cpufreq_conservative.c revision 2c906b317b2d9c7e32b0d513e102bd68a2c49112
1/*
2 *  drivers/cpufreq/cpufreq_conservative.c
3 *
4 *  Copyright (C)  2001 Russell King
5 *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 *                      Jun Nakajima <jun.nakajima@intel.com>
7 *            (C)  2004 Alexander Clouter <alex-kernel@digriz.org.uk>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/smp.h>
17#include <linux/init.h>
18#include <linux/interrupt.h>
19#include <linux/ctype.h>
20#include <linux/cpufreq.h>
21#include <linux/sysctl.h>
22#include <linux/types.h>
23#include <linux/fs.h>
24#include <linux/sysfs.h>
25#include <linux/sched.h>
26#include <linux/kmod.h>
27#include <linux/workqueue.h>
28#include <linux/jiffies.h>
29#include <linux/kernel_stat.h>
30#include <linux/percpu.h>
31#include <linux/mutex.h>
32/*
33 * dbs is used in this file as a shortform for demandbased switching
34 * It helps to keep variable names smaller, simpler
35 */
36
37#define DEF_FREQUENCY_UP_THRESHOLD		(80)
38#define DEF_FREQUENCY_DOWN_THRESHOLD		(20)
39
40/*
41 * The polling frequency of this governor depends on the capability of
42 * the processor. Default polling frequency is 1000 times the transition
43 * latency of the processor. The governor will work on any processor with
44 * transition latency <= 10mS, using appropriate sampling
45 * rate.
46 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
47 * this governor will not work.
48 * All times here are in uS.
49 */
50static unsigned int 				def_sampling_rate;
51#define MIN_SAMPLING_RATE_RATIO			(2)
52/* for correct statistics, we need at least 10 ticks between each measure */
53#define MIN_STAT_SAMPLING_RATE			(MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
54#define MIN_SAMPLING_RATE			(def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
55#define MAX_SAMPLING_RATE			(500 * def_sampling_rate)
56#define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER	(1000)
57#define DEF_SAMPLING_DOWN_FACTOR		(1)
58#define MAX_SAMPLING_DOWN_FACTOR		(10)
59#define TRANSITION_LATENCY_LIMIT		(10 * 1000)
60
61static void do_dbs_timer(void *data);
62
63struct cpu_dbs_info_s {
64	struct cpufreq_policy 	*cur_policy;
65	unsigned int 		prev_cpu_idle_up;
66	unsigned int 		prev_cpu_idle_down;
67	unsigned int 		enable;
68};
69static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
70
71static unsigned int dbs_enable;	/* number of CPUs using this policy */
72
73static DEFINE_MUTEX 	(dbs_mutex);
74static DECLARE_WORK	(dbs_work, do_dbs_timer, NULL);
75
76struct dbs_tuners {
77	unsigned int 		sampling_rate;
78	unsigned int		sampling_down_factor;
79	unsigned int		up_threshold;
80	unsigned int		down_threshold;
81	unsigned int		ignore_nice;
82	unsigned int		freq_step;
83};
84
85static struct dbs_tuners dbs_tuners_ins = {
86	.up_threshold 		= DEF_FREQUENCY_UP_THRESHOLD,
87	.down_threshold 	= DEF_FREQUENCY_DOWN_THRESHOLD,
88	.sampling_down_factor 	= DEF_SAMPLING_DOWN_FACTOR,
89};
90
91static inline unsigned int get_cpu_idle_time(unsigned int cpu)
92{
93	return	kstat_cpu(cpu).cpustat.idle +
94		kstat_cpu(cpu).cpustat.iowait +
95		( dbs_tuners_ins.ignore_nice ?
