cpufreq_ondemand.c revision 57df5573a56322e6895451f759c19e875252817d
1/*
2 *  drivers/cpufreq/cpufreq_ondemand.c
3 *
4 *  Copyright (C)  2001 Russell King
5 *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 *                      Jun Nakajima <jun.nakajima@intel.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#include <linux/kernel.h>
14#include <linux/module.h>
15#include <linux/init.h>
16#include <linux/cpufreq.h>
17#include <linux/cpu.h>
18#include <linux/jiffies.h>
19#include <linux/kernel_stat.h>
20#include <linux/mutex.h>
21#include <linux/hrtimer.h>
22#include <linux/tick.h>
23#include <linux/ktime.h>
24#include <linux/sched.h>
25
26/*
27 * dbs is used in this file as a shortform for demandbased switching
28 * It helps to keep variable names smaller, simpler
29 */
30
31#define DEF_FREQUENCY_DOWN_DIFFERENTIAL		(10)
32#define DEF_FREQUENCY_UP_THRESHOLD		(80)
33#define DEF_SAMPLING_DOWN_FACTOR		(1)
34#define MAX_SAMPLING_DOWN_FACTOR		(100000)
35#define MICRO_FREQUENCY_DOWN_DIFFERENTIAL	(3)
36#define MICRO_FREQUENCY_UP_THRESHOLD		(95)
37#define MICRO_FREQUENCY_MIN_SAMPLE_RATE		(10000)
38#define MIN_FREQUENCY_UP_THRESHOLD		(11)
39#define MAX_FREQUENCY_UP_THRESHOLD		(100)
40
41/*
42 * The polling frequency of this governor depends on the capability of
43 * the processor. Default polling frequency is 1000 times the transition
44 * latency of the processor. The governor will work on any processor with
45 * transition latency <= 10mS, using appropriate sampling
46 * rate.
47 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
48 * this governor will not work.
49 * All times here are in uS.
50 */
51#define MIN_SAMPLING_RATE_RATIO			(2)
52
53static unsigned int min_sampling_rate;
54
55#define LATENCY_MULTIPLIER			(1000)
56#define MIN_LATENCY_MULTIPLIER			(100)
57#define TRANSITION_LATENCY_LIMIT		(10 * 1000 * 1000)
58
59static void do_dbs_timer(struct work_struct *work);
60static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
61				unsigned int event);
62
63#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
64static
65#endif
66struct cpufreq_governor cpufreq_gov_ondemand = {
67       .name                   = "ondemand",
68       .governor               = cpufreq_governor_dbs,
69       .max_transition_latency = TRANSITION_LATENCY_LIMIT,
70       .owner                  = THIS_MODULE,
71};
72
73/* Sampling types */
74enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
75
76struct cpu_dbs_info_s {
77	cputime64_t prev_cpu_idle;
78	cputime64_t prev_cpu_iowait;
79	cputime64_t prev_cpu_wall;
80	cputime64_t prev_cpu_nice;
81	struct cpufreq_policy *cur_policy;
82	struct delayed_work work;
83	struct cpufreq_frequency_table *freq_table;
84	unsigned int freq_lo;
85	unsigned int freq_lo_jiffies;
86	unsigned int freq_hi_jiffies;
87	unsigned int rate_mult;
88	int cpu;
89	unsigned int sample_type:1;
90	/*
91	 * percpu mutex that serializes governor limit change with
92	 * do_dbs_timer invocation. We do not want do_dbs_timer to run
93	 * when user is changing the governor or limits.
94	 */
95	struct mutex timer_mutex;
96};
97static DEFINE_PER_CPU(struct cpu_dbs_info_s, od_cpu_dbs_info);
98
99static unsigned int dbs_enable;	/* number of CPUs using this policy */
100
101/*
102 * dbs_mutex protects data in dbs_tuners_ins from concurrent changes on
103 * different CPUs. It protects dbs_enable in governor start/stop.
