cpufreq_ondemand.c revision 835481d9bcd65720b473db6b38746a74a3964218
1/*
2 *  drivers/cpufreq/cpufreq_ondemand.c
3 *
4 *  Copyright (C)  2001 Russell King
5 *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 *                      Jun Nakajima <jun.nakajima@intel.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#include <linux/kernel.h>
14#include <linux/module.h>
15#include <linux/init.h>
16#include <linux/cpufreq.h>
17#include <linux/cpu.h>
18#include <linux/jiffies.h>
19#include <linux/kernel_stat.h>
20#include <linux/mutex.h>
21#include <linux/hrtimer.h>
22#include <linux/tick.h>
23#include <linux/ktime.h>
24
25/*
26 * dbs is used in this file as a shortform for demandbased switching
27 * It helps to keep variable names smaller, simpler
28 */
29
30#define DEF_FREQUENCY_DOWN_DIFFERENTIAL		(10)
31#define DEF_FREQUENCY_UP_THRESHOLD		(80)
32#define MICRO_FREQUENCY_DOWN_DIFFERENTIAL	(3)
33#define MICRO_FREQUENCY_UP_THRESHOLD		(95)
34#define MIN_FREQUENCY_UP_THRESHOLD		(11)
35#define MAX_FREQUENCY_UP_THRESHOLD		(100)
36
37/*
38 * The polling frequency of this governor depends on the capability of
39 * the processor. Default polling frequency is 1000 times the transition
40 * latency of the processor. The governor will work on any processor with
41 * transition latency <= 10mS, using appropriate sampling
42 * rate.
43 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
44 * this governor will not work.
45 * All times here are in uS.
46 */
47static unsigned int def_sampling_rate;
48#define MIN_SAMPLING_RATE_RATIO			(2)
49/* for correct statistics, we need at least 10 ticks between each measure */
50#define MIN_STAT_SAMPLING_RATE 			\
51			(MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
52#define MIN_SAMPLING_RATE			\
53			(def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
54#define MAX_SAMPLING_RATE			(500 * def_sampling_rate)
55#define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER	(1000)
56#define TRANSITION_LATENCY_LIMIT		(10 * 1000 * 1000)
57
58static void do_dbs_timer(struct work_struct *work);
59
60/* Sampling types */
61enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
62
63struct cpu_dbs_info_s {
64	cputime64_t prev_cpu_idle;
65	cputime64_t prev_cpu_wall;
66	cputime64_t prev_cpu_nice;
67	struct cpufreq_policy *cur_policy;
68 	struct delayed_work work;
69	struct cpufreq_frequency_table *freq_table;
70	unsigned int freq_lo;
71	unsigned int freq_lo_jiffies;
72	unsigned int freq_hi_jiffies;
73	int cpu;
74	unsigned int enable:1,
75	             sample_type:1;
76};
77static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
78
79static unsigned int dbs_enable;	/* number of CPUs using this policy */
80
81/*
82 * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
83 * lock and dbs_mutex. cpu_hotplug lock should always be held before
84 * dbs_mutex. If any function that can potentially take cpu_hotplug lock
85 * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
86 * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
87 * is recursive for the same process. -Venki
88 */
89static DEFINE_MUTEX(dbs_mutex);
90
91static struct workqueue_struct	*kondemand_wq;
92
93static struct dbs_tuners {
94	unsigned int sampling_rate;
95	unsigned int up_threshold;
96	unsigned int down_differential;
97	unsigned int ignore_nice;
98	unsigned int powersave_bias;
99} dbs_tuners_ins = {
100	.up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
101	.down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL,
102	.ignore_nice = 0,
103	.powersave_bias = 0,
104};
105
106static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
107							cputime64_t *wall)
108{
109	cputime64_t idle_time;
110	cputime64_t cur_wall_time;
111	cputime64_t busy_time;
112
113	cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
114	busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
115			kstat_cpu(cpu).cpustat.system);
116
117	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
118	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
119	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
120
121	if (!dbs_tuners_ins.ignore_nice) {
122		busy_time = cputime64_add(busy_time,
123				kstat_cpu(cpu).cpustat.nice);
124	}
125
126	idle_time = cputime64_sub(cur_wall_time, busy_time);
127	if (wall)
128		*wall = cur_wall_time;
129
130	return idle_time;
131}
132
133static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
134{
135	u64 idle_time = get_cpu_idle_time_us(cpu, wall);
136
137	if (idle_time == -1ULL)
138		return get_cpu_idle_time_jiffy(cpu, wall);
139
140	if (dbs_tuners_ins.ignore_nice) {
141		cputime64_t cur_nice;
142		unsigned long cur_nice_jiffies;
143		struct cpu_dbs_info_s *dbs_info;
144
145		dbs_info = &per_cpu(cpu_dbs_info, cpu);
146		cur_nice = cputime64_sub(kstat_cpu(cpu).cpustat.nice,
147					 dbs_info->prev_cpu_nice);
148		/*
149		 * Assumption: nice time between sampling periods will be
150		 * less than 2^32 jiffies for 32 bit sys
151		 */
152		cur_nice_jiffies = (unsigned long)
153					cputime64_to_jiffies64(cur_nice);
154		dbs_info->prev_cpu_nice = kstat_cpu(cpu).cpustat.nice;
155		return idle_time + jiffies_to_usecs(cur_nice_jiffies);
156	}
157	return idle_time;
158}
159
160/*
161 * Find right freq to be set now with powersave_bias on.
