fsldma.c revision f7fbce07c6ce26a25b4e0cb5f241c361fde87901
1/*
2 * Freescale MPC85xx, MPC83xx DMA Engine support
3 *
4 * Copyright (C) 2007-2010 Freescale Semiconductor, Inc. All rights reserved.
5 *
6 * Author:
7 *   Zhang Wei <wei.zhang@freescale.com>, Jul 2007
8 *   Ebony Zhu <ebony.zhu@freescale.com>, May 2007
9 *
10 * Description:
11 *   DMA engine driver for Freescale MPC8540 DMA controller, which is
12 *   also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
13 *   The support for MPC8349 DMA controller is also added.
14 *
15 * This driver instructs the DMA controller to issue the PCI Read Multiple
16 * command for PCI read operations, instead of using the default PCI Read Line
17 * command. Please be aware that this setting may result in read pre-fetching
18 * on some platforms.
19 *
20 * This is free software; you can redistribute it and/or modify
21 * it under the terms of the GNU General Public License as published by
22 * the Free Software Foundation; either version 2 of the License, or
23 * (at your option) any later version.
24 *
25 */
26
27#include <linux/init.h>
28#include <linux/module.h>
29#include <linux/pci.h>
30#include <linux/slab.h>
31#include <linux/interrupt.h>
32#include <linux/dmaengine.h>
33#include <linux/delay.h>
34#include <linux/dma-mapping.h>
35#include <linux/dmapool.h>
36#include <linux/of_platform.h>
37
38#include "dmaengine.h"
39#include "fsldma.h"
40
41#define chan_dbg(chan, fmt, arg...)					\
42	dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
43#define chan_err(chan, fmt, arg...)					\
44	dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
45
46static const char msg_ld_oom[] = "No free memory for link descriptor";
47
48/*
49 * Register Helpers
50 */
51
52static void set_sr(struct fsldma_chan *chan, u32 val)
53{
54	DMA_OUT(chan, &chan->regs->sr, val, 32);
55}
56
57static u32 get_sr(struct fsldma_chan *chan)
58{
59	return DMA_IN(chan, &chan->regs->sr, 32);
60}
61
62static void set_cdar(struct fsldma_chan *chan, dma_addr_t addr)
63{
64	DMA_OUT(chan, &chan->regs->cdar, addr | FSL_DMA_SNEN, 64);
65}
66
67static dma_addr_t get_cdar(struct fsldma_chan *chan)
68{
69	return DMA_IN(chan, &chan->regs->cdar, 64) & ~FSL_DMA_SNEN;
70}
71
72static u32 get_bcr(struct fsldma_chan *chan)
73{
74	return DMA_IN(chan, &chan->regs->bcr, 32);
75}
76
77/*
78 * Descriptor Helpers
79 */
80
81static void set_desc_cnt(struct fsldma_chan *chan,
82				struct fsl_dma_ld_hw *hw, u32 count)
83{
84	hw->count = CPU_TO_DMA(chan, count, 32);
85}
86
87static u32 get_desc_cnt(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
88{
89	return DMA_TO_CPU(chan, desc->hw.count, 32);
90}
91
92static void set_desc_src(struct fsldma_chan *chan,
93			 struct fsl_dma_ld_hw *hw, dma_addr_t src)
94{
95	u64 snoop_bits;
96
97	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
98		? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
99	hw->src_addr = CPU_TO_DMA(chan, snoop_bits | src, 64);
100}
101
102static dma_addr_t get_desc_src(struct fsldma_chan *chan,
103			       struct fsl_desc_sw *desc)
104{
105	u64 snoop_bits;
106
107	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
108		? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
109	return DMA_TO_CPU(chan, desc->hw.src_addr, 64) & ~snoop_bits;
110}
111
112static void set_desc_dst(struct fsldma_chan *chan,
113			 struct fsl_dma_ld_hw *hw, dma_addr_t dst)
114{
115	u64 snoop_bits;
116
117	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
118		? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
119	hw->dst_addr = CPU_TO_DMA(chan, snoop_bits | dst, 64);
120}
121
122static dma_addr_t get_desc_dst(struct fsldma_chan *chan,
123			       struct fsl_desc_sw *desc)
124{
125	u64 snoop_bits;
126
127	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
128		? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
129	return DMA_TO_CPU(chan, desc->hw.dst_addr, 64) & ~snoop_bits;
130}
131
132static void set_desc_next(struct fsldma_chan *chan,
133			  struct fsl_dma_ld_hw *hw, dma_addr_t next)
134{
135	u64 snoop_bits;
136
137	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
138		? FSL_DMA_SNEN : 0;
139	hw->next_ln_addr = CPU_TO_DMA(chan, snoop_bits | next, 64);
140}
141
142static void set_ld_eol(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
143{
144	u64 snoop_bits;
145
146	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
147		? FSL_DMA_SNEN : 0;
148
149	desc->hw.next_ln_addr = CPU_TO_DMA(chan,
150		DMA_TO_CPU(chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL
151			| snoop_bits, 64);
152}
153
154/*
155 * DMA Engine Hardware Control Helpers
156 */
157
158static void dma_init(struct fsldma_chan *chan)
159{
160	/* Reset the channel */
161	DMA_OUT(chan, &chan->regs->mr, 0, 32);
162
163	switch (chan->feature & FSL_DMA_IP_MASK) {
164	case FSL_DMA_IP_85XX:
165		/* Set the channel to below modes:
166		 * EIE - Error interrupt enable
167		 * EOLNIE - End of links interrupt enable
168		 * BWC - Bandwidth sharing among channels
169		 */
170		DMA_OUT(chan, &chan->regs->mr, FSL_DMA_MR_BWC
171				| FSL_DMA_MR_EIE | FSL_DMA_MR_EOLNIE, 32);
172		break;
173	case FSL_DMA_IP_83XX:
174		/* Set the channel to below modes:
175		 * EOTIE - End-of-transfer interrupt enable
176		 * PRC_RM - PCI read multiple
177		 */
178		DMA_OUT(chan, &chan->regs->mr, FSL_DMA_MR_EOTIE
179				| FSL_DMA_MR_PRC_RM, 32);
180		break;
181	}
182}
183
184static int dma_is_idle(struct fsldma_chan *chan)
185{
186	u32 sr = get_sr(chan);
187	return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH);
188}
189
190/*
191 * Start the DMA controller
192 *
193 * Preconditions:
194 * - the CDAR register must point to the start descriptor
195 * - the MRn[CS] bit must be cleared
196 */
197static void dma_start(struct fsldma_chan *chan)
198{
199	u32 mode;
200
201	mode = DMA_IN(chan, &chan->regs->mr, 32);
202
203	if (chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
204		DMA_OUT(chan, &chan->regs->bcr, 0, 32);
205		mode |= FSL_DMA_MR_EMP_EN;
206	} else {
207		mode &= ~FSL_DMA_MR_EMP_EN;
208	}
209
210	if (chan->feature & FSL_DMA_CHAN_START_EXT) {
211		mode |= FSL_DMA_MR_EMS_EN;
212	} else {
213		mode &= ~FSL_DMA_MR_EMS_EN;
214		mode |= FSL_DMA_MR_CS;
215	}
216
217	DMA_OUT(chan, &chan->regs->mr, mode, 32);
218}
219
220static void dma_halt(struct fsldma_chan *chan)
221{
222	u32 mode;
223	int i;
224
225	/* read the mode register */
226	mode = DMA_IN(chan, &chan->regs->mr, 32);
227
228	/*
229	 * The 85xx controller supports channel abort, which will stop
230	 * the current transfer. On 83xx, this bit is the transfer error
231	 * mask bit, which should not be changed.
