1#include <linux/types.h>
2#include <linux/string.h>
3#include <linux/init.h>
4#include <linux/module.h>
5#include <linux/ctype.h>
6#include <linux/dmi.h>
7#include <linux/efi.h>
8#include <linux/bootmem.h>
9#include <asm/dmi.h>
10
11/*
12 * DMI stands for "Desktop Management Interface".  It is part
13 * of and an antecedent to, SMBIOS, which stands for System
14 * Management BIOS.  See further: http://www.dmtf.org/standards
15 */
16static char dmi_empty_string[] = "        ";
17
18/*
19 * Catch too early calls to dmi_check_system():
20 */
21static int dmi_initialized;
22
23static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
24{
25	const u8 *bp = ((u8 *) dm) + dm->length;
26
27	if (s) {
28		s--;
29		while (s > 0 && *bp) {
30			bp += strlen(bp) + 1;
31			s--;
32		}
33
34		if (*bp != 0) {
35			size_t len = strlen(bp)+1;
36			size_t cmp_len = len > 8 ? 8 : len;
37
38			if (!memcmp(bp, dmi_empty_string, cmp_len))
39				return dmi_empty_string;
40			return bp;
41		}
42	}
43
44	return "";
45}
46
47static char * __init dmi_string(const struct dmi_header *dm, u8 s)
48{
49	const char *bp = dmi_string_nosave(dm, s);
50	char *str;
51	size_t len;
52
53	if (bp == dmi_empty_string)
54		return dmi_empty_string;
55
56	len = strlen(bp) + 1;
57	str = dmi_alloc(len);
58	if (str != NULL)
59		strcpy(str, bp);
60	else
61		printk(KERN_ERR "dmi_string: cannot allocate %Zu bytes.\n", len);
62
63	return str;
64}
65
66/*
67 *	We have to be cautious here. We have seen BIOSes with DMI pointers
68 *	pointing to completely the wrong place for example
69 */
70static void dmi_table(u8 *buf, int len, int num,
71		      void (*decode)(const struct dmi_header *, void *),
72		      void *private_data)
73{
74	u8 *data = buf;
75	int i = 0;
76
77	/*
78	 *	Stop when we see all the items the table claimed to have
79	 *	OR we run off the end of the table (also happens)
80	 */
81	while ((i < num) && (data - buf + sizeof(struct dmi_header)) <= len) {
82		const struct dmi_header *dm = (const struct dmi_header *)data;
83
84		/*
85		 *  We want to know the total length (formatted area and
86		 *  strings) before decoding to make sure we won't run off the
87		 *  table in dmi_decode or dmi_string
88		 */
89		data += dm->length;
90		while ((data - buf < len - 1) && (data[0] || data[1]))
91			data++;
92		if (data - buf < len - 1)
93			decode(dm, private_data);
94		data += 2;
95		i++;
96	}
97}
98
99static u32 dmi_base;
100static u16 dmi_len;
101static u16 dmi_num;
102
103static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
104		void *))
105{
106	u8 *buf;
107
108	buf = dmi_ioremap(dmi_base, dmi_len);
109	if (buf == NULL)
110		return -1;
111
112	dmi_table(buf, dmi_len, dmi_num, decode, NULL);
113
114	dmi_iounmap(buf, dmi_len);
115	return 0;
116}
117
118static int __init dmi_checksum(const u8 *buf)
119{
120	u8 sum = 0;
121	int a;
122
123	for (a = 0; a < 15; a++)
124		sum += buf[a];
125
126	return sum == 0;
127}
128
129static char *dmi_ident[DMI_STRING_MAX];
130static LIST_HEAD(dmi_devices);
131int dmi_available;
132
133/*
134 *	Save a DMI string
135 */
136static void __init dmi_save_ident(const struct dmi_header *dm, int slot, int string)
137{
138	const char *d = (const char*) dm;
139	char *p;
140
141	if (dmi_ident[slot])
142		return;
143
144	p = dmi_string(dm, d[string]);
145	if (p == NULL)
146		return;
147
148	dmi_ident[slot] = p;
149}
150
151static void __init dmi_save_uuid(const struct dmi_header *dm, int slot, int index)
152{
153	const u8 *d = (u8*) dm + index;
154	char *s;
155	int is_ff = 1, is_00 = 1, i;
156
157	if (dmi_ident[slot])
158		return;
159
160	for (i = 0; i < 16 && (is_ff || is_00); i++) {
161		if(d[i] != 0x00) is_ff = 0;
162		if(d[i] != 0xFF) is_00 = 0;
163	}
164
165	if (is_ff || is_00)
166		return;
167
168	s = dmi_alloc(16*2+4+1);
169	if (!s)
