cpufreq_conservative.c revision f407a08bb7eff5ddbe0d9173d8717794a910771f
1/*
2 *  drivers/cpufreq/cpufreq_conservative.c
3 *
4 *  Copyright (C)  2001 Russell King
5 *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 *                      Jun Nakajima <jun.nakajima@intel.com>
7 *            (C)  2009 Alexander Clouter <alex@digriz.org.uk>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/smp.h>
17#include <linux/init.h>
18#include <linux/interrupt.h>
19#include <linux/ctype.h>
20#include <linux/cpufreq.h>
21#include <linux/sysctl.h>
22#include <linux/types.h>
23#include <linux/fs.h>
24#include <linux/sysfs.h>
25#include <linux/cpu.h>
26#include <linux/kmod.h>
27#include <linux/workqueue.h>
28#include <linux/jiffies.h>
29#include <linux/kernel_stat.h>
30#include <linux/percpu.h>
31#include <linux/mutex.h>
32/*
33 * dbs is used in this file as a shortform for demandbased switching
34 * It helps to keep variable names smaller, simpler
35 */
36
37#define DEF_FREQUENCY_UP_THRESHOLD		(80)
38#define DEF_FREQUENCY_DOWN_THRESHOLD		(20)
39
40/*
41 * The polling frequency of this governor depends on the capability of
42 * the processor. Default polling frequency is 1000 times the transition
43 * latency of the processor. The governor will work on any processor with
44 * transition latency <= 10mS, using appropriate sampling
45 * rate.
46 * For CPUs with transition latency > 10mS (mostly drivers
47 * with CPUFREQ_ETERNAL), this governor will not work.
48 * All times here are in uS.
49 */
50static unsigned int def_sampling_rate;
51#define MIN_SAMPLING_RATE_RATIO			(2)
52/* for correct statistics, we need at least 10 ticks between each measure */
53#define MIN_STAT_SAMPLING_RATE			\
54			(MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
55#define MIN_SAMPLING_RATE			\
56			(def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
57/* Above MIN_SAMPLING_RATE will vanish with its sysfs file soon
58 * Define the minimal settable sampling rate to the greater of:
59 *   - "HW transition latency" * 100 (same as default sampling / 10)
60 *   - MIN_STAT_SAMPLING_RATE
61 * To avoid that userspace shoots itself.
62*/
63static unsigned int minimum_sampling_rate(void)
64{
65	return max(def_sampling_rate / 10, MIN_STAT_SAMPLING_RATE);
66}
67
68/* This will also vanish soon with removing sampling_rate_max */
69#define MAX_SAMPLING_RATE			(500 * def_sampling_rate)
70#define LATENCY_MULTIPLIER			(1000)
71#define DEF_SAMPLING_DOWN_FACTOR		(1)
72#define MAX_SAMPLING_DOWN_FACTOR		(10)
73#define TRANSITION_LATENCY_LIMIT		(10 * 1000 * 1000)
74
75static void do_dbs_timer(struct work_struct *work);
76
77struct cpu_dbs_info_s {
78	struct cpufreq_policy *cur_policy;
79	unsigned int prev_cpu_idle_up;
80	unsigned int prev_cpu_idle_down;
81	unsigned int enable;
82	unsigned int down_skip;
83	unsigned int requested_freq;
84};
85static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
86
87static unsigned int dbs_enable;	/* number of CPUs using this policy */
88
89/*
90 * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
91 * lock and dbs_mutex. cpu_hotplug lock should always be held before
92 * dbs_mutex. If any function that can potentially take cpu_hotplug lock
93 * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
94 * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
95 * is recursive for the same process. -Venki
96 */
97static DEFINE_MUTEX(dbs_mutex);
98static DECLARE_DELAYED_WORK(dbs_work, do_dbs_timer);
99
100struct dbs_tuners {
101	unsigned int sampling_rate;
102	unsigned int sampling_down_factor;
103	unsigned int up_threshold;
104	unsigned int down_threshold;
105	unsigned int ignore_nice;
106	unsigned int freq_step;
107};
108
109static struct dbs_tuners dbs_tuners_ins = {
110	.up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