96		  kstat_cpu(cpu).cpustat.nice :
97		  0);
98}
99
100/************************** sysfs interface ************************/
101static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
102{
103	return sprintf (buf, "%u\n", MAX_SAMPLING_RATE);
104}
105
106static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
107{
108	return sprintf (buf, "%u\n", MIN_SAMPLING_RATE);
109}
110
111#define define_one_ro(_name) 					\
112static struct freq_attr _name =  				\
113__ATTR(_name, 0444, show_##_name, NULL)
114
115define_one_ro(sampling_rate_max);
116define_one_ro(sampling_rate_min);
117
118/* cpufreq_conservative Governor Tunables */
119#define show_one(file_name, object)					\
120static ssize_t show_##file_name						\
121(struct cpufreq_policy *unused, char *buf)				\
122{									\
123	return sprintf(buf, "%u\n", dbs_tuners_ins.object);		\
124}
125show_one(sampling_rate, sampling_rate);
126show_one(sampling_down_factor, sampling_down_factor);
127show_one(up_threshold, up_threshold);
128show_one(down_threshold, down_threshold);
129show_one(ignore_nice_load, ignore_nice);
130show_one(freq_step, freq_step);
131
132static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused,
133		const char *buf, size_t count)
134{
135	unsigned int input;
136	int ret;
137	ret = sscanf (buf, "%u", &input);
138	if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
139		return -EINVAL;
140
141	mutex_lock(&dbs_mutex);
142	dbs_tuners_ins.sampling_down_factor = input;
143	mutex_unlock(&dbs_mutex);
144
145	return count;
146}
147
148static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
149		const char *buf, size_t count)
150{
151	unsigned int input;
152	int ret;
153	ret = sscanf (buf, "%u", &input);
154
155	mutex_lock(&dbs_mutex);
156	if (ret != 1 || input > MAX_SAMPLING_RATE || input < MIN_SAMPLING_RATE) {
157		mutex_unlock(&dbs_mutex);
158		return -EINVAL;
159	}
160
161	dbs_tuners_ins.sampling_rate = input;
162	mutex_unlock(&dbs_mutex);
163
164	return count;
165}
166
167static ssize_t store_up_threshold(struct cpufreq_policy *unused,
168		const char *buf, size_t count)
169{
170	unsigned int input;
171	int ret;
172	ret = sscanf (buf, "%u", &input);
173
174	mutex_lock(&dbs_mutex);
175	if (ret != 1 || input > 100 || input < 0 ||
176			input <= dbs_tuners_ins.down_threshold) {
177		mutex_unlock(&dbs_mutex);
178		return -EINVAL;
179	}
180
181	dbs_tuners_ins.up_threshold = input;
182	mutex_unlock(&dbs_mutex);
183
184	return count;
185}
186
187static ssize_t store_down_threshold(struct cpufreq_policy *unused,
188		const char *buf, size_t count)
189{
190	unsigned int input;
191	int ret;
192	ret = sscanf (buf, "%u", &input);
193
194	mutex_lock(&dbs_mutex);
195	if (ret != 1 || input > 100 || input < 0 ||
196			input >= dbs_tuners_ins.up_threshold) {
197		mutex_unlock(&dbs_mutex);
198		return -EINVAL;
199	}
200
201	dbs_tuners_ins.down_threshold = input;
202	mutex_unlock(&dbs_mutex);
203
204	return count;
205}
206
207static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
208		const char *buf, size_t count)
209{
210	unsigned int input;
211	int ret;
212
213	unsigned int j;
214
215	ret = sscanf (buf, "%u", &input);
216	if ( ret != 1 )
217		return -EINVAL;
218
219	if ( input > 1 )
220		input = 1;
221
222	mutex_lock(&dbs_mutex);
223	if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */
224		mutex_unlock(&dbs_mutex);
225		return count;
226	}
227	dbs_tuners_ins.ignore_nice = input;
228
229	/* we need to re-evaluate prev_cpu_idle_up and prev_cpu_idle_down */