232	 */
233	if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
234		mode |= FSL_DMA_MR_CA;
235		DMA_OUT(chan, &chan->regs->mr, mode, 32);
236
237		mode &= ~FSL_DMA_MR_CA;
238	}
239
240	/* stop the DMA controller */
241	mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN);
242	DMA_OUT(chan, &chan->regs->mr, mode, 32);
243
244	/* wait for the DMA controller to become idle */
245	for (i = 0; i < 100; i++) {
246		if (dma_is_idle(chan))
247			return;
248
249		udelay(10);
250	}
251
252	if (!dma_is_idle(chan))
253		chan_err(chan, "DMA halt timeout!\n");
254}
255
256/**
257 * fsl_chan_set_src_loop_size - Set source address hold transfer size
258 * @chan : Freescale DMA channel
259 * @size     : Address loop size, 0 for disable loop
260 *
261 * The set source address hold transfer size. The source
262 * address hold or loop transfer size is when the DMA transfer
263 * data from source address (SA), if the loop size is 4, the DMA will
264 * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
265 * SA + 1 ... and so on.
266 */
267static void fsl_chan_set_src_loop_size(struct fsldma_chan *chan, int size)
268{
269	u32 mode;
270
271	mode = DMA_IN(chan, &chan->regs->mr, 32);
272
273	switch (size) {
274	case 0:
275		mode &= ~FSL_DMA_MR_SAHE;
276		break;
277	case 1:
278	case 2:
279	case 4:
280	case 8:
281		mode |= FSL_DMA_MR_SAHE | (__ilog2(size) << 14);
282		break;
283	}
284
285	DMA_OUT(chan, &chan->regs->mr, mode, 32);
286}
287
288/**
289 * fsl_chan_set_dst_loop_size - Set destination address hold transfer size
290 * @chan : Freescale DMA channel
291 * @size     : Address loop size, 0 for disable loop
292 *
293 * The set destination address hold transfer size. The destination
294 * address hold or loop transfer size is when the DMA transfer
295 * data to destination address (TA), if the loop size is 4, the DMA will
296 * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
297 * TA + 1 ... and so on.
298 */
299static void fsl_chan_set_dst_loop_size(struct fsldma_chan *chan, int size)
300{
301	u32 mode;
302
303	mode = DMA_IN(chan, &chan->regs->mr, 32);
304
305	switch (size) {
306	case 0:
307		mode &= ~FSL_DMA_MR_DAHE;
308		break;
309	case 1:
310	case 2:
311	case 4:
312	case 8:
313		mode |= FSL_DMA_MR_DAHE | (__ilog2(size) << 16);
314		break;
315	}
316
317	DMA_OUT(chan, &chan->regs->mr, mode, 32);
318}
319
320/**
321 * fsl_chan_set_request_count - Set DMA Request Count for external control
322 * @chan : Freescale DMA channel
323 * @size     : Number of bytes to transfer in a single request
324 *
325 * The Freescale DMA channel can be controlled by the external signal DREQ#.
326 * The DMA request count is how many bytes are allowed to transfer before
327 * pausing the channel, after which a new assertion of DREQ# resumes channel
328 * operation.
329 *
330 * A size of 0 disables external pause control. The maximum size is 1024.
331 */
332static void fsl_chan_set_request_count(struct fsldma_chan *chan, int size)
333{
334	u32 mode;
335
336	BUG_ON(size > 1024);
337
338	mode = DMA_IN(chan, &chan->regs->mr, 32);
339	mode |= (__ilog2(size) << 24) & 0x0f000000;
340
341	DMA_OUT(chan, &chan->regs->mr, mode, 32);
342}
343
344/**
345 * fsl_chan_toggle_ext_pause - Toggle channel external pause status
346 * @chan : Freescale DMA channel
347 * @enable   : 0 is disabled, 1 is enabled.
348 *
349 * The Freescale DMA channel can be controlled by the external signal DREQ#.
350 * The DMA Request Count feature should be used in addition to this feature
351 * to set the number of bytes to transfer before pausing the channel.
352 */
353static void fsl_chan_toggle_ext_pause(struct fsldma_chan *chan, int enable)
354{
355	if (enable)
356		chan->feature |= FSL_DMA_CHAN_PAUSE_EXT;
357	else
358		chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT;
359}
360
361/**
362 * fsl_chan_toggle_ext_start - Toggle channel external start status
363 * @chan : Freescale DMA channel
364 * @enable   : 0 is disabled, 1 is enabled.
365 *
366 * If enable the external start, the channel can be started by an
367 * external DMA start pin. So the dma_start() does not start the
368 * transfer immediately. The DMA channel will wait for the
369 * control pin asserted.
