cpufreq_conservative.c revision e08f5f5bb5dfaaa28d69ffe37eb774533297657f
1/*
2 *  drivers/cpufreq/cpufreq_conservative.c
3 *
4 *  Copyright (C)  2001 Russell King
5 *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 *                      Jun Nakajima <jun.nakajima@intel.com>
7 *            (C)  2004 Alexander Clouter <alex-kernel@digriz.org.uk>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/smp.h>
17#include <linux/init.h>
18#include <linux/interrupt.h>
19#include <linux/ctype.h>
20#include <linux/cpufreq.h>
21#include <linux/sysctl.h>
22#include <linux/types.h>
23#include <linux/fs.h>
24#include <linux/sysfs.h>
25#include <linux/cpu.h>
26#include <linux/sched.h>
27#include <linux/kmod.h>
28#include <linux/workqueue.h>
29#include <linux/jiffies.h>
30#include <linux/kernel_stat.h>
31#include <linux/percpu.h>
32#include <linux/mutex.h>
33/*
34 * dbs is used in this file as a shortform for demandbased switching
35 * It helps to keep variable names smaller, simpler
36 */
37
38#define DEF_FREQUENCY_UP_THRESHOLD		(80)
39#define DEF_FREQUENCY_DOWN_THRESHOLD		(20)
40
41/*
42 * The polling frequency of this governor depends on the capability of
43 * the processor. Default polling frequency is 1000 times the transition
44 * latency of the processor. The governor will work on any processor with
45 * transition latency <= 10mS, using appropriate sampling
46 * rate.
47 * For CPUs with transition latency > 10mS (mostly drivers
48 * with CPUFREQ_ETERNAL), this governor will not work.
49 * All times here are in uS.
50 */
51static unsigned int 				def_sampling_rate;
52#define MIN_SAMPLING_RATE_RATIO			(2)
53/* for correct statistics, we need at least 10 ticks between each measure */
54#define MIN_STAT_SAMPLING_RATE			\
55			(MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
56#define MIN_SAMPLING_RATE			\
57			(def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
58#define MAX_SAMPLING_RATE			(500 * def_sampling_rate)
59#define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER	(1000)
60#define DEF_SAMPLING_DOWN_FACTOR		(1)
61#define MAX_SAMPLING_DOWN_FACTOR		(10)
62#define TRANSITION_LATENCY_LIMIT		(10 * 1000)
63
64static void do_dbs_timer(void *data);
65
66struct cpu_dbs_info_s {
67	struct cpufreq_policy 	*cur_policy;
68	unsigned int 		prev_cpu_idle_up;
69	unsigned int 		prev_cpu_idle_down;
70	unsigned int 		enable;
71	unsigned int		down_skip;
72	unsigned int		requested_freq;
73};
74static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
75
76static unsigned int dbs_enable;	/* number of CPUs using this policy */
77
78/*
79 * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
80 * lock and dbs_mutex. cpu_hotplug lock should always be held before
81 * dbs_mutex. If any function that can potentially take cpu_hotplug lock
82 * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
83 * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
84 * is recursive for the same process. -Venki
85 */
86static DEFINE_MUTEX 	(dbs_mutex);
87static DECLARE_WORK	(dbs_work, do_dbs_timer, NULL);
88
89struct dbs_tuners {
90	unsigned int 		sampling_rate;
91	unsigned int		sampling_down_factor;
92	unsigned int		up_threshold;
93	unsigned int		down_threshold;
94	unsigned int		ignore_nice;