230	for_each_online_cpu(j) {
231		struct cpu_dbs_info_s *j_dbs_info;
232		j_dbs_info = &per_cpu(cpu_dbs_info, j);
233		j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j);
234		j_dbs_info->prev_cpu_idle_down = j_dbs_info->prev_cpu_idle_up;
235	}
236	mutex_unlock(&dbs_mutex);
237
238	return count;
239}
240
241static ssize_t store_freq_step(struct cpufreq_policy *policy,
242		const char *buf, size_t count)
243{
244	unsigned int input;
245	int ret;
246
247	ret = sscanf (buf, "%u", &input);
248
249	if ( ret != 1 )
250		return -EINVAL;
251
252	if ( input > 100 )
253		input = 100;
254
255	/* no need to test here if freq_step is zero as the user might actually
256	 * want this, they would be crazy though :) */
257	mutex_lock(&dbs_mutex);
258	dbs_tuners_ins.freq_step = input;
259	mutex_unlock(&dbs_mutex);
260
261	return count;
262}
263
264#define define_one_rw(_name) \
265static struct freq_attr _name = \
266__ATTR(_name, 0644, show_##_name, store_##_name)
267
268define_one_rw(sampling_rate);
269define_one_rw(sampling_down_factor);
270define_one_rw(up_threshold);
271define_one_rw(down_threshold);
272define_one_rw(ignore_nice_load);
273define_one_rw(freq_step);
274
275static struct attribute * dbs_attributes[] = {
276	&sampling_rate_max.attr,
277	&sampling_rate_min.attr,
278	&sampling_rate.attr,
279	&sampling_down_factor.attr,
280	&up_threshold.attr,
281	&down_threshold.attr,
282	&ignore_nice_load.attr,
283	&freq_step.attr,
284	NULL
285};
286
287static struct attribute_group dbs_attr_group = {
288	.attrs = dbs_attributes,
289	.name = "conservative",
290};
291
292/************************** sysfs end ************************/
293
294static void dbs_check_cpu(int cpu)
295{
296	unsigned int idle_ticks, up_idle_ticks, down_idle_ticks;
297	unsigned int freq_step;
298	unsigned int freq_down_sampling_rate;
299	static int down_skip[NR_CPUS];
300	static int requested_freq[NR_CPUS];
301	static unsigned short init_flag = 0;
302	struct cpu_dbs_info_s *this_dbs_info;
303	struct cpu_dbs_info_s *dbs_info;
304
305	struct cpufreq_policy *policy;
306	unsigned int j;
307
308	this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
309	if (!this_dbs_info->enable)
310		return;
311
312	policy = this_dbs_info->cur_policy;
313
314	if ( init_flag == 0 ) {
315		for_each_online_cpu(j) {
316			dbs_info = &per_cpu(cpu_dbs_info, j);
317			requested_freq[j] = dbs_info->cur_policy->cur;
318		}
319		init_flag = 1;
320	}
321
322	/*
323	 * The default safe range is 20% to 80%
324	 * Every sampling_rate, we check
325	 * 	- If current idle time is less than 20%, then we try to
326	 * 	  increase frequency
327	 * Every sampling_rate*sampling_down_factor, we check
328	 * 	- If current idle time is more than 80%, then we try to
329	 * 	  decrease frequency
330	 *
331	 * Any frequency increase takes it to the maximum frequency.
332	 * Frequency reduction happens at minimum steps of
333	 * 5% (default) of max_frequency
334	 */
335
336	/* Check for frequency increase */
337	idle_ticks = UINT_MAX;
338	for_each_cpu_mask(j, policy->cpus) {
339		unsigned int tmp_idle_ticks, total_idle_ticks;
340		struct cpu_dbs_info_s *j_dbs_info;
341
342		j_dbs_info = &per_cpu(cpu_dbs_info, j);
343		/* Check for frequency increase */
344		total_idle_ticks = get_cpu_idle_time(j);
345		tmp_idle_ticks = total_idle_ticks -
346			j_dbs_info->prev_cpu_idle_up;
347		j_dbs_info->prev_cpu_idle_up = total_idle_ticks;
348
349		if (tmp_idle_ticks < idle_ticks)