170		return;
171
172	sprintf(s, "%pUB", d);
173
174        dmi_ident[slot] = s;
175}
176
177static void __init dmi_save_type(const struct dmi_header *dm, int slot, int index)
178{
179	const u8 *d = (u8*) dm + index;
180	char *s;
181
182	if (dmi_ident[slot])
183		return;
184
185	s = dmi_alloc(4);
186	if (!s)
187		return;
188
189	sprintf(s, "%u", *d & 0x7F);
190	dmi_ident[slot] = s;
191}
192
193static void __init dmi_save_one_device(int type, const char *name)
194{
195	struct dmi_device *dev;
196
197	/* No duplicate device */
198	if (dmi_find_device(type, name, NULL))
199		return;
200
201	dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
202	if (!dev) {
203		printk(KERN_ERR "dmi_save_one_device: out of memory.\n");
204		return;
205	}
206
207	dev->type = type;
208	strcpy((char *)(dev + 1), name);
209	dev->name = (char *)(dev + 1);
210	dev->device_data = NULL;
211	list_add(&dev->list, &dmi_devices);
212}
213
214static void __init dmi_save_devices(const struct dmi_header *dm)
215{
216	int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
217
218	for (i = 0; i < count; i++) {
219		const char *d = (char *)(dm + 1) + (i * 2);
220
221		/* Skip disabled device */
222		if ((*d & 0x80) == 0)
223			continue;
224
225		dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
226	}
227}
228
229static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
230{
231	int i, count = *(u8 *)(dm + 1);
232	struct dmi_device *dev;
233
234	for (i = 1; i <= count; i++) {
235		char *devname = dmi_string(dm, i);
236
237		if (devname == dmi_empty_string)
238			continue;
239
240		dev = dmi_alloc(sizeof(*dev));
241		if (!dev) {
242			printk(KERN_ERR
243			   "dmi_save_oem_strings_devices: out of memory.\n");
244			break;
245		}
246
247		dev->type = DMI_DEV_TYPE_OEM_STRING;
248		dev->name = devname;
249		dev->device_data = NULL;
250
251		list_add(&dev->list, &dmi_devices);
252	}
253}
254
255static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
256{
257	struct dmi_device *dev;
258	void * data;
259
260	data = dmi_alloc(dm->length);
261	if (data == NULL) {
262		printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n");
263		return;
264	}
265
266	memcpy(data, dm, dm->length);
267
268	dev = dmi_alloc(sizeof(*dev));
269	if (!dev) {
270		printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n");
271		return;
272	}
273
274	dev->type = DMI_DEV_TYPE_IPMI;
275	dev->name = "IPMI controller";
276	dev->device_data = data;
277
278	list_add_tail(&dev->list, &dmi_devices);
279}
280
281static void __init dmi_save_dev_onboard(int instance, int segment, int bus,
282					int devfn, const char *name)
283{
284	struct dmi_dev_onboard *onboard_dev;
285
286	onboard_dev = dmi_alloc(sizeof(*onboard_dev) + strlen(name) + 1);
287	if (!onboard_dev) {
288		printk(KERN_ERR "dmi_save_dev_onboard: out of memory.\n");
289		return;
290	}
291	onboard_dev->instance = instance;
292	onboard_dev->segment = segment;
293	onboard_dev->bus = bus;
294	onboard_dev->devfn = devfn;
295
296	strcpy((char *)&onboard_dev[1], name);
297	onboard_dev->dev.type = DMI_DEV_TYPE_DEV_ONBOARD;
298	onboard_dev->dev.name = (char *)&onboard_dev[1];
299	onboard_dev->dev.device_data = onboard_dev;
300
301	list_add(&onboard_dev->dev.list, &dmi_devices);
302}
303
304static void __init dmi_save_extended_devices(const struct dmi_header *dm)
305{
306	const u8 *d = (u8*) dm + 5;
307
308	/* Skip disabled device */
309	if ((*d & 0x80) == 0)
310		return;
311
312	dmi_save_dev_onboard(*(d+1), *(u16 *)(d+2), *(d+4), *(d+5),
313			     dmi_string_nosave(dm, *(d-1)));
314	dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d - 1)));
315}
316
317/*
318 *	Process a DMI table entry. Right now all we care about are the BIOS
319 *	and machine entries. For 2.5 we should pull the smbus controller info
320 *	out of here.