104 */
105static DEFINE_MUTEX(dbs_mutex);
106
107static struct dbs_tuners {
108	unsigned int sampling_rate;
109	unsigned int up_threshold;
110	unsigned int down_differential;
111	unsigned int ignore_nice;
112	unsigned int sampling_down_factor;
113	unsigned int powersave_bias;
114	unsigned int io_is_busy;
115} dbs_tuners_ins = {
116	.up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
117	.sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
118	.down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL,
119	.ignore_nice = 0,
120	.powersave_bias = 0,
121};
122
123static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
124							cputime64_t *wall)
125{
126	cputime64_t idle_time;
127	cputime64_t cur_wall_time;
128	cputime64_t busy_time;
129
130	cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
131	busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
132			kstat_cpu(cpu).cpustat.system);
133
134	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
135	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
136	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
137	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
138
139	idle_time = cputime64_sub(cur_wall_time, busy_time);
140	if (wall)
141		*wall = (cputime64_t)jiffies_to_usecs(cur_wall_time);
142
143	return (cputime64_t)jiffies_to_usecs(idle_time);
144}
145
146static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
147{
148	u64 idle_time = get_cpu_idle_time_us(cpu, wall);
149
150	if (idle_time == -1ULL)
151		return get_cpu_idle_time_jiffy(cpu, wall);
152
153	return idle_time;
154}
155
156static inline cputime64_t get_cpu_iowait_time(unsigned int cpu, cputime64_t *wall)
157{
158	u64 iowait_time = get_cpu_iowait_time_us(cpu, wall);
159
160	if (iowait_time == -1ULL)
161		return 0;
162
163	return iowait_time;
164}
165
166/*
167 * Find right freq to be set now with powersave_bias on.
168 * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
169 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
170 */
171static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
172					  unsigned int freq_next,
173					  unsigned int relation)
174{
175	unsigned int freq_req, freq_reduc, freq_avg;
176	unsigned int freq_hi, freq_lo;
177	unsigned int index = 0;
178	unsigned int jiffies_total, jiffies_hi, jiffies_lo;
179	struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
180						   policy->cpu);
181
182	if (!dbs_info->freq_table) {
183		dbs_info->freq_lo = 0;
184		dbs_info->freq_lo_jiffies = 0;
185		return freq_next;
186	}
187
188	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
189			relation, &index);
190	freq_req = dbs_info->freq_table[index].frequency;
191	freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
192	freq_avg = freq_req - freq_reduc;
193
194	/* Find freq bounds for freq_avg in freq_table */
195	index = 0;
196	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
197			CPUFREQ_RELATION_H, &index);
198	freq_lo = dbs_info->freq_table[index].frequency;
199	index = 0;
200	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
201			CPUFREQ_RELATION_L, &index);
202	freq_hi = dbs_info->freq_table[index].frequency;
203
204	/* Find out how long we have to be in hi and lo freqs */
205	if (freq_hi == freq_lo) {
206		dbs_info->freq_lo = 0;
207		dbs_info->freq_lo_jiffies = 0;
208		return freq_lo;
209	}
210	jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
211	jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
212	jiffies_hi += ((freq_hi - freq_lo) / 2);
213	jiffies_hi /= (freq_hi - freq_lo);
214	jiffies_lo = jiffies_total - jiffies_hi;
215	dbs_info->freq_lo = freq_lo;
216	dbs_info->freq_lo_jiffies = jiffies_lo;
217	dbs_info->freq_hi_jiffies = jiffies_hi;
218	return freq_hi;
219}
220
221static void ondemand_powersave_bias_init_cpu(int cpu)
222{
223	struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
