ide-io.c revision 1f2564b8b56b305ab9acf5d387abca950180dff6
1/*
2 *	IDE I/O functions
3 *
4 *	Basic PIO and command management functionality.
5 *
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * General Public License for more details.
18 *
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
24 */
25
26
27#include <linux/module.h>
28#include <linux/types.h>
29#include <linux/string.h>
30#include <linux/kernel.h>
31#include <linux/timer.h>
32#include <linux/mm.h>
33#include <linux/interrupt.h>
34#include <linux/major.h>
35#include <linux/errno.h>
36#include <linux/genhd.h>
37#include <linux/blkpg.h>
38#include <linux/slab.h>
39#include <linux/init.h>
40#include <linux/pci.h>
41#include <linux/delay.h>
42#include <linux/ide.h>
43#include <linux/completion.h>
44#include <linux/reboot.h>
45#include <linux/cdrom.h>
46#include <linux/seq_file.h>
47#include <linux/device.h>
48#include <linux/kmod.h>
49#include <linux/scatterlist.h>
50#include <linux/bitops.h>
51
52#include <asm/byteorder.h>
53#include <asm/irq.h>
54#include <asm/uaccess.h>
55#include <asm/io.h>
56
57static int __ide_end_request(ide_drive_t *drive, struct request *rq,
58			     int uptodate, unsigned int nr_bytes, int dequeue)
59{
60	int ret = 1;
61
62	/*
63	 * if failfast is set on a request, override number of sectors and
64	 * complete the whole request right now
65	 */
66	if (blk_noretry_request(rq) && end_io_error(uptodate))
67		nr_bytes = rq->hard_nr_sectors << 9;
68
69	if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
70		rq->errors = -EIO;
71
72	/*
73	 * decide whether to reenable DMA -- 3 is a random magic for now,
74	 * if we DMA timeout more than 3 times, just stay in PIO
75	 */
76	if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
77		drive->state = 0;
78		HWGROUP(drive)->hwif->ide_dma_on(drive);
79	}
80
81	if (!end_that_request_chunk(rq, uptodate, nr_bytes)) {
82		add_disk_randomness(rq->rq_disk);
83		if (dequeue) {
84			if (!list_empty(&rq->queuelist))
85				blkdev_dequeue_request(rq);
86			HWGROUP(drive)->rq = NULL;
87		}
88		end_that_request_last(rq, uptodate);
89		ret = 0;
90	}
91
92	return ret;
93}
94
95/**
96 *	ide_end_request		-	complete an IDE I/O
97 *	@drive: IDE device for the I/O
98 *	@uptodate:
99 *	@nr_sectors: number of sectors completed
100 *
101 *	This is our end_request wrapper function. We complete the I/O
102 *	update random number input and dequeue the request, which if
103 *	it was tagged may be out of order.
104 */
105
106int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
107{
108	unsigned int nr_bytes = nr_sectors << 9;
109	struct request *rq;
110	unsigned long flags;
111	int ret = 1;
112
113	/*
114	 * room for locking improvements here, the calls below don't
115	 * need the queue lock held at all
116	 */
117	spin_lock_irqsave(&ide_lock, flags);
118	rq = HWGROUP(drive)->rq;
119
120	if (!nr_bytes) {
121		if (blk_pc_request(rq))
122			nr_bytes = rq->data_len;
123		else
124			nr_bytes = rq->hard_cur_sectors << 9;
125	}
126
127	ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
128
129	spin_unlock_irqrestore(&ide_lock, flags);
130	return ret;
131}
132EXPORT_SYMBOL(ide_end_request);
133
134/*
135 * Power Management state machine. This one is rather trivial for now,
136 * we should probably add more, like switching back to PIO on suspend
137 * to help some BIOSes, re-do the door locking on resume, etc...
138 */
139
140enum {
141	ide_pm_flush_cache	= ide_pm_state_start_suspend,
142	idedisk_pm_standby,
143
144	idedisk_pm_restore_pio	= ide_pm_state_start_resume,
145	idedisk_pm_idle,
146	ide_pm_restore_dma,
147};
148
149static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
150{
151	struct request_pm_state *pm = rq->data;
152
153	if (drive->media != ide_disk)
154		return;
155
156	switch (pm->pm_step) {
157	case ide_pm_flush_cache:	/* Suspend step 1 (flush cache) complete */
158		if (pm->pm_state == PM_EVENT_FREEZE)
159			pm->pm_step = ide_pm_state_completed;
160		else
161			pm->pm_step = idedisk_pm_standby;
162		break;
163	case idedisk_pm_standby:	/* Suspend step 2 (standby) complete */
164		pm->pm_step = ide_pm_state_completed;
165		break;
166	case idedisk_pm_restore_pio:	/* Resume step 1 complete */
167		pm->pm_step = idedisk_pm_idle;
168		break;
169	case idedisk_pm_idle:		/* Resume step 2 (idle) complete */
170		pm->pm_step = ide_pm_restore_dma;
171		break;
172	}
173}
174
175static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
176{
177	struct request_pm_state *pm = rq->data;
178	ide_task_t *args = rq->special;
179
180	memset(args, 0, sizeof(*args));
181
182	switch (pm->pm_step) {
183	case ide_pm_flush_cache:	/* Suspend step 1 (flush cache) */
184		if (drive->media != ide_disk)
185			break;
186		/* Not supported? Switch to next step now. */
187		if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
188			ide_complete_power_step(drive, rq, 0, 0);
189			return ide_stopped;
190		}
191		if (ide_id_has_flush_cache_ext(drive->id))
192			args->tf.command = WIN_FLUSH_CACHE_EXT;
193		else
194			args->tf.command = WIN_FLUSH_CACHE;
195		goto out_do_tf;
196
197	case idedisk_pm_standby:	/* Suspend step 2 (standby) */
198		args->tf.command = WIN_STANDBYNOW1;
199		goto out_do_tf;
200
201	case idedisk_pm_restore_pio:	/* Resume step 1 (restore PIO) */
202		ide_set_max_pio(drive);
203		/*
204		 * skip idedisk_pm_idle for ATAPI devices
205		 */
206		if (drive->media != ide_disk)
207			pm->pm_step = ide_pm_restore_dma;
208		else
209			ide_complete_power_step(drive, rq, 0, 0);
210		return ide_stopped;
211
212	case idedisk_pm_idle:		/* Resume step 2 (idle) */
213		args->tf.command = WIN_IDLEIMMEDIATE;
214		goto out_do_tf;
215
216	case ide_pm_restore_dma:	/* Resume step 3 (restore DMA) */
217		/*
218		 * Right now, all we do is call ide_set_dma(drive),
219		 * we could be smarter and check for current xfer_speed
220		 * in struct drive etc...
221		 */
222		if (drive->hwif->ide_dma_on == NULL)
223			break;
224		drive->hwif->dma_off_quietly(drive);
225		/*
226		 * TODO: respect ->using_dma setting
227		 */
228		ide_set_dma(drive);
229		break;
230	}
231	pm->pm_step = ide_pm_state_completed;
232	return ide_stopped;
233
234out_do_tf:
235	args->tf_flags = IDE_TFLAG_OUT_TF | IDE_TFLAG_OUT_DEVICE;
236	args->command_type = IDE_DRIVE_TASK_NO_DATA;
237	args->handler      = task_no_data_intr;
238	return do_rw_taskfile(drive, args);
239}
240
241/**
242 *	ide_end_dequeued_request	-	complete an IDE I/O
243 *	@drive: IDE device for the I/O
244 *	@uptodate:
245 *	@nr_sectors: number of sectors completed
246 *
247 *	Complete an I/O that is no longer on the request queue. This
248 *	typically occurs when we pull the request and issue a REQUEST_SENSE.
