627	}
2628	return status;
2629}
2630
2631static int check_target_status(ctlr_info_t *h, CommandList_struct *c)
2632{
2633	switch (c->err_info->ScsiStatus) {
2634	case SAM_STAT_GOOD:
2635		return IO_OK;
2636	case SAM_STAT_CHECK_CONDITION:
2637		switch (0xf & c->err_info->SenseInfo[2]) {
2638		case 0: return IO_OK; /* no sense */
2639		case 1: return IO_OK; /* recovered error */
2640		default:
2641			if (check_for_unit_attention(h, c))
2642				return IO_NEEDS_RETRY;
2643			printk(KERN_WARNING "cciss%d: cmd 0x%02x "
2644				"check condition, sense key = 0x%02x\n",
2645				h->ctlr, c->Request.CDB[0],
2646				c->err_info->SenseInfo[2]);
2647		}
2648		break;
2649	default:
2650		printk(KERN_WARNING "cciss%d: cmd 0x%02x"
2651			"scsi status = 0x%02x\n", h->ctlr,
2652			c->Request.CDB[0], c->err_info->ScsiStatus);
2653		break;
2654	}
2655	return IO_ERROR;
2656}
2657
2658static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c)
2659{
2660	int return_status = IO_OK;
2661
2662	if (c->err_info->CommandStatus == CMD_SUCCESS)
2663		return IO_OK;
2664
2665	switch (c->err_info->CommandStatus) {
2666	case CMD_TARGET_STATUS:
2667		return_status = check_target_status(h, c);
2668		break;
2669	case CMD_DATA_UNDERRUN:
2670	case CMD_DATA_OVERRUN:
2671		/* expected for inquiry and report lun commands */
2672		break;
2673	case CMD_INVALID:
2674		printk(KERN_WARNING "cciss: cmd 0x%02x is "
2675		       "reported invalid\n", c->Request.CDB[0]);
2676		return_status = IO_ERROR;
2677		break;
2678	case CMD_PROTOCOL_ERR:
2679		printk(KERN_WARNING "cciss: cmd 0x%02x has "
2680		       "protocol error \n", c->Request.CDB[0]);
2681		return_status = IO_ERROR;
2682		break;
2683	case CMD_HARDWARE_ERR:
2684		printk(KERN_WARNING "cciss: cmd 0x%02x had "
2685		       " hardware error\n", c->Request.CDB[0]);
2686		return_status = IO_ERROR;
2687		break;
2688	case CMD_CONNECTION_LOST:
2689		printk(KERN_WARNING "cciss: cmd 0x%02x had "
2690		       "connection lost\n", c->Request.CDB[0]);
2691		return_status = IO_ERROR;
2692		break;
2693	case CMD_ABORTED:
2694		printk(KERN_WARNING "cciss: cmd 0x%02x was "
2695		       "aborted\n", c->Request.CDB[0]);
2696		return_status = IO_ERROR;
2697		break;
2698	case CMD_ABORT_FAILED:
2699		printk(KERN_WARNING "cciss: cmd 0x%02x reports "
2700		       "abort failed\n", c->Request.CDB[0]);
2701		return_status = IO_ERROR;
2702		break;
2703	case CMD_UNSOLICITED_ABORT:
2704		printk(KERN_WARNING
2705		       "cciss%d: unsolicited abort 0x%02x\n", h->ctlr,
2706			c->Request.CDB[0]);
2707		return_status = IO_NEEDS_RETRY;
2708		break;
2709	default:
2710		printk(KERN_WARNING "cciss: cmd 0x%02x returned "
2711		       "unknown status %x\n", c->Request.CDB[0],
2712		       c->err_info->CommandStatus);
2713		return_status = IO_ERROR;
2714	}
2715	return return_status;
2716}
2717
2718static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
2719	int attempt_retry)
2720{
2721	DECLARE_COMPLETION_ONSTACK(wait);
2722	u64bit buff_dma_handle;
2723	int return_status = IO_OK;
2724
2725resend_cmd2:
2726	c->waiting = &wait;
2727	enqueue_cmd_and_start_io(h, c);
2728
2729	wait_for_completion(&wait);
2730
2731	if (c->err_info->CommandStatus == 0 || !attempt_retry)
2732		goto command_done;
2733
2734	return_status = process_sendcmd_error(h, c);
2735
2736	if (return_status == IO_NEEDS_RETRY &&
2737		c->retry_count < MAX_CMD_RETRIES) {
2738		printk(KERN_WARNING "cciss%d: retrying 0x%02x\n", h->ctlr,
2739			c->Request.CDB[0]);
2740		c->retry_count++;
2741		/* erase the old error information */
2742		memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2743		return_status = IO_OK;
2744		INIT_COMPLETION(wait);
2745		goto resend_cmd2;
2746	}
2747
2748command_done:
2749	/* unlock the buffers from DMA */
2750	buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2751	buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2752	pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
2753			 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2754	return return_status;
2755}
2756
2757static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
2758			   __u8 page_code, unsigned char scsi3addr[],
2759			int cmd_type)
2760{
2761	ctlr_info_t *h = hba[ctlr];
2762	CommandList_struct *c;
2763	int return_status;
2764
2765	c = cmd_alloc(h, 0);
2766	if (!c)
2767		return -ENOMEM;
2768	return_status = fill_cmd(c, cmd, ctlr, buff, size, page_code,
2769		scsi3addr, cmd_type);
2770	if (return_status == IO_OK)
2771		return_status = sendcmd_withirq_core(h, c, 1);
2772
2773	cmd_free(h, c, 0);
2774	return return_status;
2775}
2776
2777static void cciss_geometry_inquiry(int ctlr, int logvol,
2778				   sector_t total_size,
2779				   unsigned int block_size,
2780				   InquiryData_struct *inq_buff,
2781				   drive_info_struct *drv)
2782{
2783	int return_code;
2784	unsigned long t;
2785	unsigned char scsi3addr[8];
2786
2787	memset(inq_buff, 0, sizeof(InquiryData_struct));
2788	log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
2789	return_code = sendcmd_withirq(CISS_INQUIRY, ctlr, inq_buff,
2790			sizeof(*inq_buff), 0xC1, scsi3addr, TYPE_CMD);
2791	if (return_code == IO_OK) {
2792		if (inq_buff->data_byte[8] == 0xFF) {
2793			printk(KERN_WARNING
2794			       "cciss: reading geometry failed, volume "
2795			       "does not support reading geometry\n");
2796			drv->heads = 255;
2797			drv->sectors = 32;	/* Sectors per track */
2798			drv->cylinders = total_size + 1;
2799			drv->raid_level = RAID_UNKNOWN;
2800		} else {
2801			drv->heads = inq_buff->data_byte[6];
2802			drv->sectors = inq_buff->data_byte[7];
2803			drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
2804			drv->cylinders += inq_buff->data_byte[5];
2805			drv->raid_level = inq_buff->data_byte[8];
2806		}
2807		drv->block_size = block_size;
2808		drv->nr_blocks = total_size + 1;
2809		t = drv->heads * drv->sectors;
2810		if (t > 1) {
2811			sector_t real_size = total_size + 1;
2812			unsigned long rem = sector_div(real_size, t);
2813			if (rem)
2814				real_size++;
2815			drv->cylinders = real_size;
2816		}
2817	} else {		/* Get geometry failed */
2818		printk(KERN_WARNING "cciss: reading geometry failed\n");
2819	}
2820}
2821
2822static void
2823cciss_read_capacity(int ctlr, int logvol, sector_t *total_size,
2824		    unsigned int *block_size)
2825{
2826	ReadCapdata_struct *buf;
2827	int return_code;
2828	unsigned char scsi3addr[8];
2829
2830	buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
2831	if (!buf) {
2832		printk(KERN_WARNING "cciss: out of memory\n");
2833		return;
2834	}
2835
2836	log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
2837	return_code = sendcmd_withirq(CCISS_READ_CAPACITY, ctlr, buf,
2838		sizeof(ReadCapdata_struct), 0, scsi3addr, TYPE_CMD);
2839	if (return_code == IO_OK) {
2840		*total_size = be32_to_cpu(*(__be32 *) buf->total_size);
2841		*block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2842	} else {		/* read capacity command failed */
2843		printk(KERN_WARNING "cciss: read capacity failed\n");
2844		*total_size = 0;
2845		*block_size = BLOCK_SIZE;
2846	}
2847	kfree(buf);
2848}
2849
2850static void cciss_read_capacity_16(int ctlr, int logvol,
2851	sector_t *total_size, unsigned int *block_size)
2852{
2853	ReadCapdata_struct_16 *buf;
2854	int return_code;
2855	unsigned char scsi3addr[8];
2856
2857	buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
2858	if (!buf) {
2859		printk(KERN_WARNING "cciss: out of memory\n");
2860		return;
2861	}
2862
2863	log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
2864	return_code = sendcmd_withirq(CCISS_READ_CAPACITY_16,
2865		ctlr, buf, sizeof(ReadCapdata_struct_16),
2866			0, scsi3addr, TYPE_CMD);
2867	if (return_code == IO_OK) {
2868		*total_size = be64_to_cpu(*(__be64 *) buf->total_size);
2869		*block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2870	} else {		/* read capacity command failed */
2871		printk(KERN_WARNING "cciss: read capacity failed\n");
2872		*total_size = 0;
2873		*block_size = BLOCK_SIZE;
2874	}
2875	printk(KERN_INFO "      blocks= %llu block_size= %d\n",
2876	       (unsigned long long)*total_size+1, *block_size);
2877	kfree(buf);
2878}
2879
2880static int cciss_revalidate(struct gendisk *disk)
2881{
2882	ctlr_info_t *h = get_host(disk);
2883	drive_info_struct *drv = get_drv(disk);
2884	int logvol;
2885	int FOUND = 0;
2886	unsigned int block_size;
2887	sector_t total_size;
2888	InquiryData_struct *inq_buff = NULL;
2889
2890	for (logvol = 0; logvol < CISS_MAX_LUN; logvol++) {
2891		if (memcmp(h->drv[logvol]->LunID, drv->LunID,
2892			sizeof(drv->LunID)) == 0) {
2893			FOUND = 1;
2894			break;
2895		}
2896	}
2897
2898	if (!FOUND)
2899		return 1;
2900
2901	inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2902	if (inq_buff == NULL) {
2903		printk(KERN_WARNING "cciss: out of memory\n");
2904		return 1;
2905	}
2906	if (h->cciss_read == CCISS_READ_10) {
2907		cciss_read_capacity(h->ctlr, logvol,
2908					&total_size, &block_size);
2909	} else {
2910		cciss_read_capacity_16(h->ctlr, logvol,
2911					&total_size, &block_size);
2912	}
2913	cciss_geometry_inquiry(h->ctlr, logvol, total_size, block_size,
2914			       inq_buff, drv);
2915
2916	blk_queue_logical_block_size(drv->queue, drv->block_size);
2917	set_capacity(disk, drv->nr_blocks);
2918
2919	kfree(inq_buff);
2920	return 0;
2921}
2922
2923/*
2924 * Map (physical) PCI mem into (virtual) kernel space
2925 */
2926static void __iomem *remap_pci_mem(ulong base, ulong size)
2927{
2928	ulong page_base = ((ulong) base) & PAGE_MASK;
2929	ulong page_offs = ((ulong) base) - page_base;
2930	void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2931
2932	return page_remapped ? (page_remapped + page_offs) : NULL;
2933}
2934
2935/*
2936 * Takes jobs of the Q and sends them to the hardware, then puts it on
2937 * the Q to wait for completion.