111	.down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD,
112	.sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
113	.ignore_nice = 0,
114	.freq_step = 5,
115};
116
117static inline unsigned int get_cpu_idle_time(unsigned int cpu)
118{
119	unsigned int add_nice = 0, ret;
120
121	if (dbs_tuners_ins.ignore_nice)
122		add_nice = kstat_cpu(cpu).cpustat.nice;
123
124	ret = kstat_cpu(cpu).cpustat.idle +
125		kstat_cpu(cpu).cpustat.iowait +
126		add_nice;
127
128	return ret;
129}
130
131/* keep track of frequency transitions */
132static int
133dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
134		     void *data)
135{
136	struct cpufreq_freqs *freq = data;
137	struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cpu_dbs_info,
138							freq->cpu);
139
140	struct cpufreq_policy *policy;
141
142	if (!this_dbs_info->enable)
143		return 0;
144
145	policy = this_dbs_info->cur_policy;
146
147	/*
148	 * we only care if our internally tracked freq moves outside
149	 * the 'valid' ranges of freqency available to us otherwise
150	 * we do not change it
151	*/
152	if (this_dbs_info->requested_freq > policy->max
153			|| this_dbs_info->requested_freq < policy->min)
154		this_dbs_info->requested_freq = freq->new;
155
156	return 0;
157}
158
159static struct notifier_block dbs_cpufreq_notifier_block = {
160	.notifier_call = dbs_cpufreq_notifier
161};
162
163/************************** sysfs interface ************************/
164static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
165{
166	static int print_once;
167
168	if (!print_once) {
169		printk(KERN_INFO "CPUFREQ: conservative sampling_rate_max "
170		       "sysfs file is deprecated - used by: %s\n",
171		       current->comm);
172		print_once = 1;
173	}
174	return sprintf(buf, "%u\n", MAX_SAMPLING_RATE);
175}
176
177static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
178{
179	static int print_once;
180
181	if (!print_once) {
182		printk(KERN_INFO "CPUFREQ: conservative sampling_rate_max "
183		       "sysfs file is deprecated - used by: %s\n", current->comm);
184		print_once = 1;
185	}
186	return sprintf(buf, "%u\n", MIN_SAMPLING_RATE);
187}
188
189#define define_one_ro(_name)				\
190static struct freq_attr _name =				\
191__ATTR(_name, 0444, show_##_name, NULL)
192
193define_one_ro(sampling_rate_max);
194define_one_ro(sampling_rate_min);
195
196/* cpufreq_conservative Governor Tunables */
197#define show_one(file_name, object)					\
198static ssize_t show_##file_name						\
199(struct cpufreq_policy *unused, char *buf)				\
200{									\
201	return sprintf(buf, "%u\n", dbs_tuners_ins.object);		\
202}
203show_one(sampling_rate, sampling_rate);
204show_one(sampling_down_factor, sampling_down_factor);
205show_one(up_threshold, up_threshold);
206show_one(down_threshold, down_threshold);
207show_one(ignore_nice_load, ignore_nice);
208show_one(freq_step, freq_step);
209
210static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused,
211		const char *buf, size_t count)
212{
213	unsigned int input;
214	int ret;
215	ret = sscanf(buf, "%u", &input);
216	if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
217		return -EINVAL;
218
219	mutex_lock(&dbs_mutex);
220	dbs_tuners_ins.sampling_down_factor = input;
221	mutex_unlock(&dbs_mutex);
222
223	return count;
224}
225
226static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
227		const char *buf, size_t count)
228{
229	unsigned int input;
230	int ret;
231	ret = sscanf(buf, "%u", &input);
232
233	mutex_lock(&dbs_mutex);
234	if (ret != 1) {
235		mutex_unlock(&dbs_mutex);
236		return -EINVAL;
237	}
238	dbs_tuners_ins.sampling_rate = max(input, minimum_sampling_rate());
239	mutex_unlock(&dbs_mutex);
240
241	return count;
242}
243
244static ssize_t store_up_threshold(struct cpufreq_policy *unused,
245		const char *buf, size_t count)
246{
247	unsigned int input;