249 *	We must still finish the old request but we must not tamper with the
250 *	queue in the meantime.
251 *
252 *	NOTE: This path does not handle barrier, but barrier is not supported
253 *	on ide-cd anyway.
254 */
255
256int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
257			     int uptodate, int nr_sectors)
258{
259	unsigned long flags;
260	int ret;
261
262	spin_lock_irqsave(&ide_lock, flags);
263	BUG_ON(!blk_rq_started(rq));
264	ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
265	spin_unlock_irqrestore(&ide_lock, flags);
266
267	return ret;
268}
269EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
270
271
272/**
273 *	ide_complete_pm_request - end the current Power Management request
274 *	@drive: target drive
275 *	@rq: request
276 *
277 *	This function cleans up the current PM request and stops the queue
278 *	if necessary.
279 */
280static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
281{
282	unsigned long flags;
283
284#ifdef DEBUG_PM
285	printk("%s: completing PM request, %s\n", drive->name,
286	       blk_pm_suspend_request(rq) ? "suspend" : "resume");
287#endif
288	spin_lock_irqsave(&ide_lock, flags);
289	if (blk_pm_suspend_request(rq)) {
290		blk_stop_queue(drive->queue);
291	} else {
292		drive->blocked = 0;
293		blk_start_queue(drive->queue);
294	}
295	blkdev_dequeue_request(rq);
296	HWGROUP(drive)->rq = NULL;
297	end_that_request_last(rq, 1);
298	spin_unlock_irqrestore(&ide_lock, flags);
299}
300
301/**
302 *	ide_end_drive_cmd	-	end an explicit drive command
303 *	@drive: command
304 *	@stat: status bits
305 *	@err: error bits
306 *
307 *	Clean up after success/failure of an explicit drive command.
308 *	These get thrown onto the queue so they are synchronized with
309 *	real I/O operations on the drive.
310 *
311 *	In LBA48 mode we have to read the register set twice to get
312 *	all the extra information out.
313 */
314
315void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
316{
317	ide_hwif_t *hwif = HWIF(drive);
318	unsigned long flags;
319	struct request *rq;
320
321	spin_lock_irqsave(&ide_lock, flags);
322	rq = HWGROUP(drive)->rq;
323	spin_unlock_irqrestore(&ide_lock, flags);
324
325	if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
326		u8 *args = (u8 *) rq->buffer;
327		if (rq->errors == 0)
328			rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
329
330		if (args) {
331			args[0] = stat;
332			args[1] = err;
333			args[2] = hwif->INB(IDE_NSECTOR_REG);
334		}
335	} else if (rq->cmd_type == REQ_TYPE_ATA_TASK) {
336		u8 *args = (u8 *) rq->buffer;
337		if (rq->errors == 0)
338			rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
339
340		if (args) {
341			args[0] = stat;
342			args[1] = err;
343			/* be sure we're looking at the low order bits */
344			hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
345			args[2] = hwif->INB(IDE_NSECTOR_REG);
346			args[3] = hwif->INB(IDE_SECTOR_REG);
347			args[4] = hwif->INB(IDE_LCYL_REG);
348			args[5] = hwif->INB(IDE_HCYL_REG);
349			args[6] = hwif->INB(IDE_SELECT_REG);
350		}
351	} else if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
352		ide_task_t *args = (ide_task_t *) rq->special;
353		if (rq->errors == 0)
354			rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
355
356		if (args) {
357			struct ide_taskfile *tf = &args->tf;
358
359			if (args->tf_in_flags.b.data) {
360				u16 data = hwif->INW(IDE_DATA_REG);
361
362				tf->data = data & 0xff;
363				tf->hob_data = (data >> 8) & 0xff;
364			}
365			tf->error = err;
366			/* be sure we're looking at the low order bits */
367			hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
368			tf->nsect  = hwif->INB(IDE_NSECTOR_REG);
369			tf->lbal   = hwif->INB(IDE_SECTOR_REG);
370			tf->lbam   = hwif->INB(IDE_LCYL_REG);
371			tf->lbah   = hwif->INB(IDE_HCYL_REG);
372			tf->device = hwif->INB(IDE_SELECT_REG);
373			tf->status = stat;
374
375			if (args->tf_flags & IDE_TFLAG_LBA48) {
376				hwif->OUTB(drive->ctl|0x80, IDE_CONTROL_REG);
377				tf->hob_feature = hwif->INB(IDE_FEATURE_REG);
378				tf->hob_nsect   = hwif->INB(IDE_NSECTOR_REG);
379				tf->hob_lbal    = hwif->INB(IDE_SECTOR_REG);
380				tf->hob_lbam    = hwif->INB(IDE_LCYL_REG);
381				tf->hob_lbah    = hwif->INB(IDE_HCYL_REG);
382			}
383		}
384	} else if (blk_pm_request(rq)) {
385		struct request_pm_state *pm = rq->data;
386#ifdef DEBUG_PM
387		printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
388			drive->name, rq->pm->pm_step, stat, err);
389#endif
390		ide_complete_power_step(drive, rq, stat, err);
391		if (pm->pm_step == ide_pm_state_completed)
392			ide_complete_pm_request(drive, rq);
393		return;
394	}
395
396	spin_lock_irqsave(&ide_lock, flags);
397	blkdev_dequeue_request(rq);
398	HWGROUP(drive)->rq = NULL;
399	rq->errors = err;
400	end_that_request_last(rq, !rq->errors);
401	spin_unlock_irqrestore(&ide_lock, flags);
402}
403
404EXPORT_SYMBOL(ide_end_drive_cmd);
405
406/**
407 *	try_to_flush_leftover_data	-	flush junk
408 *	@drive: drive to flush
409 *
410 *	try_to_flush_leftover_data() is invoked in response to a drive
411 *	unexpectedly having its DRQ_STAT bit set.  As an alternative to
412 *	resetting the drive, this routine tries to clear the condition
413 *	by read a sector's worth of data from the drive.  Of course,
414 *	this may not help if the drive is *waiting* for data from *us*.