2938 */
2939static void start_io(ctlr_info_t *h)
2940{
2941	CommandList_struct *c;
2942
2943	while (!hlist_empty(&h->reqQ)) {
2944		c = hlist_entry(h->reqQ.first, CommandList_struct, list);
2945		/* can't do anything if fifo is full */
2946		if ((h->access.fifo_full(h))) {
2947			printk(KERN_WARNING "cciss: fifo full\n");
2948			break;
2949		}
2950
2951		/* Get the first entry from the Request Q */
2952		removeQ(c);
2953		h->Qdepth--;
2954
2955		/* Tell the controller execute command */
2956		h->access.submit_command(h, c);
2957
2958		/* Put job onto the completed Q */
2959		addQ(&h->cmpQ, c);
2960	}
2961}
2962
2963/* Assumes that CCISS_LOCK(h->ctlr) is held. */
2964/* Zeros out the error record and then resends the command back */
2965/* to the controller */
2966static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
2967{
2968	/* erase the old error information */
2969	memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2970
2971	/* add it to software queue and then send it to the controller */
2972	addQ(&h->reqQ, c);
2973	h->Qdepth++;
2974	if (h->Qdepth > h->maxQsinceinit)
2975		h->maxQsinceinit = h->Qdepth;
2976
2977	start_io(h);
2978}
2979
2980static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
2981	unsigned int msg_byte, unsigned int host_byte,
2982	unsigned int driver_byte)
2983{
2984	/* inverse of macros in scsi.h */
2985	return (scsi_status_byte & 0xff) |
2986		((msg_byte & 0xff) << 8) |
2987		((host_byte & 0xff) << 16) |
2988		((driver_byte & 0xff) << 24);
2989}
2990
2991static inline int evaluate_target_status(ctlr_info_t *h,
2992			CommandList_struct *cmd, int *retry_cmd)
2993{
2994	unsigned char sense_key;
2995	unsigned char status_byte, msg_byte, host_byte, driver_byte;
2996	int error_value;
2997
2998	*retry_cmd = 0;
2999	/* If we get in here, it means we got "target status", that is, scsi status */
3000	status_byte = cmd->err_info->ScsiStatus;
3001	driver_byte = DRIVER_OK;
3002	msg_byte = cmd->err_info->CommandStatus; /* correct?  seems too device specific */
3003
3004	if (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC)
3005		host_byte = DID_PASSTHROUGH;
3006	else
3007		host_byte = DID_OK;
3008
3009	error_value = make_status_bytes(status_byte, msg_byte,
3010		host_byte, driver_byte);
3011
3012	if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) {
3013		if (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC)
3014			printk(KERN_WARNING "cciss: cmd %p "
3015			       "has SCSI Status 0x%x\n",
3016			       cmd, cmd->err_info->ScsiStatus);
3017		return error_value;
3018	}
3019
3020	/* check the sense key */
3021	sense_key = 0xf & cmd->err_info->SenseInfo[2];
3022	/* no status or recovered error */
3023	if (((sense_key == 0x0) || (sense_key == 0x1)) &&
3024	    (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC))
3025		error_value = 0;
3026
3027	if (check_for_unit_attention(h, cmd)) {
3028		*retry_cmd = !(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC);
3029		return 0;
3030	}
3031
3032	/* Not SG_IO or similar? */
3033	if (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC) {
3034		if (error_value != 0)
3035			printk(KERN_WARNING "cciss: cmd %p has CHECK CONDITION"
3036			       " sense key = 0x%x\n", cmd, sense_key);
3037		return error_value;
3038	}
3039
3040	/* SG_IO or similar, copy sense data back */
3041	if (cmd->rq->sense) {
3042		if (cmd->rq->sense_len > cmd->err_info->SenseLen)
3043			cmd->rq->sense_len = cmd->err_info->SenseLen;
3044		memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
3045			cmd->rq->sense_len);
3046	} else
3047		cmd->rq->sense_len = 0;
3048
3049	return error_value;
3050}
3051
3052/* checks the status of the job and calls complete buffers to mark all
3053 * buffers for the completed job. Note that this function does not need
3054 * to hold the hba/queue lock.
3055 */
3056static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
3057				    int timeout)
3058{
3059	int retry_cmd = 0;
3060	struct request *rq = cmd->rq;
3061
3062	rq->errors = 0;
3063
3064	if (timeout)
3065		rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);
3066
3067	if (cmd->err_info->CommandStatus == 0)	/* no error has occurred */
3068		goto after_error_processing;
3069
3070	switch (cmd->err_info->CommandStatus) {
3071	case CMD_TARGET_STATUS:
3072		rq->errors = evaluate_target_status(h, cmd, &retry_cmd);
3073		break;
3074	case CMD_DATA_UNDERRUN:
3075		if (cmd->rq->cmd_type == REQ_TYPE_FS) {
3076			printk(KERN_WARNING "cciss: cmd %p has"
3077			       " completed with data underrun "
3078			       "reported\n", cmd);
3079			cmd->rq->resid_len = cmd->err_info->ResidualCnt;
3080		}
3081		break;
3082	case CMD_DATA_OVERRUN:
3083		if (cmd->rq->cmd_type == REQ_TYPE_FS)
3084			printk(KERN_WARNING "cciss: cmd %p has"
3085			       " completed with data overrun "
3086			       "reported\n", cmd);
3087		break;
3088	case CMD_INVALID:
3089		printk(KERN_WARNING "cciss: cmd %p is "
3090		       "reported invalid\n", cmd);
3091		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3092			cmd->err_info->CommandStatus, DRIVER_OK,
3093			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3094				DID_PASSTHROUGH : DID_ERROR);
3095		break;
3096	case CMD_PROTOCOL_ERR:
3097		printk(KERN_WARNING "cciss: cmd %p has "
3098		       "protocol error \n", cmd);
3099		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3100			cmd->err_info->CommandStatus, DRIVER_OK,
3101			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3102				DID_PASSTHROUGH : DID_ERROR);
3103		break;
3104	case CMD_HARDWARE_ERR:
3105		printk(KERN_WARNING "cciss: cmd %p had "
3106		       " hardware error\n", cmd);
3107		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3108			cmd->err_info->CommandStatus, DRIVER_OK,
3109			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3110				DID_PASSTHROUGH : DID_ERROR);
3111		break;
3112	case CMD_CONNECTION_LOST:
3113		printk(KERN_WARNING "cciss: cmd %p had "
3114		       "connection lost\n", cmd);
3115		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3116			cmd->err_info->CommandStatus, DRIVER_OK,
3117			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3118				DID_PASSTHROUGH : DID_ERROR);
3119		break;
3120	case CMD_ABORTED:
3121		printk(KERN_WARNING "cciss: cmd %p was "
3122		       "aborted\n", cmd);
3123		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3124			cmd->err_info->CommandStatus, DRIVER_OK,
3125			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3126				DID_PASSTHROUGH : DID_ABORT);
3127		break;
3128	case CMD_ABORT_FAILED:
3129		printk(KERN_WARNING "cciss: cmd %p reports "
3130		       "abort failed\n", cmd);
3131		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3132			cmd->err_info->CommandStatus, DRIVER_OK,
3133			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3134				DID_PASSTHROUGH : DID_ERROR);
3135		break;
3136	case CMD_UNSOLICITED_ABORT:
3137		printk(KERN_WARNING "cciss%d: unsolicited "
3138		       "abort %p\n", h->ctlr, cmd);
3139		if (cmd->retry_count < MAX_CMD_RETRIES) {
3140			retry_cmd = 1;
3141			printk(KERN_WARNING
3142			       "cciss%d: retrying %p\n", h->ctlr, cmd);
3143			cmd->retry_count++;
3144		} else
3145			printk(KERN_WARNING
3146			       "cciss%d: %p retried too "
3147			       "many times\n", h->ctlr, cmd);
3148		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3149			cmd->err_info->CommandStatus, DRIVER_OK,
3150			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3151				DID_PASSTHROUGH : DID_ABORT);
3152		break;
3153	case CMD_TIMEOUT:
3154		printk(KERN_WARNING "cciss: cmd %p timedout\n", cmd);
3155		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3156			cmd->err_info->CommandStatus, DRIVER_OK,
3157			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3158				DID_PASSTHROUGH : DID_ERROR);
3159		break;
3160	default:
3161		printk(KERN_WARNING "cciss: cmd %p returned "
3162		       "unknown status %x\n", cmd,
3163		       cmd->err_info->CommandStatus);
3164		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3165			cmd->err_info->CommandStatus, DRIVER_OK,
3166			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3167				DID_PASSTHROUGH : DID_ERROR);
3168	}
3169
3170after_error_processing:
3171
3172	/* We need to return this command */
3173	if (retry_cmd) {
3174		resend_cciss_cmd(h, cmd);
3175		return;
3176	}
3177	cmd->rq->completion_data = cmd;
3178	blk_complete_request(cmd->rq);
3179}
3180
3181static inline u32 cciss_tag_contains_index(u32 tag)
3182{
3183#define DIRECT_LOOKUP_BIT 0x10
3184	return tag & DIRECT_LOOKUP_BIT;
3185}
3186
3187static inline u32 cciss_tag_to_index(u32 tag)
3188{
3189#define DIRECT_LOOKUP_SHIFT 5
3190	return tag >> DIRECT_LOOKUP_SHIFT;
3191}
3192
3193static inline u32 cciss_tag_discard_error_bits(u32 tag)
3194{
3195#define CCISS_ERROR_BITS 0x03
3196	return tag & ~CCISS_ERROR_BITS;
3197}
3198
3199static inline void cciss_mark_tag_indexed(u32 *tag)
3200{
3201	*tag |= DIRECT_LOOKUP_BIT;
3202}
3203
3204static inline void cciss_set_tag_index(u32 *tag, u32 index)
3205{
3206	*tag |= (index << DIRECT_LOOKUP_SHIFT);
3207}
3208
3209/*
3210 * Get a request and submit it to the controller.
