cpufreq_ondemand.c revision a665df9d510bfd5bac5664f436411f921471264a
1/*
2 *  drivers/cpufreq/cpufreq_ondemand.c
3 *
4 *  Copyright (C)  2001 Russell King
5 *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 *                      Jun Nakajima <jun.nakajima@intel.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#include <linux/kernel.h>
14#include <linux/module.h>
15#include <linux/init.h>
16#include <linux/cpufreq.h>
17#include <linux/cpu.h>
18#include <linux/jiffies.h>
19#include <linux/kernel_stat.h>
20#include <linux/mutex.h>
21#include <linux/hrtimer.h>
22#include <linux/tick.h>
23#include <linux/ktime.h>
24#include <linux/sched.h>
25
26/*
27 * dbs is used in this file as a shortform for demandbased switching
28 * It helps to keep variable names smaller, simpler
29 */
30
31#define DEF_FREQUENCY_DOWN_DIFFERENTIAL		(10)
32#define DEF_FREQUENCY_UP_THRESHOLD		(80)
33#define MICRO_FREQUENCY_DOWN_DIFFERENTIAL	(3)
34#define MICRO_FREQUENCY_UP_THRESHOLD		(95)
35#define MICRO_FREQUENCY_MIN_SAMPLE_RATE		(10000)
36#define MIN_FREQUENCY_UP_THRESHOLD		(11)
37#define MAX_FREQUENCY_UP_THRESHOLD		(100)
38
39/*
40 * The polling frequency of this governor depends on the capability of
41 * the processor. Default polling frequency is 1000 times the transition
42 * latency of the processor. The governor will work on any processor with
43 * transition latency <= 10mS, using appropriate sampling
44 * rate.
45 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
46 * this governor will not work.
47 * All times here are in uS.
48 */
49#define MIN_SAMPLING_RATE_RATIO			(2)
50
51static unsigned int min_sampling_rate;
52
53#define LATENCY_MULTIPLIER			(1000)
54#define MIN_LATENCY_MULTIPLIER			(100)
55#define TRANSITION_LATENCY_LIMIT		(10 * 1000 * 1000)
56
57static void do_dbs_timer(struct work_struct *work);
58static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
59				unsigned int event);
60
61#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
62static
63#endif
64struct cpufreq_governor cpufreq_gov_ondemand = {
65       .name                   = "ondemand",
66       .governor               = cpufreq_governor_dbs,
67       .max_transition_latency = TRANSITION_LATENCY_LIMIT,
68       .owner                  = THIS_MODULE,
69};
70
71/* Sampling types */
72enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
73
74struct cpu_dbs_info_s {
75	cputime64_t prev_cpu_idle;
76	cputime64_t prev_cpu_iowait;
77	cputime64_t prev_cpu_wall;
78	cputime64_t prev_cpu_nice;
79	struct cpufreq_policy *cur_policy;
80	struct delayed_work work;
81	struct cpufreq_frequency_table *freq_table;
82	unsigned int freq_lo;
83	unsigned int freq_lo_jiffies;
84	unsigned int freq_hi_jiffies;
85	int cpu;
86	unsigned int sample_type:1;
87	/*
88	 * percpu mutex that serializes governor limit change with
89	 * do_dbs_timer invocation. We do not want do_dbs_timer to run
90	 * when user is changing the governor or limits.
91	 */
92	struct mutex timer_mutex;
93};
94static DEFINE_PER_CPU(struct cpu_dbs_info_s, od_cpu_dbs_info);
95
96static unsigned int dbs_enable;	/* number of CPUs using this policy */
97
98/*
99 * dbs_mutex protects data in dbs_tuners_ins from concurrent changes on
100 * different CPUs. It protects dbs_enable in governor start/stop.