415 */
416static void try_to_flush_leftover_data (ide_drive_t *drive)
417{
418	int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS;
419
420	if (drive->media != ide_disk)
421		return;
422	while (i > 0) {
423		u32 buffer[16];
424		u32 wcount = (i > 16) ? 16 : i;
425
426		i -= wcount;
427		HWIF(drive)->ata_input_data(drive, buffer, wcount);
428	}
429}
430
431static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
432{
433	if (rq->rq_disk) {
434		ide_driver_t *drv;
435
436		drv = *(ide_driver_t **)rq->rq_disk->private_data;
437		drv->end_request(drive, 0, 0);
438	} else
439		ide_end_request(drive, 0, 0);
440}
441
442static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
443{
444	ide_hwif_t *hwif = drive->hwif;
445
446	if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
447		/* other bits are useless when BUSY */
448		rq->errors |= ERROR_RESET;
449	} else if (stat & ERR_STAT) {
450		/* err has different meaning on cdrom and tape */
451		if (err == ABRT_ERR) {
452			if (drive->select.b.lba &&
453			    /* some newer drives don't support WIN_SPECIFY */
454			    hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY)
455				return ide_stopped;
456		} else if ((err & BAD_CRC) == BAD_CRC) {
457			/* UDMA crc error, just retry the operation */
458			drive->crc_count++;
459		} else if (err & (BBD_ERR | ECC_ERR)) {
460			/* retries won't help these */
461			rq->errors = ERROR_MAX;
462		} else if (err & TRK0_ERR) {
463			/* help it find track zero */
464			rq->errors |= ERROR_RECAL;
465		}
466	}
467
468	if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ &&
469	    (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0)
470		try_to_flush_leftover_data(drive);
471
472	if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
473		ide_kill_rq(drive, rq);
474		return ide_stopped;
475	}
476
477	if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
478		rq->errors |= ERROR_RESET;
479
480	if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
481		++rq->errors;
482		return ide_do_reset(drive);
483	}
484
485	if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
486		drive->special.b.recalibrate = 1;
487
488	++rq->errors;
489
490	return ide_stopped;
491}
492
493static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
494{
495	ide_hwif_t *hwif = drive->hwif;
496
497	if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
498		/* other bits are useless when BUSY */
499		rq->errors |= ERROR_RESET;
500	} else {
501		/* add decoding error stuff */
502	}
503
504	if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
505		/* force an abort */
506		hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG);
507
508	if (rq->errors >= ERROR_MAX) {
509		ide_kill_rq(drive, rq);
510	} else {
511		if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
512			++rq->errors;
513			return ide_do_reset(drive);
514		}
515		++rq->errors;
516	}
517
518	return ide_stopped;
519}
520
521ide_startstop_t
522__ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
523{
524	if (drive->media == ide_disk)
525		return ide_ata_error(drive, rq, stat, err);
526	return ide_atapi_error(drive, rq, stat, err);
527}
528
529EXPORT_SYMBOL_GPL(__ide_error);
530
531/**
532 *	ide_error	-	handle an error on the IDE
533 *	@drive: drive the error occurred on
534 *	@msg: message to report
535 *	@stat: status bits
536 *
537 *	ide_error() takes action based on the error returned by the drive.
538 *	For normal I/O that may well include retries. We deal with
539 *	both new-style (taskfile) and old style command handling here.
540 *	In the case of taskfile command handling there is work left to
541 *	do
542 */
543
544ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
545{
546	struct request *rq;
547	u8 err;
548
549	err = ide_dump_status(drive, msg, stat);
550
551	if ((rq = HWGROUP(drive)->rq) == NULL)
552		return ide_stopped;
553
554	/* retry only "normal" I/O: */
555	if (!blk_fs_request(rq)) {
556		rq->errors = 1;
557		ide_end_drive_cmd(drive, stat, err);
558		return ide_stopped;
559	}
560
561	if (rq->rq_disk) {
562		ide_driver_t *drv;
563
564		drv = *(ide_driver_t **)rq->rq_disk->private_data;
565		return drv->error(drive, rq, stat, err);
566	} else
567		return __ide_error(drive, rq, stat, err);
568}
569
570EXPORT_SYMBOL_GPL(ide_error);
571
572ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq)
573{
574	if (drive->media != ide_disk)
575		rq->errors |= ERROR_RESET;
576
577	ide_kill_rq(drive, rq);
578
579	return ide_stopped;
580}
581
582EXPORT_SYMBOL_GPL(__ide_abort);
583
584/**
585 *	ide_abort	-	abort pending IDE operations
586 *	@drive: drive the error occurred on
587 *	@msg: message to report
588 *
589 *	ide_abort kills and cleans up when we are about to do a
590 *	host initiated reset on active commands. Longer term we
591 *	want handlers to have sensible abort handling themselves
592 *
593 *	This differs fundamentally from ide_error because in
594 *	this case the command is doing just fine when we
595 *	blow it away.
596 */
597
598ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
599{
600	struct request *rq;
601
602	if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
603		return ide_stopped;
604
605	/* retry only "normal" I/O: */
606	if (!blk_fs_request(rq)) {
607		rq->errors = 1;
608		ide_end_drive_cmd(drive, BUSY_STAT, 0);
609		return ide_stopped;
610	}
611
612	if (rq->rq_disk) {
613		ide_driver_t *drv;
614
615		drv = *(ide_driver_t **)rq->rq_disk->private_data;
616		return drv->abort(drive, rq);
617	} else
618		return __ide_abort(drive, rq);
619}
620
621/**
622 *	drive_cmd_intr		- 	drive command completion interrupt
623 *	@drive: drive the completion interrupt occurred on
624 *
625 *	drive_cmd_intr() is invoked on completion of a special DRIVE_CMD.
626 *	We do any necessary data reading and then wait for the drive to
627 *	go non busy. At that point we may read the error data and complete
628 *	the request
629 */
630
631static ide_startstop_t drive_cmd_intr (ide_drive_t *drive)
632{
633	struct request *rq = HWGROUP(drive)->rq;
634	ide_hwif_t *hwif = HWIF(drive);
635	u8 *args = (u8 *) rq->buffer;
636	u8 stat = hwif->INB(IDE_STATUS_REG);
637	int retries = 10;
638
639	local_irq_enable_in_hardirq();
640	if (rq->cmd_type == REQ_TYPE_ATA_CMD &&
641	    (stat & DRQ_STAT) && args && args[3]) {
642		u8 io_32bit = drive->io_32bit;
643		drive->io_32bit = 0;
644		hwif->ata_input_data(drive, &args[4], args[3] * SECTOR_WORDS);
645		drive->io_32bit = io_32bit;
646		while (((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) && retries--)
647			udelay(100);
648	}
649
650	if (!OK_STAT(stat, READY_STAT, BAD_STAT))
651		return ide_error(drive, "drive_cmd", stat);
652		/* calls ide_end_drive_cmd */
653	ide_end_drive_cmd(drive, stat, hwif->INB(IDE_ERROR_REG));
654	return ide_stopped;
655}
656
657static void ide_init_specify_cmd(ide_drive_t *drive, ide_task_t *task)
658{
659	task->tf.nsect   = drive->sect;
660	task->tf.lbal    = drive->sect;
661	task->tf.lbam    = drive->cyl;
662	task->tf.lbah    = drive->cyl >> 8;
663	task->tf.device  = ((drive->head - 1) | drive->select.all) & ~ATA_LBA;
664	task->tf.command = WIN_SPECIFY;
665
666	task->handler = &set_geometry_intr;
667}
668
669static void ide_init_restore_cmd(ide_drive_t *drive, ide_task_t *task)
670{
671	task->tf.nsect   = drive->sect;
672	task->tf.command = WIN_RESTORE;
673
674	task->handler = &recal_intr;
675}
676
677static void ide_init_setmult_cmd(ide_drive_t *drive, ide_task_t *task)
678{
679	task->tf.nsect   = drive->mult_req;
680	task->tf.command = WIN_SETMULT;
681
682	task->handler = &set_multmode_intr;
683}
684
685static ide_startstop_t ide_disk_special(ide_drive_t *drive)
686{
687	special_t *s = &drive->special;
688	ide_task_t args;
689
690	memset(&args, 0, sizeof(ide_task_t));
691	args.command_type = IDE_DRIVE_TASK_NO_DATA;
692
693	if (s->b.set_geometry) {
694		s->b.set_geometry = 0;
695		ide_init_specify_cmd(drive, &args);
696	} else if (s->b.recalibrate) {
697		s->b.recalibrate = 0;
698		ide_init_restore_cmd(drive, &args);
699	} else if (s->b.set_multmode) {
700		s->b.set_multmode = 0;
701		if (drive->mult_req > drive->id->max_multsect)
702			drive->mult_req = drive->id->max_multsect;
703		ide_init_setmult_cmd(drive, &args);
704	} else if (s->all) {
705		int special = s->all;
706		s->all = 0;
707		printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
708		return ide_stopped;
709	}
710
711	args.tf_flags = IDE_TFLAG_OUT_TF | IDE_TFLAG_OUT_DEVICE;
712
713	do_rw_taskfile(drive, &args);
714
715	return ide_started;
716}
717
718/*
719 * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
720 */
721static int set_pio_mode_abuse(ide_hwif_t *hwif, u8 req_pio)
722{
723	switch (req_pio) {
724	case 202:
725	case 201:
726	case 200:
727	case 102:
728	case 101:
729	case 100:
730		return (hwif->host_flags & IDE_HFLAG_ABUSE_DMA_MODES) ? 1 : 0;
731	case 9:
732	case 8:
733		return (hwif->host_flags & IDE_HFLAG_ABUSE_PREFETCH) ? 1 : 0;
734	case 7:
735	case 6:
736		return (hwif->host_flags & IDE_HFLAG_ABUSE_FAST_DEVSEL) ? 1 : 0;
737	default:
738		return 0;
739	}
740}
741
742/**
743 *	do_special		-	issue some special commands
744 *	@drive: drive the command is for
745 *
746 *	do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
747 *	commands to a drive.  It used to do much more, but has been scaled
748 *	back.