95	unsigned int		freq_step;
96};
97
98static struct dbs_tuners dbs_tuners_ins = {
99	.up_threshold 		= DEF_FREQUENCY_UP_THRESHOLD,
100	.down_threshold 	= DEF_FREQUENCY_DOWN_THRESHOLD,
101	.sampling_down_factor 	= DEF_SAMPLING_DOWN_FACTOR,
102	.ignore_nice		= 0,
103	.freq_step		= 5,
104};
105
106static inline unsigned int get_cpu_idle_time(unsigned int cpu)
107{
108	unsigned int add_nice = 0, ret;
109
110	if (dbs_tuners_ins.ignore_nice)
111		add_nice = kstat_cpu(cpu).cpustat.nice;
112
113	ret = 	kstat_cpu(cpu).cpustat.idle +
114		kstat_cpu(cpu).cpustat.iowait +
115		add_nice;
116
117	return ret;
118}
119
120/************************** sysfs interface ************************/
121static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
122{
123	return sprintf (buf, "%u\n", MAX_SAMPLING_RATE);
124}
125
126static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
127{
128	return sprintf (buf, "%u\n", MIN_SAMPLING_RATE);
129}
130
131#define define_one_ro(_name) 					\
132static struct freq_attr _name =  				\
133__ATTR(_name, 0444, show_##_name, NULL)
134
135define_one_ro(sampling_rate_max);
136define_one_ro(sampling_rate_min);
137
138/* cpufreq_conservative Governor Tunables */
139#define show_one(file_name, object)					\
140static ssize_t show_##file_name						\
141(struct cpufreq_policy *unused, char *buf)				\
142{									\
143	return sprintf(buf, "%u\n", dbs_tuners_ins.object);		\
144}
145show_one(sampling_rate, sampling_rate);
146show_one(sampling_down_factor, sampling_down_factor);
147show_one(up_threshold, up_threshold);
148show_one(down_threshold, down_threshold);
149show_one(ignore_nice_load, ignore_nice);
150show_one(freq_step, freq_step);
151
152static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused,
153		const char *buf, size_t count)
154{
155	unsigned int input;
156	int ret;
157	ret = sscanf (buf, "%u", &input);
158	if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
159		return -EINVAL;
160
161	mutex_lock(&dbs_mutex);
162	dbs_tuners_ins.sampling_down_factor = input;
163	mutex_unlock(&dbs_mutex);
164
165	return count;
166}
167
168static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
169		const char *buf, size_t count)
170{
171	unsigned int input;
172	int ret;
173	ret = sscanf (buf, "%u", &input);
174
175	mutex_lock(&dbs_mutex);
176	if (ret != 1 || input > MAX_SAMPLING_RATE || input < MIN_SAMPLING_RATE) {
177		mutex_unlock(&dbs_mutex);
178		return -EINVAL;
179	}
180
181	dbs_tuners_ins.sampling_rate = input;
182	mutex_unlock(&dbs_mutex);
183
184	return count;
185}
186
187static ssize_t store_up_threshold(struct cpufreq_policy *unused,
188		const char *buf, size_t count)
189{
190	unsigned int input;
191	int ret;
192	ret = sscanf (buf, "%u", &input);
193
194	mutex_lock(&dbs_mutex);
195	if (ret != 1 || input > 100 || input <= dbs_tuners_ins.down_threshold) {
196		mutex_unlock(&dbs_mutex);
197		return -EINVAL;
198	}
199
200	dbs_tuners_ins.up_threshold = input;
201	mutex_unlock(&dbs_mutex);
202
203	return count;
204}
205
206static ssize_t store_down_threshold(struct cpufreq_policy *unused,
207		const char *buf, size_t count)
208{
209	unsigned int input;
210	int ret;
211	ret = sscanf (buf, "%u", &input);
212
213	mutex_lock(&dbs_mutex);