248	int ret;
249	ret = sscanf(buf, "%u", &input);
250
251	mutex_lock(&dbs_mutex);
252	if (ret != 1 || input > 100 ||
253	    input <= dbs_tuners_ins.down_threshold) {
254		mutex_unlock(&dbs_mutex);
255		return -EINVAL;
256	}
257
258	dbs_tuners_ins.up_threshold = input;
259	mutex_unlock(&dbs_mutex);
260
261	return count;
262}
263
264static ssize_t store_down_threshold(struct cpufreq_policy *unused,
265		const char *buf, size_t count)
266{
267	unsigned int input;
268	int ret;
269	ret = sscanf(buf, "%u", &input);
270
271	mutex_lock(&dbs_mutex);
272	if (ret != 1 || input > 100 || input >= dbs_tuners_ins.up_threshold) {
273		mutex_unlock(&dbs_mutex);
274		return -EINVAL;
275	}
276
277	dbs_tuners_ins.down_threshold = input;
278	mutex_unlock(&dbs_mutex);
279
280	return count;
281}
282
283static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
284		const char *buf, size_t count)
285{
286	unsigned int input;
287	int ret;
288
289	unsigned int j;
290
291	ret = sscanf(buf, "%u", &input);
292	if (ret != 1)
293		return -EINVAL;
294
295	if (input > 1)
296		input = 1;
297
298	mutex_lock(&dbs_mutex);
299	if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
300		mutex_unlock(&dbs_mutex);
301		return count;
302	}
303	dbs_tuners_ins.ignore_nice = input;
304
305	/* we need to re-evaluate prev_cpu_idle_up and prev_cpu_idle_down */
306	for_each_online_cpu(j) {
307		struct cpu_dbs_info_s *j_dbs_info;
308		j_dbs_info = &per_cpu(cpu_dbs_info, j);
309		j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j);
310		j_dbs_info->prev_cpu_idle_down = j_dbs_info->prev_cpu_idle_up;
311	}
312	mutex_unlock(&dbs_mutex);
313
314	return count;
315}
316
317static ssize_t store_freq_step(struct cpufreq_policy *policy,
318		const char *buf, size_t count)
319{
320	unsigned int input;
321	int ret;
322
323	ret = sscanf(buf, "%u", &input);
324
325	if (ret != 1)
326		return -EINVAL;
327
328	if (input > 100)
329		input = 100;
330
331	/* no need to test here if freq_step is zero as the user might actually
332	 * want this, they would be crazy though :) */
333	mutex_lock(&dbs_mutex);
334	dbs_tuners_ins.freq_step = input;
335	mutex_unlock(&dbs_mutex);
336
337	return count;
338}
339
340#define define_one_rw(_name) \
341static struct freq_attr _name = \
342__ATTR(_name, 0644, show_##_name, store_##_name)
343
344define_one_rw(sampling_rate);
345define_one_rw(sampling_down_factor);
346define_one_rw(up_threshold);
347define_one_rw(down_threshold);
348define_one_rw(ignore_nice_load);
349define_one_rw(freq_step);
350
351static struct attribute *dbs_attributes[] = {
352	&sampling_rate_max.attr,
353	&sampling_rate_min.attr,
354	&sampling_rate.attr,
355	&sampling_down_factor.attr,
356	&up_threshold.attr,
357	&down_threshold.attr,
358	&ignore_nice_load.attr,
359	&freq_step.attr,
360	NULL
361};
362
363static struct attribute_group dbs_attr_group = {
364	.attrs = dbs_attributes,
365	.name = "conservative",
366};
367
368/************************** sysfs end ************************/
369
370static void dbs_check_cpu(int cpu)
371{
372	unsigned int idle_ticks, up_idle_ticks, down_idle_ticks;
373	unsigned int tmp_idle_ticks, total_idle_ticks;
374	unsigned int freq_target;
375	unsigned int freq_down_sampling_rate;
376	struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
377	struct cpufreq_policy *policy;
378
379	if (!this_dbs_info->enable)
380		return;
381
382	policy = this_dbs_info->cur_policy;
383
384	/*
385	 * The default safe range is 20% to 80%
386	 * Every sampling_rate, we check
387	 *	- If current idle time is less than 20%, then we try to
388	 *	  increase frequency
389	 * Every sampling_rate*sampling_down_factor, we check
390	 *	- If current idle time is more than 80%, then we try to
391	 *	  decrease frequency
392	 *
393	 * Any frequency increase takes it to the maximum frequency.
