cpufreq_ondemand.c revision e8951251b89440644a39f2512b4f265973926b41
1/*
2 *  drivers/cpufreq/cpufreq_ondemand.c
3 *
4 *  Copyright (C)  2001 Russell King
5 *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 *                      Jun Nakajima <jun.nakajima@intel.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#include <linux/kernel.h>
14#include <linux/module.h>
15#include <linux/init.h>
16#include <linux/cpufreq.h>
17#include <linux/cpu.h>
18#include <linux/jiffies.h>
19#include <linux/kernel_stat.h>
20#include <linux/mutex.h>
21#include <linux/hrtimer.h>
22#include <linux/tick.h>
23#include <linux/ktime.h>
24#include <linux/sched.h>
25
26/*
27 * dbs is used in this file as a shortform for demandbased switching
28 * It helps to keep variable names smaller, simpler
29 */
30
31#define DEF_FREQUENCY_DOWN_DIFFERENTIAL		(10)
32#define DEF_FREQUENCY_UP_THRESHOLD		(80)
33#define DEF_SAMPLING_DOWN_FACTOR		(1)
34#define MAX_SAMPLING_DOWN_FACTOR		(100000)
35#define MICRO_FREQUENCY_DOWN_DIFFERENTIAL	(3)
36#define MICRO_FREQUENCY_UP_THRESHOLD		(95)
37#define MICRO_FREQUENCY_MIN_SAMPLE_RATE		(10000)
38#define MIN_FREQUENCY_UP_THRESHOLD		(11)
39#define MAX_FREQUENCY_UP_THRESHOLD		(100)
40
41/*
42 * The polling frequency of this governor depends on the capability of
43 * the processor. Default polling frequency is 1000 times the transition
44 * latency of the processor. The governor will work on any processor with
45 * transition latency <= 10mS, using appropriate sampling
46 * rate.
47 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
48 * this governor will not work.
49 * All times here are in uS.
50 */
51#define MIN_SAMPLING_RATE_RATIO			(2)
52
53static unsigned int min_sampling_rate;
54
55#define LATENCY_MULTIPLIER			(1000)
56#define MIN_LATENCY_MULTIPLIER			(100)
57#define TRANSITION_LATENCY_LIMIT		(10 * 1000 * 1000)
58
59static void do_dbs_timer(struct work_struct *work);
60static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
61				unsigned int event);
62
63#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
64static
65#endif
66struct cpufreq_governor cpufreq_gov_ondemand = {
67       .name                   = "ondemand",
68       .governor               = cpufreq_governor_dbs,
69       .max_transition_latency = TRANSITION_LATENCY_LIMIT,
70       .owner                  = THIS_MODULE,
71};
72
73/* Sampling types */
74enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
75
76struct cpu_dbs_info_s {
77	cputime64_t prev_cpu_idle;
78	cputime64_t prev_cpu_iowait;
79	cputime64_t prev_cpu_wall;
80	cputime64_t prev_cpu_nice;
81	struct cpufreq_policy *cur_policy;
82	struct delayed_work work;
83	struct cpufreq_frequency_table *freq_table;
84	unsigned int freq_lo;
85	unsigned int freq_lo_jiffies;
86	unsigned int freq_hi_jiffies;
87	unsigned int rate_mult;
88	int cpu;
89	unsigned int sample_type:1;
90	/*
91	 * percpu mutex that serializes governor limit change with
92	 * do_dbs_timer invocation. We do not want do_dbs_timer to run
93	 * when user is changing the governor or limits.
94	 */
95	struct mutex timer_mutex;
96};
97static DEFINE_PER_CPU(struct cpu_dbs_info_s, od_cpu_dbs_info);
98
99static unsigned int dbs_enable;	/* number of CPUs using this policy */
100
101/*
102 * dbs_mutex protects data in dbs_tuners_ins from concurrent changes on
103 * different CPUs. It protects dbs_enable in governor start/stop.