214	if (ret != 1 || input > 100 || input >= dbs_tuners_ins.up_threshold) {
215		mutex_unlock(&dbs_mutex);
216		return -EINVAL;
217	}
218
219	dbs_tuners_ins.down_threshold = input;
220	mutex_unlock(&dbs_mutex);
221
222	return count;
223}
224
225static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
226		const char *buf, size_t count)
227{
228	unsigned int input;
229	int ret;
230
231	unsigned int j;
232
233	ret = sscanf (buf, "%u", &input);
234	if ( ret != 1 )
235		return -EINVAL;
236
237	if ( input > 1 )
238		input = 1;
239
240	mutex_lock(&dbs_mutex);
241	if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */
242		mutex_unlock(&dbs_mutex);
243		return count;
244	}
245	dbs_tuners_ins.ignore_nice = input;
246
247	/* we need to re-evaluate prev_cpu_idle_up and prev_cpu_idle_down */
248	for_each_online_cpu(j) {
249		struct cpu_dbs_info_s *j_dbs_info;
250		j_dbs_info = &per_cpu(cpu_dbs_info, j);
251		j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j);
252		j_dbs_info->prev_cpu_idle_down = j_dbs_info->prev_cpu_idle_up;
253	}
254	mutex_unlock(&dbs_mutex);
255
256	return count;
257}
258
259static ssize_t store_freq_step(struct cpufreq_policy *policy,
260		const char *buf, size_t count)
261{
262	unsigned int input;
263	int ret;
264
265	ret = sscanf (buf, "%u", &input);
266
267	if ( ret != 1 )
268		return -EINVAL;
269
270	if ( input > 100 )
271		input = 100;
272
273	/* no need to test here if freq_step is zero as the user might actually
274	 * want this, they would be crazy though :) */
275	mutex_lock(&dbs_mutex);
276	dbs_tuners_ins.freq_step = input;
277	mutex_unlock(&dbs_mutex);
278
279	return count;
280}
281
282#define define_one_rw(_name) \
283static struct freq_attr _name = \
284__ATTR(_name, 0644, show_##_name, store_##_name)
285
286define_one_rw(sampling_rate);
287define_one_rw(sampling_down_factor);
288define_one_rw(up_threshold);
289define_one_rw(down_threshold);
290define_one_rw(ignore_nice_load);
291define_one_rw(freq_step);
292
293static struct attribute * dbs_attributes[] = {
294	&sampling_rate_max.attr,
295	&sampling_rate_min.attr,
296	&sampling_rate.attr,
297	&sampling_down_factor.attr,
298	&up_threshold.attr,
299	&down_threshold.attr,
300	&ignore_nice_load.attr,
301	&freq_step.attr,
302	NULL
303};
304
305static struct attribute_group dbs_attr_group = {
306	.attrs = dbs_attributes,
307	.name = "conservative",
308};
309
310/************************** sysfs end ************************/
311
312static void dbs_check_cpu(int cpu)
313{
314	unsigned int idle_ticks, up_idle_ticks, down_idle_ticks;
315	unsigned int tmp_idle_ticks, total_idle_ticks;
316	unsigned int freq_step;
317	unsigned int freq_down_sampling_rate;
318	struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
319	struct cpufreq_policy *policy;
320
321	if (!this_dbs_info->enable)
322		return;
323
324	policy = this_dbs_info->cur_policy;
325
326	/*
327	 * The default safe range is 20% to 80%
328	 * Every sampling_rate, we check
329	 * 	- If current idle time is less than 20%, then we try to
330	 * 	  increase frequency
331	 * Every sampling_rate*sampling_down_factor, we check
332	 * 	- If current idle time is more than 80%, then we try to
333	 * 	  decrease frequency
334	 *
335	 * Any frequency increase takes it to the maximum frequency.