370 */
371static void fsl_chan_toggle_ext_start(struct fsldma_chan *chan, int enable)
372{
373	if (enable)
374		chan->feature |= FSL_DMA_CHAN_START_EXT;
375	else
376		chan->feature &= ~FSL_DMA_CHAN_START_EXT;
377}
378
379static void append_ld_queue(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
380{
381	struct fsl_desc_sw *tail = to_fsl_desc(chan->ld_pending.prev);
382
383	if (list_empty(&chan->ld_pending))
384		goto out_splice;
385
386	/*
387	 * Add the hardware descriptor to the chain of hardware descriptors
388	 * that already exists in memory.
389	 *
390	 * This will un-set the EOL bit of the existing transaction, and the
391	 * last link in this transaction will become the EOL descriptor.
392	 */
393	set_desc_next(chan, &tail->hw, desc->async_tx.phys);
394
395	/*
396	 * Add the software descriptor and all children to the list
397	 * of pending transactions
398	 */
399out_splice:
400	list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
401}
402
403static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
404{
405	struct fsldma_chan *chan = to_fsl_chan(tx->chan);
406	struct fsl_desc_sw *desc = tx_to_fsl_desc(tx);
407	struct fsl_desc_sw *child;
408	unsigned long flags;
409	dma_cookie_t cookie;
410
411	spin_lock_irqsave(&chan->desc_lock, flags);
412
413	/*
414	 * assign cookies to all of the software descriptors
415	 * that make up this transaction
416	 */
417	list_for_each_entry(child, &desc->tx_list, node) {
418		cookie = dma_cookie_assign(&child->async_tx);
419	}
420
421	/* put this transaction onto the tail of the pending queue */
422	append_ld_queue(chan, desc);
423
424	spin_unlock_irqrestore(&chan->desc_lock, flags);
425
426	return cookie;
427}
428
429/**
430 * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
431 * @chan : Freescale DMA channel
432 *
433 * Return - The descriptor allocated. NULL for failed.
434 */
435static struct fsl_desc_sw *fsl_dma_alloc_descriptor(struct fsldma_chan *chan)
436{
437	struct fsl_desc_sw *desc;
438	dma_addr_t pdesc;
439
440	desc = dma_pool_alloc(chan->desc_pool, GFP_ATOMIC, &pdesc);
441	if (!desc) {
442		chan_dbg(chan, "out of memory for link descriptor\n");
443		return NULL;
444	}
445
446	memset(desc, 0, sizeof(*desc));
447	INIT_LIST_HEAD(&desc->tx_list);
448	dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
449	desc->async_tx.tx_submit = fsl_dma_tx_submit;
450	desc->async_tx.phys = pdesc;
451
452#ifdef FSL_DMA_LD_DEBUG
453	chan_dbg(chan, "LD %p allocated\n", desc);
454#endif
455
456	return desc;
457}
458
459/**
460 * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
461 * @chan : Freescale DMA channel
462 *
463 * This function will create a dma pool for descriptor allocation.
464 *
465 * Return - The number of descriptors allocated.
466 */
467static int fsl_dma_alloc_chan_resources(struct dma_chan *dchan)
468{
469	struct fsldma_chan *chan = to_fsl_chan(dchan);
470
471	/* Has this channel already been allocated? */
472	if (chan->desc_pool)
473		return 1;
474
475	/*
476	 * We need the descriptor to be aligned to 32bytes
477	 * for meeting FSL DMA specification requirement.
478	 */
479	chan->desc_pool = dma_pool_create(chan->name, chan->dev,
480					  sizeof(struct fsl_desc_sw),
481					  __alignof__(struct fsl_desc_sw), 0);
482	if (!chan->desc_pool) {
483		chan_err(chan, "unable to allocate descriptor pool\n");
484		return -ENOMEM;
485	}
486
487	/* there is at least one descriptor free to be allocated */
488	return 1;
489}
490
491/**
492 * fsldma_free_desc_list - Free all descriptors in a queue
493 * @chan: Freescae DMA channel
494 * @list: the list to free
495 *
496 * LOCKING: must hold chan->desc_lock
497 */
498static void fsldma_free_desc_list(struct fsldma_chan *chan,
499				  struct list_head *list)
500{
501	struct fsl_desc_sw *desc, *_desc;
502
503	list_for_each_entry_safe(desc, _desc, list, node) {
504		list_del(&desc->node);
505#ifdef FSL_DMA_LD_DEBUG
506		chan_dbg(chan, "LD %p free\n", desc);
507#endif
508		dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
509	}
510}
511
512static void fsldma_free_desc_list_reverse(struct fsldma_chan *chan,
513					  struct list_head *list)
514{
515	struct fsl_desc_sw *desc, *_desc;
516
517	list_for_each_entry_safe_reverse(desc, _desc, list, node) {
518		list_del(&desc->node);
519#ifdef FSL_DMA_LD_DEBUG
520		chan_dbg(chan, "LD %p free\n", desc);
521#endif
522		dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
523	}
524}
525
526/**
527 * fsl_dma_free_chan_resources - Free all resources of the channel.