162 * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
163 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
164 */
165static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
166					  unsigned int freq_next,
167					  unsigned int relation)
168{
169	unsigned int freq_req, freq_reduc, freq_avg;
170	unsigned int freq_hi, freq_lo;
171	unsigned int index = 0;
172	unsigned int jiffies_total, jiffies_hi, jiffies_lo;
173	struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, policy->cpu);
174
175	if (!dbs_info->freq_table) {
176		dbs_info->freq_lo = 0;
177		dbs_info->freq_lo_jiffies = 0;
178		return freq_next;
179	}
180
181	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
182			relation, &index);
183	freq_req = dbs_info->freq_table[index].frequency;
184	freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
185	freq_avg = freq_req - freq_reduc;
186
187	/* Find freq bounds for freq_avg in freq_table */
188	index = 0;
189	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
190			CPUFREQ_RELATION_H, &index);
191	freq_lo = dbs_info->freq_table[index].frequency;
192	index = 0;
193	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
194			CPUFREQ_RELATION_L, &index);
195	freq_hi = dbs_info->freq_table[index].frequency;
196
197	/* Find out how long we have to be in hi and lo freqs */
198	if (freq_hi == freq_lo) {
199		dbs_info->freq_lo = 0;
200		dbs_info->freq_lo_jiffies = 0;
201		return freq_lo;
202	}
203	jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
204	jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
205	jiffies_hi += ((freq_hi - freq_lo) / 2);
206	jiffies_hi /= (freq_hi - freq_lo);
207	jiffies_lo = jiffies_total - jiffies_hi;
208	dbs_info->freq_lo = freq_lo;
209	dbs_info->freq_lo_jiffies = jiffies_lo;
210	dbs_info->freq_hi_jiffies = jiffies_hi;
211	return freq_hi;
212}
213
214static void ondemand_powersave_bias_init(void)
215{
216	int i;
217	for_each_online_cpu(i) {
218		struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, i);
219		dbs_info->freq_table = cpufreq_frequency_get_table(i);
220		dbs_info->freq_lo = 0;
221	}
222}
223
224/************************** sysfs interface ************************/
225static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
226{
227	return sprintf (buf, "%u\n", MAX_SAMPLING_RATE);
228}
229
230static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
231{
232	return sprintf (buf, "%u\n", MIN_SAMPLING_RATE);
233}
234
235#define define_one_ro(_name)		\
236static struct freq_attr _name =		\
237__ATTR(_name, 0444, show_##_name, NULL)
238
239define_one_ro(sampling_rate_max);
240define_one_ro(sampling_rate_min);
241
242/* cpufreq_ondemand Governor Tunables */
243#define show_one(file_name, object)					\
244static ssize_t show_##file_name						\
245(struct cpufreq_policy *unused, char *buf)				\
246{									\
247	return sprintf(buf, "%u\n", dbs_tuners_ins.object);		\
248}
249show_one(sampling_rate, sampling_rate);
250show_one(up_threshold, up_threshold);
251show_one(ignore_nice_load, ignore_nice);
252show_one(powersave_bias, powersave_bias);
253
254static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
255		const char *buf, size_t count)
256{
257	unsigned int input;
258	int ret;
259	ret = sscanf(buf, "%u", &input);
260
261	mutex_lock(&dbs_mutex);
262	if (ret != 1 || input > MAX_SAMPLING_RATE