104 */
105static DEFINE_MUTEX(dbs_mutex);
106
107static struct dbs_tuners {
108	unsigned int sampling_rate;
109	unsigned int up_threshold;
110	unsigned int down_differential;
111	unsigned int ignore_nice;
112	unsigned int sampling_down_factor;
113	unsigned int powersave_bias;
114	unsigned int io_is_busy;
115} dbs_tuners_ins = {
116	.up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
117	.sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
118	.down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL,
119	.ignore_nice = 0,
120	.powersave_bias = 0,
121};
122
123static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
124							cputime64_t *wall)
125{
126	cputime64_t idle_time;
127	cputime64_t cur_wall_time;
128	cputime64_t busy_time;
129
130	cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
131	busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
132			kstat_cpu(cpu).cpustat.system);
133
134	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
135	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
136	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
137	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
138
139	idle_time = cputime64_sub(cur_wall_time, busy_time);
140	if (wall)
141		*wall = (cputime64_t)jiffies_to_usecs(cur_wall_time);
142
143	return (cputime64_t)jiffies_to_usecs(idle_time);
144}
145
146static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
147{
148	u64 idle_time = get_cpu_idle_time_us(cpu, wall);
149
150	if (idle_time == -1ULL)
151		return get_cpu_idle_time_jiffy(cpu, wall);
152
153	return idle_time;
154}
155
156static inline cputime64_t get_cpu_iowait_time(unsigned int cpu, cputime64_t *wall)
157{
158	u64 iowait_time = get_cpu_iowait_time_us(cpu, wall);
159
160	if (iowait_time == -1ULL)
161		return 0;
162
163	return iowait_time;
164}
165
166/*
167 * Find right freq to be set now with powersave_bias on.
168 * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
169 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
170 */
171static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
172					  unsigned int freq_next,
173					  unsigned int relation)
174{
175	unsigned int freq_req, freq_reduc, freq_avg;
176	unsigned int freq_hi, freq_lo;
177	unsigned int index = 0;
178	unsigned int jiffies_total, jiffies_hi, jiffies_lo;
179	struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
180						   policy->cpu);
181
182	if (!dbs_info->freq_table) {
183		dbs_info->freq_lo = 0;
184		dbs_info->freq_lo_jiffies = 0;
185		return freq_next;
186	}
187
188	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
189			relation, &index);
190	freq_req = dbs_info->freq_table[index].frequency;
191	freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
192	freq_avg = freq_req - freq_reduc;
193
194	/* Find freq bounds for freq_avg in freq_table */
195	index = 0;
196	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
197			CPUFREQ_RELATION_H, &index);
198	freq_lo = dbs_info->freq_table[index].frequency;
199	index = 0;
200	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
201			CPUFREQ_RELATION_L, &index);
202	freq_hi = dbs_info->freq_table[index].frequency;
203
204	/* Find out how long we have to be in hi and lo freqs */
205	if (freq_hi == freq_lo) {
206		dbs_info->freq_lo = 0;
207		dbs_info->freq_lo_jiffies = 0;
208		return freq_lo;
209	}
210	jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
211	jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
212	jiffies_hi += ((freq_hi - freq_lo) / 2);
213	jiffies_hi /= (freq_hi - freq_lo);
214	jiffies_lo = jiffies_total - jiffies_hi;
215	dbs_info->freq_lo = freq_lo;
216	dbs_info->freq_lo_jiffies = jiffies_lo;
217	dbs_info->freq_hi_jiffies = jiffies_hi;
218	return freq_hi;
219}
220
221static void ondemand_powersave_bias_init_cpu(int cpu)
222{
223	struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
224	dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
225	dbs_info->freq_lo = 0;
226}
227
228static void ondemand_powersave_bias_init(void)
229{
230	int i;
231	for_each_online_cpu(i) {
232		ondemand_powersave_bias_init_cpu(i);
233	}
234}
235
236/************************** sysfs interface ************************/
237
238static ssize_t show_sampling_rate_min(struct kobject *kobj,
239				      struct attribute *attr, char *buf)
240{
241	return sprintf(buf, "%u\n", min_sampling_rate);
242}
243
244define_one_global_ro(sampling_rate_min);
245
246/* cpufreq_ondemand Governor Tunables */
247#define show_one(file_name, object)					\
248static ssize_t show_##file_name						\
249(struct kobject *kobj, struct attribute *attr, char *buf)              \