749 */
750
751static ide_startstop_t do_special (ide_drive_t *drive)
752{
753	special_t *s = &drive->special;
754
755#ifdef DEBUG
756	printk("%s: do_special: 0x%02x\n", drive->name, s->all);
757#endif
758	if (s->b.set_tune) {
759		ide_hwif_t *hwif = drive->hwif;
760		u8 req_pio = drive->tune_req;
761
762		s->b.set_tune = 0;
763
764		if (set_pio_mode_abuse(drive->hwif, req_pio)) {
765
766			if (hwif->set_pio_mode == NULL)
767				return ide_stopped;
768
769			/*
770			 * take ide_lock for drive->[no_]unmask/[no_]io_32bit
771			 */
772			if (req_pio == 8 || req_pio == 9) {
773				unsigned long flags;
774
775				spin_lock_irqsave(&ide_lock, flags);
776				hwif->set_pio_mode(drive, req_pio);
777				spin_unlock_irqrestore(&ide_lock, flags);
778			} else
779				hwif->set_pio_mode(drive, req_pio);
780		} else {
781			int keep_dma = drive->using_dma;
782
783			ide_set_pio(drive, req_pio);
784
785			if (hwif->host_flags & IDE_HFLAG_SET_PIO_MODE_KEEP_DMA) {
786				if (keep_dma)
787					hwif->ide_dma_on(drive);
788			}
789		}
790
791		return ide_stopped;
792	} else {
793		if (drive->media == ide_disk)
794			return ide_disk_special(drive);
795
796		s->all = 0;
797		drive->mult_req = 0;
798		return ide_stopped;
799	}
800}
801
802void ide_map_sg(ide_drive_t *drive, struct request *rq)
803{
804	ide_hwif_t *hwif = drive->hwif;
805	struct scatterlist *sg = hwif->sg_table;
806
807	if (hwif->sg_mapped)	/* needed by ide-scsi */
808		return;
809
810	if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
811		hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
812	} else {
813		sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
814		hwif->sg_nents = 1;
815	}
816}
817
818EXPORT_SYMBOL_GPL(ide_map_sg);
819
820void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
821{
822	ide_hwif_t *hwif = drive->hwif;
823
824	hwif->nsect = hwif->nleft = rq->nr_sectors;
825	hwif->cursg_ofs = 0;
826	hwif->cursg = NULL;
827}
828
829EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
830
831/**
832 *	execute_drive_command	-	issue special drive command
833 *	@drive: the drive to issue the command on
834 *	@rq: the request structure holding the command
835 *
836 *	execute_drive_cmd() issues a special drive command,  usually
837 *	initiated by ioctl() from the external hdparm program. The
838 *	command can be a drive command, drive task or taskfile
839 *	operation. Weirdly you can call it with NULL to wait for
840 *	all commands to finish. Don't do this as that is due to change
841 */
842
843static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
844		struct request *rq)
845{
846	ide_hwif_t *hwif = HWIF(drive);
847	u8 *args = rq->buffer;
848	ide_task_t ltask;
849	struct ide_taskfile *tf = &ltask.tf;
850
851	if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
852		ide_task_t *task = rq->special;
853
854		if (task == NULL)
855			goto done;
856
857		hwif->data_phase = task->data_phase;
858
859		switch (hwif->data_phase) {
860		case TASKFILE_MULTI_OUT:
861		case TASKFILE_OUT:
862		case TASKFILE_MULTI_IN:
863		case TASKFILE_IN:
864			ide_init_sg_cmd(drive, rq);
865			ide_map_sg(drive, rq);
866		default:
867			break;
868		}
869
870		if (task->tf_flags & IDE_TFLAG_FLAGGED)
871			return flagged_taskfile(drive, task);
872
873		return do_rw_taskfile(drive, task);
874	}
875
876	if (args == NULL)
877		goto done;
878
879	memset(&ltask, 0, sizeof(ltask));
880	if (rq->cmd_type == REQ_TYPE_ATA_TASK) {
881#ifdef DEBUG
882		printk("%s: DRIVE_TASK_CMD\n", drive->name);
883#endif
884		memcpy(&ltask.tf_array[7], &args[1], 6);
885		ltask.tf_flags = IDE_TFLAG_OUT_TF | IDE_TFLAG_OUT_DEVICE;
886	} else { /* rq->cmd_type == REQ_TYPE_ATA_CMD */
887#ifdef DEBUG
888		printk("%s: DRIVE_CMD\n", drive->name);
889#endif
890		tf->feature = args[2];
891		if (args[0] == WIN_SMART) {
892			tf->nsect = args[3];
893			tf->lbal  = args[1];
894			tf->lbam  = 0x4f;
895			tf->lbah  = 0xc2;
896			ltask.tf_flags = IDE_TFLAG_OUT_TF;
897		} else {
898			tf->nsect = args[1];
899			ltask.tf_flags = IDE_TFLAG_OUT_FEATURE |
900					 IDE_TFLAG_OUT_NSECT;
901		}
902 	}
903	tf->command = args[0];
904	ide_tf_load(drive, &ltask);
905	ide_execute_command(drive, args[0], &drive_cmd_intr, WAIT_WORSTCASE, NULL);
906	return ide_started;
907
908done:
909 	/*
910 	 * NULL is actually a valid way of waiting for
911 	 * all current requests to be flushed from the queue.
912 	 */
913#ifdef DEBUG
914 	printk("%s: DRIVE_CMD (null)\n", drive->name);
915#endif
916 	ide_end_drive_cmd(drive,
917			hwif->INB(IDE_STATUS_REG),
918			hwif->INB(IDE_ERROR_REG));
919 	return ide_stopped;
920}
921
922static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
923{
924	struct request_pm_state *pm = rq->data;
925
926	if (blk_pm_suspend_request(rq) &&
927	    pm->pm_step == ide_pm_state_start_suspend)
928		/* Mark drive blocked when starting the suspend sequence. */
929		drive->blocked = 1;
930	else if (blk_pm_resume_request(rq) &&
931		 pm->pm_step == ide_pm_state_start_resume) {
932		/*
933		 * The first thing we do on wakeup is to wait for BSY bit to
934		 * go away (with a looong timeout) as a drive on this hwif may
935		 * just be POSTing itself.
936		 * We do that before even selecting as the "other" device on
937		 * the bus may be broken enough to walk on our toes at this
938		 * point.