263		     || input < MIN_SAMPLING_RATE) {
264		mutex_unlock(&dbs_mutex);
265		return -EINVAL;
266	}
267
268	dbs_tuners_ins.sampling_rate = input;
269	mutex_unlock(&dbs_mutex);
270
271	return count;
272}
273
274static ssize_t store_up_threshold(struct cpufreq_policy *unused,
275		const char *buf, size_t count)
276{
277	unsigned int input;
278	int ret;
279	ret = sscanf(buf, "%u", &input);
280
281	mutex_lock(&dbs_mutex);
282	if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
283			input < MIN_FREQUENCY_UP_THRESHOLD) {
284		mutex_unlock(&dbs_mutex);
285		return -EINVAL;
286	}
287
288	dbs_tuners_ins.up_threshold = input;
289	mutex_unlock(&dbs_mutex);
290
291	return count;
292}
293
294static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
295		const char *buf, size_t count)
296{
297	unsigned int input;
298	int ret;
299
300	unsigned int j;
301
302	ret = sscanf(buf, "%u", &input);
303	if ( ret != 1 )
304		return -EINVAL;
305
306	if ( input > 1 )
307		input = 1;
308
309	mutex_lock(&dbs_mutex);
310	if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */
311		mutex_unlock(&dbs_mutex);
312		return count;
313	}
314	dbs_tuners_ins.ignore_nice = input;
315
316	/* we need to re-evaluate prev_cpu_idle */
317	for_each_online_cpu(j) {
318		struct cpu_dbs_info_s *dbs_info;
319		dbs_info = &per_cpu(cpu_dbs_info, j);
320		dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
321						&dbs_info->prev_cpu_wall);
322	}
323	mutex_unlock(&dbs_mutex);
324
325	return count;
326}
327
328static ssize_t store_powersave_bias(struct cpufreq_policy *unused,
329		const char *buf, size_t count)
330{
331	unsigned int input;
332	int ret;
333	ret = sscanf(buf, "%u", &input);
334
335	if (ret != 1)
336		return -EINVAL;
337
338	if (input > 1000)
339		input = 1000;
340
341	mutex_lock(&dbs_mutex);
342	dbs_tuners_ins.powersave_bias = input;
343	ondemand_powersave_bias_init();
344	mutex_unlock(&dbs_mutex);
345
346	return count;
347}
348
349#define define_one_rw(_name) \
350static struct freq_attr _name = \
351__ATTR(_name, 0644, show_##_name, store_##_name)
352
353define_one_rw(sampling_rate);
354define_one_rw(up_threshold);
355define_one_rw(ignore_nice_load);
356define_one_rw(powersave_bias);
357
358static struct attribute * dbs_attributes[] = {
359	&sampling_rate_max.attr,
360	&sampling_rate_min.attr,
361	&sampling_rate.attr,
362	&up_threshold.attr,
363	&ignore_nice_load.attr,
364	&powersave_bias.attr,
365	NULL
366};
367
368static struct attribute_group dbs_attr_group = {
369	.attrs = dbs_attributes,
370	.name = "ondemand",
371};
372
373/************************** sysfs end ************************/
374
375static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
376{
377	unsigned int max_load_freq;
378
379	struct cpufreq_policy *policy;
380	unsigned int j;
381
382	if (!this_dbs_info->enable)
383		return;
384
385	this_dbs_info->freq_lo = 0;
386	policy = this_dbs_info->cur_policy;
387
388	/*
389	 * Every sampling_rate, we check, if current idle time is less
390	 * than 20% (default), then we try to increase frequency
391	 * Every sampling_rate, we look for a the lowest
392	 * frequency which can sustain the load while keeping idle time over
393	 * 30%. If such a frequency exist, we try to decrease to this frequency.
394	 *
395	 * Any frequency increase takes it to the maximum frequency.