250{									\
251	return sprintf(buf, "%u\n", dbs_tuners_ins.object);		\
252}
253show_one(sampling_rate, sampling_rate);
254show_one(io_is_busy, io_is_busy);
255show_one(up_threshold, up_threshold);
256show_one(sampling_down_factor, sampling_down_factor);
257show_one(ignore_nice_load, ignore_nice);
258show_one(powersave_bias, powersave_bias);
259
260static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
261				   const char *buf, size_t count)
262{
263	unsigned int input;
264	int ret;
265	ret = sscanf(buf, "%u", &input);
266	if (ret != 1)
267		return -EINVAL;
268
269	mutex_lock(&dbs_mutex);
270	dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
271	mutex_unlock(&dbs_mutex);
272
273	return count;
274}
275
276static ssize_t store_io_is_busy(struct kobject *a, struct attribute *b,
277				   const char *buf, size_t count)
278{
279	unsigned int input;
280	int ret;
281
282	ret = sscanf(buf, "%u", &input);
283	if (ret != 1)
284		return -EINVAL;
285
286	mutex_lock(&dbs_mutex);
287	dbs_tuners_ins.io_is_busy = !!input;
288	mutex_unlock(&dbs_mutex);
289
290	return count;
291}
292
293static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
294				  const char *buf, size_t count)
295{
296	unsigned int input;
297	int ret;
298	ret = sscanf(buf, "%u", &input);
299
300	if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
301			input < MIN_FREQUENCY_UP_THRESHOLD) {
302		return -EINVAL;
303	}
304
305	mutex_lock(&dbs_mutex);
306	dbs_tuners_ins.up_threshold = input;
307	mutex_unlock(&dbs_mutex);
308
309	return count;
310}
311
312static ssize_t store_sampling_down_factor(struct kobject *a,
313			struct attribute *b, const char *buf, size_t count)
314{
315	unsigned int input, j;
316	int ret;
317	ret = sscanf(buf, "%u", &input);
318
319	if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
320		return -EINVAL;
321	mutex_lock(&dbs_mutex);
322	dbs_tuners_ins.sampling_down_factor = input;
323
324	/* Reset down sampling multiplier in case it was active */
325	for_each_online_cpu(j) {
326		struct cpu_dbs_info_s *dbs_info;
327		dbs_info = &per_cpu(od_cpu_dbs_info, j);
328		dbs_info->rate_mult = 1;
329	}
330	mutex_unlock(&dbs_mutex);
331
332	return count;
333}
334
335static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
336				      const char *buf, size_t count)
337{
338	unsigned int input;
339	int ret;
340
341	unsigned int j;
342
343	ret = sscanf(buf, "%u", &input);
344	if (ret != 1)
345		return -EINVAL;
346
347	if (input > 1)
348		input = 1;
349
350	mutex_lock(&dbs_mutex);
351	if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
352		mutex_unlock(&dbs_mutex);
353		return count;
354	}
355	dbs_tuners_ins.ignore_nice = input;
356
357	/* we need to re-evaluate prev_cpu_idle */
358	for_each_online_cpu(j) {
359		struct cpu_dbs_info_s *dbs_info;
360		dbs_info = &per_cpu(od_cpu_dbs_info, j);
361		dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
362						&dbs_info->prev_cpu_wall);
363		if (dbs_tuners_ins.ignore_nice)
364			dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
365
366	}
367	mutex_unlock(&dbs_mutex);
368
369	return count;
370}
371
372static ssize_t store_powersave_bias(struct kobject *a, struct attribute *b,
373				    const char *buf, size_t count)
374{
375	unsigned int input;
376	int ret;
377	ret = sscanf(buf, "%u", &input);
378
379	if (ret != 1)
380		return -EINVAL;
381
382	if (input > 1000)
383		input = 1000;
384
385	mutex_lock(&dbs_mutex);
386	dbs_tuners_ins.powersave_bias = input;
387	ondemand_powersave_bias_init();
388	mutex_unlock(&dbs_mutex);
389
390	return count;
391}
392
393define_one_global_rw(sampling_rate);
394define_one_global_rw(io_is_busy);
395define_one_global_rw(up_threshold);
396define_one_global_rw(sampling_down_factor);
397define_one_global_rw(ignore_nice_load);
398define_one_global_rw(powersave_bias);
399
400static struct attribute *dbs_attributes[] = {
401	&sampling_rate_min.attr,
402	&sampling_rate.attr,
403	&up_threshold.attr,
404	&sampling_down_factor.attr,
405	&ignore_nice_load.attr,
406	&powersave_bias.attr,
407	&io_is_busy.attr,
408	NULL
409};
410
411static struct attribute_group dbs_attr_group = {
412	.attrs = dbs_attributes,
413	.name = "ondemand",
414};
415
416/************************** sysfs end ************************/
417
418static void dbs_freq_increase(struct cpufreq_policy *p, unsigned int freq)
419{
420	if (dbs_tuners_ins.powersave_bias)
421		freq = powersave_bias_target(p, freq, CPUFREQ_RELATION_H);
422	else if (p->cur == p->max)
423		return;
424
425	__cpufreq_driver_target(p, freq, dbs_tuners_ins.powersave_bias ?