224	dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
225	dbs_info->freq_lo = 0;
226}
227
228static void ondemand_powersave_bias_init(void)
229{
230	int i;
231	for_each_online_cpu(i) {
232		ondemand_powersave_bias_init_cpu(i);
233	}
234}
235
236/************************** sysfs interface ************************/
237
238static ssize_t show_sampling_rate_max(struct kobject *kobj,
239				      struct attribute *attr, char *buf)
240{
241	printk_once(KERN_INFO "CPUFREQ: ondemand sampling_rate_max "
242	       "sysfs file is deprecated - used by: %s\n", current->comm);
243	return sprintf(buf, "%u\n", -1U);
244}
245
246static ssize_t show_sampling_rate_min(struct kobject *kobj,
247				      struct attribute *attr, char *buf)
248{
249	return sprintf(buf, "%u\n", min_sampling_rate);
250}
251
252define_one_global_ro(sampling_rate_max);
253define_one_global_ro(sampling_rate_min);
254
255/* cpufreq_ondemand Governor Tunables */
256#define show_one(file_name, object)					\
257static ssize_t show_##file_name						\
258(struct kobject *kobj, struct attribute *attr, char *buf)              \
259{									\
260	return sprintf(buf, "%u\n", dbs_tuners_ins.object);		\
261}
262show_one(sampling_rate, sampling_rate);
263show_one(io_is_busy, io_is_busy);
264show_one(up_threshold, up_threshold);
265show_one(sampling_down_factor, sampling_down_factor);
266show_one(ignore_nice_load, ignore_nice);
267show_one(powersave_bias, powersave_bias);
268
269/*** delete after deprecation time ***/
270
271#define DEPRECATION_MSG(file_name)					\
272	printk_once(KERN_INFO "CPUFREQ: Per core ondemand sysfs "	\
273		    "interface is deprecated - " #file_name "\n");
274
275#define show_one_old(file_name)						\
276static ssize_t show_##file_name##_old					\
277(struct cpufreq_policy *unused, char *buf)				\
278{									\
279	printk_once(KERN_INFO "CPUFREQ: Per core ondemand sysfs "	\
280		    "interface is deprecated - " #file_name "\n");	\
281	return show_##file_name(NULL, NULL, buf);			\
282}
283show_one_old(sampling_rate);
284show_one_old(up_threshold);
285show_one_old(ignore_nice_load);
286show_one_old(powersave_bias);
287show_one_old(sampling_rate_min);
288show_one_old(sampling_rate_max);
289
290cpufreq_freq_attr_ro_old(sampling_rate_min);
291cpufreq_freq_attr_ro_old(sampling_rate_max);
292
293/*** delete after deprecation time ***/
294
295static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
296				   const char *buf, size_t count)
297{
298	unsigned int input;
299	int ret;
300	ret = sscanf(buf, "%u", &input);
301	if (ret != 1)
302		return -EINVAL;
303
304	mutex_lock(&dbs_mutex);
305	dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
306	mutex_unlock(&dbs_mutex);
307
308	return count;
309}
310
311static ssize_t store_io_is_busy(struct kobject *a, struct attribute *b,
312				   const char *buf, size_t count)
313{
314	unsigned int input;
315	int ret;
316
317	ret = sscanf(buf, "%u", &input);
318	if (ret != 1)
319		return -EINVAL;
320
321	mutex_lock(&dbs_mutex);
322	dbs_tuners_ins.io_is_busy = !!input;
323	mutex_unlock(&dbs_mutex);
324
325	return count;
326}
327
328static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
329				  const char *buf, size_t count)
330{
331	unsigned int input;
332	int ret;
333	ret = sscanf(buf, "%u", &input);
334
335	if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
336			input < MIN_FREQUENCY_UP_THRESHOLD) {
337		return -EINVAL;
338	}
339
340	mutex_lock(&dbs_mutex);
341	dbs_tuners_ins.up_threshold = input;
342	mutex_unlock(&dbs_mutex);
343
344	return count;
345}
346
347static ssize_t store_sampling_down_factor(struct kobject *a,
348			struct attribute *b, const char *buf, size_t count)
349{
350	unsigned int input, j;
351	int ret;
352	ret = sscanf(buf, "%u", &input);
353
354	if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
355		return -EINVAL;
356	mutex_lock(&dbs_mutex);
357	dbs_tuners_ins.sampling_down_factor = input;