528 * @chan : Freescale DMA channel
529 */
530static void fsl_dma_free_chan_resources(struct dma_chan *dchan)
531{
532	struct fsldma_chan *chan = to_fsl_chan(dchan);
533	unsigned long flags;
534
535	chan_dbg(chan, "free all channel resources\n");
536	spin_lock_irqsave(&chan->desc_lock, flags);
537	fsldma_free_desc_list(chan, &chan->ld_pending);
538	fsldma_free_desc_list(chan, &chan->ld_running);
539	spin_unlock_irqrestore(&chan->desc_lock, flags);
540
541	dma_pool_destroy(chan->desc_pool);
542	chan->desc_pool = NULL;
543}
544
545static struct dma_async_tx_descriptor *
546fsl_dma_prep_interrupt(struct dma_chan *dchan, unsigned long flags)
547{
548	struct fsldma_chan *chan;
549	struct fsl_desc_sw *new;
550
551	if (!dchan)
552		return NULL;
553
554	chan = to_fsl_chan(dchan);
555
556	new = fsl_dma_alloc_descriptor(chan);
557	if (!new) {
558		chan_err(chan, "%s\n", msg_ld_oom);
559		return NULL;
560	}
561
562	new->async_tx.cookie = -EBUSY;
563	new->async_tx.flags = flags;
564
565	/* Insert the link descriptor to the LD ring */
566	list_add_tail(&new->node, &new->tx_list);
567
568	/* Set End-of-link to the last link descriptor of new list */
569	set_ld_eol(chan, new);
570
571	return &new->async_tx;
572}
573
574static struct dma_async_tx_descriptor *
575fsl_dma_prep_memcpy(struct dma_chan *dchan,
576	dma_addr_t dma_dst, dma_addr_t dma_src,
577	size_t len, unsigned long flags)
578{
579	struct fsldma_chan *chan;
580	struct fsl_desc_sw *first = NULL, *prev = NULL, *new;
581	size_t copy;
582
583	if (!dchan)
584		return NULL;
585
586	if (!len)
587		return NULL;
588
589	chan = to_fsl_chan(dchan);
590
591	do {
592
593		/* Allocate the link descriptor from DMA pool */
594		new = fsl_dma_alloc_descriptor(chan);
595		if (!new) {
596			chan_err(chan, "%s\n", msg_ld_oom);
597			goto fail;
598		}
599
600		copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT);
601
602		set_desc_cnt(chan, &new->hw, copy);
603		set_desc_src(chan, &new->hw, dma_src);
604		set_desc_dst(chan, &new->hw, dma_dst);
605
606		if (!first)
607			first = new;
608		else
609			set_desc_next(chan, &prev->hw, new->async_tx.phys);
610
611		new->async_tx.cookie = 0;
612		async_tx_ack(&new->async_tx);
613
614		prev = new;
615		len -= copy;
616		dma_src += copy;
617		dma_dst += copy;
618
619		/* Insert the link descriptor to the LD ring */
620		list_add_tail(&new->node, &first->tx_list);
621	} while (len);
622
623	new->async_tx.flags = flags; /* client is in control of this ack */
624	new->async_tx.cookie = -EBUSY;
625
626	/* Set End-of-link to the last link descriptor of new list */
627	set_ld_eol(chan, new);
628
629	return &first->async_tx;
630
631fail:
632	if (!first)
633		return NULL;
634
635	fsldma_free_desc_list_reverse(chan, &first->tx_list);
636	return NULL;
637}
638
639static struct dma_async_tx_descriptor *fsl_dma_prep_sg(struct dma_chan *dchan,
640	struct scatterlist *dst_sg, unsigned int dst_nents,
641	struct scatterlist *src_sg, unsigned int src_nents,
642	unsigned long flags)
643{
644	struct fsl_desc_sw *first = NULL, *prev = NULL, *new = NULL;
645	struct fsldma_chan *chan = to_fsl_chan(dchan);
646	size_t dst_avail, src_avail;
647	dma_addr_t dst, src;
648	size_t len;
649
650	/* basic sanity checks */
651	if (dst_nents == 0 || src_nents == 0)
652		return NULL;
653
654	if (dst_sg == NULL || src_sg == NULL)
655		return NULL;
656
657	/*
658	 * TODO: should we check that both scatterlists have the same
659	 * TODO: number of bytes in total? Is that really an error?
660	 */
661
662	/* get prepared for the loop */
663	dst_avail = sg_dma_len(dst_sg);
664	src_avail = sg_dma_len(src_sg);
665
666	/* run until we are out of scatterlist entries */
667	while (true) {
668
669		/* create the largest transaction possible */
670		len = min_t(size_t, src_avail, dst_avail);
671		len = min_t(size_t, len, FSL_DMA_BCR_MAX_CNT);
672		if (len == 0)
673			goto fetch;
674
675		dst = sg_dma_address(dst_sg) + sg_dma_len(dst_sg) - dst_avail;
676		src = sg_dma_address(src_sg) + sg_dma_len(src_sg) - src_avail;
677
678		/* allocate and populate the descriptor */
679		new = fsl_dma_alloc_descriptor(chan);
680		if (!new) {
681			chan_err(chan, "%s\n", msg_ld_oom);
682			goto fail;
683		}
684
685		set_desc_cnt(chan, &new->hw, len);
686		set_desc_src(chan, &new->hw, src);
687		set_desc_dst(chan, &new->hw, dst);
688
689		if (!first)
690			first = new;
691		else
692			set_desc_next(chan, &prev->hw, new->async_tx.phys);
693
694		new->async_tx.cookie = 0;
695		async_tx_ack(&new->async_tx);
696		prev = new;
697
698		/* Insert the link descriptor to the LD ring */
699		list_add_tail(&new->node, &first->tx_list);
700
701		/* update metadata */
702		dst_avail -= len;
703		src_avail -= len;
704
705fetch:
706		/* fetch the next dst scatterlist entry */
707		if (dst_avail == 0) {
708
709			/* no more entries: we're done */
710			if (dst_nents == 0)
711				break;
712
713			/* fetch the next entry: if there are no more: done */
714			dst_sg = sg_next(dst_sg);
715			if (dst_sg == NULL)
716				break;
717
718			dst_nents--;
719			dst_avail = sg_dma_len(dst_sg);
720		}
721
722		/* fetch the next src scatterlist entry */
723		if (src_avail == 0) {
724
725			/* no more entries: we're done */
726			if (src_nents == 0)
727				break;
728
729			/* fetch the next entry: if there are no more: done */
730			src_sg = sg_next(src_sg);
731			if (src_sg == NULL)
732				break;
733
734			src_nents--;
735			src_avail = sg_dma_len(src_sg);
736		}
737	}
738
739	new->async_tx.flags = flags; /* client is in control of this ack */
740	new->async_tx.cookie = -EBUSY;
741
742	/* Set End-of-link to the last link descriptor of new list */
743	set_ld_eol(chan, new);
744
745	return &first->async_tx;
746
747fail:
748	if (!first)
749		return NULL;
750
751	fsldma_free_desc_list_reverse(chan, &first->tx_list);
752	return NULL;
753}
754
755/**
756 * fsl_dma_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
757 * @chan: DMA channel
758 * @sgl: scatterlist to transfer to/from
759 * @sg_len: number of entries in @scatterlist
760 * @direction: DMA direction
761 * @flags: DMAEngine flags
762 *
763 * Prepare a set of descriptors for a DMA_SLAVE transaction. Following the
764 * DMA_SLAVE API, this gets the device-specific information from the
765 * chan->private variable.