3211 */
3212static void do_cciss_request(struct request_queue *q)
3213{
3214	ctlr_info_t *h = q->queuedata;
3215	CommandList_struct *c;
3216	sector_t start_blk;
3217	int seg;
3218	struct request *creq;
3219	u64bit temp64;
3220	struct scatterlist *tmp_sg;
3221	SGDescriptor_struct *curr_sg;
3222	drive_info_struct *drv;
3223	int i, dir;
3224	int sg_index = 0;
3225	int chained = 0;
3226
3227	/* We call start_io here in case there is a command waiting on the
3228	 * queue that has not been sent.
3229	 */
3230	if (blk_queue_plugged(q))
3231		goto startio;
3232
3233      queue:
3234	creq = blk_peek_request(q);
3235	if (!creq)
3236		goto startio;
3237
3238	BUG_ON(creq->nr_phys_segments > h->maxsgentries);
3239
3240	if ((c = cmd_alloc(h, 1)) == NULL)
3241		goto full;
3242
3243	blk_start_request(creq);
3244
3245	tmp_sg = h->scatter_list[c->cmdindex];
3246	spin_unlock_irq(q->queue_lock);
3247
3248	c->cmd_type = CMD_RWREQ;
3249	c->rq = creq;
3250
3251	/* fill in the request */
3252	drv = creq->rq_disk->private_data;
3253	c->Header.ReplyQueue = 0;	/* unused in simple mode */
3254	/* got command from pool, so use the command block index instead */
3255	/* for direct lookups. */
3256	/* The first 2 bits are reserved for controller error reporting. */
3257	cciss_set_tag_index(&c->Header.Tag.lower, c->cmdindex);
3258	cciss_mark_tag_indexed(&c->Header.Tag.lower);
3259	memcpy(&c->Header.LUN, drv->LunID, sizeof(drv->LunID));
3260	c->Request.CDBLen = 10;	/* 12 byte commands not in FW yet; */
3261	c->Request.Type.Type = TYPE_CMD;	/* It is a command. */
3262	c->Request.Type.Attribute = ATTR_SIMPLE;
3263	c->Request.Type.Direction =
3264	    (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
3265	c->Request.Timeout = 0;	/* Don't time out */
3266	c->Request.CDB[0] =
3267	    (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
3268	start_blk = blk_rq_pos(creq);
3269#ifdef CCISS_DEBUG
3270	printk(KERN_DEBUG "ciss: sector =%d nr_sectors=%d\n",
3271	       (int)blk_rq_pos(creq), (int)blk_rq_sectors(creq));
3272#endif				/* CCISS_DEBUG */
3273
3274	sg_init_table(tmp_sg, h->maxsgentries);
3275	seg = blk_rq_map_sg(q, creq, tmp_sg);
3276
3277	/* get the DMA records for the setup */
3278	if (c->Request.Type.Direction == XFER_READ)
3279		dir = PCI_DMA_FROMDEVICE;
3280	else
3281		dir = PCI_DMA_TODEVICE;
3282
3283	curr_sg = c->SG;
3284	sg_index = 0;
3285	chained = 0;
3286
3287	for (i = 0; i < seg; i++) {
3288		if (((sg_index+1) == (h->max_cmd_sgentries)) &&
3289			!chained && ((seg - i) > 1)) {
3290			/* Point to next chain block. */
3291			curr_sg = h->cmd_sg_list[c->cmdindex];
3292			sg_index = 0;
3293			chained = 1;
3294		}
3295		curr_sg[sg_index].Len = tmp_sg[i].length;
3296		temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]),
3297						tmp_sg[i].offset,
3298						tmp_sg[i].length, dir);
3299		curr_sg[sg_index].Addr.lower = temp64.val32.lower;
3300		curr_sg[sg_index].Addr.upper = temp64.val32.upper;
3301		curr_sg[sg_index].Ext = 0;  /* we are not chaining */
3302		++sg_index;
3303	}
3304	if (chained)
3305		cciss_map_sg_chain_block(h, c, h->cmd_sg_list[c->cmdindex],
3306			(seg - (h->max_cmd_sgentries - 1)) *
3307				sizeof(SGDescriptor_struct));
3308
3309	/* track how many SG entries we are using */
3310	if (seg > h->maxSG)
3311		h->maxSG = seg;
3312
3313#ifdef CCISS_DEBUG
3314	printk(KERN_DEBUG "cciss: Submitting %ld sectors in %d segments "
3315			"chained[%d]\n",
3316			blk_rq_sectors(creq), seg, chained);
3317#endif				/* CCISS_DEBUG */
3318
3319	c->Header.SGTotal = seg + chained;
3320	if (seg <= h->max_cmd_sgentries)
3321		c->Header.SGList = c->Header.SGTotal;
3322	else
3323		c->Header.SGList = h->max_cmd_sgentries;
3324	set_performant_mode(h, c);
3325
3326	if (likely(creq->cmd_type == REQ_TYPE_FS)) {
3327		if(h->cciss_read == CCISS_READ_10) {
3328			c->Request.CDB[1] = 0;
3329			c->Request.CDB[2] = (start_blk >> 24) & 0xff; /* MSB */
3330			c->Request.CDB[3] = (start_blk >> 16) & 0xff;
3331			c->Request.CDB[4] = (start_blk >> 8) & 0xff;
3332			c->Request.CDB[5] = start_blk & 0xff;
3333			c->Request.CDB[6] = 0; /* (sect >> 24) & 0xff; MSB */
3334			c->Request.CDB[7] = (blk_rq_sectors(creq) >> 8) & 0xff;
3335			c->Request.CDB[8] = blk_rq_sectors(creq) & 0xff;
3336			c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
3337		} else {
3338			u32 upper32 = upper_32_bits(start_blk);
3339
3340			c->Request.CDBLen = 16;
3341			c->Request.CDB[1]= 0;
3342			c->Request.CDB[2]= (upper32 >> 24) & 0xff; /* MSB */
3343			c->Request.CDB[3]= (upper32 >> 16) & 0xff;
3344			c->Request.CDB[4]= (upper32 >>  8) & 0xff;
3345			c->Request.CDB[5]= upper32 & 0xff;
3346			c->Request.CDB[6]= (start_blk >> 24) & 0xff;
3347			c->Request.CDB[7]= (start_blk >> 16) & 0xff;
3348			c->Request.CDB[8]= (start_blk >>  8) & 0xff;
3349			c->Request.CDB[9]= start_blk & 0xff;
3350			c->Request.CDB[10]= (blk_rq_sectors(creq) >> 24) & 0xff;
3351			c->Request.CDB[11]= (blk_rq_sectors(creq) >> 16) & 0xff;
3352			c->Request.CDB[12]= (blk_rq_sectors(creq) >>  8) & 0xff;
3353			c->Request.CDB[13]= blk_rq_sectors(creq) & 0xff;
3354			c->Request.CDB[14] = c->Request.CDB[15] = 0;
3355		}
3356	} else if (creq->cmd_type == REQ_TYPE_BLOCK_PC) {
3357		c->Request.CDBLen = creq->cmd_len;
3358		memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB);
3359	} else {
3360		printk(KERN_WARNING "cciss%d: bad request type %d\n", h->ctlr, creq->cmd_type);
3361		BUG();
3362	}
3363
3364	spin_lock_irq(q->queue_lock);
3365
3366	addQ(&h->reqQ, c);
3367	h->Qdepth++;
3368	if (h->Qdepth > h->maxQsinceinit)
3369		h->maxQsinceinit = h->Qdepth;
3370
3371	goto queue;
3372full:
3373	blk_stop_queue(q);
3374startio:
3375	/* We will already have the driver lock here so not need
3376	 * to lock it.
3377	 */
3378	start_io(h);
3379}
3380
3381static inline unsigned long get_next_completion(ctlr_info_t *h)
3382{
3383	return h->access.command_completed(h);
3384}
3385
3386static inline int interrupt_pending(ctlr_info_t *h)
3387{
3388	return h->access.intr_pending(h);
3389}
3390
3391static inline long interrupt_not_for_us(ctlr_info_t *h)
3392{
3393	return !(h->msi_vector || h->msix_vector) &&
3394		((h->access.intr_pending(h) == 0) ||
3395		(h->interrupts_enabled == 0));
3396}
3397
3398static inline int bad_tag(ctlr_info_t *h, u32 tag_index,
3399			u32 raw_tag)
3400{
3401	if (unlikely(tag_index >= h->nr_cmds)) {
3402		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
3403		return 1;
3404	}
3405	return 0;
3406}
3407
3408static inline void finish_cmd(ctlr_info_t *h, CommandList_struct *c,
3409				u32 raw_tag)
3410{
3411	removeQ(c);
3412	if (likely(c->cmd_type == CMD_RWREQ))
3413		complete_command(h, c, 0);
3414	else if (c->cmd_type == CMD_IOCTL_PEND)
3415		complete(c->waiting);
3416#ifdef CONFIG_CISS_SCSI_TAPE
3417	else if (c->cmd_type == CMD_SCSI)
3418		complete_scsi_command(c, 0, raw_tag);
3419#endif
3420}
3421
3422static inline u32 next_command(ctlr_info_t *h)
3423{
3424	u32 a;
3425
3426	if (unlikely(h->transMethod != CFGTBL_Trans_Performant))
3427		return h->access.command_completed(h);
3428
3429	if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
3430		a = *(h->reply_pool_head); /* Next cmd in ring buffer */
3431		(h->reply_pool_head)++;
3432		h->commands_outstanding--;
3433	} else {
3434		a = FIFO_EMPTY;
3435	}
3436	/* Check for wraparound */
3437	if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
3438		h->reply_pool_head = h->reply_pool;
3439		h->reply_pool_wraparound ^= 1;
3440	}
3441	return a;
3442}
3443
3444/* process completion of an indexed ("direct lookup") command */
3445static inline u32 process_indexed_cmd(ctlr_info_t *h, u32 raw_tag)
3446{
3447	u32 tag_index;
3448	CommandList_struct *c;
3449
3450	tag_index = cciss_tag_to_index(raw_tag);
3451	if (bad_tag(h, tag_index, raw_tag))
3452		return next_command(h);
3453	c = h->cmd_pool + tag_index;
3454	finish_cmd(h, c, raw_tag);
3455	return next_command(h);
3456}
3457
3458/* process completion of a non-indexed command */
3459static inline u32 process_nonindexed_cmd(ctlr_info_t *h, u32 raw_tag)
3460{
3461	u32 tag;
3462	CommandList_struct *c = NULL;
3463	struct hlist_node *tmp;
3464	__u32 busaddr_masked, tag_masked;
3465
3466	tag = cciss_tag_discard_error_bits(raw_tag);
3467	hlist_for_each_entry(c, tmp, &h->cmpQ, list) {
3468		busaddr_masked = cciss_tag_discard_error_bits(c->busaddr);
3469		tag_masked = cciss_tag_discard_error_bits(tag);
3470		if (busaddr_masked == tag_masked) {
3471			finish_cmd(h, c, raw_tag);
3472			return next_command(h);
3473		}
3474	}
3475	bad_tag(h, h->nr_cmds + 1, raw_tag);
3476	return next_command(h);
3477}
3478
3479static irqreturn_t do_cciss_intx(int irq, void *dev_id)
3480{
3481	ctlr_info_t *h = dev_id;
3482	unsigned long flags;
3483	u32 raw_tag;
3484
3485	if (interrupt_not_for_us(h))
3486		return IRQ_NONE;
3487	/*
3488	 * If there are completed commands in the completion queue,
3489	 * we had better do something about it.