358
359	/* Reset down sampling multiplier in case it was active */
360	for_each_online_cpu(j) {
361		struct cpu_dbs_info_s *dbs_info;
362		dbs_info = &per_cpu(od_cpu_dbs_info, j);
363		dbs_info->rate_mult = 1;
364	}
365	mutex_unlock(&dbs_mutex);
366
367	return count;
368}
369
370static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
371				      const char *buf, size_t count)
372{
373	unsigned int input;
374	int ret;
375
376	unsigned int j;
377
378	ret = sscanf(buf, "%u", &input);
379	if (ret != 1)
380		return -EINVAL;
381
382	if (input > 1)
383		input = 1;
384
385	mutex_lock(&dbs_mutex);
386	if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
387		mutex_unlock(&dbs_mutex);
388		return count;
389	}
390	dbs_tuners_ins.ignore_nice = input;
391
392	/* we need to re-evaluate prev_cpu_idle */
393	for_each_online_cpu(j) {
394		struct cpu_dbs_info_s *dbs_info;
395		dbs_info = &per_cpu(od_cpu_dbs_info, j);
396		dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
397						&dbs_info->prev_cpu_wall);
398		if (dbs_tuners_ins.ignore_nice)
399			dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
400
401	}
402	mutex_unlock(&dbs_mutex);
403
404	return count;
405}
406
407static ssize_t store_powersave_bias(struct kobject *a, struct attribute *b,
408				    const char *buf, size_t count)
409{
410	unsigned int input;
411	int ret;
412	ret = sscanf(buf, "%u", &input);
413
414	if (ret != 1)
415		return -EINVAL;
416
417	if (input > 1000)
418		input = 1000;
419
420	mutex_lock(&dbs_mutex);
421	dbs_tuners_ins.powersave_bias = input;
422	ondemand_powersave_bias_init();
423	mutex_unlock(&dbs_mutex);
424
425	return count;
426}
427
428define_one_global_rw(sampling_rate);
429define_one_global_rw(io_is_busy);
430define_one_global_rw(up_threshold);
431define_one_global_rw(sampling_down_factor);
432define_one_global_rw(ignore_nice_load);
433define_one_global_rw(powersave_bias);
434
435static struct attribute *dbs_attributes[] = {
436	&sampling_rate_max.attr,
437	&sampling_rate_min.attr,
438	&sampling_rate.attr,
439	&up_threshold.attr,
440	&sampling_down_factor.attr,
441	&ignore_nice_load.attr,
442	&powersave_bias.attr,
443	&io_is_busy.attr,
444	NULL
445};
446
447static struct attribute_group dbs_attr_group = {
448	.attrs = dbs_attributes,
449	.name = "ondemand",
450};
451
452/*** delete after deprecation time ***/
453
454#define write_one_old(file_name)					\
455static ssize_t store_##file_name##_old					\
456(struct cpufreq_policy *unused, const char *buf, size_t count)		\
457{									\
458       printk_once(KERN_INFO "CPUFREQ: Per core ondemand sysfs "	\
459		   "interface is deprecated - " #file_name "\n");	\
460       return store_##file_name(NULL, NULL, buf, count);		\
461}
462write_one_old(sampling_rate);
463write_one_old(up_threshold);
464write_one_old(ignore_nice_load);
465write_one_old(powersave_bias);
466
467cpufreq_freq_attr_rw_old(sampling_rate);
468cpufreq_freq_attr_rw_old(up_threshold);
469cpufreq_freq_attr_rw_old(ignore_nice_load);
470cpufreq_freq_attr_rw_old(powersave_bias);
471
472static struct attribute *dbs_attributes_old[] = {
473       &sampling_rate_max_old.attr,
474       &sampling_rate_min_old.attr,
475       &sampling_rate_old.attr,
476       &up_threshold_old.attr,
477       &ignore_nice_load_old.attr,
478       &powersave_bias_old.attr,
479       NULL
480};
481
482static struct attribute_group dbs_attr_group_old = {
483       .attrs = dbs_attributes_old,
484       .name = "ondemand",
485};
486
487/*** delete after deprecation time ***/
488
489/************************** sysfs end ************************/
490
491static void dbs_freq_increase(struct cpufreq_policy *p, unsigned int freq)
492{
493	if (dbs_tuners_ins.powersave_bias)
494		freq = powersave_bias_target(p, freq, CPUFREQ_RELATION_H);
495	else if (p->cur == p->max)
496		return;
497
498	__cpufreq_driver_target(p, freq, dbs_tuners_ins.powersave_bias ?