101 */
102static DEFINE_MUTEX(dbs_mutex);
103
104static struct workqueue_struct	*kondemand_wq;
105
106static struct dbs_tuners {
107	unsigned int sampling_rate;
108	unsigned int up_threshold;
109	unsigned int down_differential;
110	unsigned int ignore_nice;
111	unsigned int powersave_bias;
112	unsigned int io_is_busy;
113} dbs_tuners_ins = {
114	.up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
115	.down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL,
116	.ignore_nice = 0,
117	.powersave_bias = 0,
118};
119
120static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
121							cputime64_t *wall)
122{
123	cputime64_t idle_time;
124	cputime64_t cur_wall_time;
125	cputime64_t busy_time;
126
127	cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
128	busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
129			kstat_cpu(cpu).cpustat.system);
130
131	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
132	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
133	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
134	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
135
136	idle_time = cputime64_sub(cur_wall_time, busy_time);
137	if (wall)
138		*wall = (cputime64_t)jiffies_to_usecs(cur_wall_time);
139
140	return (cputime64_t)jiffies_to_usecs(idle_time);
141}
142
143static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
144{
145	u64 idle_time = get_cpu_idle_time_us(cpu, wall);
146
147	if (idle_time == -1ULL)
148		return get_cpu_idle_time_jiffy(cpu, wall);
149
150	return idle_time;
151}
152
153static inline cputime64_t get_cpu_iowait_time(unsigned int cpu, cputime64_t *wall)
154{
155	u64 iowait_time = get_cpu_iowait_time_us(cpu, wall);
156
157	if (iowait_time == -1ULL)
158		return 0;
159
160	return iowait_time;
161}
162
163/*
164 * Find right freq to be set now with powersave_bias on.
165 * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
166 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
167 */
168static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
169					  unsigned int freq_next,
170					  unsigned int relation)
171{
172	unsigned int freq_req, freq_reduc, freq_avg;
173	unsigned int freq_hi, freq_lo;
174	unsigned int index = 0;
175	unsigned int jiffies_total, jiffies_hi, jiffies_lo;
176	struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
177						   policy->cpu);
178
179	if (!dbs_info->freq_table) {
180		dbs_info->freq_lo = 0;
181		dbs_info->freq_lo_jiffies = 0;
182		return freq_next;
183	}
184
185	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
186			relation, &index);
187	freq_req = dbs_info->freq_table[index].frequency;
188	freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
189	freq_avg = freq_req - freq_reduc;
190
191	/* Find freq bounds for freq_avg in freq_table */
192	index = 0;
193	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
194			CPUFREQ_RELATION_H, &index);
195	freq_lo = dbs_info->freq_table[index].frequency;
196	index = 0;
197	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
198			CPUFREQ_RELATION_L, &index);
199	freq_hi = dbs_info->freq_table[index].frequency;
200
201	/* Find out how long we have to be in hi and lo freqs */
202	if (freq_hi == freq_lo) {
203		dbs_info->freq_lo = 0;
204		dbs_info->freq_lo_jiffies = 0;
205		return freq_lo;
206	}
207	jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
208	jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
209	jiffies_hi += ((freq_hi - freq_lo) / 2);
210	jiffies_hi /= (freq_hi - freq_lo);
211	jiffies_lo = jiffies_total - jiffies_hi;
212	dbs_info->freq_lo = freq_lo;
213	dbs_info->freq_lo_jiffies = jiffies_lo;
214	dbs_info->freq_hi_jiffies = jiffies_hi;
215	return freq_hi;
216}
217
218static void ondemand_powersave_bias_init_cpu(int cpu)
219{
220	struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
221	dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