426			CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
427}
428
429static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
430{
431	unsigned int max_load_freq;
432
433	struct cpufreq_policy *policy;
434	unsigned int j;
435
436	this_dbs_info->freq_lo = 0;
437	policy = this_dbs_info->cur_policy;
438
439	/*
440	 * Every sampling_rate, we check, if current idle time is less
441	 * than 20% (default), then we try to increase frequency
442	 * Every sampling_rate, we look for a the lowest
443	 * frequency which can sustain the load while keeping idle time over
444	 * 30%. If such a frequency exist, we try to decrease to this frequency.
445	 *
446	 * Any frequency increase takes it to the maximum frequency.
447	 * Frequency reduction happens at minimum steps of
448	 * 5% (default) of current frequency
449	 */
450
451	/* Get Absolute Load - in terms of freq */
452	max_load_freq = 0;
453
454	for_each_cpu(j, policy->cpus) {
455		struct cpu_dbs_info_s *j_dbs_info;
456		cputime64_t cur_wall_time, cur_idle_time, cur_iowait_time;
457		unsigned int idle_time, wall_time, iowait_time;
458		unsigned int load, load_freq;
459		int freq_avg;
460
461		j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
462
463		cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
464		cur_iowait_time = get_cpu_iowait_time(j, &cur_wall_time);
465
466		wall_time = (unsigned int) cputime64_sub(cur_wall_time,
467				j_dbs_info->prev_cpu_wall);
468		j_dbs_info->prev_cpu_wall = cur_wall_time;
469
470		idle_time = (unsigned int) cputime64_sub(cur_idle_time,
471				j_dbs_info->prev_cpu_idle);
472		j_dbs_info->prev_cpu_idle = cur_idle_time;
473
474		iowait_time = (unsigned int) cputime64_sub(cur_iowait_time,
475				j_dbs_info->prev_cpu_iowait);
476		j_dbs_info->prev_cpu_iowait = cur_iowait_time;
477
478		if (dbs_tuners_ins.ignore_nice) {
479			cputime64_t cur_nice;
480			unsigned long cur_nice_jiffies;
481
482			cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
483					 j_dbs_info->prev_cpu_nice);
484			/*
485			 * Assumption: nice time between sampling periods will
486			 * be less than 2^32 jiffies for 32 bit sys
487			 */
488			cur_nice_jiffies = (unsigned long)
489					cputime64_to_jiffies64(cur_nice);
490
491			j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
492			idle_time += jiffies_to_usecs(cur_nice_jiffies);
493		}
494
495		/*
496		 * For the purpose of ondemand, waiting for disk IO is an
497		 * indication that you're performance critical, and not that
498		 * the system is actually idle. So subtract the iowait time
499		 * from the cpu idle time.
500		 */
501
502		if (dbs_tuners_ins.io_is_busy && idle_time >= iowait_time)
503			idle_time -= iowait_time;
504
505		if (unlikely(!wall_time || wall_time < idle_time))
506			continue;
507
508		load = 100 * (wall_time - idle_time) / wall_time;
509
510		freq_avg = __cpufreq_driver_getavg(policy, j);
511		if (freq_avg <= 0)
512			freq_avg = policy->cur;
513
514		load_freq = load * freq_avg;
515		if (load_freq > max_load_freq)
516			max_load_freq = load_freq;
517	}
518
519	/* Check for frequency increase */
520	if (max_load_freq > dbs_tuners_ins.up_threshold * policy->cur) {
521		/* If switching to max speed, apply sampling_down_factor */
522		if (policy->cur < policy->max)
523			this_dbs_info->rate_mult =
524				dbs_tuners_ins.sampling_down_factor;
525		dbs_freq_increase(policy, policy->max);
526		return;
527	}
528
529	/* Check for frequency decrease */
530	/* if we cannot reduce the frequency anymore, break out early */
531	if (policy->cur == policy->min)
532		return;
533
534	/*
535	 * The optimal frequency is the frequency that is the lowest that
536	 * can support the current CPU usage without triggering the up
537	 * policy. To be safe, we focus 10 points under the threshold.