499			CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
500}
501
502static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
503{
504	unsigned int max_load_freq;
505
506	struct cpufreq_policy *policy;
507	unsigned int j;
508
509	this_dbs_info->freq_lo = 0;
510	policy = this_dbs_info->cur_policy;
511
512	/*
513	 * Every sampling_rate, we check, if current idle time is less
514	 * than 20% (default), then we try to increase frequency
515	 * Every sampling_rate, we look for a the lowest
516	 * frequency which can sustain the load while keeping idle time over
517	 * 30%. If such a frequency exist, we try to decrease to this frequency.
518	 *
519	 * Any frequency increase takes it to the maximum frequency.
520	 * Frequency reduction happens at minimum steps of
521	 * 5% (default) of current frequency
522	 */
523
524	/* Get Absolute Load - in terms of freq */
525	max_load_freq = 0;
526
527	for_each_cpu(j, policy->cpus) {
528		struct cpu_dbs_info_s *j_dbs_info;
529		cputime64_t cur_wall_time, cur_idle_time, cur_iowait_time;
530		unsigned int idle_time, wall_time, iowait_time;
531		unsigned int load, load_freq;
532		int freq_avg;
533
534		j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
535
536		cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
537		cur_iowait_time = get_cpu_iowait_time(j, &cur_wall_time);
538
539		wall_time = (unsigned int) cputime64_sub(cur_wall_time,
540				j_dbs_info->prev_cpu_wall);
541		j_dbs_info->prev_cpu_wall = cur_wall_time;
542
543		idle_time = (unsigned int) cputime64_sub(cur_idle_time,
544				j_dbs_info->prev_cpu_idle);
545		j_dbs_info->prev_cpu_idle = cur_idle_time;
546
547		iowait_time = (unsigned int) cputime64_sub(cur_iowait_time,
548				j_dbs_info->prev_cpu_iowait);
549		j_dbs_info->prev_cpu_iowait = cur_iowait_time;
550
551		if (dbs_tuners_ins.ignore_nice) {
552			cputime64_t cur_nice;
553			unsigned long cur_nice_jiffies;
554
555			cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
556					 j_dbs_info->prev_cpu_nice);
557			/*
558			 * Assumption: nice time between sampling periods will
559			 * be less than 2^32 jiffies for 32 bit sys
560			 */
561			cur_nice_jiffies = (unsigned long)
562					cputime64_to_jiffies64(cur_nice);
563
564			j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
565			idle_time += jiffies_to_usecs(cur_nice_jiffies);
566		}
567
568		/*
569		 * For the purpose of ondemand, waiting for disk IO is an
570		 * indication that you're performance critical, and not that
571		 * the system is actually idle. So subtract the iowait time
572		 * from the cpu idle time.
573		 */
574
575		if (dbs_tuners_ins.io_is_busy && idle_time >= iowait_time)
576			idle_time -= iowait_time;
577
578		if (unlikely(!wall_time || wall_time < idle_time))
579			continue;
580
581		load = 100 * (wall_time - idle_time) / wall_time;
582
583		freq_avg = __cpufreq_driver_getavg(policy, j);
584		if (freq_avg <= 0)
585			freq_avg = policy->cur;
586
587		load_freq = load * freq_avg;
588		if (load_freq > max_load_freq)
589			max_load_freq = load_freq;
590	}
591
592	/* Check for frequency increase */
593	if (max_load_freq > dbs_tuners_ins.up_threshold * policy->cur) {
594		/* If switching to max speed, apply sampling_down_factor */
595		if (policy->cur < policy->max)
596			this_dbs_info->rate_mult =
597				dbs_tuners_ins.sampling_down_factor;
598		dbs_freq_increase(policy, policy->max);
599		return;
600	}
601
602	/* Check for frequency decrease */
603	/* if we cannot reduce the frequency anymore, break out early */
604	if (policy->cur == policy->min)
605		return;
606
607	/*
608	 * The optimal frequency is the frequency that is the lowest that
609	 * can support the current CPU usage without triggering the up
610	 * policy. To be safe, we focus 10 points under the threshold.