939		 */
940		int rc;
941#ifdef DEBUG_PM
942		printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
943#endif
944		rc = ide_wait_not_busy(HWIF(drive), 35000);
945		if (rc)
946			printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
947		SELECT_DRIVE(drive);
948		if (IDE_CONTROL_REG)
949			HWIF(drive)->OUTB(drive->ctl, IDE_CONTROL_REG);
950		rc = ide_wait_not_busy(HWIF(drive), 100000);
951		if (rc)
952			printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
953	}
954}
955
956/**
957 *	start_request	-	start of I/O and command issuing for IDE
958 *
959 *	start_request() initiates handling of a new I/O request. It
960 *	accepts commands and I/O (read/write) requests. It also does
961 *	the final remapping for weird stuff like EZDrive. Once
962 *	device mapper can work sector level the EZDrive stuff can go away
963 *
964 *	FIXME: this function needs a rename
965 */
966
967static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
968{
969	ide_startstop_t startstop;
970	sector_t block;
971
972	BUG_ON(!blk_rq_started(rq));
973
974#ifdef DEBUG
975	printk("%s: start_request: current=0x%08lx\n",
976		HWIF(drive)->name, (unsigned long) rq);
977#endif
978
979	/* bail early if we've exceeded max_failures */
980	if (drive->max_failures && (drive->failures > drive->max_failures)) {
981		rq->cmd_flags |= REQ_FAILED;
982		goto kill_rq;
983	}
984
985	block    = rq->sector;
986	if (blk_fs_request(rq) &&
987	    (drive->media == ide_disk || drive->media == ide_floppy)) {
988		block += drive->sect0;
989	}
990	/* Yecch - this will shift the entire interval,
991	   possibly killing some innocent following sector */
992	if (block == 0 && drive->remap_0_to_1 == 1)
993		block = 1;  /* redirect MBR access to EZ-Drive partn table */
994
995	if (blk_pm_request(rq))
996		ide_check_pm_state(drive, rq);
997
998	SELECT_DRIVE(drive);
999	if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
1000		printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
1001		return startstop;
1002	}
1003	if (!drive->special.all) {
1004		ide_driver_t *drv;
1005
1006		/*
1007		 * We reset the drive so we need to issue a SETFEATURES.
1008		 * Do it _after_ do_special() restored device parameters.
1009		 */
1010		if (drive->current_speed == 0xff)
1011			ide_config_drive_speed(drive, drive->desired_speed);
1012
1013		if (rq->cmd_type == REQ_TYPE_ATA_CMD ||
1014		    rq->cmd_type == REQ_TYPE_ATA_TASK ||
1015		    rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
1016			return execute_drive_cmd(drive, rq);
1017		else if (blk_pm_request(rq)) {
1018			struct request_pm_state *pm = rq->data;
1019#ifdef DEBUG_PM
1020			printk("%s: start_power_step(step: %d)\n",
1021				drive->name, rq->pm->pm_step);
1022#endif
1023			startstop = ide_start_power_step(drive, rq);
1024			if (startstop == ide_stopped &&
1025			    pm->pm_step == ide_pm_state_completed)
1026				ide_complete_pm_request(drive, rq);
1027			return startstop;
1028		}
1029
1030		drv = *(ide_driver_t **)rq->rq_disk->private_data;
1031		return drv->do_request(drive, rq, block);
1032	}
1033	return do_special(drive);
1034kill_rq:
1035	ide_kill_rq(drive, rq);
1036	return ide_stopped;
1037}
1038
1039/**
1040 *	ide_stall_queue		-	pause an IDE device
1041 *	@drive: drive to stall
1042 *	@timeout: time to stall for (jiffies)
1043 *
1044 *	ide_stall_queue() can be used by a drive to give excess bandwidth back
1045 *	to the hwgroup by sleeping for timeout jiffies.
1046 */
1047
1048void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
1049{
1050	if (timeout > WAIT_WORSTCASE)
1051		timeout = WAIT_WORSTCASE;
1052	drive->sleep = timeout + jiffies;
1053	drive->sleeping = 1;
1054}
1055
1056EXPORT_SYMBOL(ide_stall_queue);
1057
1058#define WAKEUP(drive)	((drive)->service_start + 2 * (drive)->service_time)
1059
1060/**
1061 *	choose_drive		-	select a drive to service
1062 *	@hwgroup: hardware group to select on
1063 *
1064 *	choose_drive() selects the next drive which will be serviced.
1065 *	This is necessary because the IDE layer can't issue commands
1066 *	to both drives on the same cable, unlike SCSI.
1067 */
1068
1069static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
1070{
1071	ide_drive_t *drive, *best;
1072
1073repeat:
1074	best = NULL;
1075	drive = hwgroup->drive;
1076
1077	/*
1078	 * drive is doing pre-flush, ordered write, post-flush sequence. even
1079	 * though that is 3 requests, it must be seen as a single transaction.
1080	 * we must not preempt this drive until that is complete
1081	 */
1082	if (blk_queue_flushing(drive->queue)) {
1083		/*
1084		 * small race where queue could get replugged during
1085		 * the 3-request flush cycle, just yank the plug since
1086		 * we want it to finish asap
1087		 */
1088		blk_remove_plug(drive->queue);
1089		return drive;
1090	}
1091
1092	do {
1093		if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
1094		    && !elv_queue_empty(drive->queue)) {
1095			if (!best
1096			 || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
1097			 || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
1098			{
1099				if (!blk_queue_plugged(drive->queue))
1100					best = drive;
1101			}
1102		}
1103	} while ((drive = drive->next) != hwgroup->drive);
1104	if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
1105		long t = (signed long)(WAKEUP(best) - jiffies);
1106		if (t >= WAIT_MIN_SLEEP) {
1107		/*
1108		 * We *may* have some time to spare, but first let's see if
1109		 * someone can potentially benefit from our nice mood today..
1110		 */
1111			drive = best->next;
1112			do {
1113				if (!drive->sleeping
1114				 && time_before(jiffies - best->service_time, WAKEUP(drive))
1115				 && time_before(WAKEUP(drive), jiffies + t))
1116				{
1117					ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
1118					goto repeat;
1119				}
1120			} while ((drive = drive->next) != best);
1121		}
1122	}
1123	return best;
1124}
1125
1126/*
1127 * Issue a new request to a drive from hwgroup
1128 * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
1129 *
1130 * A hwgroup is a serialized group of IDE interfaces.  Usually there is
1131 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
1132 * may have both interfaces in a single hwgroup to "serialize" access.
1133 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
1134 * together into one hwgroup for serialized access.
1135 *
1136 * Note also that several hwgroups can end up sharing a single IRQ,
1137 * possibly along with many other devices.  This is especially common in
1138 * PCI-based systems with off-board IDE controller cards.
1139 *
1140 * The IDE driver uses the single global ide_lock spinlock to protect
1141 * access to the request queues, and to protect the hwgroup->busy flag.
1142 *
1143 * The first thread into the driver for a particular hwgroup sets the
1144 * hwgroup->busy flag to indicate that this hwgroup is now active,
1145 * and then initiates processing of the top request from the request queue.
1146 *
1147 * Other threads attempting entry notice the busy setting, and will simply
1148 * queue their new requests and exit immediately.  Note that hwgroup->busy
1149 * remains set even when the driver is merely awaiting the next interrupt.
1150 * Thus, the meaning is "this hwgroup is busy processing a request".
1151 *
1152 * When processing of a request completes, the completing thread or IRQ-handler
1153 * will start the next request from the queue.  If no more work remains,
1154 * the driver will clear the hwgroup->busy flag and exit.