538	 */
539	if (max_load_freq <
540	    (dbs_tuners_ins.up_threshold - dbs_tuners_ins.down_differential) *
541	     policy->cur) {
542		unsigned int freq_next;
543		freq_next = max_load_freq /
544				(dbs_tuners_ins.up_threshold -
545				 dbs_tuners_ins.down_differential);
546
547		/* No longer fully busy, reset rate_mult */
548		this_dbs_info->rate_mult = 1;
549
550		if (freq_next < policy->min)
551			freq_next = policy->min;
552
553		if (!dbs_tuners_ins.powersave_bias) {
554			__cpufreq_driver_target(policy, freq_next,
555					CPUFREQ_RELATION_L);
556		} else {
557			int freq = powersave_bias_target(policy, freq_next,
558					CPUFREQ_RELATION_L);
559			__cpufreq_driver_target(policy, freq,
560				CPUFREQ_RELATION_L);
561		}
562	}
563}
564
565static void do_dbs_timer(struct work_struct *work)
566{
567	struct cpu_dbs_info_s *dbs_info =
568		container_of(work, struct cpu_dbs_info_s, work.work);
569	unsigned int cpu = dbs_info->cpu;
570	int sample_type = dbs_info->sample_type;
571
572	int delay;
573
574	mutex_lock(&dbs_info->timer_mutex);
575
576	/* Common NORMAL_SAMPLE setup */
577	dbs_info->sample_type = DBS_NORMAL_SAMPLE;
578	if (!dbs_tuners_ins.powersave_bias ||
579	    sample_type == DBS_NORMAL_SAMPLE) {
580		dbs_check_cpu(dbs_info);
581		if (dbs_info->freq_lo) {
582			/* Setup timer for SUB_SAMPLE */
583			dbs_info->sample_type = DBS_SUB_SAMPLE;
584			delay = dbs_info->freq_hi_jiffies;
585		} else {
586			/* We want all CPUs to do sampling nearly on
587			 * same jiffy
588			 */
589			delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate
590				* dbs_info->rate_mult);
591
592			if (num_online_cpus() > 1)
593				delay -= jiffies % delay;
594		}
595	} else {
596		__cpufreq_driver_target(dbs_info->cur_policy,
597			dbs_info->freq_lo, CPUFREQ_RELATION_H);
598		delay = dbs_info->freq_lo_jiffies;
599	}
600	schedule_delayed_work_on(cpu, &dbs_info->work, delay);
601	mutex_unlock(&dbs_info->timer_mutex);
602}
603
604static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
605{
606	/* We want all CPUs to do sampling nearly on same jiffy */
607	int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
608
609	if (num_online_cpus() > 1)
610		delay -= jiffies % delay;
611
612	dbs_info->sample_type = DBS_NORMAL_SAMPLE;
613	INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
614	schedule_delayed_work_on(dbs_info->cpu, &dbs_info->work, delay);
615}
616
617static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
618{
619	cancel_delayed_work_sync(&dbs_info->work);
620}
621
622/*
623 * Not all CPUs want IO time to be accounted as busy; this dependson how
624 * efficient idling at a higher frequency/voltage is.
625 * Pavel Machek says this is not so for various generations of AMD and old
626 * Intel systems.
627 * Mike Chan (androidlcom) calis this is also not true for ARM.
628 * Because of this, whitelist specific known (series) of CPUs by default, and
629 * leave all others up to the user.
630 */
631static int should_io_be_busy(void)
632{
633#if defined(CONFIG_X86)
634	/*
635	 * For Intel, Core 2 (model 15) andl later have an efficient idle.