611	 */
612	if (max_load_freq <
613	    (dbs_tuners_ins.up_threshold - dbs_tuners_ins.down_differential) *
614	     policy->cur) {
615		unsigned int freq_next;
616		freq_next = max_load_freq /
617				(dbs_tuners_ins.up_threshold -
618				 dbs_tuners_ins.down_differential);
619
620		/* No longer fully busy, reset rate_mult */
621		this_dbs_info->rate_mult = 1;
622
623		if (freq_next < policy->min)
624			freq_next = policy->min;
625
626		if (!dbs_tuners_ins.powersave_bias) {
627			__cpufreq_driver_target(policy, freq_next,
628					CPUFREQ_RELATION_L);
629		} else {
630			int freq = powersave_bias_target(policy, freq_next,
631					CPUFREQ_RELATION_L);
632			__cpufreq_driver_target(policy, freq,
633				CPUFREQ_RELATION_L);
634		}
635	}
636}
637
638static void do_dbs_timer(struct work_struct *work)
639{
640	struct cpu_dbs_info_s *dbs_info =
641		container_of(work, struct cpu_dbs_info_s, work.work);
642	unsigned int cpu = dbs_info->cpu;
643	int sample_type = dbs_info->sample_type;
644
645	/* We want all CPUs to do sampling nearly on same jiffy */
646	int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate
647		* dbs_info->rate_mult);
648
649	if (num_online_cpus() > 1)
650		delay -= jiffies % delay;
651
652	mutex_lock(&dbs_info->timer_mutex);
653
654	/* Common NORMAL_SAMPLE setup */
655	dbs_info->sample_type = DBS_NORMAL_SAMPLE;
656	if (!dbs_tuners_ins.powersave_bias ||
657	    sample_type == DBS_NORMAL_SAMPLE) {
658		dbs_check_cpu(dbs_info);
659		if (dbs_info->freq_lo) {
660			/* Setup timer for SUB_SAMPLE */
661			dbs_info->sample_type = DBS_SUB_SAMPLE;
662			delay = dbs_info->freq_hi_jiffies;
663		}
664	} else {
665		__cpufreq_driver_target(dbs_info->cur_policy,
666			dbs_info->freq_lo, CPUFREQ_RELATION_H);
667	}
668	schedule_delayed_work_on(cpu, &dbs_info->work, delay);
669	mutex_unlock(&dbs_info->timer_mutex);
670}
671
672static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
673{
674	/* We want all CPUs to do sampling nearly on same jiffy */
675	int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
676
677	if (num_online_cpus() > 1)
678		delay -= jiffies % delay;
679
680	dbs_info->sample_type = DBS_NORMAL_SAMPLE;
681	INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
682	schedule_delayed_work_on(dbs_info->cpu, &dbs_info->work, delay);
683}
684
685static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
686{
687	cancel_delayed_work_sync(&dbs_info->work);
688}
689
690/*
691 * Not all CPUs want IO time to be accounted as busy; this dependson how
692 * efficient idling at a higher frequency/voltage is.
693 * Pavel Machek says this is not so for various generations of AMD and old
694 * Intel systems.
695 * Mike Chan (androidlcom) calis this is also not true for ARM.
696 * Because of this, whitelist specific known (series) of CPUs by default, and
697 * leave all others up to the user.
698 */
699static int should_io_be_busy(void)
700{
701#if defined(CONFIG_X86)
702	/*
703	 * For Intel, Core 2 (model 15) andl later have an efficient idle.