1155 *
1156 * The ide_lock (spinlock) is used to protect all access to the
1157 * hwgroup->busy flag, but is otherwise not needed for most processing in
1158 * the driver.  This makes the driver much more friendlier to shared IRQs
1159 * than previous designs, while remaining 100% (?) SMP safe and capable.
1160 */
1161static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
1162{
1163	ide_drive_t	*drive;
1164	ide_hwif_t	*hwif;
1165	struct request	*rq;
1166	ide_startstop_t	startstop;
1167	int             loops = 0;
1168
1169	/* for atari only: POSSIBLY BROKEN HERE(?) */
1170	ide_get_lock(ide_intr, hwgroup);
1171
1172	/* caller must own ide_lock */
1173	BUG_ON(!irqs_disabled());
1174
1175	while (!hwgroup->busy) {
1176		hwgroup->busy = 1;
1177		drive = choose_drive(hwgroup);
1178		if (drive == NULL) {
1179			int sleeping = 0;
1180			unsigned long sleep = 0; /* shut up, gcc */
1181			hwgroup->rq = NULL;
1182			drive = hwgroup->drive;
1183			do {
1184				if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
1185					sleeping = 1;
1186					sleep = drive->sleep;
1187				}
1188			} while ((drive = drive->next) != hwgroup->drive);
1189			if (sleeping) {
1190		/*
1191		 * Take a short snooze, and then wake up this hwgroup again.
1192		 * This gives other hwgroups on the same a chance to
1193		 * play fairly with us, just in case there are big differences
1194		 * in relative throughputs.. don't want to hog the cpu too much.
1195		 */
1196				if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1197					sleep = jiffies + WAIT_MIN_SLEEP;
1198#if 1
1199				if (timer_pending(&hwgroup->timer))
1200					printk(KERN_CRIT "ide_set_handler: timer already active\n");
1201#endif
1202				/* so that ide_timer_expiry knows what to do */
1203				hwgroup->sleeping = 1;
1204				hwgroup->req_gen_timer = hwgroup->req_gen;
1205				mod_timer(&hwgroup->timer, sleep);
1206				/* we purposely leave hwgroup->busy==1
1207				 * while sleeping */
1208			} else {
1209				/* Ugly, but how can we sleep for the lock
1210				 * otherwise? perhaps from tq_disk?
1211				 */
1212
1213				/* for atari only */
1214				ide_release_lock();
1215				hwgroup->busy = 0;
1216			}
1217
1218			/* no more work for this hwgroup (for now) */
1219			return;
1220		}
1221	again:
1222		hwif = HWIF(drive);
1223		if (hwgroup->hwif->sharing_irq &&
1224		    hwif != hwgroup->hwif &&
1225		    hwif->io_ports[IDE_CONTROL_OFFSET]) {
1226			/* set nIEN for previous hwif */
1227			SELECT_INTERRUPT(drive);
1228		}
1229		hwgroup->hwif = hwif;
1230		hwgroup->drive = drive;
1231		drive->sleeping = 0;
1232		drive->service_start = jiffies;
1233
1234		if (blk_queue_plugged(drive->queue)) {
1235			printk(KERN_ERR "ide: huh? queue was plugged!\n");
1236			break;
1237		}
1238
1239		/*
1240		 * we know that the queue isn't empty, but this can happen
1241		 * if the q->prep_rq_fn() decides to kill a request
1242		 */
1243		rq = elv_next_request(drive->queue);
1244		if (!rq) {
1245			hwgroup->busy = 0;
1246			break;
1247		}
1248
1249		/*
1250		 * Sanity: don't accept a request that isn't a PM request
1251		 * if we are currently power managed. This is very important as
1252		 * blk_stop_queue() doesn't prevent the elv_next_request()
1253		 * above to return us whatever is in the queue. Since we call
1254		 * ide_do_request() ourselves, we end up taking requests while
1255		 * the queue is blocked...
1256		 *
1257		 * We let requests forced at head of queue with ide-preempt
1258		 * though. I hope that doesn't happen too much, hopefully not
1259		 * unless the subdriver triggers such a thing in its own PM
1260		 * state machine.
1261		 *
1262		 * We count how many times we loop here to make sure we service
1263		 * all drives in the hwgroup without looping for ever
1264		 */
1265		if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) {
1266			drive = drive->next ? drive->next : hwgroup->drive;
1267			if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1268				goto again;
1269			/* We clear busy, there should be no pending ATA command at this point. */
1270			hwgroup->busy = 0;
1271			break;
1272		}
1273
1274		hwgroup->rq = rq;
1275
1276		/*
1277		 * Some systems have trouble with IDE IRQs arriving while
1278		 * the driver is still setting things up.  So, here we disable
1279		 * the IRQ used by this interface while the request is being started.
1280		 * This may look bad at first, but pretty much the same thing
1281		 * happens anyway when any interrupt comes in, IDE or otherwise
1282		 *  -- the kernel masks the IRQ while it is being handled.
1283		 */
1284		if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1285			disable_irq_nosync(hwif->irq);
1286		spin_unlock(&ide_lock);
1287		local_irq_enable_in_hardirq();
1288			/* allow other IRQs while we start this request */
1289		startstop = start_request(drive, rq);
1290		spin_lock_irq(&ide_lock);
1291		if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1292			enable_irq(hwif->irq);
1293		if (startstop == ide_stopped)
1294			hwgroup->busy = 0;
1295	}
1296}
1297
1298/*
1299 * Passes the stuff to ide_do_request
1300 */
1301void do_ide_request(struct request_queue *q)
1302{
1303	ide_drive_t *drive = q->queuedata;
1304
1305	ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1306}
1307
1308/*
1309 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1310 * retry the current request in pio mode instead of risking tossing it
1311 * all away
1312 */
1313static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1314{
1315	ide_hwif_t *hwif = HWIF(drive);
1316	struct request *rq;
1317	ide_startstop_t ret = ide_stopped;
1318
1319	/*
1320	 * end current dma transaction
1321	 */
1322
1323	if (error < 0) {
1324		printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1325		(void)HWIF(drive)->ide_dma_end(drive);
1326		ret = ide_error(drive, "dma timeout error",
1327						hwif->INB(IDE_STATUS_REG));
1328	} else {
1329		printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1330		hwif->dma_timeout(drive);
1331	}
1332
1333	/*
1334	 * disable dma for now, but remember that we did so because of
1335	 * a timeout -- we'll reenable after we finish this next request
1336	 * (or rather the first chunk of it) in pio.
1337	 */
1338	drive->retry_pio++;
1339	drive->state = DMA_PIO_RETRY;
1340	hwif->dma_off_quietly(drive);
1341
1342	/*
1343	 * un-busy drive etc (hwgroup->busy is cleared on return) and
1344	 * make sure request is sane
1345	 */
1346	rq = HWGROUP(drive)->rq;
1347
1348	if (!rq)
1349		goto out;
1350
1351	HWGROUP(drive)->rq = NULL;
1352
1353	rq->errors = 0;
1354
1355	if (!rq->bio)
1356		goto out;
1357
1358	rq->sector = rq->bio->bi_sector;
1359	rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1360	rq->hard_cur_sectors = rq->current_nr_sectors;
1361	rq->buffer = bio_data(rq->bio);
1362out:
1363	return ret;
1364}
1365
1366/**
1367 *	ide_timer_expiry	-	handle lack of an IDE interrupt
1368 *	@data: timer callback magic (hwgroup)
1369 *
1370 *	An IDE command has timed out before the expected drive return
1371 *	occurred. At this point we attempt to clean up the current
1372 *	mess. If the current handler includes an expiry handler then
1373 *	we invoke the expiry handler, and providing it is happy the
1374 *	work is done. If that fails we apply generic recovery rules
1375 *	invoking the handler and checking the drive DMA status. We
1376 *	have an excessively incestuous relationship with the DMA
1377 *	logic that wants cleaning up.