3490	 */
3491	spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
3492	while (interrupt_pending(h)) {
3493		raw_tag = get_next_completion(h);
3494		while (raw_tag != FIFO_EMPTY) {
3495			if (cciss_tag_contains_index(raw_tag))
3496				raw_tag = process_indexed_cmd(h, raw_tag);
3497			else
3498				raw_tag = process_nonindexed_cmd(h, raw_tag);
3499		}
3500	}
3501
3502	spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
3503	return IRQ_HANDLED;
3504}
3505
3506/* Add a second interrupt handler for MSI/MSI-X mode. In this mode we never
3507 * check the interrupt pending register because it is not set.
3508 */
3509static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id)
3510{
3511	ctlr_info_t *h = dev_id;
3512	unsigned long flags;
3513	u32 raw_tag;
3514
3515	if (interrupt_not_for_us(h))
3516		return IRQ_NONE;
3517	/*
3518	 * If there are completed commands in the completion queue,
3519	 * we had better do something about it.
3520	 */
3521	spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
3522	raw_tag = get_next_completion(h);
3523	while (raw_tag != FIFO_EMPTY) {
3524		if (cciss_tag_contains_index(raw_tag))
3525			raw_tag = process_indexed_cmd(h, raw_tag);
3526		else
3527			raw_tag = process_nonindexed_cmd(h, raw_tag);
3528	}
3529
3530	spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
3531	return IRQ_HANDLED;
3532}
3533
3534/**
3535 * add_to_scan_list() - add controller to rescan queue
3536 * @h:		      Pointer to the controller.
3537 *
3538 * Adds the controller to the rescan queue if not already on the queue.
3539 *
3540 * returns 1 if added to the queue, 0 if skipped (could be on the
3541 * queue already, or the controller could be initializing or shutting
3542 * down).
3543 **/
3544static int add_to_scan_list(struct ctlr_info *h)
3545{
3546	struct ctlr_info *test_h;
3547	int found = 0;
3548	int ret = 0;
3549
3550	if (h->busy_initializing)
3551		return 0;
3552
3553	if (!mutex_trylock(&h->busy_shutting_down))
3554		return 0;
3555
3556	mutex_lock(&scan_mutex);
3557	list_for_each_entry(test_h, &scan_q, scan_list) {
3558		if (test_h == h) {
3559			found = 1;
3560			break;
3561		}
3562	}
3563	if (!found && !h->busy_scanning) {
3564		INIT_COMPLETION(h->scan_wait);
3565		list_add_tail(&h->scan_list, &scan_q);
3566		ret = 1;
3567	}
3568	mutex_unlock(&scan_mutex);
3569	mutex_unlock(&h->busy_shutting_down);
3570
3571	return ret;
3572}
3573
3574/**
3575 * remove_from_scan_list() - remove controller from rescan queue
3576 * @h:			   Pointer to the controller.
3577 *
3578 * Removes the controller from the rescan queue if present. Blocks if
3579 * the controller is currently conducting a rescan.  The controller
3580 * can be in one of three states:
3581 * 1. Doesn't need a scan
3582 * 2. On the scan list, but not scanning yet (we remove it)
3583 * 3. Busy scanning (and not on the list). In this case we want to wait for
3584 *    the scan to complete to make sure the scanning thread for this
3585 *    controller is completely idle.
3586 **/
3587static void remove_from_scan_list(struct ctlr_info *h)
3588{
3589	struct ctlr_info *test_h, *tmp_h;
3590
3591	mutex_lock(&scan_mutex);
3592	list_for_each_entry_safe(test_h, tmp_h, &scan_q, scan_list) {
3593		if (test_h == h) { /* state 2. */
3594			list_del(&h->scan_list);
3595			complete_all(&h->scan_wait);
3596			mutex_unlock(&scan_mutex);
3597			return;
3598		}
3599	}
3600	if (h->busy_scanning) { /* state 3. */
3601		mutex_unlock(&scan_mutex);
3602		wait_for_completion(&h->scan_wait);
3603	} else { /* state 1, nothing to do. */
3604		mutex_unlock(&scan_mutex);
3605	}
3606}
3607
3608/**
3609 * scan_thread() - kernel thread used to rescan controllers
3610 * @data:	 Ignored.
3611 *
3612 * A kernel thread used scan for drive topology changes on
3613 * controllers. The thread processes only one controller at a time
3614 * using a queue.  Controllers are added to the queue using
3615 * add_to_scan_list() and removed from the queue either after done
3616 * processing or using remove_from_scan_list().
3617 *
3618 * returns 0.
3619 **/
3620static int scan_thread(void *data)
3621{
3622	struct ctlr_info *h;
3623
3624	while (1) {
3625		set_current_state(TASK_INTERRUPTIBLE);
3626		schedule();
3627		if (kthread_should_stop())
3628			break;
3629
3630		while (1) {
3631			mutex_lock(&scan_mutex);
3632			if (list_empty(&scan_q)) {
3633				mutex_unlock(&scan_mutex);
3634				break;
3635			}
3636
3637			h = list_entry(scan_q.next,
3638				       struct ctlr_info,
3639				       scan_list);
3640			list_del(&h->scan_list);
3641			h->busy_scanning = 1;
3642			mutex_unlock(&scan_mutex);
3643
3644			rebuild_lun_table(h, 0, 0);
3645			complete_all(&h->scan_wait);
3646			mutex_lock(&scan_mutex);
3647			h->busy_scanning = 0;
3648			mutex_unlock(&scan_mutex);
3649		}
3650	}
3651
3652	return 0;
3653}
3654
3655static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c)
3656{
3657	if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
3658		return 0;
3659
3660	switch (c->err_info->SenseInfo[12]) {
3661	case STATE_CHANGED:
3662		printk(KERN_WARNING "cciss%d: a state change "
3663			"detected, command retried\n", h->ctlr);
3664		return 1;
3665	break;
3666	case LUN_FAILED:
3667		printk(KERN_WARNING "cciss%d: LUN failure "
3668			"detected, action required\n", h->ctlr);
3669		return 1;
3670	break;
3671	case REPORT_LUNS_CHANGED:
3672		printk(KERN_WARNING "cciss%d: report LUN data "
3673			"changed\n", h->ctlr);
3674	/*
3675	 * Here, we could call add_to_scan_list and wake up the scan thread,
3676	 * except that it's quite likely that we will get more than one
3677	 * REPORT_LUNS_CHANGED condition in quick succession, which means
3678	 * that those which occur after the first one will likely happen
3679	 * *during* the scan_thread's rescan.  And the rescan code is not
3680	 * robust enough to restart in the middle, undoing what it has already
3681	 * done, and it's not clear that it's even possible to do this, since
3682	 * part of what it does is notify the block layer, which starts
3683	 * doing it's own i/o to read partition tables and so on, and the
3684	 * driver doesn't have visibility to know what might need undoing.
3685	 * In any event, if possible, it is horribly complicated to get right
3686	 * so we just don't do it for now.
3687	 *
3688	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
3689	 */
3690		return 1;
3691	break;
3692	case POWER_OR_RESET:
3693		printk(KERN_WARNING "cciss%d: a power on "
3694			"or device reset detected\n", h->ctlr);
3695		return 1;
3696	break;
3697	case UNIT_ATTENTION_CLEARED:
3698		printk(KERN_WARNING "cciss%d: unit attention "
3699		    "cleared by another initiator\n", h->ctlr);
3700		return 1;
3701	break;
3702	default:
3703		printk(KERN_WARNING "cciss%d: unknown "
3704			"unit attention detected\n", h->ctlr);
3705				return 1;
3706	}
3707}
3708
3709/*
3710 *  We cannot read the structure directly, for portability we must use
3711 *   the io functions.
3712 *   This is for debug only.
3713 */
3714#ifdef CCISS_DEBUG
3715static void print_cfg_table(CfgTable_struct *tb)
3716{
3717	int i;
3718	char temp_name[17];
3719
3720	printk("Controller Configuration information\n");
3721	printk("------------------------------------\n");
3722	for (i = 0; i < 4; i++)
3723		temp_name[i] = readb(&(tb->Signature[i]));
3724	temp_name[4] = '\0';
3725	printk("   Signature = %s\n", temp_name);
3726	printk("   Spec Number = %d\n", readl(&(tb->SpecValence)));
3727	printk("   Transport methods supported = 0x%x\n",
3728	       readl(&(tb->TransportSupport)));
3729	printk("   Transport methods active = 0x%x\n",
3730	       readl(&(tb->TransportActive)));
3731	printk("   Requested transport Method = 0x%x\n",
3732	       readl(&(tb->HostWrite.TransportRequest)));
3733	printk("   Coalesce Interrupt Delay = 0x%x\n",
3734	       readl(&(tb->HostWrite.CoalIntDelay)));
3735	printk("   Coalesce Interrupt Count = 0x%x\n",
3736	       readl(&(tb->HostWrite.CoalIntCount)));
3737	printk("   Max outstanding commands = 0x%d\n",
3738	       readl(&(tb->CmdsOutMax)));
3739	printk("   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3740	for (i = 0; i < 16; i++)
3741		temp_name[i] = readb(&(tb->ServerName[i]));
3742	temp_name[16] = '\0';
3743	printk("   Server Name = %s\n", temp_name);
3744	printk("   Heartbeat Counter = 0x%x\n\n\n", readl(&(tb->HeartBeat)));
3745}
3746#endif				/* CCISS_DEBUG */
3747
3748static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3749{
3750	int i, offset, mem_type, bar_type;
3751	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
3752		return 0;
3753	offset = 0;
3754	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3755		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3756		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3757			offset += 4;
3758		else {
3759			mem_type = pci_resource_flags(pdev, i) &
3760			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3761			switch (mem_type) {
3762			case PCI_BASE_ADDRESS_MEM_TYPE_32:
3763			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3764				offset += 4;	/* 32 bit */
3765				break;
3766			case PCI_BASE_ADDRESS_MEM_TYPE_64:
3767				offset += 8;
3768				break;
3769			default:	/* reserved in PCI 2.2 */
3770				printk(KERN_WARNING
3771				       "Base address is invalid\n");
3772				return -1;
3773				break;
3774			}
3775		}
3776		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3777			return i + 1;
3778	}
3779	return -1;
3780}
3781
3782/* Fill in bucket_map[], given nsgs (the max number of
3783 * scatter gather elements supported) and bucket[],
3784 * which is an array of 8 integers.  The bucket[] array
3785 * contains 8 different DMA transfer sizes (in 16
3786 * byte increments) which the controller uses to fetch
3787 * commands.  This function fills in bucket_map[], which
3788 * maps a given number of scatter gather elements to one of
3789 * the 8 DMA transfer sizes.  The point of it is to allow the
3790 * controller to only do as much DMA as needed to fetch the
3791 * command, with the DMA transfer size encoded in the lower
3792 * bits of the command address.