222	dbs_info->freq_lo = 0;
223}
224
225static void ondemand_powersave_bias_init(void)
226{
227	int i;
228	for_each_online_cpu(i) {
229		ondemand_powersave_bias_init_cpu(i);
230	}
231}
232
233/************************** sysfs interface ************************/
234
235static ssize_t show_sampling_rate_max(struct kobject *kobj,
236				      struct attribute *attr, char *buf)
237{
238	printk_once(KERN_INFO "CPUFREQ: ondemand sampling_rate_max "
239	       "sysfs file is deprecated - used by: %s\n", current->comm);
240	return sprintf(buf, "%u\n", -1U);
241}
242
243static ssize_t show_sampling_rate_min(struct kobject *kobj,
244				      struct attribute *attr, char *buf)
245{
246	return sprintf(buf, "%u\n", min_sampling_rate);
247}
248
249define_one_global_ro(sampling_rate_max);
250define_one_global_ro(sampling_rate_min);
251
252/* cpufreq_ondemand Governor Tunables */
253#define show_one(file_name, object)					\
254static ssize_t show_##file_name						\
255(struct kobject *kobj, struct attribute *attr, char *buf)              \
256{									\
257	return sprintf(buf, "%u\n", dbs_tuners_ins.object);		\
258}
259show_one(sampling_rate, sampling_rate);
260show_one(io_is_busy, io_is_busy);
261show_one(up_threshold, up_threshold);
262show_one(ignore_nice_load, ignore_nice);
263show_one(powersave_bias, powersave_bias);
264
265/*** delete after deprecation time ***/
266
267#define DEPRECATION_MSG(file_name)					\
268	printk_once(KERN_INFO "CPUFREQ: Per core ondemand sysfs "	\
269		    "interface is deprecated - " #file_name "\n");
270
271#define show_one_old(file_name)						\
272static ssize_t show_##file_name##_old					\
273(struct cpufreq_policy *unused, char *buf)				\
274{									\
275	printk_once(KERN_INFO "CPUFREQ: Per core ondemand sysfs "	\
276		    "interface is deprecated - " #file_name "\n");	\
277	return show_##file_name(NULL, NULL, buf);			\
278}
279show_one_old(sampling_rate);
280show_one_old(up_threshold);
281show_one_old(ignore_nice_load);
282show_one_old(powersave_bias);
283show_one_old(sampling_rate_min);
284show_one_old(sampling_rate_max);
285
286cpufreq_freq_attr_ro_old(sampling_rate_min);
287cpufreq_freq_attr_ro_old(sampling_rate_max);
288
289/*** delete after deprecation time ***/
290
291static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
292				   const char *buf, size_t count)
293{
294	unsigned int input;
295	int ret;
296	ret = sscanf(buf, "%u", &input);
297	if (ret != 1)
298		return -EINVAL;
299
300	mutex_lock(&dbs_mutex);
301	dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
302	mutex_unlock(&dbs_mutex);
303
304	return count;
305}
306
307static ssize_t store_io_is_busy(struct kobject *a, struct attribute *b,
308				   const char *buf, size_t count)
309{
310	unsigned int input;
311	int ret;
312
313	ret = sscanf(buf, "%u", &input);
314	if (ret != 1)
315		return -EINVAL;
316
317	mutex_lock(&dbs_mutex);
318	dbs_tuners_ins.io_is_busy = !!input;
319	mutex_unlock(&dbs_mutex);
320
321	return count;
322}
323
324static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
325				  const char *buf, size_t count)
326{
327	unsigned int input;
328	int ret;
329	ret = sscanf(buf, "%u", &input);
330
331	if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
332			input < MIN_FREQUENCY_UP_THRESHOLD) {
333		return -EINVAL;
334	}
335
336	mutex_lock(&dbs_mutex);
337	dbs_tuners_ins.up_threshold = input;
338	mutex_unlock(&dbs_mutex);
339
340	return count;
341}
342
343static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
344				      const char *buf, size_t count)
345{
346	unsigned int input;
347	int ret;
348
349	unsigned int j;
350
351	ret = sscanf(buf, "%u", &input);
352	if (ret != 1)
353		return -EINVAL;
354
355	if (input > 1)
356		input = 1;
357
358	mutex_lock(&dbs_mutex);
359	if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