636	 */
637	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
638	    boot_cpu_data.x86 == 6 &&
639	    boot_cpu_data.x86_model >= 15)
640		return 1;
641#endif
642	return 0;
643}
644
645static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
646				   unsigned int event)
647{
648	unsigned int cpu = policy->cpu;
649	struct cpu_dbs_info_s *this_dbs_info;
650	unsigned int j;
651	int rc;
652
653	this_dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
654
655	switch (event) {
656	case CPUFREQ_GOV_START:
657		if ((!cpu_online(cpu)) || (!policy->cur))
658			return -EINVAL;
659
660		mutex_lock(&dbs_mutex);
661
662		dbs_enable++;
663		for_each_cpu(j, policy->cpus) {
664			struct cpu_dbs_info_s *j_dbs_info;
665			j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
666			j_dbs_info->cur_policy = policy;
667
668			j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
669						&j_dbs_info->prev_cpu_wall);
670			if (dbs_tuners_ins.ignore_nice) {
671				j_dbs_info->prev_cpu_nice =
672						kstat_cpu(j).cpustat.nice;
673			}
674		}
675		this_dbs_info->cpu = cpu;
676		this_dbs_info->rate_mult = 1;
677		ondemand_powersave_bias_init_cpu(cpu);
678		/*
679		 * Start the timerschedule work, when this governor
680		 * is used for first time
681		 */
682		if (dbs_enable == 1) {
683			unsigned int latency;
684
685			rc = sysfs_create_group(cpufreq_global_kobject,
686						&dbs_attr_group);
687			if (rc) {
688				mutex_unlock(&dbs_mutex);
689				return rc;
690			}
691
692			/* policy latency is in nS. Convert it to uS first */
693			latency = policy->cpuinfo.transition_latency / 1000;
694			if (latency == 0)
695				latency = 1;
696			/* Bring kernel and HW constraints together */
697			min_sampling_rate = max(min_sampling_rate,
698					MIN_LATENCY_MULTIPLIER * latency);
699			dbs_tuners_ins.sampling_rate =
700				max(min_sampling_rate,
701				    latency * LATENCY_MULTIPLIER);
702			dbs_tuners_ins.io_is_busy = should_io_be_busy();
703		}
704		mutex_unlock(&dbs_mutex);
705
706		mutex_init(&this_dbs_info->timer_mutex);
707		dbs_timer_init(this_dbs_info);
708		break;
709
710	case CPUFREQ_GOV_STOP:
711		dbs_timer_exit(this_dbs_info);
712
713		mutex_lock(&dbs_mutex);
714		mutex_destroy(&this_dbs_info->timer_mutex);
715		dbs_enable--;
716		mutex_unlock(&dbs_mutex);
717		if (!dbs_enable)
718			sysfs_remove_group(cpufreq_global_kobject,
719					   &dbs_attr_group);
720
721		break;
722
723	case CPUFREQ_GOV_LIMITS:
724		mutex_lock(&this_dbs_info->timer_mutex);
725		if (policy->max < this_dbs_info->cur_policy->cur)
726			__cpufreq_driver_target(this_dbs_info->cur_policy,
727				policy->max, CPUFREQ_RELATION_H);
728		else if (policy->min > this_dbs_info->cur_policy->cur)
729			__cpufreq_driver_target(this_dbs_info->cur_policy,
730				policy->min, CPUFREQ_RELATION_L);
731		mutex_unlock(&this_dbs_info->timer_mutex);
732		break;
733	}
734	return 0;
735}
736
737static int __init cpufreq_gov_dbs_init(void)
738{
739	cputime64_t wall;
740	u64 idle_time;
741	int cpu = get_cpu();
742
743	idle_time = get_cpu_idle_time_us(cpu, &wall);
744	put_cpu();
745	if (idle_time != -1ULL) {
746		/* Idle micro accounting is supported. Use finer thresholds */
747		dbs_tuners_ins.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
748		dbs_tuners_ins.down_differential =
749					MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
750		/*
751		 * In no_hz/micro accounting case we set the minimum frequency
752		 * not depending on HZ, but fixed (very low). The deferred
753		 * timer might skip some samples if idle/sleeping as needed.
754		*/
755		min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
756	} else {
757		/* For correct statistics, we need 10 ticks for each measure */
758		min_sampling_rate =
759			MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
760	}
761
762	return cpufreq_register_governor(&cpufreq_gov_ondemand);
763}
764
765static void __exit cpufreq_gov_dbs_exit(void)
766{
767	cpufreq_unregister_governor(&cpufreq_gov_ondemand);
768}
769
770
771MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
772MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
773MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
774	"Low Latency Frequency Transition capable processors");
775MODULE_LICENSE("GPL");
776
777#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
778fs_initcall(cpufreq_gov_dbs_init);
779#else
780module_init(cpufreq_gov_dbs_init);
781#endif
782module_exit(cpufreq_gov_dbs_exit);
783