704	 */
705	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
706	    boot_cpu_data.x86 == 6 &&
707	    boot_cpu_data.x86_model >= 15)
708		return 1;
709#endif
710	return 0;
711}
712
713static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
714				   unsigned int event)
715{
716	unsigned int cpu = policy->cpu;
717	struct cpu_dbs_info_s *this_dbs_info;
718	unsigned int j;
719	int rc;
720
721	this_dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
722
723	switch (event) {
724	case CPUFREQ_GOV_START:
725		if ((!cpu_online(cpu)) || (!policy->cur))
726			return -EINVAL;
727
728		mutex_lock(&dbs_mutex);
729
730		rc = sysfs_create_group(&policy->kobj, &dbs_attr_group_old);
731		if (rc) {
732			mutex_unlock(&dbs_mutex);
733			return rc;
734		}
735
736		dbs_enable++;
737		for_each_cpu(j, policy->cpus) {
738			struct cpu_dbs_info_s *j_dbs_info;
739			j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
740			j_dbs_info->cur_policy = policy;
741
742			j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
743						&j_dbs_info->prev_cpu_wall);
744			if (dbs_tuners_ins.ignore_nice) {
745				j_dbs_info->prev_cpu_nice =
746						kstat_cpu(j).cpustat.nice;
747			}
748		}
749		this_dbs_info->cpu = cpu;
750		this_dbs_info->rate_mult = 1;
751		ondemand_powersave_bias_init_cpu(cpu);
752		/*
753		 * Start the timerschedule work, when this governor
754		 * is used for first time
755		 */
756		if (dbs_enable == 1) {
757			unsigned int latency;
758
759			rc = sysfs_create_group(cpufreq_global_kobject,
760						&dbs_attr_group);
761			if (rc) {
762				mutex_unlock(&dbs_mutex);
763				return rc;
764			}
765
766			/* policy latency is in nS. Convert it to uS first */
767			latency = policy->cpuinfo.transition_latency / 1000;
768			if (latency == 0)
769				latency = 1;
770			/* Bring kernel and HW constraints together */
771			min_sampling_rate = max(min_sampling_rate,
772					MIN_LATENCY_MULTIPLIER * latency);
773			dbs_tuners_ins.sampling_rate =
774				max(min_sampling_rate,
775				    latency * LATENCY_MULTIPLIER);
776			dbs_tuners_ins.io_is_busy = should_io_be_busy();
777		}
778		mutex_unlock(&dbs_mutex);
779
780		mutex_init(&this_dbs_info->timer_mutex);
781		dbs_timer_init(this_dbs_info);
782		break;
783
784	case CPUFREQ_GOV_STOP:
785		dbs_timer_exit(this_dbs_info);
786
787		mutex_lock(&dbs_mutex);
788		sysfs_remove_group(&policy->kobj, &dbs_attr_group_old);
789		mutex_destroy(&this_dbs_info->timer_mutex);
790		dbs_enable--;
791		mutex_unlock(&dbs_mutex);
792		if (!dbs_enable)
793			sysfs_remove_group(cpufreq_global_kobject,
794					   &dbs_attr_group);
795
796		break;
797
798	case CPUFREQ_GOV_LIMITS:
799		mutex_lock(&this_dbs_info->timer_mutex);
800		if (policy->max < this_dbs_info->cur_policy->cur)
801			__cpufreq_driver_target(this_dbs_info->cur_policy,
802				policy->max, CPUFREQ_RELATION_H);
803		else if (policy->min > this_dbs_info->cur_policy->cur)
804			__cpufreq_driver_target(this_dbs_info->cur_policy,
805				policy->min, CPUFREQ_RELATION_L);
806		mutex_unlock(&this_dbs_info->timer_mutex);
807		break;
808	}
809	return 0;
810}
811
812static int __init cpufreq_gov_dbs_init(void)
813{
814	cputime64_t wall;
815	u64 idle_time;
816	int cpu = get_cpu();
817
818	idle_time = get_cpu_idle_time_us(cpu, &wall);
819	put_cpu();
820	if (idle_time != -1ULL) {
821		/* Idle micro accounting is supported. Use finer thresholds */
822		dbs_tuners_ins.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
823		dbs_tuners_ins.down_differential =
824					MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
825		/*
826		 * In no_hz/micro accounting case we set the minimum frequency
827		 * not depending on HZ, but fixed (very low). The deferred
828		 * timer might skip some samples if idle/sleeping as needed.
829		*/
830		min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
831	} else {
832		/* For correct statistics, we need 10 ticks for each measure */
833		min_sampling_rate =
834			MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
835	}
836
837	return cpufreq_register_governor(&cpufreq_gov_ondemand);
838}
839
840static void __exit cpufreq_gov_dbs_exit(void)
841{
842	cpufreq_unregister_governor(&cpufreq_gov_ondemand);
843}
844
845
846MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
847MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
848MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
849	"Low Latency Frequency Transition capable processors");
850MODULE_LICENSE("GPL");
851
852#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
853fs_initcall(cpufreq_gov_dbs_init);
854#else
855module_init(cpufreq_gov_dbs_init);
856#endif
857module_exit(cpufreq_gov_dbs_exit);
858