3793 */
3794static void  calc_bucket_map(int bucket[], int num_buckets,
3795	int nsgs, int *bucket_map)
3796{
3797	int i, j, b, size;
3798
3799	/* even a command with 0 SGs requires 4 blocks */
3800#define MINIMUM_TRANSFER_BLOCKS 4
3801#define NUM_BUCKETS 8
3802	/* Note, bucket_map must have nsgs+1 entries. */
3803	for (i = 0; i <= nsgs; i++) {
3804		/* Compute size of a command with i SG entries */
3805		size = i + MINIMUM_TRANSFER_BLOCKS;
3806		b = num_buckets; /* Assume the biggest bucket */
3807		/* Find the bucket that is just big enough */
3808		for (j = 0; j < 8; j++) {
3809			if (bucket[j] >= size) {
3810				b = j;
3811				break;
3812			}
3813		}
3814		/* for a command with i SG entries, use bucket b. */
3815		bucket_map[i] = b;
3816	}
3817}
3818
3819static void
3820cciss_put_controller_into_performant_mode(ctlr_info_t *h)
3821{
3822	int l = 0;
3823	__u32 trans_support;
3824	__u32 trans_offset;
3825			/*
3826			 *  5 = 1 s/g entry or 4k
3827			 *  6 = 2 s/g entry or 8k
3828			 *  8 = 4 s/g entry or 16k
3829			 * 10 = 6 s/g entry or 24k
3830			 */
3831	int bft[8] = { 5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
3832	unsigned long register_value;
3833
3834	BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
3835
3836	/* Attempt to put controller into performant mode if supported */
3837	/* Does board support performant mode? */
3838	trans_support = readl(&(h->cfgtable->TransportSupport));
3839	if (!(trans_support & PERFORMANT_MODE))
3840		return;
3841
3842	printk(KERN_WARNING "cciss%d: Placing controller into "
3843				"performant mode\n", h->ctlr);
3844	/* Performant mode demands commands on a 32 byte boundary
3845	 * pci_alloc_consistent aligns on page boundarys already.
3846	 * Just need to check if divisible by 32
3847	 */
3848	if ((sizeof(CommandList_struct) % 32) != 0) {
3849		printk(KERN_WARNING "%s %d %s\n",
3850			"cciss info: command size[",
3851			(int)sizeof(CommandList_struct),
3852			"] not divisible by 32, no performant mode..\n");
3853		return;
3854	}
3855
3856	/* Performant mode ring buffer and supporting data structures */
3857	h->reply_pool = (__u64 *)pci_alloc_consistent(
3858		h->pdev, h->max_commands * sizeof(__u64),
3859		&(h->reply_pool_dhandle));
3860
3861	/* Need a block fetch table for performant mode */
3862	h->blockFetchTable = kmalloc(((h->maxsgentries+1) *
3863		sizeof(__u32)), GFP_KERNEL);
3864
3865	if ((h->reply_pool == NULL) || (h->blockFetchTable == NULL))
3866		goto clean_up;
3867
3868	h->reply_pool_wraparound = 1; /* spec: init to 1 */
3869
3870	/* Controller spec: zero out this buffer. */
3871	memset(h->reply_pool, 0, h->max_commands * sizeof(__u64));
3872	h->reply_pool_head = h->reply_pool;
3873
3874	trans_offset = readl(&(h->cfgtable->TransMethodOffset));
3875	calc_bucket_map(bft, ARRAY_SIZE(bft), h->maxsgentries,
3876				h->blockFetchTable);
3877	writel(bft[0], &h->transtable->BlockFetch0);
3878	writel(bft[1], &h->transtable->BlockFetch1);
3879	writel(bft[2], &h->transtable->BlockFetch2);
3880	writel(bft[3], &h->transtable->BlockFetch3);
3881	writel(bft[4], &h->transtable->BlockFetch4);
3882	writel(bft[5], &h->transtable->BlockFetch5);
3883	writel(bft[6], &h->transtable->BlockFetch6);
3884	writel(bft[7], &h->transtable->BlockFetch7);
3885
3886	/* size of controller ring buffer */
3887	writel(h->max_commands, &h->transtable->RepQSize);
3888	writel(1, &h->transtable->RepQCount);
3889	writel(0, &h->transtable->RepQCtrAddrLow32);
3890	writel(0, &h->transtable->RepQCtrAddrHigh32);
3891	writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
3892	writel(0, &h->transtable->RepQAddr0High32);
3893	writel(CFGTBL_Trans_Performant,
3894			&(h->cfgtable->HostWrite.TransportRequest));
3895
3896	h->transMethod = CFGTBL_Trans_Performant;
3897	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3898	/* under certain very rare conditions, this can take awhile.
3899	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3900	 * as we enter this code.) */
3901	for (l = 0; l < MAX_CONFIG_WAIT; l++) {
3902		register_value = readl(h->vaddr + SA5_DOORBELL);
3903		if (!(register_value & CFGTBL_ChangeReq))
3904			break;
3905		/* delay and try again */
3906		set_current_state(TASK_INTERRUPTIBLE);
3907		schedule_timeout(10);
3908	}
3909	register_value = readl(&(h->cfgtable->TransportActive));
3910	if (!(register_value & CFGTBL_Trans_Performant)) {
3911		printk(KERN_WARNING "cciss: unable to get board into"
3912					" performant mode\n");
3913		return;
3914	}
3915
3916	/* Change the access methods to the performant access methods */
3917	h->access = SA5_performant_access;
3918
3919	return;
3920clean_up:
3921	kfree(h->blockFetchTable);
3922	if (h->reply_pool)
3923		pci_free_consistent(h->pdev,
3924				h->max_commands * sizeof(__u64),
3925				h->reply_pool,
3926				h->reply_pool_dhandle);
3927	return;
3928
3929} /* cciss_put_controller_into_performant_mode */
3930
3931/* If MSI/MSI-X is supported by the kernel we will try to enable it on
3932 * controllers that are capable. If not, we use IO-APIC mode.
3933 */
3934
3935static void __devinit cciss_interrupt_mode(ctlr_info_t *c)
3936{
3937#ifdef CONFIG_PCI_MSI
3938	int err;
3939	struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1},
3940	{0, 2}, {0, 3}
3941	};
3942
3943	/* Some boards advertise MSI but don't really support it */
3944	if ((c->board_id == 0x40700E11) || (c->board_id == 0x40800E11) ||
3945	    (c->board_id == 0x40820E11) || (c->board_id == 0x40830E11))
3946		goto default_int_mode;
3947
3948	if (pci_find_capability(c->pdev, PCI_CAP_ID_MSIX)) {
3949		err = pci_enable_msix(c->pdev, cciss_msix_entries, 4);
3950		if (!err) {
3951			c->intr[0] = cciss_msix_entries[0].vector;
3952			c->intr[1] = cciss_msix_entries[1].vector;
3953			c->intr[2] = cciss_msix_entries[2].vector;
3954			c->intr[3] = cciss_msix_entries[3].vector;
3955			c->msix_vector = 1;
3956			return;
3957		}
3958		if (err > 0) {
3959			printk(KERN_WARNING "cciss: only %d MSI-X vectors "
3960			       "available\n", err);
3961			goto default_int_mode;
3962		} else {
3963			printk(KERN_WARNING "cciss: MSI-X init failed %d\n",
3964			       err);
3965			goto default_int_mode;
3966		}
3967	}
3968	if (pci_find_capability(c->pdev, PCI_CAP_ID_MSI)) {
3969		if (!pci_enable_msi(c->pdev)) {
3970			c->msi_vector = 1;
3971		} else {
3972			printk(KERN_WARNING "cciss: MSI init failed\n");
3973		}
3974	}
3975default_int_mode:
3976#endif				/* CONFIG_PCI_MSI */
3977	/* if we get here we're going to use the default interrupt mode */
3978	c->intr[PERF_MODE_INT] = c->pdev->irq;
3979	return;
3980}
3981
3982static int __devinit cciss_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
3983{
3984	int i;
3985	u32 subsystem_vendor_id, subsystem_device_id;
3986
3987	subsystem_vendor_id = pdev->subsystem_vendor;
3988	subsystem_device_id = pdev->subsystem_device;
3989	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
3990			subsystem_vendor_id;
3991
3992	for (i = 0; i < ARRAY_SIZE(products); i++) {
3993		/* Stand aside for hpsa driver on request */
3994		if (cciss_allow_hpsa && products[i].board_id == HPSA_BOUNDARY)
3995			return -ENODEV;
3996		if (*board_id == products[i].board_id)
3997			return i;
3998	}
3999	dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x, ignoring.\n",
4000		*board_id);
4001	return -ENODEV;
4002}
4003
4004static inline bool cciss_board_disabled(ctlr_info_t *h)
4005{
4006	u16 command;
4007
4008	(void) pci_read_config_word(h->pdev, PCI_COMMAND, &command);
4009	return ((command & PCI_COMMAND_MEMORY) == 0);
4010}
4011
4012static int __devinit cciss_pci_find_memory_BAR(struct pci_dev *pdev,
4013	unsigned long *memory_bar)
4014{
4015	int i;
4016
4017	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
4018		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
4019			/* addressing mode bits already removed */
4020			*memory_bar = pci_resource_start(pdev, i);
4021			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
4022				*memory_bar);
4023			return 0;
4024		}
4025	dev_warn(&pdev->dev, "no memory BAR found\n");
4026	return -ENODEV;
4027}
4028
4029static int __devinit cciss_wait_for_board_ready(ctlr_info_t *h)
4030{
4031	int i;
4032	u32 scratchpad;
4033
4034	for (i = 0; i < CCISS_BOARD_READY_ITERATIONS; i++) {
4035		scratchpad = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
4036		if (scratchpad == CCISS_FIRMWARE_READY)
4037			return 0;
4038		msleep(CCISS_BOARD_READY_POLL_INTERVAL_MSECS);
4039	}
4040	dev_warn(&h->pdev->dev, "board not ready, timed out.\n");
4041	return -ENODEV;
4042}
4043
4044static int __devinit cciss_find_cfgtables(ctlr_info_t *h)
4045{
4046	u64 cfg_offset;
4047	u32 cfg_base_addr;
4048	u64 cfg_base_addr_index;
4049	u32 trans_offset;
4050
4051	/* get the address index number */
4052	cfg_base_addr = readl(h->vaddr + SA5_CTCFG_OFFSET);
4053	cfg_base_addr &= (u32) 0x0000ffff;
4054	cfg_base_addr_index = find_PCI_BAR_index(h->pdev, cfg_base_addr);
4055	if (cfg_base_addr_index == -1) {
4056		dev_warn(&h->pdev->dev, "cannot find cfg_base_addr_index\n");
4057		return -ENODEV;
4058	}
4059	cfg_offset = readl(h->vaddr + SA5_CTMEM_OFFSET);
4060	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
4061			       cfg_base_addr_index) + cfg_offset,
4062				sizeof(h->cfgtable));
4063	if (!h->cfgtable)
4064		return -ENOMEM;
4065	/* Find performant mode table. */
4066	trans_offset = readl(&(h->cfgtable->TransMethodOffset));
4067	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
4068				cfg_base_addr_index)+cfg_offset+trans_offset,
4069				sizeof(*h->transtable));
4070	if (!h->transtable)
4071		return -ENOMEM;
4072	return 0;
4073}
4074
4075static int __devinit cciss_pci_init(ctlr_info_t *c)
4076{
4077	int prod_index, err;
4078
4079	prod_index = cciss_lookup_board_id(c->pdev, &c->board_id);
4080	if (prod_index < 0)
4081		return -ENODEV;
4082	c->product_name = products[prod_index].product_name;
4083	c->access = *(products[prod_index].access);
4084
4085	if (cciss_board_disabled(c)) {
4086		printk(KERN_WARNING
4087		       "cciss: controller appears to be disabled\n");
4088		return -ENODEV;
4089	}
4090	err = pci_enable_device(c->pdev);
4091	if (err) {
4092		printk(KERN_ERR "cciss: Unable to Enable PCI device\n");
4093		return err;
4094	}
4095
4096	err = pci_request_regions(c->pdev, "cciss");
4097	if (err) {
4098		printk(KERN_ERR "cciss: Cannot obtain PCI resources, "
4099		       "aborting\n");
4100		return err;
4101	}
4102
4103#ifdef CCISS_DEBUG
4104	printk(KERN_INFO "command = %x\n", command);
4105	printk(KERN_INFO "irq = %x\n", c->pdev->irq);
4106	printk(KERN_INFO "board_id = %x\n", c->board_id);
4107#endif				/* CCISS_DEBUG */
4108
4109/* If the kernel supports MSI/MSI-X we will try to enable that functionality,
4110 * else we use the IO-APIC interrupt assigned to us by system ROM.