336	 * Frequency reduction happens at minimum steps of
337	 * 5% (default) of max_frequency
338	 */
339
340	/* Check for frequency increase */
341	idle_ticks = UINT_MAX;
342
343	/* Check for frequency increase */
344	total_idle_ticks = get_cpu_idle_time(cpu);
345	tmp_idle_ticks = total_idle_ticks -
346		this_dbs_info->prev_cpu_idle_up;
347	this_dbs_info->prev_cpu_idle_up = total_idle_ticks;
348
349	if (tmp_idle_ticks < idle_ticks)
350		idle_ticks = tmp_idle_ticks;
351
352	/* Scale idle ticks by 100 and compare with up and down ticks */
353	idle_ticks *= 100;
354	up_idle_ticks = (100 - dbs_tuners_ins.up_threshold) *
355			usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
356
357	if (idle_ticks < up_idle_ticks) {
358		this_dbs_info->down_skip = 0;
359		this_dbs_info->prev_cpu_idle_down =
360			this_dbs_info->prev_cpu_idle_up;
361
362		/* if we are already at full speed then break out early */
363		if (this_dbs_info->requested_freq == policy->max)
364			return;
365
366		freq_step = (dbs_tuners_ins.freq_step * policy->max) / 100;
367
368		/* max freq cannot be less than 100. But who knows.... */
369		if (unlikely(freq_step == 0))
370			freq_step = 5;
371
372		this_dbs_info->requested_freq += freq_step;
373		if (this_dbs_info->requested_freq > policy->max)
374			this_dbs_info->requested_freq = policy->max;
375
376		__cpufreq_driver_target(policy, this_dbs_info->requested_freq,
377			CPUFREQ_RELATION_H);
378		return;
379	}
380
381	/* Check for frequency decrease */
382	this_dbs_info->down_skip++;
383	if (this_dbs_info->down_skip < dbs_tuners_ins.sampling_down_factor)
384		return;
385
386	/* Check for frequency decrease */
387	total_idle_ticks = this_dbs_info->prev_cpu_idle_up;
388	tmp_idle_ticks = total_idle_ticks -
389		this_dbs_info->prev_cpu_idle_down;
390	this_dbs_info->prev_cpu_idle_down = total_idle_ticks;
391
392	if (tmp_idle_ticks < idle_ticks)
393		idle_ticks = tmp_idle_ticks;
394
395	/* Scale idle ticks by 100 and compare with up and down ticks */
396	idle_ticks *= 100;
397	this_dbs_info->down_skip = 0;
398
399	freq_down_sampling_rate = dbs_tuners_ins.sampling_rate *
400		dbs_tuners_ins.sampling_down_factor;
401	down_idle_ticks = (100 - dbs_tuners_ins.down_threshold) *
402		usecs_to_jiffies(freq_down_sampling_rate);
403
404	if (idle_ticks > down_idle_ticks) {
405		/*
406		 * if we are already at the lowest speed then break out early
407		 * or if we 'cannot' reduce the speed as the user might want
408		 * freq_step to be zero
409		 */
410		if (this_dbs_info->requested_freq == policy->min
411				|| dbs_tuners_ins.freq_step == 0)
412			return;
413
414		freq_step = (dbs_tuners_ins.freq_step * policy->max) / 100;
415
416		/* max freq cannot be less than 100. But who knows.... */
417		if (unlikely(freq_step == 0))
418			freq_step = 5;
419
420		this_dbs_info->requested_freq -= freq_step;
421		if (this_dbs_info->requested_freq < policy->min)
422			this_dbs_info->requested_freq = policy->min;
423
424		__cpufreq_driver_target(policy, this_dbs_info->requested_freq,
425				CPUFREQ_RELATION_H);
426		return;
427	}
428}
429
430static void do_dbs_timer(void *data)
431{
432	int i;
433	lock_cpu_hotplug();
434	mutex_lock(&dbs_mutex);
435	for_each_online_cpu(i)
436		dbs_check_cpu(i);
437	schedule_delayed_work(&dbs_work,
438			usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
439	mutex_unlock(&dbs_mutex);
440	unlock_cpu_hotplug();
441}
442
443static inline void dbs_timer_init(void)
444{
445	INIT_WORK(&dbs_work, do_dbs_timer, NULL);
446	schedule_delayed_work(&dbs_work,
447			usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
448	return;
449}
450
451static inline void dbs_timer_exit(void)
452{