360		mutex_unlock(&dbs_mutex);
361		return count;
362	}
363	dbs_tuners_ins.ignore_nice = input;
364
365	/* we need to re-evaluate prev_cpu_idle */
366	for_each_online_cpu(j) {
367		struct cpu_dbs_info_s *dbs_info;
368		dbs_info = &per_cpu(od_cpu_dbs_info, j);
369		dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
370						&dbs_info->prev_cpu_wall);
371		if (dbs_tuners_ins.ignore_nice)
372			dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
373
374	}
375	mutex_unlock(&dbs_mutex);
376
377	return count;
378}
379
380static ssize_t store_powersave_bias(struct kobject *a, struct attribute *b,
381				    const char *buf, size_t count)
382{
383	unsigned int input;
384	int ret;
385	ret = sscanf(buf, "%u", &input);
386
387	if (ret != 1)
388		return -EINVAL;
389
390	if (input > 1000)
391		input = 1000;
392
393	mutex_lock(&dbs_mutex);
394	dbs_tuners_ins.powersave_bias = input;
395	ondemand_powersave_bias_init();
396	mutex_unlock(&dbs_mutex);
397
398	return count;
399}
400
401define_one_global_rw(sampling_rate);
402define_one_global_rw(io_is_busy);
403define_one_global_rw(up_threshold);
404define_one_global_rw(ignore_nice_load);
405define_one_global_rw(powersave_bias);
406
407static struct attribute *dbs_attributes[] = {
408	&sampling_rate_max.attr,
409	&sampling_rate_min.attr,
410	&sampling_rate.attr,
411	&up_threshold.attr,
412	&ignore_nice_load.attr,
413	&powersave_bias.attr,
414	&io_is_busy.attr,
415	NULL
416};
417
418static struct attribute_group dbs_attr_group = {
419	.attrs = dbs_attributes,
420	.name = "ondemand",
421};
422
423/*** delete after deprecation time ***/
424
425#define write_one_old(file_name)					\
426static ssize_t store_##file_name##_old					\
427(struct cpufreq_policy *unused, const char *buf, size_t count)		\
428{									\
429       printk_once(KERN_INFO "CPUFREQ: Per core ondemand sysfs "	\
430		   "interface is deprecated - " #file_name "\n");	\
431       return store_##file_name(NULL, NULL, buf, count);		\
432}
433write_one_old(sampling_rate);
434write_one_old(up_threshold);
435write_one_old(ignore_nice_load);
436write_one_old(powersave_bias);
437
438cpufreq_freq_attr_rw_old(sampling_rate);
439cpufreq_freq_attr_rw_old(up_threshold);
440cpufreq_freq_attr_rw_old(ignore_nice_load);
441cpufreq_freq_attr_rw_old(powersave_bias);
442
443static struct attribute *dbs_attributes_old[] = {
444       &sampling_rate_max_old.attr,
445       &sampling_rate_min_old.attr,
446       &sampling_rate_old.attr,
447       &up_threshold_old.attr,
448       &ignore_nice_load_old.attr,
449       &powersave_bias_old.attr,
450       NULL
451};
452
453static struct attribute_group dbs_attr_group_old = {
454       .attrs = dbs_attributes_old,
455       .name = "ondemand",
456};
457
458/*** delete after deprecation time ***/
459
460/************************** sysfs end ************************/
461
462static void dbs_freq_increase(struct cpufreq_policy *p, unsigned int freq)
463{
464	if (dbs_tuners_ins.powersave_bias)
465		freq = powersave_bias_target(p, freq, CPUFREQ_RELATION_H);
466	else if (p->cur == p->max)
467		return;
468
469	__cpufreq_driver_target(p, freq, dbs_tuners_ins.powersave_bias ?
470			CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
471}
472
473static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
474{
475	unsigned int max_load_freq;
476
477	struct cpufreq_policy *policy;
478	unsigned int j;
479
480	this_dbs_info->freq_lo = 0;
481	policy = this_dbs_info->cur_policy;
482
483	/*
484	 * Every sampling_rate, we check, if current idle time is less
485	 * than 20% (default), then we try to increase frequency
486	 * Every sampling_rate, we look for a the lowest
487	 * frequency which can sustain the load while keeping idle time over
488	 * 30%. If such a frequency exist, we try to decrease to this frequency.
489	 *
490	 * Any frequency increase takes it to the maximum frequency.