766 */
767static struct dma_async_tx_descriptor *fsl_dma_prep_slave_sg(
768	struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len,
769	enum dma_transfer_direction direction, unsigned long flags)
770{
771	/*
772	 * This operation is not supported on the Freescale DMA controller
773	 *
774	 * However, we need to provide the function pointer to allow the
775	 * device_control() method to work.
776	 */
777	return NULL;
778}
779
780static int fsl_dma_device_control(struct dma_chan *dchan,
781				  enum dma_ctrl_cmd cmd, unsigned long arg)
782{
783	struct dma_slave_config *config;
784	struct fsldma_chan *chan;
785	unsigned long flags;
786	int size;
787
788	if (!dchan)
789		return -EINVAL;
790
791	chan = to_fsl_chan(dchan);
792
793	switch (cmd) {
794	case DMA_TERMINATE_ALL:
795		spin_lock_irqsave(&chan->desc_lock, flags);
796
797		/* Halt the DMA engine */
798		dma_halt(chan);
799
800		/* Remove and free all of the descriptors in the LD queue */
801		fsldma_free_desc_list(chan, &chan->ld_pending);
802		fsldma_free_desc_list(chan, &chan->ld_running);
803		chan->idle = true;
804
805		spin_unlock_irqrestore(&chan->desc_lock, flags);
806		return 0;
807
808	case DMA_SLAVE_CONFIG:
809		config = (struct dma_slave_config *)arg;
810
811		/* make sure the channel supports setting burst size */
812		if (!chan->set_request_count)
813			return -ENXIO;
814
815		/* we set the controller burst size depending on direction */
816		if (config->direction == DMA_MEM_TO_DEV)
817			size = config->dst_addr_width * config->dst_maxburst;
818		else
819			size = config->src_addr_width * config->src_maxburst;
820
821		chan->set_request_count(chan, size);
822		return 0;
823
824	case FSLDMA_EXTERNAL_START:
825
826		/* make sure the channel supports external start */
827		if (!chan->toggle_ext_start)
828			return -ENXIO;
829
830		chan->toggle_ext_start(chan, arg);
831		return 0;
832
833	default:
834		return -ENXIO;
835	}
836
837	return 0;
838}
839
840/**
841 * fsldma_cleanup_descriptor - cleanup and free a single link descriptor
842 * @chan: Freescale DMA channel
843 * @desc: descriptor to cleanup and free
844 *
845 * This function is used on a descriptor which has been executed by the DMA
846 * controller. It will run any callbacks, submit any dependencies, and then
847 * free the descriptor.
848 */
849static void fsldma_cleanup_descriptor(struct fsldma_chan *chan,
850				      struct fsl_desc_sw *desc)
851{
852	struct dma_async_tx_descriptor *txd = &desc->async_tx;
853	struct device *dev = chan->common.device->dev;
854	dma_addr_t src = get_desc_src(chan, desc);
855	dma_addr_t dst = get_desc_dst(chan, desc);
856	u32 len = get_desc_cnt(chan, desc);
857
858	/* Run the link descriptor callback function */
859	if (txd->callback) {
860#ifdef FSL_DMA_LD_DEBUG
861		chan_dbg(chan, "LD %p callback\n", desc);
862#endif
863		txd->callback(txd->callback_param);
864	}
865
866	/* Run any dependencies */
867	dma_run_dependencies(txd);
868
869	/* Unmap the dst buffer, if requested */
870	if (!(txd->flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
871		if (txd->flags & DMA_COMPL_DEST_UNMAP_SINGLE)
872			dma_unmap_single(dev, dst, len, DMA_FROM_DEVICE);
873		else
874			dma_unmap_page(dev, dst, len, DMA_FROM_DEVICE);
875	}
876
877	/* Unmap the src buffer, if requested */
878	if (!(txd->flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
879		if (txd->flags & DMA_COMPL_SRC_UNMAP_SINGLE)
880			dma_unmap_single(dev, src, len, DMA_TO_DEVICE);
881		else
882			dma_unmap_page(dev, src, len, DMA_TO_DEVICE);
883	}
884
885#ifdef FSL_DMA_LD_DEBUG
886	chan_dbg(chan, "LD %p free\n", desc);
887#endif
888	dma_pool_free(chan->desc_pool, desc, txd->phys);
889}
890
891/**
892 * fsl_chan_xfer_ld_queue - transfer any pending transactions
893 * @chan : Freescale DMA channel
894 *
895 * HARDWARE STATE: idle
896 * LOCKING: must hold chan->desc_lock
897 */
898static void fsl_chan_xfer_ld_queue(struct fsldma_chan *chan)
899{
900	struct fsl_desc_sw *desc;
901
902	/*
903	 * If the list of pending descriptors is empty, then we
904	 * don't need to do any work at all
905	 */
906	if (list_empty(&chan->ld_pending)) {
907		chan_dbg(chan, "no pending LDs\n");
908		return;
909	}
910
911	/*
912	 * The DMA controller is not idle, which means that the interrupt
913	 * handler will start any queued transactions when it runs after
914	 * this transaction finishes
915	 */
916	if (!chan->idle) {
917		chan_dbg(chan, "DMA controller still busy\n");
918		return;
919	}
920
921	/*
922	 * If there are some link descriptors which have not been
923	 * transferred, we need to start the controller
924	 */
925
926	/*
927	 * Move all elements from the queue of pending transactions
928	 * onto the list of running transactions
929	 */
930	chan_dbg(chan, "idle, starting controller\n");
931	desc = list_first_entry(&chan->ld_pending, struct fsl_desc_sw, node);
932	list_splice_tail_init(&chan->ld_pending, &chan->ld_running);
933
934	/*
935	 * The 85xx DMA controller doesn't clear the channel start bit
936	 * automatically at the end of a transfer. Therefore we must clear
937	 * it in software before starting the transfer.