394	 * Frequency reduction happens at minimum steps of
395	 * 5% (default) of max_frequency
396	 */
397
398	/* Check for frequency increase */
399	idle_ticks = UINT_MAX;
400
401	/* Check for frequency increase */
402	total_idle_ticks = get_cpu_idle_time(cpu);
403	tmp_idle_ticks = total_idle_ticks -
404		this_dbs_info->prev_cpu_idle_up;
405	this_dbs_info->prev_cpu_idle_up = total_idle_ticks;
406
407	if (tmp_idle_ticks < idle_ticks)
408		idle_ticks = tmp_idle_ticks;
409
410	/* Scale idle ticks by 100 and compare with up and down ticks */
411	idle_ticks *= 100;
412	up_idle_ticks = (100 - dbs_tuners_ins.up_threshold) *
413			usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
414
415	if (idle_ticks < up_idle_ticks) {
416		this_dbs_info->down_skip = 0;
417		this_dbs_info->prev_cpu_idle_down =
418			this_dbs_info->prev_cpu_idle_up;
419
420		/* if we are already at full speed then break out early */
421		if (this_dbs_info->requested_freq == policy->max)
422			return;
423
424		freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
425
426		/* max freq cannot be less than 100. But who knows.... */
427		if (unlikely(freq_target == 0))
428			freq_target = 5;
429
430		this_dbs_info->requested_freq += freq_target;
431		if (this_dbs_info->requested_freq > policy->max)
432			this_dbs_info->requested_freq = policy->max;
433
434		__cpufreq_driver_target(policy, this_dbs_info->requested_freq,
435			CPUFREQ_RELATION_H);
436		return;
437	}
438
439	/* Check for frequency decrease */
440	this_dbs_info->down_skip++;
441	if (this_dbs_info->down_skip < dbs_tuners_ins.sampling_down_factor)
442		return;
443
444	/* Check for frequency decrease */
445	total_idle_ticks = this_dbs_info->prev_cpu_idle_up;
446	tmp_idle_ticks = total_idle_ticks -
447		this_dbs_info->prev_cpu_idle_down;
448	this_dbs_info->prev_cpu_idle_down = total_idle_ticks;
449
450	if (tmp_idle_ticks < idle_ticks)
451		idle_ticks = tmp_idle_ticks;
452
453	/* Scale idle ticks by 100 and compare with up and down ticks */
454	idle_ticks *= 100;
455	this_dbs_info->down_skip = 0;
456
457	freq_down_sampling_rate = dbs_tuners_ins.sampling_rate *
458		dbs_tuners_ins.sampling_down_factor;
459	down_idle_ticks = (100 - dbs_tuners_ins.down_threshold) *
460		usecs_to_jiffies(freq_down_sampling_rate);
461
462	if (idle_ticks > down_idle_ticks) {
463		/*
464		 * if we are already at the lowest speed then break out early
465		 * or if we 'cannot' reduce the speed as the user might want
466		 * freq_target to be zero
467		 */
468		if (this_dbs_info->requested_freq == policy->min
469				|| dbs_tuners_ins.freq_step == 0)
470			return;
471
472		freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
473
474		/* max freq cannot be less than 100. But who knows.... */
475		if (unlikely(freq_target == 0))
476			freq_target = 5;
477
478		this_dbs_info->requested_freq -= freq_target;
479		if (this_dbs_info->requested_freq < policy->min)
480			this_dbs_info->requested_freq = policy->min;
481
482		__cpufreq_driver_target(policy, this_dbs_info->requested_freq,
483				CPUFREQ_RELATION_H);
484		return;
485	}
486}
487
488static void do_dbs_timer(struct work_struct *work)
489{
490	int i;
491	mutex_lock(&dbs_mutex);
492	for_each_online_cpu(i)
493		dbs_check_cpu(i);
494	schedule_delayed_work(&dbs_work,
495			usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
496	mutex_unlock(&dbs_mutex);
497}
498
499static inline void dbs_timer_init(void)
500{
501	init_timer_deferrable(&dbs_work.timer);
502	schedule_delayed_work(&dbs_work,
503			usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
504	return;
505}
506
507static inline void dbs_timer_exit(void)
508{
509	cancel_delayed_work(&dbs_work);
510	return;
511}
512
513static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