350			idle_ticks = tmp_idle_ticks;
351	}
352
353	/* Scale idle ticks by 100 and compare with up and down ticks */
354	idle_ticks *= 100;
355	up_idle_ticks = (100 - dbs_tuners_ins.up_threshold) *
356			usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
357
358	if (idle_ticks < up_idle_ticks) {
359		down_skip[cpu] = 0;
360		for_each_cpu_mask(j, policy->cpus) {
361			struct cpu_dbs_info_s *j_dbs_info;
362
363			j_dbs_info = &per_cpu(cpu_dbs_info, j);
364			j_dbs_info->prev_cpu_idle_down =
365					j_dbs_info->prev_cpu_idle_up;
366		}
367		/* if we are already at full speed then break out early */
368		if (requested_freq[cpu] == policy->max)
369			return;
370
371		freq_step = (dbs_tuners_ins.freq_step * policy->max) / 100;
372
373		/* max freq cannot be less than 100. But who knows.... */
374		if (unlikely(freq_step == 0))
375			freq_step = 5;
376
377		requested_freq[cpu] += freq_step;
378		if (requested_freq[cpu] > policy->max)
379			requested_freq[cpu] = policy->max;
380
381		__cpufreq_driver_target(policy, requested_freq[cpu],
382			CPUFREQ_RELATION_H);
383		return;
384	}
385
386	/* Check for frequency decrease */
387	down_skip[cpu]++;
388	if (down_skip[cpu] < dbs_tuners_ins.sampling_down_factor)
389		return;
390
391	idle_ticks = UINT_MAX;
392	for_each_cpu_mask(j, policy->cpus) {
393		unsigned int tmp_idle_ticks, total_idle_ticks;
394		struct cpu_dbs_info_s *j_dbs_info;
395
396		j_dbs_info = &per_cpu(cpu_dbs_info, j);
397		/* Check for frequency decrease */
398		total_idle_ticks = j_dbs_info->prev_cpu_idle_up;
399		tmp_idle_ticks = total_idle_ticks -
400			j_dbs_info->prev_cpu_idle_down;
401		j_dbs_info->prev_cpu_idle_down = total_idle_ticks;
402
403		if (tmp_idle_ticks < idle_ticks)
404			idle_ticks = tmp_idle_ticks;
405	}
406
407	/* Scale idle ticks by 100 and compare with up and down ticks */
408	idle_ticks *= 100;
409	down_skip[cpu] = 0;
410
411	freq_down_sampling_rate = dbs_tuners_ins.sampling_rate *
412		dbs_tuners_ins.sampling_down_factor;
413	down_idle_ticks = (100 - dbs_tuners_ins.down_threshold) *
414		usecs_to_jiffies(freq_down_sampling_rate);
415
416	if (idle_ticks > down_idle_ticks) {
417		/*
418		 * if we are already at the lowest speed then break out early
419		 * or if we 'cannot' reduce the speed as the user might want
420		 * freq_step to be zero
421		 */
422		if (requested_freq[cpu] == policy->min
423				|| dbs_tuners_ins.freq_step == 0)
424			return;
425
426		freq_step = (dbs_tuners_ins.freq_step * policy->max) / 100;
427
428		/* max freq cannot be less than 100. But who knows.... */
429		if (unlikely(freq_step == 0))
430			freq_step = 5;
431
432		requested_freq[cpu] -= freq_step;
433		if (requested_freq[cpu] < policy->min)
434			requested_freq[cpu] = policy->min;
435
436		__cpufreq_driver_target(policy, requested_freq[cpu],
437				CPUFREQ_RELATION_H);
438		return;
439	}
440}
441
442static void do_dbs_timer(void *data)
443{
444	int i;
445	mutex_lock(&dbs_mutex);
446	for_each_online_cpu(i)
447		dbs_check_cpu(i);
448	schedule_delayed_work(&dbs_work,
449			usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
450	mutex_unlock(&dbs_mutex);
451}
452
453static inline void dbs_timer_init(void)
454{
455	INIT_WORK(&dbs_work, do_dbs_timer, NULL);
456	schedule_delayed_work(&dbs_work,
457			usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
458	return;
459}
460
461static inline void dbs_timer_exit(void)
462{
463	cancel_delayed_work(&dbs_work);
464	return;
465}
466