938	 */
939	if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
940		u32 mode;
941
942		mode = DMA_IN(chan, &chan->regs->mr, 32);
943		mode &= ~FSL_DMA_MR_CS;
944		DMA_OUT(chan, &chan->regs->mr, mode, 32);
945	}
946
947	/*
948	 * Program the descriptor's address into the DMA controller,
949	 * then start the DMA transaction
950	 */
951	set_cdar(chan, desc->async_tx.phys);
952	get_cdar(chan);
953
954	dma_start(chan);
955	chan->idle = false;
956}
957
958/**
959 * fsl_dma_memcpy_issue_pending - Issue the DMA start command
960 * @chan : Freescale DMA channel
961 */
962static void fsl_dma_memcpy_issue_pending(struct dma_chan *dchan)
963{
964	struct fsldma_chan *chan = to_fsl_chan(dchan);
965	unsigned long flags;
966
967	spin_lock_irqsave(&chan->desc_lock, flags);
968	fsl_chan_xfer_ld_queue(chan);
969	spin_unlock_irqrestore(&chan->desc_lock, flags);
970}
971
972/**
973 * fsl_tx_status - Determine the DMA status
974 * @chan : Freescale DMA channel
975 */
976static enum dma_status fsl_tx_status(struct dma_chan *dchan,
977					dma_cookie_t cookie,
978					struct dma_tx_state *txstate)
979{
980	struct fsldma_chan *chan = to_fsl_chan(dchan);
981	dma_cookie_t last_complete;
982	dma_cookie_t last_used;
983	unsigned long flags;
984
985	spin_lock_irqsave(&chan->desc_lock, flags);
986
987	last_complete = dchan->completed_cookie;
988	last_used = dchan->cookie;
989
990	spin_unlock_irqrestore(&chan->desc_lock, flags);
991
992	dma_set_tx_state(txstate, last_complete, last_used, 0);
993	return dma_async_is_complete(cookie, last_complete, last_used);
994}
995
996/*----------------------------------------------------------------------------*/
997/* Interrupt Handling                                                         */
998/*----------------------------------------------------------------------------*/
999
1000static irqreturn_t fsldma_chan_irq(int irq, void *data)
1001{
1002	struct fsldma_chan *chan = data;
1003	u32 stat;
1004
1005	/* save and clear the status register */
1006	stat = get_sr(chan);
1007	set_sr(chan, stat);
1008	chan_dbg(chan, "irq: stat = 0x%x\n", stat);
1009
1010	/* check that this was really our device */
1011	stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH);
1012	if (!stat)
1013		return IRQ_NONE;
1014
1015	if (stat & FSL_DMA_SR_TE)
1016		chan_err(chan, "Transfer Error!\n");
1017
1018	/*
1019	 * Programming Error
1020	 * The DMA_INTERRUPT async_tx is a NULL transfer, which will
1021	 * triger a PE interrupt.
1022	 */
1023	if (stat & FSL_DMA_SR_PE) {
1024		chan_dbg(chan, "irq: Programming Error INT\n");
1025		stat &= ~FSL_DMA_SR_PE;
1026		if (get_bcr(chan) != 0)
1027			chan_err(chan, "Programming Error!\n");
1028	}
1029
1030	/*
1031	 * For MPC8349, EOCDI event need to update cookie
1032	 * and start the next transfer if it exist.
1033	 */
1034	if (stat & FSL_DMA_SR_EOCDI) {
1035		chan_dbg(chan, "irq: End-of-Chain link INT\n");
1036		stat &= ~FSL_DMA_SR_EOCDI;
1037	}
1038
1039	/*
1040	 * If it current transfer is the end-of-transfer,
1041	 * we should clear the Channel Start bit for
1042	 * prepare next transfer.
1043	 */
1044	if (stat & FSL_DMA_SR_EOLNI) {
1045		chan_dbg(chan, "irq: End-of-link INT\n");
1046		stat &= ~FSL_DMA_SR_EOLNI;
1047	}
1048
1049	/* check that the DMA controller is really idle */
1050	if (!dma_is_idle(chan))
1051		chan_err(chan, "irq: controller not idle!\n");
1052
1053	/* check that we handled all of the bits */
1054	if (stat)
1055		chan_err(chan, "irq: unhandled sr 0x%08x\n", stat);
1056
1057	/*
1058	 * Schedule the tasklet to handle all cleanup of the current
1059	 * transaction. It will start a new transaction if there is
1060	 * one pending.
1061	 */
1062	tasklet_schedule(&chan->tasklet);
1063	chan_dbg(chan, "irq: Exit\n");
1064	return IRQ_HANDLED;
1065}
1066
1067static void dma_do_tasklet(unsigned long data)
1068{
1069	struct fsldma_chan *chan = (struct fsldma_chan *)data;
1070	struct fsl_desc_sw *desc, *_desc;
1071	LIST_HEAD(ld_cleanup);
1072	unsigned long flags;
1073
1074	chan_dbg(chan, "tasklet entry\n");
1075
1076	spin_lock_irqsave(&chan->desc_lock, flags);
1077
1078	/* update the cookie if we have some descriptors to cleanup */
1079	if (!list_empty(&chan->ld_running)) {
1080		dma_cookie_t cookie;
1081
1082		desc = to_fsl_desc(chan->ld_running.prev);
1083		cookie = desc->async_tx.cookie;
1084		dma_cookie_complete(&desc->async_tx);
1085
1086		chan_dbg(chan, "completed_cookie=%d\n", cookie);
1087	}
1088
1089	/*
1090	 * move the descriptors to a temporary list so we can drop the lock
1091	 * during the entire cleanup operation
1092	 */
1093	list_splice_tail_init(&chan->ld_running, &ld_cleanup);
1094
1095	/* the hardware is now idle and ready for more */
1096	chan->idle = true;
1097
1098	/*
1099	 * Start any pending transactions automatically
1100	 *
1101	 * In the ideal case, we keep the DMA controller busy while we go
1102	 * ahead and free the descriptors below.