4111 */
4112	cciss_interrupt_mode(c);
4113	err = cciss_pci_find_memory_BAR(c->pdev, &c->paddr);
4114	if (err)
4115		goto err_out_free_res;
4116	c->vaddr = remap_pci_mem(c->paddr, 0x250);
4117	if (!c->vaddr) {
4118		err = -ENOMEM;
4119		goto err_out_free_res;
4120	}
4121	err = cciss_wait_for_board_ready(c);
4122	if (err)
4123		goto err_out_free_res;
4124	err = cciss_find_cfgtables(c);
4125	if (err)
4126		goto err_out_free_res;
4127#ifdef CCISS_DEBUG
4128	print_cfg_table(c->cfgtable);
4129#endif				/* CCISS_DEBUG */
4130
4131	/* Some controllers support Zero Memory Raid (ZMR).
4132	 * When configured in ZMR mode the number of supported
4133	 * commands drops to 64. So instead of just setting an
4134	 * arbitrary value we make the driver a little smarter.
4135	 * We read the config table to tell us how many commands
4136	 * are supported on the controller then subtract 4 to
4137	 * leave a little room for ioctl calls.
4138	 */
4139	c->max_commands = readl(&(c->cfgtable->MaxPerformantModeCommands));
4140	c->maxsgentries = readl(&(c->cfgtable->MaxSGElements));
4141
4142	/*
4143	 * Limit native command to 32 s/g elements to save dma'able memory.
4144	 * Howvever spec says if 0, use 31
4145	 */
4146
4147	c->max_cmd_sgentries = 31;
4148	if (c->maxsgentries > 512) {
4149		c->max_cmd_sgentries = 32;
4150		c->chainsize = c->maxsgentries - c->max_cmd_sgentries + 1;
4151		c->maxsgentries -= 1;   /* account for chain pointer */
4152	} else {
4153		c->maxsgentries = 31;   /* Default to traditional value */
4154		c->chainsize = 0;       /* traditional */
4155	}
4156
4157	c->nr_cmds = c->max_commands - 4;
4158	if ((readb(&c->cfgtable->Signature[0]) != 'C') ||
4159	    (readb(&c->cfgtable->Signature[1]) != 'I') ||
4160	    (readb(&c->cfgtable->Signature[2]) != 'S') ||
4161	    (readb(&c->cfgtable->Signature[3]) != 'S')) {
4162		printk("Does not appear to be a valid CISS config table\n");
4163		err = -ENODEV;
4164		goto err_out_free_res;
4165	}
4166#ifdef CONFIG_X86
4167	{
4168		/* Need to enable prefetch in the SCSI core for 6400 in x86 */
4169		__u32 prefetch;
4170		prefetch = readl(&(c->cfgtable->SCSI_Prefetch));
4171		prefetch |= 0x100;
4172		writel(prefetch, &(c->cfgtable->SCSI_Prefetch));
4173	}
4174#endif
4175
4176	/* Disabling DMA prefetch and refetch for the P600.
4177	 * An ASIC bug may result in accesses to invalid memory addresses.
4178	 * We've disabled prefetch for some time now. Testing with XEN
4179	 * kernels revealed a bug in the refetch if dom0 resides on a P600.
4180	 */
4181	if (c->board_id == 0x3225103C) {
4182		__u32 dma_prefetch;
4183		__u32 dma_refetch;
4184		dma_prefetch = readl(c->vaddr + I2O_DMA1_CFG);
4185		dma_prefetch |= 0x8000;
4186		writel(dma_prefetch, c->vaddr + I2O_DMA1_CFG);
4187		pci_read_config_dword(c->pdev, PCI_COMMAND_PARITY,
4188			&dma_refetch);
4189		dma_refetch |= 0x1;
4190		pci_write_config_dword(c->pdev, PCI_COMMAND_PARITY,
4191			dma_refetch);
4192	}
4193
4194#ifdef CCISS_DEBUG
4195	printk(KERN_WARNING "Trying to put board into Performant mode\n");
4196#endif				/* CCISS_DEBUG */
4197	cciss_put_controller_into_performant_mode(c);
4198	return 0;
4199
4200err_out_free_res:
4201	/*
4202	 * Deliberately omit pci_disable_device(): it does something nasty to
4203	 * Smart Array controllers that pci_enable_device does not undo
4204	 */
4205	if (c->transtable)
4206		iounmap(c->transtable);
4207	if (c->cfgtable)
4208		iounmap(c->cfgtable);
4209	if (c->vaddr)
4210		iounmap(c->vaddr);
4211	pci_release_regions(c->pdev);
4212	return err;
4213}
4214
4215/* Function to find the first free pointer into our hba[] array
4216 * Returns -1 if no free entries are left.