321 */
322static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
323{
324	switch(dm->type) {
325	case 0:		/* BIOS Information */
326		dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
327		dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
328		dmi_save_ident(dm, DMI_BIOS_DATE, 8);
329		break;
330	case 1:		/* System Information */
331		dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
332		dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
333		dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
334		dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
335		dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
336		break;
337	case 2:		/* Base Board Information */
338		dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
339		dmi_save_ident(dm, DMI_BOARD_NAME, 5);
340		dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
341		dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
342		dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
343		break;
344	case 3:		/* Chassis Information */
345		dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
346		dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
347		dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
348		dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
349		dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
350		break;
351	case 10:	/* Onboard Devices Information */
352		dmi_save_devices(dm);
353		break;
354	case 11:	/* OEM Strings */
355		dmi_save_oem_strings_devices(dm);
356		break;
357	case 38:	/* IPMI Device Information */
358		dmi_save_ipmi_device(dm);
359		break;
360	case 41:	/* Onboard Devices Extended Information */
361		dmi_save_extended_devices(dm);
362	}
363}
364
365static void __init print_filtered(const char *info)
366{
367	const char *p;
368
369	if (!info)
370		return;
371
372	for (p = info; *p; p++)
373		if (isprint(*p))
374			printk(KERN_CONT "%c", *p);
375		else
376			printk(KERN_CONT "\\x%02x", *p & 0xff);
377}
378
379static void __init dmi_dump_ids(void)
380{
381	const char *board;	/* Board Name is optional */
382
383	printk(KERN_DEBUG "DMI: ");
384	print_filtered(dmi_get_system_info(DMI_SYS_VENDOR));
385	printk(KERN_CONT " ");
386	print_filtered(dmi_get_system_info(DMI_PRODUCT_NAME));
387	board = dmi_get_system_info(DMI_BOARD_NAME);
388	if (board) {
389		printk(KERN_CONT "/");
390		print_filtered(board);
391	}
392	printk(KERN_CONT ", BIOS ");
393	print_filtered(dmi_get_system_info(DMI_BIOS_VERSION));
394	printk(KERN_CONT " ");
395	print_filtered(dmi_get_system_info(DMI_BIOS_DATE));
396	printk(KERN_CONT "\n");
397}
398
399static int __init dmi_present(const char __iomem *p)
400{
401	u8 buf[15];
402
403	memcpy_fromio(buf, p, 15);
404	if ((memcmp(buf, "_DMI_", 5) == 0) && dmi_checksum(buf)) {
405		dmi_num = (buf[13] << 8) | buf[12];
406		dmi_len = (buf[7] << 8) | buf[6];
407		dmi_base = (buf[11] << 24) | (buf[10] << 16) |
408			(buf[9] << 8) | buf[8];
409
410		/*
411		 * DMI version 0.0 means that the real version is taken from
412		 * the SMBIOS version, which we don't know at this point.
413		 */
414		if (buf[14] != 0)
415			printk(KERN_INFO "DMI %d.%d present.\n",
416			       buf[14] >> 4, buf[14] & 0xF);
417		else
418			printk(KERN_INFO "DMI present.\n");
419		if (dmi_walk_early(dmi_decode) == 0) {
420			dmi_dump_ids();
421			return 0;
422		}
423	}
424	return 1;
425}
426
427void __init dmi_scan_machine(void)
428{
429	char __iomem *p, *q;
430	int rc;
431
432	if (efi_enabled) {
433		if (efi.smbios == EFI_INVALID_TABLE_ADDR)
434			goto error;
435
436		/* This is called as a core_initcall() because it isn't
437		 * needed during early boot.  This also means we can
438		 * iounmap the space when we're done with it.
439		 */
440		p = dmi_ioremap(efi.smbios, 32);
441		if (p == NULL)
442			goto error;
443
444		rc = dmi_present(p + 0x10); /* offset of _DMI_ string */
445		dmi_iounmap(p, 32);
446		if (!rc) {
447			dmi_available = 1;
448			goto out;
449		}
450	}
451	else {
452		/*
453		 * no iounmap() for that ioremap(); it would be a no-op, but
454		 * it's so early in setup that sucker gets confused into doing
455		 * what it shouldn't if we actually call it.