491	 * Frequency reduction happens at minimum steps of
492	 * 5% (default) of current frequency
493	 */
494
495	/* Get Absolute Load - in terms of freq */
496	max_load_freq = 0;
497
498	for_each_cpu(j, policy->cpus) {
499		struct cpu_dbs_info_s *j_dbs_info;
500		cputime64_t cur_wall_time, cur_idle_time, cur_iowait_time;
501		unsigned int idle_time, wall_time, iowait_time;
502		unsigned int load, load_freq;
503		int freq_avg;
504
505		j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
506
507		cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
508		cur_iowait_time = get_cpu_iowait_time(j, &cur_wall_time);
509
510		wall_time = (unsigned int) cputime64_sub(cur_wall_time,
511				j_dbs_info->prev_cpu_wall);
512		j_dbs_info->prev_cpu_wall = cur_wall_time;
513
514		idle_time = (unsigned int) cputime64_sub(cur_idle_time,
515				j_dbs_info->prev_cpu_idle);
516		j_dbs_info->prev_cpu_idle = cur_idle_time;
517
518		iowait_time = (unsigned int) cputime64_sub(cur_iowait_time,
519				j_dbs_info->prev_cpu_iowait);
520		j_dbs_info->prev_cpu_iowait = cur_iowait_time;
521
522		if (dbs_tuners_ins.ignore_nice) {
523			cputime64_t cur_nice;
524			unsigned long cur_nice_jiffies;
525
526			cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
527					 j_dbs_info->prev_cpu_nice);
528			/*
529			 * Assumption: nice time between sampling periods will
530			 * be less than 2^32 jiffies for 32 bit sys
531			 */
532			cur_nice_jiffies = (unsigned long)
533					cputime64_to_jiffies64(cur_nice);
534
535			j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
536			idle_time += jiffies_to_usecs(cur_nice_jiffies);
537		}
538
539		/*
540		 * For the purpose of ondemand, waiting for disk IO is an
541		 * indication that you're performance critical, and not that
542		 * the system is actually idle. So subtract the iowait time
543		 * from the cpu idle time.
544		 */
545
546		if (dbs_tuners_ins.io_is_busy && idle_time >= iowait_time)
547			idle_time -= iowait_time;
548
549		if (unlikely(!wall_time || wall_time < idle_time))
550			continue;
551
552		load = 100 * (wall_time - idle_time) / wall_time;
553
554		freq_avg = __cpufreq_driver_getavg(policy, j);
555		if (freq_avg <= 0)
556			freq_avg = policy->cur;
557
558		load_freq = load * freq_avg;
559		if (load_freq > max_load_freq)
560			max_load_freq = load_freq;
561	}
562
563	/* Check for frequency increase */
564	if (max_load_freq > dbs_tuners_ins.up_threshold * policy->cur) {
565		dbs_freq_increase(policy, policy->max);
566		return;
567	}
568
569	/* Check for frequency decrease */
570	/* if we cannot reduce the frequency anymore, break out early */
571	if (policy->cur == policy->min)
572		return;
573
574	/*
575	 * The optimal frequency is the frequency that is the lowest that
576	 * can support the current CPU usage without triggering the up
577	 * policy. To be safe, we focus 10 points under the threshold.