1378 */
1379
1380void ide_timer_expiry (unsigned long data)
1381{
1382	ide_hwgroup_t	*hwgroup = (ide_hwgroup_t *) data;
1383	ide_handler_t	*handler;
1384	ide_expiry_t	*expiry;
1385	unsigned long	flags;
1386	unsigned long	wait = -1;
1387
1388	spin_lock_irqsave(&ide_lock, flags);
1389
1390	if (((handler = hwgroup->handler) == NULL) ||
1391	    (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1392		/*
1393		 * Either a marginal timeout occurred
1394		 * (got the interrupt just as timer expired),
1395		 * or we were "sleeping" to give other devices a chance.
1396		 * Either way, we don't really want to complain about anything.
1397		 */
1398		if (hwgroup->sleeping) {
1399			hwgroup->sleeping = 0;
1400			hwgroup->busy = 0;
1401		}
1402	} else {
1403		ide_drive_t *drive = hwgroup->drive;
1404		if (!drive) {
1405			printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1406			hwgroup->handler = NULL;
1407		} else {
1408			ide_hwif_t *hwif;
1409			ide_startstop_t startstop = ide_stopped;
1410			if (!hwgroup->busy) {
1411				hwgroup->busy = 1;	/* paranoia */
1412				printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1413			}
1414			if ((expiry = hwgroup->expiry) != NULL) {
1415				/* continue */
1416				if ((wait = expiry(drive)) > 0) {
1417					/* reset timer */
1418					hwgroup->timer.expires  = jiffies + wait;
1419					hwgroup->req_gen_timer = hwgroup->req_gen;
1420					add_timer(&hwgroup->timer);
1421					spin_unlock_irqrestore(&ide_lock, flags);
1422					return;
1423				}
1424			}
1425			hwgroup->handler = NULL;
1426			/*
1427			 * We need to simulate a real interrupt when invoking
1428			 * the handler() function, which means we need to
1429			 * globally mask the specific IRQ:
1430			 */
1431			spin_unlock(&ide_lock);
1432			hwif  = HWIF(drive);
1433			/* disable_irq_nosync ?? */
1434			disable_irq(hwif->irq);
1435			/* local CPU only,
1436			 * as if we were handling an interrupt */
1437			local_irq_disable();
1438			if (hwgroup->polling) {
1439				startstop = handler(drive);
1440			} else if (drive_is_ready(drive)) {
1441				if (drive->waiting_for_dma)
1442					hwgroup->hwif->dma_lost_irq(drive);
1443				(void)ide_ack_intr(hwif);
1444				printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1445				startstop = handler(drive);
1446			} else {
1447				if (drive->waiting_for_dma) {
1448					startstop = ide_dma_timeout_retry(drive, wait);
1449				} else
1450					startstop =
1451					ide_error(drive, "irq timeout", hwif->INB(IDE_STATUS_REG));
1452			}
1453			drive->service_time = jiffies - drive->service_start;
1454			spin_lock_irq(&ide_lock);
1455			enable_irq(hwif->irq);
1456			if (startstop == ide_stopped)
1457				hwgroup->busy = 0;
1458		}
1459	}
1460	ide_do_request(hwgroup, IDE_NO_IRQ);
1461	spin_unlock_irqrestore(&ide_lock, flags);
1462}
1463
1464/**
1465 *	unexpected_intr		-	handle an unexpected IDE interrupt
1466 *	@irq: interrupt line
1467 *	@hwgroup: hwgroup being processed
1468 *
1469 *	There's nothing really useful we can do with an unexpected interrupt,
1470 *	other than reading the status register (to clear it), and logging it.
1471 *	There should be no way that an irq can happen before we're ready for it,
1472 *	so we needn't worry much about losing an "important" interrupt here.
1473 *
1474 *	On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1475 *	the drive enters "idle", "standby", or "sleep" mode, so if the status
1476 *	looks "good", we just ignore the interrupt completely.
1477 *
1478 *	This routine assumes __cli() is in effect when called.
1479 *
1480 *	If an unexpected interrupt happens on irq15 while we are handling irq14
1481 *	and if the two interfaces are "serialized" (CMD640), then it looks like
1482 *	we could screw up by interfering with a new request being set up for
1483 *	irq15.
1484 *
1485 *	In reality, this is a non-issue.  The new command is not sent unless
1486 *	the drive is ready to accept one, in which case we know the drive is
1487 *	not trying to interrupt us.  And ide_set_handler() is always invoked
1488 *	before completing the issuance of any new drive command, so we will not
1489 *	be accidentally invoked as a result of any valid command completion
1490 *	interrupt.
1491 *
1492 *	Note that we must walk the entire hwgroup here. We know which hwif
1493 *	is doing the current command, but we don't know which hwif burped
1494 *	mysteriously.
1495 */
1496
1497static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1498{
1499	u8 stat;
1500	ide_hwif_t *hwif = hwgroup->hwif;
1501
1502	/*
1503	 * handle the unexpected interrupt
1504	 */
1505	do {
1506		if (hwif->irq == irq) {
1507			stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1508			if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1509				/* Try to not flood the console with msgs */
1510				static unsigned long last_msgtime, count;
1511				++count;
1512				if (time_after(jiffies, last_msgtime + HZ)) {
1513					last_msgtime = jiffies;
1514					printk(KERN_ERR "%s%s: unexpected interrupt, "
1515						"status=0x%02x, count=%ld\n",
1516						hwif->name,
1517						(hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1518				}
1519			}
1520		}
1521	} while ((hwif = hwif->next) != hwgroup->hwif);
1522}
1523
1524/**
1525 *	ide_intr	-	default IDE interrupt handler
1526 *	@irq: interrupt number
1527 *	@dev_id: hwif group
1528 *	@regs: unused weirdness from the kernel irq layer
1529 *
1530 *	This is the default IRQ handler for the IDE layer. You should
1531 *	not need to override it. If you do be aware it is subtle in
1532 *	places
1533 *
1534 *	hwgroup->hwif is the interface in the group currently performing
1535 *	a command. hwgroup->drive is the drive and hwgroup->handler is
1536 *	the IRQ handler to call. As we issue a command the handlers
1537 *	step through multiple states, reassigning the handler to the
1538 *	next step in the process. Unlike a smart SCSI controller IDE
1539 *	expects the main processor to sequence the various transfer
1540 *	stages. We also manage a poll timer to catch up with most
1541 *	timeout situations. There are still a few where the handlers
1542 *	don't ever decide to give up.
1543 *
1544 *	The handler eventually returns ide_stopped to indicate the
1545 *	request completed. At this point we issue the next request
1546 *	on the hwgroup and the process begins again.
1547 */
1548
1549irqreturn_t ide_intr (int irq, void *dev_id)
1550{
1551	unsigned long flags;
1552	ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1553	ide_hwif_t *hwif;
1554	ide_drive_t *drive;
1555	ide_handler_t *handler;
1556	ide_startstop_t startstop;
1557
1558	spin_lock_irqsave(&ide_lock, flags);
1559	hwif = hwgroup->hwif;
1560
1561	if (!ide_ack_intr(hwif)) {
1562		spin_unlock_irqrestore(&ide_lock, flags);
1563		return IRQ_NONE;
1564	}
1565
1566	if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1567		/*
1568		 * Not expecting an interrupt from this drive.