396	 * Frequency reduction happens at minimum steps of
397	 * 5% (default) of current frequency
398	 */
399
400	/* Get Absolute Load - in terms of freq */
401	max_load_freq = 0;
402
403	for_each_cpu(j, policy->cpus) {
404		struct cpu_dbs_info_s *j_dbs_info;
405		cputime64_t cur_wall_time, cur_idle_time;
406		unsigned int idle_time, wall_time;
407		unsigned int load, load_freq;
408		int freq_avg;
409
410		j_dbs_info = &per_cpu(cpu_dbs_info, j);
411
412		cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
413
414		wall_time = (unsigned int) cputime64_sub(cur_wall_time,
415				j_dbs_info->prev_cpu_wall);
416		j_dbs_info->prev_cpu_wall = cur_wall_time;
417
418		idle_time = (unsigned int) cputime64_sub(cur_idle_time,
419				j_dbs_info->prev_cpu_idle);
420		j_dbs_info->prev_cpu_idle = cur_idle_time;
421
422		if (unlikely(!wall_time || wall_time < idle_time))
423			continue;
424
425		load = 100 * (wall_time - idle_time) / wall_time;
426
427		freq_avg = __cpufreq_driver_getavg(policy, j);
428		if (freq_avg <= 0)
429			freq_avg = policy->cur;
430
431		load_freq = load * freq_avg;
432		if (load_freq > max_load_freq)
433			max_load_freq = load_freq;
434	}
435
436	/* Check for frequency increase */
437	if (max_load_freq > dbs_tuners_ins.up_threshold * policy->cur) {
438		/* if we are already at full speed then break out early */
439		if (!dbs_tuners_ins.powersave_bias) {
440			if (policy->cur == policy->max)
441				return;
442
443			__cpufreq_driver_target(policy, policy->max,
444				CPUFREQ_RELATION_H);
445		} else {
446			int freq = powersave_bias_target(policy, policy->max,
447					CPUFREQ_RELATION_H);
448			__cpufreq_driver_target(policy, freq,
449				CPUFREQ_RELATION_L);
450		}
451		return;
452	}
453
454	/* Check for frequency decrease */
455	/* if we cannot reduce the frequency anymore, break out early */
456	if (policy->cur == policy->min)
457		return;
458
459	/*
460	 * The optimal frequency is the frequency that is the lowest that
461	 * can support the current CPU usage without triggering the up
462	 * policy. To be safe, we focus 10 points under the threshold.
463	 */
464	if (max_load_freq <
465	    (dbs_tuners_ins.up_threshold - dbs_tuners_ins.down_differential) *
466	     policy->cur) {
467		unsigned int freq_next;
468		freq_next = max_load_freq /
469				(dbs_tuners_ins.up_threshold -
470				 dbs_tuners_ins.down_differential);
471
472		if (!dbs_tuners_ins.powersave_bias) {
473			__cpufreq_driver_target(policy, freq_next,
474					CPUFREQ_RELATION_L);
475		} else {
476			int freq = powersave_bias_target(policy, freq_next,
477					CPUFREQ_RELATION_L);
478			__cpufreq_driver_target(policy, freq,
479				CPUFREQ_RELATION_L);
480		}
481	}
482}
483
484static void do_dbs_timer(struct work_struct *work)
485{
486	struct cpu_dbs_info_s *dbs_info =
487		container_of(work, struct cpu_dbs_info_s, work.work);
488	unsigned int cpu = dbs_info->cpu;
489	int sample_type = dbs_info->sample_type;
490
491	/* We want all CPUs to do sampling nearly on same jiffy */
492	int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
493
494	delay -= jiffies % delay;
495
496	if (lock_policy_rwsem_write(cpu) < 0)
497		return;
498
499	if (!dbs_info->enable) {
500		unlock_policy_rwsem_write(cpu);
501		return;
502	}
503
504	/* Common NORMAL_SAMPLE setup */
505	dbs_info->sample_type = DBS_NORMAL_SAMPLE;
506	if (!dbs_tuners_ins.powersave_bias ||
507	    sample_type == DBS_NORMAL_SAMPLE) {
508		dbs_check_cpu(dbs_info);
509		if (dbs_info->freq_lo) {
510			/* Setup timer for SUB_SAMPLE */
511			dbs_info->sample_type = DBS_SUB_SAMPLE;
512			delay = dbs_info->freq_hi_jiffies;
513		}
514	} else {
515		__cpufreq_driver_target(dbs_info->cur_policy,
516	                        	dbs_info->freq_lo,
517	                        	CPUFREQ_RELATION_H);
518	}
519	queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay);
520	unlock_policy_rwsem_write(cpu);
521}
522
523static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
524{
525	/* We want all CPUs to do sampling nearly on same jiffy */
526	int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
527	delay -= jiffies % delay;
528
529	dbs_info->enable = 1;
530	ondemand_powersave_bias_init();
531	dbs_info->sample_type = DBS_NORMAL_SAMPLE;
532	INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
533	queue_delayed_work_on(dbs_info->cpu, kondemand_wq, &dbs_info->work,