467static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
468				   unsigned int event)
469{
470	unsigned int cpu = policy->cpu;
471	struct cpu_dbs_info_s *this_dbs_info;
472	unsigned int j;
473
474	this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
475
476	switch (event) {
477	case CPUFREQ_GOV_START:
478		if ((!cpu_online(cpu)) ||
479		    (!policy->cur))
480			return -EINVAL;
481
482		if (policy->cpuinfo.transition_latency >
483				(TRANSITION_LATENCY_LIMIT * 1000))
484			return -EINVAL;
485		if (this_dbs_info->enable) /* Already enabled */
486			break;
487
488		mutex_lock(&dbs_mutex);
489		for_each_cpu_mask(j, policy->cpus) {
490			struct cpu_dbs_info_s *j_dbs_info;
491			j_dbs_info = &per_cpu(cpu_dbs_info, j);
492			j_dbs_info->cur_policy = policy;
493
494			j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j);
495			j_dbs_info->prev_cpu_idle_down
496				= j_dbs_info->prev_cpu_idle_up;
497		}
498		this_dbs_info->enable = 1;
499		sysfs_create_group(&policy->kobj, &dbs_attr_group);
500		dbs_enable++;
501		/*
502		 * Start the timerschedule work, when this governor
503		 * is used for first time
504		 */
505		if (dbs_enable == 1) {
506			unsigned int latency;
507			/* policy latency is in nS. Convert it to uS first */
508			latency = policy->cpuinfo.transition_latency / 1000;
509			if (latency == 0)
510				latency = 1;
511
512			def_sampling_rate = latency *
513					DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
514
515			if (def_sampling_rate < MIN_STAT_SAMPLING_RATE)
516				def_sampling_rate = MIN_STAT_SAMPLING_RATE;
517
518			dbs_tuners_ins.sampling_rate = def_sampling_rate;
519			dbs_tuners_ins.ignore_nice = 0;
520			dbs_tuners_ins.freq_step = 5;
521
522			dbs_timer_init();
523		}
524
525		mutex_unlock(&dbs_mutex);
526		break;
527
528	case CPUFREQ_GOV_STOP:
529		mutex_lock(&dbs_mutex);
530		this_dbs_info->enable = 0;
531		sysfs_remove_group(&policy->kobj, &dbs_attr_group);
532		dbs_enable--;
533		/*
534		 * Stop the timerschedule work, when this governor
535		 * is used for first time
536		 */
537		if (dbs_enable == 0)
538			dbs_timer_exit();
539
540		mutex_unlock(&dbs_mutex);
541
542		break;
543
544	case CPUFREQ_GOV_LIMITS:
545		mutex_lock(&dbs_mutex);
546		if (policy->max < this_dbs_info->cur_policy->cur)
547			__cpufreq_driver_target(
548					this_dbs_info->cur_policy,
549				       	policy->max, CPUFREQ_RELATION_H);
550		else if (policy->min > this_dbs_info->cur_policy->cur)
551			__cpufreq_driver_target(
552					this_dbs_info->cur_policy,
553				       	policy->min, CPUFREQ_RELATION_L);
554		mutex_unlock(&dbs_mutex);
555		break;
556	}
557	return 0;
558}
559
560static struct cpufreq_governor cpufreq_gov_dbs = {
561	.name		= "conservative",
562	.governor	= cpufreq_governor_dbs,
563	.owner		= THIS_MODULE,
564};
565
566static int __init cpufreq_gov_dbs_init(void)
567{
568	return cpufreq_register_governor(&cpufreq_gov_dbs);
569}
570
571static void __exit cpufreq_gov_dbs_exit(void)
572{
573	/* Make sure that the scheduled work is indeed not running */
574	flush_scheduled_work();
575
576	cpufreq_unregister_governor(&cpufreq_gov_dbs);
577}
578
579
580MODULE_AUTHOR ("Alexander Clouter <alex-kernel@digriz.org.uk>");
581MODULE_DESCRIPTION ("'cpufreq_conservative' - A dynamic cpufreq governor for "
582		"Low Latency Frequency Transition capable processors "
583		"optimised for use in a battery environment");
584MODULE_LICENSE ("GPL");
585
586module_init(cpufreq_gov_dbs_init);
587module_exit(cpufreq_gov_dbs_exit);
588