578	 */
579	if (max_load_freq <
580	    (dbs_tuners_ins.up_threshold - dbs_tuners_ins.down_differential) *
581	     policy->cur) {
582		unsigned int freq_next;
583		freq_next = max_load_freq /
584				(dbs_tuners_ins.up_threshold -
585				 dbs_tuners_ins.down_differential);
586
587		if (freq_next < policy->min)
588			freq_next = policy->min;
589
590		if (!dbs_tuners_ins.powersave_bias) {
591			__cpufreq_driver_target(policy, freq_next,
592					CPUFREQ_RELATION_L);
593		} else {
594			int freq = powersave_bias_target(policy, freq_next,
595					CPUFREQ_RELATION_L);
596			__cpufreq_driver_target(policy, freq,
597				CPUFREQ_RELATION_L);
598		}
599	}
600}
601
602static void do_dbs_timer(struct work_struct *work)
603{
604	struct cpu_dbs_info_s *dbs_info =
605		container_of(work, struct cpu_dbs_info_s, work.work);
606	unsigned int cpu = dbs_info->cpu;
607	int sample_type = dbs_info->sample_type;
608
609	/* We want all CPUs to do sampling nearly on same jiffy */
610	int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
611
612	if (num_online_cpus() > 1)
613		delay -= jiffies % delay;
614
615	mutex_lock(&dbs_info->timer_mutex);
616
617	/* Common NORMAL_SAMPLE setup */
618	dbs_info->sample_type = DBS_NORMAL_SAMPLE;
619	if (!dbs_tuners_ins.powersave_bias ||
620	    sample_type == DBS_NORMAL_SAMPLE) {
621		dbs_check_cpu(dbs_info);
622		if (dbs_info->freq_lo) {
623			/* Setup timer for SUB_SAMPLE */
624			dbs_info->sample_type = DBS_SUB_SAMPLE;
625			delay = dbs_info->freq_hi_jiffies;
626		}
627	} else {
628		__cpufreq_driver_target(dbs_info->cur_policy,
629			dbs_info->freq_lo, CPUFREQ_RELATION_H);
630	}
631	queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay);
632	mutex_unlock(&dbs_info->timer_mutex);
633}
634
635static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
636{
637	/* We want all CPUs to do sampling nearly on same jiffy */
638	int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
639
640	if (num_online_cpus() > 1)
641		delay -= jiffies % delay;
642
643	dbs_info->sample_type = DBS_NORMAL_SAMPLE;
644	INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
645	queue_delayed_work_on(dbs_info->cpu, kondemand_wq, &dbs_info->work,
646		delay);
647}
648
649static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
650{
651	cancel_delayed_work_sync(&dbs_info->work);
652}
653
654/*
655 * Not all CPUs want IO time to be accounted as busy; this dependson how
656 * efficient idling at a higher frequency/voltage is.
657 * Pavel Machek says this is not so for various generations of AMD and old
658 * Intel systems.
659 * Mike Chan (androidlcom) calis this is also not true for ARM.
660 * Because of this, whitelist specific known (series) of CPUs by default, and
661 * leave all others up to the user.
662 */
663static int should_io_be_busy(void)
664{
665#if defined(CONFIG_X86)
666	/*
667	 * For Intel, Core 2 (model 15) andl later have an efficient idle.
668	 */
669	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
670	    boot_cpu_data.x86 == 6 &&
671	    boot_cpu_data.x86_model >= 15)
672		return 1;
673#endif
674	return 0;
675}
676
677static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
678				   unsigned int event)
679{
680	unsigned int cpu = policy->cpu;
681	struct cpu_dbs_info_s *this_dbs_info;
682	unsigned int j;
683	int rc;
684
685	this_dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
686
687	switch (event) {
688	case CPUFREQ_GOV_START:
689		if ((!cpu_online(cpu)) || (!policy->cur))
690			return -EINVAL;
691
692		mutex_lock(&dbs_mutex);
693
694		rc = sysfs_create_group(&policy->kobj, &dbs_attr_group_old);
695		if (rc) {
696			mutex_unlock(&dbs_mutex);
697			return rc;
698		}
699
700		dbs_enable++;
701		for_each_cpu(j, policy->cpus) {
702			struct cpu_dbs_info_s *j_dbs_info;
703			j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
704			j_dbs_info->cur_policy = policy;
705
706			j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