456		 */
457		p = dmi_ioremap(0xF0000, 0x10000);
458		if (p == NULL)
459			goto error;
460
461		for (q = p; q < p + 0x10000; q += 16) {
462			rc = dmi_present(q);
463			if (!rc) {
464				dmi_available = 1;
465				dmi_iounmap(p, 0x10000);
466				goto out;
467			}
468		}
469		dmi_iounmap(p, 0x10000);
470	}
471 error:
472	printk(KERN_INFO "DMI not present or invalid.\n");
473 out:
474	dmi_initialized = 1;
475}
476
477/**
478 *	dmi_matches - check if dmi_system_id structure matches system DMI data
479 *	@dmi: pointer to the dmi_system_id structure to check
480 */
481static bool dmi_matches(const struct dmi_system_id *dmi)
482{
483	int i;
484
485	WARN(!dmi_initialized, KERN_ERR "dmi check: not initialized yet.\n");
486
487	for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
488		int s = dmi->matches[i].slot;
489		if (s == DMI_NONE)
490			break;
491		if (dmi_ident[s]
492		    && strstr(dmi_ident[s], dmi->matches[i].substr))
493			continue;
494		/* No match */
495		return false;
496	}
497	return true;
498}
499
500/**
501 *	dmi_is_end_of_table - check for end-of-table marker
502 *	@dmi: pointer to the dmi_system_id structure to check
503 */
504static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
505{
506	return dmi->matches[0].slot == DMI_NONE;
507}
508
509/**
510 *	dmi_check_system - check system DMI data
511 *	@list: array of dmi_system_id structures to match against
512 *		All non-null elements of the list must match
513 *		their slot's (field index's) data (i.e., each
514 *		list string must be a substring of the specified
515 *		DMI slot's string data) to be considered a
516 *		successful match.
517 *
518 *	Walk the blacklist table running matching functions until someone
519 *	returns non zero or we hit the end. Callback function is called for
520 *	each successful match. Returns the number of matches.
521 */
522int dmi_check_system(const struct dmi_system_id *list)
523{
524	int count = 0;
525	const struct dmi_system_id *d;
526
527	for (d = list; !dmi_is_end_of_table(d); d++)
528		if (dmi_matches(d)) {
529			count++;
530			if (d->callback && d->callback(d))
531				break;
532		}
533
534	return count;
535}
536EXPORT_SYMBOL(dmi_check_system);
537
538/**
539 *	dmi_first_match - find dmi_system_id structure matching system DMI data
540 *	@list: array of dmi_system_id structures to match against
541 *		All non-null elements of the list must match
542 *		their slot's (field index's) data (i.e., each
543 *		list string must be a substring of the specified
544 *		DMI slot's string data) to be considered a
545 *		successful match.
546 *
547 *	Walk the blacklist table until the first match is found.  Return the
548 *	pointer to the matching entry or NULL if there's no match.
549 */
550const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
551{
552	const struct dmi_system_id *d;
553
554	for (d = list; !dmi_is_end_of_table(d); d++)
555		if (dmi_matches(d))
556			return d;
557
558	return NULL;
559}
560EXPORT_SYMBOL(dmi_first_match);
561
562/**
563 *	dmi_get_system_info - return DMI data value
564 *	@field: data index (see enum dmi_field)
565 *
566 *	Returns one DMI data value, can be used to perform
567 *	complex DMI data checks.
568 */
569const char *dmi_get_system_info(int field)
570{
571	return dmi_ident[field];
572}
573EXPORT_SYMBOL(dmi_get_system_info);
574
575/**
576 * dmi_name_in_serial - Check if string is in the DMI product serial information
577 * @str: string to check for
578 */
579int dmi_name_in_serial(const char *str)
580{
581	int f = DMI_PRODUCT_SERIAL;
582	if (dmi_ident[f] && strstr(dmi_ident[f], str))
583		return 1;
584	return 0;
585}
586
587/**
588 *	dmi_name_in_vendors - Check if string is in the DMI system or board vendor name
589 *	@str: 	Case sensitive Name
590 */
591int dmi_name_in_vendors(const char *str)
592{
593	static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE };
594	int i;
595	for (i = 0; fields[i] != DMI_NONE; i++) {
596		int f = fields[i];
597		if (dmi_ident[f] && strstr(dmi_ident[f], str))
598			return 1;
599	}
600	return 0;
601}
602EXPORT_SYMBOL(dmi_name_in_vendors);
603
604/**
605 *	dmi_find_device - find onboard device by type/name
606 *	@type: device type or %DMI_DEV_TYPE_ANY to match all device types
607 *	@name: device name string or %NULL to match all
608 *	@from: previous device found in search, or %NULL for new search.