1569		 * That means this could be:
1570		 *	(1) an interrupt from another PCI device
1571		 *	sharing the same PCI INT# as us.
1572		 * or	(2) a drive just entered sleep or standby mode,
1573		 *	and is interrupting to let us know.
1574		 * or	(3) a spurious interrupt of unknown origin.
1575		 *
1576		 * For PCI, we cannot tell the difference,
1577		 * so in that case we just ignore it and hope it goes away.
1578		 *
1579		 * FIXME: unexpected_intr should be hwif-> then we can
1580		 * remove all the ifdef PCI crap
1581		 */
1582#ifdef CONFIG_BLK_DEV_IDEPCI
1583		if (hwif->pci_dev && !hwif->pci_dev->vendor)
1584#endif	/* CONFIG_BLK_DEV_IDEPCI */
1585		{
1586			/*
1587			 * Probably not a shared PCI interrupt,
1588			 * so we can safely try to do something about it:
1589			 */
1590			unexpected_intr(irq, hwgroup);
1591#ifdef CONFIG_BLK_DEV_IDEPCI
1592		} else {
1593			/*
1594			 * Whack the status register, just in case
1595			 * we have a leftover pending IRQ.
1596			 */
1597			(void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1598#endif /* CONFIG_BLK_DEV_IDEPCI */
1599		}
1600		spin_unlock_irqrestore(&ide_lock, flags);
1601		return IRQ_NONE;
1602	}
1603	drive = hwgroup->drive;
1604	if (!drive) {
1605		/*
1606		 * This should NEVER happen, and there isn't much
1607		 * we could do about it here.
1608		 *
1609		 * [Note - this can occur if the drive is hot unplugged]
1610		 */
1611		spin_unlock_irqrestore(&ide_lock, flags);
1612		return IRQ_HANDLED;
1613	}
1614	if (!drive_is_ready(drive)) {
1615		/*
1616		 * This happens regularly when we share a PCI IRQ with
1617		 * another device.  Unfortunately, it can also happen
1618		 * with some buggy drives that trigger the IRQ before
1619		 * their status register is up to date.  Hopefully we have
1620		 * enough advance overhead that the latter isn't a problem.
1621		 */
1622		spin_unlock_irqrestore(&ide_lock, flags);
1623		return IRQ_NONE;
1624	}
1625	if (!hwgroup->busy) {
1626		hwgroup->busy = 1;	/* paranoia */
1627		printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1628	}
1629	hwgroup->handler = NULL;
1630	hwgroup->req_gen++;
1631	del_timer(&hwgroup->timer);
1632	spin_unlock(&ide_lock);
1633
1634	/* Some controllers might set DMA INTR no matter DMA or PIO;
1635	 * bmdma status might need to be cleared even for
1636	 * PIO interrupts to prevent spurious/lost irq.
1637	 */
1638	if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
1639		/* ide_dma_end() needs bmdma status for error checking.
1640		 * So, skip clearing bmdma status here and leave it
1641		 * to ide_dma_end() if this is dma interrupt.
1642		 */
1643		hwif->ide_dma_clear_irq(drive);
1644
1645	if (drive->unmask)
1646		local_irq_enable_in_hardirq();
1647	/* service this interrupt, may set handler for next interrupt */
1648	startstop = handler(drive);
1649	spin_lock_irq(&ide_lock);
1650
1651	/*
1652	 * Note that handler() may have set things up for another
1653	 * interrupt to occur soon, but it cannot happen until
1654	 * we exit from this routine, because it will be the
1655	 * same irq as is currently being serviced here, and Linux
1656	 * won't allow another of the same (on any CPU) until we return.
1657	 */
1658	drive->service_time = jiffies - drive->service_start;
1659	if (startstop == ide_stopped) {
1660		if (hwgroup->handler == NULL) {	/* paranoia */
1661			hwgroup->busy = 0;
1662			ide_do_request(hwgroup, hwif->irq);
1663		} else {
1664			printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1665				"on exit\n", drive->name);
1666		}
1667	}
1668	spin_unlock_irqrestore(&ide_lock, flags);
1669	return IRQ_HANDLED;
1670}
1671
1672/**
1673 *	ide_init_drive_cmd	-	initialize a drive command request
1674 *	@rq: request object
1675 *
1676 *	Initialize a request before we fill it in and send it down to
1677 *	ide_do_drive_cmd. Commands must be set up by this function. Right
1678 *	now it doesn't do a lot, but if that changes abusers will have a
1679 *	nasty surprise.
1680 */
1681
1682void ide_init_drive_cmd (struct request *rq)
1683{
1684	memset(rq, 0, sizeof(*rq));
1685	rq->cmd_type = REQ_TYPE_ATA_CMD;
1686	rq->ref_count = 1;
1687}
1688
1689EXPORT_SYMBOL(ide_init_drive_cmd);
1690
1691/**
1692 *	ide_do_drive_cmd	-	issue IDE special command
1693 *	@drive: device to issue command
1694 *	@rq: request to issue
1695 *	@action: action for processing
1696 *
1697 *	This function issues a special IDE device request
1698 *	onto the request queue.
1699 *
1700 *	If action is ide_wait, then the rq is queued at the end of the
1701 *	request queue, and the function sleeps until it has been processed.
1702 *	This is for use when invoked from an ioctl handler.
1703 *
1704 *	If action is ide_preempt, then the rq is queued at the head of
1705 *	the request queue, displacing the currently-being-processed
1706 *	request and this function returns immediately without waiting
1707 *	for the new rq to be completed.  This is VERY DANGEROUS, and is
1708 *	intended for careful use by the ATAPI tape/cdrom driver code.
1709 *
1710 *	If action is ide_end, then the rq is queued at the end of the
1711 *	request queue, and the function returns immediately without waiting
1712 *	for the new rq to be completed. This is again intended for careful
1713 *	use by the ATAPI tape/cdrom driver code.
1714 */
1715
1716int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
1717{
1718	unsigned long flags;
1719	ide_hwgroup_t *hwgroup = HWGROUP(drive);
1720	DECLARE_COMPLETION_ONSTACK(wait);
1721	int where = ELEVATOR_INSERT_BACK, err;
1722	int must_wait = (action == ide_wait || action == ide_head_wait);
1723
1724	rq->errors = 0;
1725
1726	/*
1727	 * we need to hold an extra reference to request for safe inspection
1728	 * after completion
1729	 */
1730	if (must_wait) {
1731		rq->ref_count++;
1732		rq->end_io_data = &wait;
1733		rq->end_io = blk_end_sync_rq;
1734	}
1735
1736	spin_lock_irqsave(&ide_lock, flags);
1737	if (action == ide_preempt)
1738		hwgroup->rq = NULL;
1739	if (action == ide_preempt || action == ide_head_wait) {
1740		where = ELEVATOR_INSERT_FRONT;
1741		rq->cmd_flags |= REQ_PREEMPT;
1742	}
1743	__elv_add_request(drive->queue, rq, where, 0);
1744	ide_do_request(hwgroup, IDE_NO_IRQ);
1745	spin_unlock_irqrestore(&ide_lock, flags);
1746
1747	err = 0;
1748	if (must_wait) {
1749		wait_for_completion(&wait);
1750		if (rq->errors)
1751			err = -EIO;
1752
1753		blk_put_request(rq);
1754	}
1755
1756	return err;
1757}
1758
1759EXPORT_SYMBOL(ide_do_drive_cmd);
1760