514				   unsigned int event)
515{
516	unsigned int cpu = policy->cpu;
517	struct cpu_dbs_info_s *this_dbs_info;
518	unsigned int j;
519	int rc;
520
521	this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
522
523	switch (event) {
524	case CPUFREQ_GOV_START:
525		if ((!cpu_online(cpu)) || (!policy->cur))
526			return -EINVAL;
527
528		if (this_dbs_info->enable) /* Already enabled */
529			break;
530
531		mutex_lock(&dbs_mutex);
532
533		rc = sysfs_create_group(&policy->kobj, &dbs_attr_group);
534		if (rc) {
535			mutex_unlock(&dbs_mutex);
536			return rc;
537		}
538
539		for_each_cpu(j, policy->cpus) {
540			struct cpu_dbs_info_s *j_dbs_info;
541			j_dbs_info = &per_cpu(cpu_dbs_info, j);
542			j_dbs_info->cur_policy = policy;
543
544			j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(cpu);
545			j_dbs_info->prev_cpu_idle_down
546				= j_dbs_info->prev_cpu_idle_up;
547		}
548		this_dbs_info->enable = 1;
549		this_dbs_info->down_skip = 0;
550		this_dbs_info->requested_freq = policy->cur;
551
552		dbs_enable++;
553		/*
554		 * Start the timerschedule work, when this governor
555		 * is used for first time
556		 */
557		if (dbs_enable == 1) {
558			unsigned int latency;
559			/* policy latency is in nS. Convert it to uS first */
560			latency = policy->cpuinfo.transition_latency / 1000;
561			if (latency == 0)
562				latency = 1;
563
564			def_sampling_rate =
565				max(10 * latency * LATENCY_MULTIPLIER,
566				    MIN_STAT_SAMPLING_RATE);
567
568			dbs_tuners_ins.sampling_rate = def_sampling_rate;
569
570			dbs_timer_init();
571			cpufreq_register_notifier(
572					&dbs_cpufreq_notifier_block,
573					CPUFREQ_TRANSITION_NOTIFIER);
574		}
575
576		mutex_unlock(&dbs_mutex);
577		break;
578
579	case CPUFREQ_GOV_STOP:
580		mutex_lock(&dbs_mutex);
581		this_dbs_info->enable = 0;
582		sysfs_remove_group(&policy->kobj, &dbs_attr_group);
583		dbs_enable--;
584		/*
585		 * Stop the timerschedule work, when this governor
586		 * is used for first time
587		 */
588		if (dbs_enable == 0) {
589			dbs_timer_exit();
590			cpufreq_unregister_notifier(
591					&dbs_cpufreq_notifier_block,
592					CPUFREQ_TRANSITION_NOTIFIER);
593		}
594
595		mutex_unlock(&dbs_mutex);
596
597		break;
598
599	case CPUFREQ_GOV_LIMITS:
600		mutex_lock(&dbs_mutex);
601		if (policy->max < this_dbs_info->cur_policy->cur)
602			__cpufreq_driver_target(
603					this_dbs_info->cur_policy,
604					policy->max, CPUFREQ_RELATION_H);
605		else if (policy->min > this_dbs_info->cur_policy->cur)
606			__cpufreq_driver_target(
607					this_dbs_info->cur_policy,
608					policy->min, CPUFREQ_RELATION_L);
609		mutex_unlock(&dbs_mutex);
610		break;
611	}
612	return 0;
613}
614
615#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
616static
617#endif
618struct cpufreq_governor cpufreq_gov_conservative = {
619	.name			= "conservative",
620	.governor		= cpufreq_governor_dbs,
621	.max_transition_latency	= TRANSITION_LATENCY_LIMIT,
622	.owner			= THIS_MODULE,
623};
624
625static int __init cpufreq_gov_dbs_init(void)
626{
627	return cpufreq_register_governor(&cpufreq_gov_conservative);
628}
629
630static void __exit cpufreq_gov_dbs_exit(void)
631{
632	/* Make sure that the scheduled work is indeed not running */
633	flush_scheduled_work();
634
635	cpufreq_unregister_governor(&cpufreq_gov_conservative);
636}
637
638
639MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
640MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
641		"Low Latency Frequency Transition capable processors "
642		"optimised for use in a battery environment");
643MODULE_LICENSE("GPL");
644
645#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
646fs_initcall(cpufreq_gov_dbs_init);
647#else
648module_init(cpufreq_gov_dbs_init);
649#endif
650module_exit(cpufreq_gov_dbs_exit);
651