453	cancel_delayed_work(&dbs_work);
454	return;
455}
456
457static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
458				   unsigned int event)
459{
460	unsigned int cpu = policy->cpu;
461	struct cpu_dbs_info_s *this_dbs_info;
462	unsigned int j;
463	int rc;
464
465	this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
466
467	switch (event) {
468	case CPUFREQ_GOV_START:
469		if ((!cpu_online(cpu)) ||
470		    (!policy->cur))
471			return -EINVAL;
472
473		if (policy->cpuinfo.transition_latency >
474				(TRANSITION_LATENCY_LIMIT * 1000))
475			return -EINVAL;
476		if (this_dbs_info->enable) /* Already enabled */
477			break;
478
479		mutex_lock(&dbs_mutex);
480
481		rc = sysfs_create_group(&policy->kobj, &dbs_attr_group);
482		if (rc) {
483			mutex_unlock(&dbs_mutex);
484			return rc;
485		}
486
487		for_each_cpu_mask(j, policy->cpus) {
488			struct cpu_dbs_info_s *j_dbs_info;
489			j_dbs_info = &per_cpu(cpu_dbs_info, j);
490			j_dbs_info->cur_policy = policy;
491
492			j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(cpu);
493			j_dbs_info->prev_cpu_idle_down
494				= j_dbs_info->prev_cpu_idle_up;
495		}
496		this_dbs_info->enable = 1;
497		this_dbs_info->down_skip = 0;
498		this_dbs_info->requested_freq = policy->cur;
499
500		dbs_enable++;
501		/*
502		 * Start the timerschedule work, when this governor
503		 * is used for first time
504		 */
505		if (dbs_enable == 1) {
506			unsigned int latency;
507			/* policy latency is in nS. Convert it to uS first */
508			latency = policy->cpuinfo.transition_latency / 1000;
509			if (latency == 0)
510				latency = 1;
511
512			def_sampling_rate = 10 * latency *
513					DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
514
515			if (def_sampling_rate < MIN_STAT_SAMPLING_RATE)
516				def_sampling_rate = MIN_STAT_SAMPLING_RATE;
517
518			dbs_tuners_ins.sampling_rate = def_sampling_rate;
519
520			dbs_timer_init();
521		}
522
523		mutex_unlock(&dbs_mutex);
524		break;
525
526	case CPUFREQ_GOV_STOP:
527		mutex_lock(&dbs_mutex);
528		this_dbs_info->enable = 0;
529		sysfs_remove_group(&policy->kobj, &dbs_attr_group);
530		dbs_enable--;
531		/*
532		 * Stop the timerschedule work, when this governor
533		 * is used for first time
534		 */
535		if (dbs_enable == 0)
536			dbs_timer_exit();
537
538		mutex_unlock(&dbs_mutex);
539
540		break;
541
542	case CPUFREQ_GOV_LIMITS:
543		mutex_lock(&dbs_mutex);
544		if (policy->max < this_dbs_info->cur_policy->cur)
545			__cpufreq_driver_target(
546					this_dbs_info->cur_policy,
547				       	policy->max, CPUFREQ_RELATION_H);
548		else if (policy->min > this_dbs_info->cur_policy->cur)
549			__cpufreq_driver_target(
550					this_dbs_info->cur_policy,
551				       	policy->min, CPUFREQ_RELATION_L);
552		mutex_unlock(&dbs_mutex);
553		break;
554	}
555	return 0;
556}
557
558static struct cpufreq_governor cpufreq_gov_dbs = {
559	.name		= "conservative",
560	.governor	= cpufreq_governor_dbs,
561	.owner		= THIS_MODULE,
562};
563
564static int __init cpufreq_gov_dbs_init(void)
565{
566	return cpufreq_register_governor(&cpufreq_gov_dbs);
567}
568
569static void __exit cpufreq_gov_dbs_exit(void)
570{
571	/* Make sure that the scheduled work is indeed not running */
572	flush_scheduled_work();
573
574	cpufreq_unregister_governor(&cpufreq_gov_dbs);
575}
576
577
578MODULE_AUTHOR ("Alexander Clouter <alex-kernel@digriz.org.uk>");
579MODULE_DESCRIPTION ("'cpufreq_conservative' - A dynamic cpufreq governor for "
580		"Low Latency Frequency Transition capable processors "
581		"optimised for use in a battery environment");
582MODULE_LICENSE ("GPL");
583
584module_init(cpufreq_gov_dbs_init);
585module_exit(cpufreq_gov_dbs_exit);
586