1103	 */
1104	fsl_chan_xfer_ld_queue(chan);
1105	spin_unlock_irqrestore(&chan->desc_lock, flags);
1106
1107	/* Run the callback for each descriptor, in order */
1108	list_for_each_entry_safe(desc, _desc, &ld_cleanup, node) {
1109
1110		/* Remove from the list of transactions */
1111		list_del(&desc->node);
1112
1113		/* Run all cleanup for this descriptor */
1114		fsldma_cleanup_descriptor(chan, desc);
1115	}
1116
1117	chan_dbg(chan, "tasklet exit\n");
1118}
1119
1120static irqreturn_t fsldma_ctrl_irq(int irq, void *data)
1121{
1122	struct fsldma_device *fdev = data;
1123	struct fsldma_chan *chan;
1124	unsigned int handled = 0;
1125	u32 gsr, mask;
1126	int i;
1127
1128	gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->regs)
1129						   : in_le32(fdev->regs);
1130	mask = 0xff000000;
1131	dev_dbg(fdev->dev, "IRQ: gsr 0x%.8x\n", gsr);
1132
1133	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1134		chan = fdev->chan[i];
1135		if (!chan)
1136			continue;
1137
1138		if (gsr & mask) {
1139			dev_dbg(fdev->dev, "IRQ: chan %d\n", chan->id);
1140			fsldma_chan_irq(irq, chan);
1141			handled++;
1142		}
1143
1144		gsr &= ~mask;
1145		mask >>= 8;
1146	}
1147
1148	return IRQ_RETVAL(handled);
1149}
1150
1151static void fsldma_free_irqs(struct fsldma_device *fdev)
1152{
1153	struct fsldma_chan *chan;
1154	int i;
1155
1156	if (fdev->irq != NO_IRQ) {
1157		dev_dbg(fdev->dev, "free per-controller IRQ\n");
1158		free_irq(fdev->irq, fdev);
1159		return;
1160	}
1161
1162	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1163		chan = fdev->chan[i];
1164		if (chan && chan->irq != NO_IRQ) {
1165			chan_dbg(chan, "free per-channel IRQ\n");
1166			free_irq(chan->irq, chan);
1167		}
1168	}
1169}
1170
1171static int fsldma_request_irqs(struct fsldma_device *fdev)
1172{
1173	struct fsldma_chan *chan;
1174	int ret;
1175	int i;
1176
1177	/* if we have a per-controller IRQ, use that */
1178	if (fdev->irq != NO_IRQ) {
1179		dev_dbg(fdev->dev, "request per-controller IRQ\n");
1180		ret = request_irq(fdev->irq, fsldma_ctrl_irq, IRQF_SHARED,
1181				  "fsldma-controller", fdev);
1182		return ret;
1183	}
1184
1185	/* no per-controller IRQ, use the per-channel IRQs */
1186	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1187		chan = fdev->chan[i];
1188		if (!chan)
1189			continue;
1190
1191		if (chan->irq == NO_IRQ) {
1192			chan_err(chan, "interrupts property missing in device tree\n");
1193			ret = -ENODEV;
1194			goto out_unwind;
1195		}
1196
1197		chan_dbg(chan, "request per-channel IRQ\n");
1198		ret = request_irq(chan->irq, fsldma_chan_irq, IRQF_SHARED,
1199				  "fsldma-chan", chan);
1200		if (ret) {
1201			chan_err(chan, "unable to request per-channel IRQ\n");
1202			goto out_unwind;
1203		}
1204	}
1205
1206	return 0;
1207
1208out_unwind:
1209	for (/* none */; i >= 0; i--) {
1210		chan = fdev->chan[i];
1211		if (!chan)
1212			continue;
1213
1214		if (chan->irq == NO_IRQ)
1215			continue;
1216
1217		free_irq(chan->irq, chan);
1218	}
1219
1220	return ret;
1221}
1222
1223/*----------------------------------------------------------------------------*/
1224/* OpenFirmware Subsystem                                                     */
1225/*----------------------------------------------------------------------------*/
1226
1227static int __devinit fsl_dma_chan_probe(struct fsldma_device *fdev,
1228	struct device_node *node, u32 feature, const char *compatible)
1229{
1230	struct fsldma_chan *chan;
1231	struct resource res;
1232	int err;
1233
1234	/* alloc channel */
1235	chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1236	if (!chan) {
1237		dev_err(fdev->dev, "no free memory for DMA channels!\n");
1238		err = -ENOMEM;
1239		goto out_return;
1240	}
1241
1242	/* ioremap registers for use */
1243	chan->regs = of_iomap(node, 0);
1244	if (!chan->regs) {
1245		dev_err(fdev->dev, "unable to ioremap registers\n");
1246		err = -ENOMEM;
1247		goto out_free_chan;
1248	}
1249
1250	err = of_address_to_resource(node, 0, &res);
1251	if (err) {
1252		dev_err(fdev->dev, "unable to find 'reg' property\n");
1253		goto out_iounmap_regs;
1254	}
1255
1256	chan->feature = feature;
1257	if (!fdev->feature)
1258		fdev->feature = chan->feature;
1259
1260	/*
1261	 * If the DMA device's feature is different than the feature
1262	 * of its channels, report the bug
1263	 */
1264	WARN_ON(fdev->feature != chan->feature);
1265
1266	chan->dev = fdev->dev;
1267	chan->id = ((res.start - 0x100) & 0xfff) >> 7;
1268	if (chan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) {
1269		dev_err(fdev->dev, "too many channels for device\n");
1270		err = -EINVAL;
1271		goto out_iounmap_regs;
1272	}
1273
1274	fdev->chan[chan->id] = chan;
1275	tasklet_init(&chan->tasklet, dma_do_tasklet, (unsigned long)chan);
1276	snprintf(chan->name, sizeof(chan->name), "chan%d", chan->id);
1277
1278	/* Initialize the channel */
1279	dma_init(chan);
1280
1281	/* Clear cdar registers */
1282	set_cdar(chan, 0);
1283
1284	switch (chan->feature & FSL_DMA_IP_MASK) {
1285	case FSL_DMA_IP_85XX:
1286		chan->toggle_ext_pause = fsl_chan_toggle_ext_pause;
1287	case FSL_DMA_IP_83XX:
1288		chan->toggle_ext_start = fsl_chan_toggle_ext_start;
1289		chan->set_src_loop_size = fsl_chan_set_src_loop_size;
1290		chan->set_dst_loop_size = fsl_chan_set_dst_loop_size;
1291		chan->set_request_count = fsl_chan_set_request_count;
1292	}
1293
1294	spin_lock_init(&chan->desc_lock);
1295	INIT_LIST_HEAD(&chan->ld_pending);