534	                      delay);
535}
536
537static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
538{
539	dbs_info->enable = 0;
540	cancel_delayed_work(&dbs_info->work);
541}
542
543static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
544				   unsigned int event)
545{
546	unsigned int cpu = policy->cpu;
547	struct cpu_dbs_info_s *this_dbs_info;
548	unsigned int j;
549	int rc;
550
551	this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
552
553	switch (event) {
554	case CPUFREQ_GOV_START:
555		if ((!cpu_online(cpu)) || (!policy->cur))
556			return -EINVAL;
557
558		if (this_dbs_info->enable) /* Already enabled */
559			break;
560
561		mutex_lock(&dbs_mutex);
562		dbs_enable++;
563
564		rc = sysfs_create_group(&policy->kobj, &dbs_attr_group);
565		if (rc) {
566			dbs_enable--;
567			mutex_unlock(&dbs_mutex);
568			return rc;
569		}
570
571		for_each_cpu(j, policy->cpus) {
572			struct cpu_dbs_info_s *j_dbs_info;
573			j_dbs_info = &per_cpu(cpu_dbs_info, j);
574			j_dbs_info->cur_policy = policy;
575
576			j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
577						&j_dbs_info->prev_cpu_wall);
578		}
579		this_dbs_info->cpu = cpu;
580		/*
581		 * Start the timerschedule work, when this governor
582		 * is used for first time
583		 */
584		if (dbs_enable == 1) {
585			unsigned int latency;
586			/* policy latency is in nS. Convert it to uS first */
587			latency = policy->cpuinfo.transition_latency / 1000;
588			if (latency == 0)
589				latency = 1;
590
591			def_sampling_rate = latency *
592					DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
593
594			if (def_sampling_rate < MIN_STAT_SAMPLING_RATE)
595				def_sampling_rate = MIN_STAT_SAMPLING_RATE;
596
597			dbs_tuners_ins.sampling_rate = def_sampling_rate;
598		}
599		dbs_timer_init(this_dbs_info);
600
601		mutex_unlock(&dbs_mutex);
602		break;
603
604	case CPUFREQ_GOV_STOP:
605		mutex_lock(&dbs_mutex);
606		dbs_timer_exit(this_dbs_info);
607		sysfs_remove_group(&policy->kobj, &dbs_attr_group);
608		dbs_enable--;
609		mutex_unlock(&dbs_mutex);
610
611		break;
612
613	case CPUFREQ_GOV_LIMITS:
614		mutex_lock(&dbs_mutex);
615		if (policy->max < this_dbs_info->cur_policy->cur)
616			__cpufreq_driver_target(this_dbs_info->cur_policy,
617			                        policy->max,
618			                        CPUFREQ_RELATION_H);
619		else if (policy->min > this_dbs_info->cur_policy->cur)
620			__cpufreq_driver_target(this_dbs_info->cur_policy,
621			                        policy->min,
622			                        CPUFREQ_RELATION_L);
623		mutex_unlock(&dbs_mutex);
624		break;
625	}
626	return 0;
627}
628
629#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
630static
631#endif
632struct cpufreq_governor cpufreq_gov_ondemand = {
633	.name			= "ondemand",
634	.governor		= cpufreq_governor_dbs,
635	.max_transition_latency = TRANSITION_LATENCY_LIMIT,
636	.owner			= THIS_MODULE,
637};
638
639static int __init cpufreq_gov_dbs_init(void)
640{
641	int err;
642	cputime64_t wall;
643	u64 idle_time;
644	int cpu = get_cpu();
645
646	idle_time = get_cpu_idle_time_us(cpu, &wall);
647	put_cpu();
648	if (idle_time != -1ULL) {
649		/* Idle micro accounting is supported. Use finer thresholds */
650		dbs_tuners_ins.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
651		dbs_tuners_ins.down_differential =
652					MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
653	}
654
655	kondemand_wq = create_workqueue("kondemand");
656	if (!kondemand_wq) {
657		printk(KERN_ERR "Creation of kondemand failed\n");
658		return -EFAULT;
659	}
660	err = cpufreq_register_governor(&cpufreq_gov_ondemand);
661	if (err)
662		destroy_workqueue(kondemand_wq);
663
664	return err;
665}
666
667static void __exit cpufreq_gov_dbs_exit(void)
668{
669	cpufreq_unregister_governor(&cpufreq_gov_ondemand);
670	destroy_workqueue(kondemand_wq);
671}
672
673
674MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
675MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
676MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
677                   "Low Latency Frequency Transition capable processors");
678MODULE_LICENSE("GPL");
679
680#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
681fs_initcall(cpufreq_gov_dbs_init);
682#else
683module_init(cpufreq_gov_dbs_init);
684#endif
685module_exit(cpufreq_gov_dbs_exit);
686