609 *
610 *	Iterates through the list of known onboard devices. If a device is
611 *	found with a matching @vendor and @device, a pointer to its device
612 *	structure is returned.  Otherwise, %NULL is returned.
613 *	A new search is initiated by passing %NULL as the @from argument.
614 *	If @from is not %NULL, searches continue from next device.
615 */
616const struct dmi_device * dmi_find_device(int type, const char *name,
617				    const struct dmi_device *from)
618{
619	const struct list_head *head = from ? &from->list : &dmi_devices;
620	struct list_head *d;
621
622	for(d = head->next; d != &dmi_devices; d = d->next) {
623		const struct dmi_device *dev =
624			list_entry(d, struct dmi_device, list);
625
626		if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
627		    ((name == NULL) || (strcmp(dev->name, name) == 0)))
628			return dev;
629	}
630
631	return NULL;
632}
633EXPORT_SYMBOL(dmi_find_device);
634
635/**
636 *	dmi_get_date - parse a DMI date
637 *	@field:	data index (see enum dmi_field)
638 *	@yearp: optional out parameter for the year
639 *	@monthp: optional out parameter for the month
640 *	@dayp: optional out parameter for the day
641 *
642 *	The date field is assumed to be in the form resembling
643 *	[mm[/dd]]/yy[yy] and the result is stored in the out
644 *	parameters any or all of which can be omitted.
645 *
646 *	If the field doesn't exist, all out parameters are set to zero
647 *	and false is returned.  Otherwise, true is returned with any
648 *	invalid part of date set to zero.
649 *
650 *	On return, year, month and day are guaranteed to be in the
651 *	range of [0,9999], [0,12] and [0,31] respectively.
652 */
653bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
654{
655	int year = 0, month = 0, day = 0;
656	bool exists;
657	const char *s, *y;
658	char *e;
659
660	s = dmi_get_system_info(field);
661	exists = s;
662	if (!exists)
663		goto out;
664
665	/*
666	 * Determine year first.  We assume the date string resembles
667	 * mm/dd/yy[yy] but the original code extracted only the year
668	 * from the end.  Keep the behavior in the spirit of no
669	 * surprises.
670	 */
671	y = strrchr(s, '/');
672	if (!y)
673		goto out;
674
675	y++;
676	year = simple_strtoul(y, &e, 10);
677	if (y != e && year < 100) {	/* 2-digit year */
678		year += 1900;
679		if (year < 1996)	/* no dates < spec 1.0 */
680			year += 100;
681	}
682	if (year > 9999)		/* year should fit in %04d */
683		year = 0;
684
685	/* parse the mm and dd */
686	month = simple_strtoul(s, &e, 10);
687	if (s == e || *e != '/' || !month || month > 12) {
688		month = 0;
689		goto out;
690	}
691
692	s = e + 1;
693	day = simple_strtoul(s, &e, 10);
694	if (s == y || s == e || *e != '/' || day > 31)
695		day = 0;
696out:
697	if (yearp)
698		*yearp = year;
699	if (monthp)
700		*monthp = month;
701	if (dayp)
702		*dayp = day;
703	return exists;
704}
705EXPORT_SYMBOL(dmi_get_date);
706
707/**
708 *	dmi_walk - Walk the DMI table and get called back for every record
709 *	@decode: Callback function
710 *	@private_data: Private data to be passed to the callback function
711 *
712 *	Returns -1 when the DMI table can't be reached, 0 on success.
713 */
714int dmi_walk(void (*decode)(const struct dmi_header *, void *),
715	     void *private_data)
716{
717	u8 *buf;
718
719	if (!dmi_available)
720		return -1;
721
722	buf = ioremap(dmi_base, dmi_len);
723	if (buf == NULL)
724		return -1;
725
726	dmi_table(buf, dmi_len, dmi_num, decode, private_data);
727
728	iounmap(buf);
729	return 0;
730}
731EXPORT_SYMBOL_GPL(dmi_walk);
732
733/**
734 * dmi_match - compare a string to the dmi field (if exists)
735 * @f: DMI field identifier
736 * @str: string to compare the DMI field to
737 *
738 * Returns true if the requested field equals to the str (including NULL).
739 */
740bool dmi_match(enum dmi_field f, const char *str)
741{
742	const char *info = dmi_get_system_info(f);
743
744	if (info == NULL || str == NULL)
745		return info == str;
746
747	return !strcmp(info, str);
748}
749EXPORT_SYMBOL_GPL(dmi_match);
750