4217 */
4218static int alloc_cciss_hba(void)
4219{
4220	int i;
4221
4222	for (i = 0; i < MAX_CTLR; i++) {
4223		if (!hba[i]) {
4224			ctlr_info_t *p;
4225
4226			p = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
4227			if (!p)
4228				goto Enomem;
4229			hba[i] = p;
4230			return i;
4231		}
4232	}
4233	printk(KERN_WARNING "cciss: This driver supports a maximum"
4234	       " of %d controllers.\n", MAX_CTLR);
4235	return -1;
4236Enomem:
4237	printk(KERN_ERR "cciss: out of memory.\n");
4238	return -1;
4239}
4240
4241static void free_hba(int n)
4242{
4243	ctlr_info_t *h = hba[n];
4244	int i;
4245
4246	hba[n] = NULL;
4247	for (i = 0; i < h->highest_lun + 1; i++)
4248		if (h->gendisk[i] != NULL)
4249			put_disk(h->gendisk[i]);
4250	kfree(h);
4251}
4252
4253/* Send a message CDB to the firmware. */
4254static __devinit int cciss_message(struct pci_dev *pdev, unsigned char opcode, unsigned char type)
4255{
4256	typedef struct {
4257		CommandListHeader_struct CommandHeader;
4258		RequestBlock_struct Request;
4259		ErrDescriptor_struct ErrorDescriptor;
4260	} Command;
4261	static const size_t cmd_sz = sizeof(Command) + sizeof(ErrorInfo_struct);
4262	Command *cmd;
4263	dma_addr_t paddr64;
4264	uint32_t paddr32, tag;
4265	void __iomem *vaddr;
4266	int i, err;
4267
4268	vaddr = ioremap_nocache(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
4269	if (vaddr == NULL)
4270		return -ENOMEM;
4271
4272	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
4273	   CCISS commands, so they must be allocated from the lower 4GiB of
4274	   memory. */
4275	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4276	if (err) {
4277		iounmap(vaddr);
4278		return -ENOMEM;
4279	}
4280
4281	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
4282	if (cmd == NULL) {
4283		iounmap(vaddr);
4284		return -ENOMEM;
4285	}
4286
4287	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
4288	   although there's no guarantee, we assume that the address is at
4289	   least 4-byte aligned (most likely, it's page-aligned). */
4290	paddr32 = paddr64;
4291
4292	cmd->CommandHeader.ReplyQueue = 0;
4293	cmd->CommandHeader.SGList = 0;
4294	cmd->CommandHeader.SGTotal = 0;
4295	cmd->CommandHeader.Tag.lower = paddr32;
4296	cmd->CommandHeader.Tag.upper = 0;
4297	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
4298
4299	cmd->Request.CDBLen = 16;
4300	cmd->Request.Type.Type = TYPE_MSG;
4301	cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
4302	cmd->Request.Type.Direction = XFER_NONE;
4303	cmd->Request.Timeout = 0; /* Don't time out */
4304	cmd->Request.CDB[0] = opcode;
4305	cmd->Request.CDB[1] = type;
4306	memset(&cmd->Request.CDB[2], 0, 14); /* the rest of the CDB is reserved */
4307
4308	cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(Command);
4309	cmd->ErrorDescriptor.Addr.upper = 0;
4310	cmd->ErrorDescriptor.Len = sizeof(ErrorInfo_struct);
4311
4312	writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
4313
4314	for (i = 0; i < 10; i++) {
4315		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
4316		if ((tag & ~3) == paddr32)
4317			break;
4318		schedule_timeout_uninterruptible(HZ);
4319	}
4320
4321	iounmap(vaddr);
4322
4323	/* we leak the DMA buffer here ... no choice since the controller could
4324	   still complete the command. */
4325	if (i == 10) {
4326		printk(KERN_ERR "cciss: controller message %02x:%02x timed out\n",
4327			opcode, type);
4328		return -ETIMEDOUT;
4329	}
4330
4331	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
4332
4333	if (tag & 2) {
4334		printk(KERN_ERR "cciss: controller message %02x:%02x failed\n",
4335			opcode, type);
4336		return -EIO;
4337	}
4338
4339	printk(KERN_INFO "cciss: controller message %02x:%02x succeeded\n",
4340		opcode, type);
4341	return 0;
4342}
4343
4344#define cciss_soft_reset_controller(p) cciss_message(p, 1, 0)
4345#define cciss_noop(p) cciss_message(p, 3, 0)
4346
4347static __devinit int cciss_reset_msi(struct pci_dev *pdev)
4348{
4349/* the #defines are stolen from drivers/pci/msi.h. */
4350#define msi_control_reg(base)		(base + PCI_MSI_FLAGS)
4351#define PCI_MSIX_FLAGS_ENABLE		(1 << 15)
4352
4353	int pos;
4354	u16 control = 0;
4355
4356	pos = pci_find_capability(pdev, PCI_CAP_ID_MSI);
4357	if (pos) {
4358		pci_read_config_word(pdev, msi_control_reg(pos), &control);
4359		if (control & PCI_MSI_FLAGS_ENABLE) {
4360			printk(KERN_INFO "cciss: resetting MSI\n");
4361			pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSI_FLAGS_ENABLE);
4362		}
4363	}
4364
4365	pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
4366	if (pos) {
4367		pci_read_config_word(pdev, msi_control_reg(pos), &control);
4368		if (control & PCI_MSIX_FLAGS_ENABLE) {
4369			printk(KERN_INFO "cciss: resetting MSI-X\n");
4370			pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSIX_FLAGS_ENABLE);
4371		}
4372	}
4373
4374	return 0;
4375}
4376
4377/* This does a hard reset of the controller using PCI power management
4378 * states. */
4379static __devinit int cciss_hard_reset_controller(struct pci_dev *pdev)
4380{
4381	u16 pmcsr, saved_config_space[32];
4382	int i, pos;
4383
4384	printk(KERN_INFO "cciss: using PCI PM to reset controller\n");
4385
4386	/* This is very nearly the same thing as
4387
4388	   pci_save_state(pci_dev);
4389	   pci_set_power_state(pci_dev, PCI_D3hot);
4390	   pci_set_power_state(pci_dev, PCI_D0);
4391	   pci_restore_state(pci_dev);
4392
4393	   but we can't use these nice canned kernel routines on
4394	   kexec, because they also check the MSI/MSI-X state in PCI
4395	   configuration space and do the wrong thing when it is
4396	   set/cleared.  Also, the pci_save/restore_state functions
4397	   violate the ordering requirements for restoring the
4398	   configuration space from the CCISS document (see the
4399	   comment below).  So we roll our own .... */
4400
4401	for (i = 0; i < 32; i++)
4402		pci_read_config_word(pdev, 2*i, &saved_config_space[i]);
4403
4404	pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
4405	if (pos == 0) {
4406		printk(KERN_ERR "cciss_reset_controller: PCI PM not supported\n");
4407		return -ENODEV;
4408	}
4409
4410	/* Quoting from the Open CISS Specification: "The Power
4411	 * Management Control/Status Register (CSR) controls the power
4412	 * state of the device.  The normal operating state is D0,
4413	 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
4414	 * the controller, place the interface device in D3 then to
4415	 * D0, this causes a secondary PCI reset which will reset the
4416	 * controller." */
4417
4418	/* enter the D3hot power management state */
4419	pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
4420	pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4421	pmcsr |= PCI_D3hot;
4422	pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4423
4424	schedule_timeout_uninterruptible(HZ >> 1);
4425
4426	/* enter the D0 power management state */
4427	pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4428	pmcsr |= PCI_D0;
4429	pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4430
4431	schedule_timeout_uninterruptible(HZ >> 1);
4432
4433	/* Restore the PCI configuration space.  The Open CISS
4434	 * Specification says, "Restore the PCI Configuration
4435	 * Registers, offsets 00h through 60h. It is important to
4436	 * restore the command register, 16-bits at offset 04h,
4437	 * last. Do not restore the configuration status register,
4438	 * 16-bits at offset 06h."  Note that the offset is 2*i. */
4439	for (i = 0; i < 32; i++) {
4440		if (i == 2 || i == 3)
4441			continue;
4442		pci_write_config_word(pdev, 2*i, saved_config_space[i]);
4443	}
4444	wmb();
4445	pci_write_config_word(pdev, 4, saved_config_space[2]);
4446
4447	return 0;
4448}
4449
4450/*
4451 *  This is it.  Find all the controllers and register them.  I really hate
4452 *  stealing all these major device numbers.
4453 *  returns the number of block devices registered.
4454 */
4455static int __devinit cciss_init_one(struct pci_dev *pdev,
4456				    const struct pci_device_id *ent)
4457{
4458	int i;
4459	int j = 0;
4460	int k = 0;
4461	int rc;
4462	int dac, return_code;
4463	InquiryData_struct *inq_buff;
4464
4465	if (reset_devices) {
4466		/* Reset the controller with a PCI power-cycle */
4467		if (cciss_hard_reset_controller(pdev) || cciss_reset_msi(pdev))
4468			return -ENODEV;
4469
4470		/* Now try to get the controller to respond to a no-op. Some
4471		   devices (notably the HP Smart Array 5i Controller) need
4472		   up to 30 seconds to respond. */
4473		for (i=0; i<30; i++) {
4474			if (cciss_noop(pdev) == 0)
4475				break;
4476
4477			schedule_timeout_uninterruptible(HZ);
4478		}
4479		if (i == 30) {
4480			printk(KERN_ERR "cciss: controller seems dead\n");
4481			return -EBUSY;
4482		}
4483	}
4484
4485	i = alloc_cciss_hba();
4486	if (i < 0)
4487		return -1;
4488
4489	hba[i]->pdev = pdev;
4490	hba[i]->busy_initializing = 1;
4491	INIT_HLIST_HEAD(&hba[i]->cmpQ);
4492	INIT_HLIST_HEAD(&hba[i]->reqQ);
4493	mutex_init(&hba[i]->busy_shutting_down);
4494
4495	if (cciss_pci_init(hba[i]) != 0)
4496		goto clean_no_release_regions;
4497
4498	sprintf(hba[i]->devname, "cciss%d", i);
4499	hba[i]->ctlr = i;
4500
4501	init_completion(&hba[i]->scan_wait);
4502
4503	if (cciss_create_hba_sysfs_entry(hba[i]))
4504		goto clean0;
4505
4506	/* configure PCI DMA stuff */
4507	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)))
4508		dac = 1;
4509	else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))
4510		dac = 0;
4511	else {
4512		printk(KERN_ERR "cciss: no suitable DMA available\n");
4513		goto clean1;
4514	}
4515
4516	/*
4517	 * register with the major number, or get a dynamic major number
4518	 * by passing 0 as argument.  This is done for greater than
4519	 * 8 controller support.
4520	 */
4521	if (i < MAX_CTLR_ORIG)
4522		hba[i]->major = COMPAQ_CISS_MAJOR + i;
4523	rc = register_blkdev(hba[i]->major, hba[i]->devname);
4524	if (rc == -EBUSY || rc == -EINVAL) {
4525		printk(KERN_ERR
4526		       "cciss:  Unable to get major number %d for %s "
4527		       "on hba %d\n", hba[i]->major, hba[i]->devname, i);
4528		goto clean1;
4529	} else {
4530		if (i >= MAX_CTLR_ORIG)
4531			hba[i]->major = rc;
4532	}
4533
4534	/* make sure the board interrupts are off */
4535	hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_OFF);
4536	if (hba[i]->msi_vector || hba[i]->msix_vector) {
4537		if (request_irq(hba[i]->intr[PERF_MODE_INT],
4538				do_cciss_msix_intr,
4539				IRQF_DISABLED, hba[i]->devname, hba[i])) {
4540			printk(KERN_ERR "cciss: Unable to get irq %d for %s\n",
4541			       hba[i]->intr[PERF_MODE_INT], hba[i]->devname);
4542			goto clean2;
4543		}
4544	} else {
4545		if (request_irq(hba[i]->intr[PERF_MODE_INT], do_cciss_intx,
4546				IRQF_DISABLED, hba[i]->devname, hba[i])) {
4547			printk(KERN_ERR "cciss: Unable to get irq %d for %s\n",
4548			       hba[i]->intr[PERF_MODE_INT], hba[i]->devname);
4549			goto clean2;
4550		}
4551	}
4552
4553	printk(KERN_INFO "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
4554	       hba[i]->devname, pdev->device, pci_name(pdev),
4555	       hba[i]->intr[PERF_MODE_INT], dac ? "" : " not");
4556
4557	hba[i]->cmd_pool_bits =
4558	    kmalloc(DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG)
4559			* sizeof(unsigned long), GFP_KERNEL);
4560	hba[i]->cmd_pool = (CommandList_struct *)
4561	    pci_alloc_consistent(hba[i]->pdev,
4562		    hba[i]->nr_cmds * sizeof(CommandList_struct),
4563		    &(hba[i]->cmd_pool_dhandle));
4564	hba[i]->errinfo_pool = (ErrorInfo_struct *)
4565	    pci_alloc_consistent(hba[i]->pdev,
4566		    hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
4567		    &(hba[i]->errinfo_pool_dhandle));
4568	if ((hba[i]->cmd_pool_bits == NULL)
4569	    || (hba[i]->cmd_pool == NULL)
4570	    || (hba[i]->errinfo_pool == NULL)) {
4571		printk(KERN_ERR "cciss: out of memory");
4572		goto clean4;
4573	}
4574
4575	/* Need space for temp scatter list */
4576	hba[i]->scatter_list = kmalloc(hba[i]->max_commands *
4577						sizeof(struct scatterlist *),
4578						GFP_KERNEL);
4579	for (k = 0; k < hba[i]->nr_cmds; k++) {
4580		hba[i]->scatter_list[k] = kmalloc(sizeof(struct scatterlist) *
4581							hba[i]->maxsgentries,
4582							GFP_KERNEL);
4583		if (hba[i]->scatter_list[k] == NULL) {
4584			printk(KERN_ERR "cciss%d: could not allocate "
4585				"s/g lists\n", i);
4586			goto clean4;
4587		}
4588	}
4589	hba[i]->cmd_sg_list = cciss_allocate_sg_chain_blocks(hba[i],
4590		hba[i]->chainsize, hba[i]->nr_cmds);
4591	if (!hba[i]->cmd_sg_list && hba[i]->chainsize > 0)
4592		goto clean4;
4593
4594	spin_lock_init(&hba[i]->lock);
4595
4596	/* Initialize the pdev driver private data.