1296	INIT_LIST_HEAD(&chan->ld_running);
1297	chan->idle = true;
1298
1299	chan->common.device = &fdev->common;
1300
1301	/* find the IRQ line, if it exists in the device tree */
1302	chan->irq = irq_of_parse_and_map(node, 0);
1303
1304	/* Add the channel to DMA device channel list */
1305	list_add_tail(&chan->common.device_node, &fdev->common.channels);
1306	fdev->common.chancnt++;
1307
1308	dev_info(fdev->dev, "#%d (%s), irq %d\n", chan->id, compatible,
1309		 chan->irq != NO_IRQ ? chan->irq : fdev->irq);
1310
1311	return 0;
1312
1313out_iounmap_regs:
1314	iounmap(chan->regs);
1315out_free_chan:
1316	kfree(chan);
1317out_return:
1318	return err;
1319}
1320
1321static void fsl_dma_chan_remove(struct fsldma_chan *chan)
1322{
1323	irq_dispose_mapping(chan->irq);
1324	list_del(&chan->common.device_node);
1325	iounmap(chan->regs);
1326	kfree(chan);
1327}
1328
1329static int __devinit fsldma_of_probe(struct platform_device *op)
1330{
1331	struct fsldma_device *fdev;
1332	struct device_node *child;
1333	int err;
1334
1335	fdev = kzalloc(sizeof(*fdev), GFP_KERNEL);
1336	if (!fdev) {
1337		dev_err(&op->dev, "No enough memory for 'priv'\n");
1338		err = -ENOMEM;
1339		goto out_return;
1340	}
1341
1342	fdev->dev = &op->dev;
1343	INIT_LIST_HEAD(&fdev->common.channels);
1344
1345	/* ioremap the registers for use */
1346	fdev->regs = of_iomap(op->dev.of_node, 0);
1347	if (!fdev->regs) {
1348		dev_err(&op->dev, "unable to ioremap registers\n");
1349		err = -ENOMEM;
1350		goto out_free_fdev;
1351	}
1352
1353	/* map the channel IRQ if it exists, but don't hookup the handler yet */
1354	fdev->irq = irq_of_parse_and_map(op->dev.of_node, 0);
1355
1356	dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
1357	dma_cap_set(DMA_INTERRUPT, fdev->common.cap_mask);
1358	dma_cap_set(DMA_SG, fdev->common.cap_mask);
1359	dma_cap_set(DMA_SLAVE, fdev->common.cap_mask);
1360	fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
1361	fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
1362	fdev->common.device_prep_dma_interrupt = fsl_dma_prep_interrupt;
1363	fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
1364	fdev->common.device_prep_dma_sg = fsl_dma_prep_sg;
1365	fdev->common.device_tx_status = fsl_tx_status;
1366	fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
1367	fdev->common.device_prep_slave_sg = fsl_dma_prep_slave_sg;
1368	fdev->common.device_control = fsl_dma_device_control;
1369	fdev->common.dev = &op->dev;
1370
1371	dma_set_mask(&(op->dev), DMA_BIT_MASK(36));
1372
1373	dev_set_drvdata(&op->dev, fdev);
1374
1375	/*
1376	 * We cannot use of_platform_bus_probe() because there is no
1377	 * of_platform_bus_remove(). Instead, we manually instantiate every DMA
1378	 * channel object.
1379	 */
1380	for_each_child_of_node(op->dev.of_node, child) {
1381		if (of_device_is_compatible(child, "fsl,eloplus-dma-channel")) {
1382			fsl_dma_chan_probe(fdev, child,
1383				FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN,
1384				"fsl,eloplus-dma-channel");
1385		}
1386
1387		if (of_device_is_compatible(child, "fsl,elo-dma-channel")) {
1388			fsl_dma_chan_probe(fdev, child,
1389				FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN,
1390				"fsl,elo-dma-channel");
1391		}
1392	}
1393
1394	/*
1395	 * Hookup the IRQ handler(s)
1396	 *
1397	 * If we have a per-controller interrupt, we prefer that to the
1398	 * per-channel interrupts to reduce the number of shared interrupt
1399	 * handlers on the same IRQ line
1400	 */
1401	err = fsldma_request_irqs(fdev);
1402	if (err) {
1403		dev_err(fdev->dev, "unable to request IRQs\n");
1404		goto out_free_fdev;
1405	}
1406
1407	dma_async_device_register(&fdev->common);
1408	return 0;
1409
1410out_free_fdev:
1411	irq_dispose_mapping(fdev->irq);
1412	kfree(fdev);
1413out_return:
1414	return err;
1415}
1416
1417static int fsldma_of_remove(struct platform_device *op)
1418{
1419	struct fsldma_device *fdev;
1420	unsigned int i;
1421
1422	fdev = dev_get_drvdata(&op->dev);
1423	dma_async_device_unregister(&fdev->common);
1424
1425	fsldma_free_irqs(fdev);
1426
1427	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1428		if (fdev->chan[i])
1429			fsl_dma_chan_remove(fdev->chan[i]);
1430	}
1431
1432	iounmap(fdev->regs);
1433	dev_set_drvdata(&op->dev, NULL);
1434	kfree(fdev);
1435
1436	return 0;
1437}
1438
1439static const struct of_device_id fsldma_of_ids[] = {
1440	{ .compatible = "fsl,eloplus-dma", },
1441	{ .compatible = "fsl,elo-dma", },
1442	{}
1443};
1444
1445static struct platform_driver fsldma_of_driver = {
1446	.driver = {
1447		.name = "fsl-elo-dma",
1448		.owner = THIS_MODULE,
1449		.of_match_table = fsldma_of_ids,
1450	},
1451	.probe = fsldma_of_probe,
1452	.remove = fsldma_of_remove,
1453};
1454
1455/*----------------------------------------------------------------------------*/
1456/* Module Init / Exit                                                         */
1457/*----------------------------------------------------------------------------*/
1458
1459static __init int fsldma_init(void)
1460{
1461	pr_info("Freescale Elo / Elo Plus DMA driver\n");
1462	return platform_driver_register(&fsldma_of_driver);
1463}
1464
1465static void __exit fsldma_exit(void)
1466{
1467	platform_driver_unregister(&fsldma_of_driver);
1468}
1469
1470subsys_initcall(fsldma_init);
1471module_exit(fsldma_exit);
1472
1473MODULE_DESCRIPTION("Freescale Elo / Elo Plus DMA driver");
1474MODULE_LICENSE("GPL");
1475