707						&j_dbs_info->prev_cpu_wall);
708			if (dbs_tuners_ins.ignore_nice) {
709				j_dbs_info->prev_cpu_nice =
710						kstat_cpu(j).cpustat.nice;
711			}
712		}
713		this_dbs_info->cpu = cpu;
714		ondemand_powersave_bias_init_cpu(cpu);
715		/*
716		 * Start the timerschedule work, when this governor
717		 * is used for first time
718		 */
719		if (dbs_enable == 1) {
720			unsigned int latency;
721
722			rc = sysfs_create_group(cpufreq_global_kobject,
723						&dbs_attr_group);
724			if (rc) {
725				mutex_unlock(&dbs_mutex);
726				return rc;
727			}
728
729			/* policy latency is in nS. Convert it to uS first */
730			latency = policy->cpuinfo.transition_latency / 1000;
731			if (latency == 0)
732				latency = 1;
733			/* Bring kernel and HW constraints together */
734			min_sampling_rate = max(min_sampling_rate,
735					MIN_LATENCY_MULTIPLIER * latency);
736			dbs_tuners_ins.sampling_rate =
737				max(min_sampling_rate,
738				    latency * LATENCY_MULTIPLIER);
739			dbs_tuners_ins.io_is_busy = should_io_be_busy();
740		}
741		mutex_unlock(&dbs_mutex);
742
743		mutex_init(&this_dbs_info->timer_mutex);
744		dbs_timer_init(this_dbs_info);
745		break;
746
747	case CPUFREQ_GOV_STOP:
748		dbs_timer_exit(this_dbs_info);
749
750		mutex_lock(&dbs_mutex);
751		sysfs_remove_group(&policy->kobj, &dbs_attr_group_old);
752		mutex_destroy(&this_dbs_info->timer_mutex);
753		dbs_enable--;
754		mutex_unlock(&dbs_mutex);
755		if (!dbs_enable)
756			sysfs_remove_group(cpufreq_global_kobject,
757					   &dbs_attr_group);
758
759		break;
760
761	case CPUFREQ_GOV_LIMITS:
762		mutex_lock(&this_dbs_info->timer_mutex);
763		if (policy->max < this_dbs_info->cur_policy->cur)
764			__cpufreq_driver_target(this_dbs_info->cur_policy,
765				policy->max, CPUFREQ_RELATION_H);
766		else if (policy->min > this_dbs_info->cur_policy->cur)
767			__cpufreq_driver_target(this_dbs_info->cur_policy,
768				policy->min, CPUFREQ_RELATION_L);
769		mutex_unlock(&this_dbs_info->timer_mutex);
770		break;
771	}
772	return 0;
773}
774
775static int __init cpufreq_gov_dbs_init(void)
776{
777	int err;
778	cputime64_t wall;
779	u64 idle_time;
780	int cpu = get_cpu();
781
782	idle_time = get_cpu_idle_time_us(cpu, &wall);
783	put_cpu();
784	if (idle_time != -1ULL) {
785		/* Idle micro accounting is supported. Use finer thresholds */
786		dbs_tuners_ins.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
787		dbs_tuners_ins.down_differential =
788					MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
789		/*
790		 * In no_hz/micro accounting case we set the minimum frequency
791		 * not depending on HZ, but fixed (very low). The deferred
792		 * timer might skip some samples if idle/sleeping as needed.
793		*/
794		min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
795	} else {
796		/* For correct statistics, we need 10 ticks for each measure */
797		min_sampling_rate =
798			MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
799	}
800
801	kondemand_wq = create_workqueue("kondemand");
802	if (!kondemand_wq) {
803		printk(KERN_ERR "Creation of kondemand failed\n");
804		return -EFAULT;
805	}
806	err = cpufreq_register_governor(&cpufreq_gov_ondemand);
807	if (err)
808		destroy_workqueue(kondemand_wq);
809
810	return err;
811}
812
813static void __exit cpufreq_gov_dbs_exit(void)
814{
815	cpufreq_unregister_governor(&cpufreq_gov_ondemand);
816	destroy_workqueue(kondemand_wq);
817}
818
819
820MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
821MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
822MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
823	"Low Latency Frequency Transition capable processors");
824MODULE_LICENSE("GPL");
825
826#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
827fs_initcall(cpufreq_gov_dbs_init);
828#else
829module_init(cpufreq_gov_dbs_init);
830#endif
831module_exit(cpufreq_gov_dbs_exit);
832