4597	   have it point to hba[i].  */
4598	pci_set_drvdata(pdev, hba[i]);
4599	/* command and error info recs zeroed out before
4600	   they are used */
4601	memset(hba[i]->cmd_pool_bits, 0,
4602	       DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG)
4603			* sizeof(unsigned long));
4604
4605	hba[i]->num_luns = 0;
4606	hba[i]->highest_lun = -1;
4607	for (j = 0; j < CISS_MAX_LUN; j++) {
4608		hba[i]->drv[j] = NULL;
4609		hba[i]->gendisk[j] = NULL;
4610	}
4611
4612	cciss_scsi_setup(i);
4613
4614	/* Turn the interrupts on so we can service requests */
4615	hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_ON);
4616
4617	/* Get the firmware version */
4618	inq_buff = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
4619	if (inq_buff == NULL) {
4620		printk(KERN_ERR "cciss: out of memory\n");
4621		goto clean4;
4622	}
4623
4624	return_code = sendcmd_withirq(CISS_INQUIRY, i, inq_buff,
4625		sizeof(InquiryData_struct), 0, CTLR_LUNID, TYPE_CMD);
4626	if (return_code == IO_OK) {
4627		hba[i]->firm_ver[0] = inq_buff->data_byte[32];
4628		hba[i]->firm_ver[1] = inq_buff->data_byte[33];
4629		hba[i]->firm_ver[2] = inq_buff->data_byte[34];
4630		hba[i]->firm_ver[3] = inq_buff->data_byte[35];
4631	} else {	 /* send command failed */
4632		printk(KERN_WARNING "cciss: unable to determine firmware"
4633			" version of controller\n");
4634	}
4635	kfree(inq_buff);
4636
4637	cciss_procinit(i);
4638
4639	hba[i]->cciss_max_sectors = 8192;
4640
4641	rebuild_lun_table(hba[i], 1, 0);
4642	hba[i]->busy_initializing = 0;
4643	return 1;
4644
4645clean4:
4646	kfree(hba[i]->cmd_pool_bits);
4647	/* Free up sg elements */
4648	for (k = 0; k < hba[i]->nr_cmds; k++)
4649		kfree(hba[i]->scatter_list[k]);
4650	kfree(hba[i]->scatter_list);
4651	cciss_free_sg_chain_blocks(hba[i]->cmd_sg_list, hba[i]->nr_cmds);
4652	if (hba[i]->cmd_pool)
4653		pci_free_consistent(hba[i]->pdev,
4654				    hba[i]->nr_cmds * sizeof(CommandList_struct),
4655				    hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
4656	if (hba[i]->errinfo_pool)
4657		pci_free_consistent(hba[i]->pdev,
4658				    hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
4659				    hba[i]->errinfo_pool,
4660				    hba[i]->errinfo_pool_dhandle);
4661	free_irq(hba[i]->intr[PERF_MODE_INT], hba[i]);
4662clean2:
4663	unregister_blkdev(hba[i]->major, hba[i]->devname);
4664clean1:
4665	cciss_destroy_hba_sysfs_entry(hba[i]);
4666clean0:
4667	pci_release_regions(pdev);
4668clean_no_release_regions:
4669	hba[i]->busy_initializing = 0;
4670
4671	/*
4672	 * Deliberately omit pci_disable_device(): it does something nasty to
4673	 * Smart Array controllers that pci_enable_device does not undo
4674	 */
4675	pci_set_drvdata(pdev, NULL);
4676	free_hba(i);
4677	return -1;
4678}
4679
4680static void cciss_shutdown(struct pci_dev *pdev)
4681{
4682	ctlr_info_t *h;
4683	char *flush_buf;
4684	int return_code;
4685
4686	h = pci_get_drvdata(pdev);
4687	flush_buf = kzalloc(4, GFP_KERNEL);
4688	if (!flush_buf) {
4689		printk(KERN_WARNING
4690			"cciss:%d cache not flushed, out of memory.\n",
4691			h->ctlr);
4692		return;
4693	}
4694	/* write all data in the battery backed cache to disk */
4695	memset(flush_buf, 0, 4);
4696	return_code = sendcmd_withirq(CCISS_CACHE_FLUSH, h->ctlr, flush_buf,
4697		4, 0, CTLR_LUNID, TYPE_CMD);
4698	kfree(flush_buf);
4699	if (return_code != IO_OK)
4700		printk(KERN_WARNING "cciss%d: Error flushing cache\n",
4701			h->ctlr);
4702	h->access.set_intr_mask(h, CCISS_INTR_OFF);
4703	free_irq(h->intr[PERF_MODE_INT], h);
4704}
4705
4706static void __devexit cciss_remove_one(struct pci_dev *pdev)
4707{
4708	ctlr_info_t *tmp_ptr;
4709	int i, j;
4710
4711	if (pci_get_drvdata(pdev) == NULL) {
4712		printk(KERN_ERR "cciss: Unable to remove device \n");
4713		return;
4714	}
4715
4716	tmp_ptr = pci_get_drvdata(pdev);
4717	i = tmp_ptr->ctlr;
4718	if (hba[i] == NULL) {
4719		printk(KERN_ERR "cciss: device appears to "
4720		       "already be removed \n");
4721		return;
4722	}
4723
4724	mutex_lock(&hba[i]->busy_shutting_down);
4725
4726	remove_from_scan_list(hba[i]);
4727	remove_proc_entry(hba[i]->devname, proc_cciss);
4728	unregister_blkdev(hba[i]->major, hba[i]->devname);
4729
4730	/* remove it from the disk list */
4731	for (j = 0; j < CISS_MAX_LUN; j++) {
4732		struct gendisk *disk = hba[i]->gendisk[j];
4733		if (disk) {
4734			struct request_queue *q = disk->queue;
4735
4736			if (disk->flags & GENHD_FL_UP) {
4737				cciss_destroy_ld_sysfs_entry(hba[i], j, 1);
4738				del_gendisk(disk);
4739			}
4740			if (q)
4741				blk_cleanup_queue(q);
4742		}
4743	}
4744
4745#ifdef CONFIG_CISS_SCSI_TAPE
4746	cciss_unregister_scsi(i);	/* unhook from SCSI subsystem */
4747#endif
4748
4749	cciss_shutdown(pdev);
4750
4751#ifdef CONFIG_PCI_MSI
4752	if (hba[i]->msix_vector)
4753		pci_disable_msix(hba[i]->pdev);
4754	else if (hba[i]->msi_vector)
4755		pci_disable_msi(hba[i]->pdev);
4756#endif				/* CONFIG_PCI_MSI */
4757
4758	iounmap(hba[i]->transtable);
4759	iounmap(hba[i]->cfgtable);
4760	iounmap(hba[i]->vaddr);
4761
4762	pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(CommandList_struct),
4763			    hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
4764	pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
4765			    hba[i]->errinfo_pool, hba[i]->errinfo_pool_dhandle);
4766	kfree(hba[i]->cmd_pool_bits);
4767	/* Free up sg elements */
4768	for (j = 0; j < hba[i]->nr_cmds; j++)
4769		kfree(hba[i]->scatter_list[j]);
4770	kfree(hba[i]->scatter_list);
4771	cciss_free_sg_chain_blocks(hba[i]->cmd_sg_list, hba[i]->nr_cmds);
4772	/*
4773	 * Deliberately omit pci_disable_device(): it does something nasty to
4774	 * Smart Array controllers that pci_enable_device does not undo
4775	 */
4776	pci_release_regions(pdev);
4777	pci_set_drvdata(pdev, NULL);
4778	cciss_destroy_hba_sysfs_entry(hba[i]);
4779	mutex_unlock(&hba[i]->busy_shutting_down);
4780	free_hba(i);
4781}
4782
4783static struct pci_driver cciss_pci_driver = {
4784	.name = "cciss",
4785	.probe = cciss_init_one,
4786	.remove = __devexit_p(cciss_remove_one),
4787	.id_table = cciss_pci_device_id,	/* id_table */
4788	.shutdown = cciss_shutdown,
4789};
4790
4791/*
4792 *  This is it.  Register the PCI driver information for the cards we control
4793 *  the OS will call our registered routines when it finds one of our cards.
4794 */
4795static int __init cciss_init(void)
4796{
4797	int err;
4798
4799	/*
4800	 * The hardware requires that commands are aligned on a 64-bit
4801	 * boundary. Given that we use pci_alloc_consistent() to allocate an
4802	 * array of them, the size must be a multiple of 8 bytes.
4803	 */
4804	BUILD_BUG_ON(sizeof(CommandList_struct) % COMMANDLIST_ALIGNMENT);
4805	printk(KERN_INFO DRIVER_NAME "\n");
4806
4807	err = bus_register(&cciss_bus_type);
4808	if (err)
4809		return err;
4810
4811	/* Start the scan thread */
4812	cciss_scan_thread = kthread_run(scan_thread, NULL, "cciss_scan");
4813	if (IS_ERR(cciss_scan_thread)) {
4814		err = PTR_ERR(cciss_scan_thread);
4815		goto err_bus_unregister;
4816	}
4817
4818	/* Register for our PCI devices */
4819	err = pci_register_driver(&cciss_pci_driver);
4820	if (err)
4821		goto err_thread_stop;
4822
4823	return err;
4824
4825err_thread_stop:
4826	kthread_stop(cciss_scan_thread);
4827err_bus_unregister:
4828	bus_unregister(&cciss_bus_type);
4829
4830	return err;
4831}
4832
4833static void __exit cciss_cleanup(void)
4834{
4835	int i;
4836
4837	pci_unregister_driver(&cciss_pci_driver);
4838	/* double check that all controller entrys have been removed */
4839	for (i = 0; i < MAX_CTLR; i++) {
4840		if (hba[i] != NULL) {
4841			printk(KERN_WARNING "cciss: had to remove"
4842			       " controller %d\n", i);
4843			cciss_remove_one(hba[i]->pdev);
4844		}
4845	}
4846	kthread_stop(cciss_scan_thread);
4847	remove_proc_entry("driver/cciss", NULL);
4848	bus_unregister(&cciss_bus_type);
4849}
4850
4851module_init(cciss_init);
4852module_exit(cciss_cleanup);
4853