ide-io.c revision 1f2564b8b56b305ab9acf5d387abca950180dff6
1/* 2 * IDE I/O functions 3 * 4 * Basic PIO and command management functionality. 5 * 6 * This code was split off from ide.c. See ide.c for history and original 7 * copyrights. 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms of the GNU General Public License as published by the 11 * Free Software Foundation; either version 2, or (at your option) any 12 * later version. 13 * 14 * This program is distributed in the hope that it will be useful, but 15 * WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 17 * General Public License for more details. 18 * 19 * For the avoidance of doubt the "preferred form" of this code is one which 20 * is in an open non patent encumbered format. Where cryptographic key signing 21 * forms part of the process of creating an executable the information 22 * including keys needed to generate an equivalently functional executable 23 * are deemed to be part of the source code. 24 */ 25 26 27#include <linux/module.h> 28#include <linux/types.h> 29#include <linux/string.h> 30#include <linux/kernel.h> 31#include <linux/timer.h> 32#include <linux/mm.h> 33#include <linux/interrupt.h> 34#include <linux/major.h> 35#include <linux/errno.h> 36#include <linux/genhd.h> 37#include <linux/blkpg.h> 38#include <linux/slab.h> 39#include <linux/init.h> 40#include <linux/pci.h> 41#include <linux/delay.h> 42#include <linux/ide.h> 43#include <linux/completion.h> 44#include <linux/reboot.h> 45#include <linux/cdrom.h> 46#include <linux/seq_file.h> 47#include <linux/device.h> 48#include <linux/kmod.h> 49#include <linux/scatterlist.h> 50#include <linux/bitops.h> 51 52#include <asm/byteorder.h> 53#include <asm/irq.h> 54#include <asm/uaccess.h> 55#include <asm/io.h> 56 57static int __ide_end_request(ide_drive_t *drive, struct request *rq, 58 int uptodate, unsigned int nr_bytes, int dequeue) 59{ 60 int ret = 1; 61 62 /* 63 * if failfast is set on a request, override number of sectors and 64 * complete the whole request right now 65 */ 66 if (blk_noretry_request(rq) && end_io_error(uptodate)) 67 nr_bytes = rq->hard_nr_sectors << 9; 68 69 if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors) 70 rq->errors = -EIO; 71 72 /* 73 * decide whether to reenable DMA -- 3 is a random magic for now, 74 * if we DMA timeout more than 3 times, just stay in PIO 75 */ 76 if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) { 77 drive->state = 0; 78 HWGROUP(drive)->hwif->ide_dma_on(drive); 79 } 80 81 if (!end_that_request_chunk(rq, uptodate, nr_bytes)) { 82 add_disk_randomness(rq->rq_disk); 83 if (dequeue) { 84 if (!list_empty(&rq->queuelist)) 85 blkdev_dequeue_request(rq); 86 HWGROUP(drive)->rq = NULL; 87 } 88 end_that_request_last(rq, uptodate); 89 ret = 0; 90 } 91 92 return ret; 93} 94 95/** 96 * ide_end_request - complete an IDE I/O 97 * @drive: IDE device for the I/O 98 * @uptodate: 99 * @nr_sectors: number of sectors completed 100 * 101 * This is our end_request wrapper function. We complete the I/O 102 * update random number input and dequeue the request, which if 103 * it was tagged may be out of order. 104 */ 105 106int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors) 107{ 108 unsigned int nr_bytes = nr_sectors << 9; 109 struct request *rq; 110 unsigned long flags; 111 int ret = 1; 112 113 /* 114 * room for locking improvements here, the calls below don't 115 * need the queue lock held at all 116 */ 117 spin_lock_irqsave(&ide_lock, flags); 118 rq = HWGROUP(drive)->rq; 119 120 if (!nr_bytes) { 121 if (blk_pc_request(rq)) 122 nr_bytes = rq->data_len; 123 else 124 nr_bytes = rq->hard_cur_sectors << 9; 125 } 126 127 ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1); 128 129 spin_unlock_irqrestore(&ide_lock, flags); 130 return ret; 131} 132EXPORT_SYMBOL(ide_end_request); 133 134/* 135 * Power Management state machine. This one is rather trivial for now, 136 * we should probably add more, like switching back to PIO on suspend 137 * to help some BIOSes, re-do the door locking on resume, etc... 138 */ 139 140enum { 141 ide_pm_flush_cache = ide_pm_state_start_suspend, 142 idedisk_pm_standby, 143 144 idedisk_pm_restore_pio = ide_pm_state_start_resume, 145 idedisk_pm_idle, 146 ide_pm_restore_dma, 147}; 148 149static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error) 150{ 151 struct request_pm_state *pm = rq->data; 152 153 if (drive->media != ide_disk) 154 return; 155 156 switch (pm->pm_step) { 157 case ide_pm_flush_cache: /* Suspend step 1 (flush cache) complete */ 158 if (pm->pm_state == PM_EVENT_FREEZE) 159 pm->pm_step = ide_pm_state_completed; 160 else 161 pm->pm_step = idedisk_pm_standby; 162 break; 163 case idedisk_pm_standby: /* Suspend step 2 (standby) complete */ 164 pm->pm_step = ide_pm_state_completed; 165 break; 166 case idedisk_pm_restore_pio: /* Resume step 1 complete */ 167 pm->pm_step = idedisk_pm_idle; 168 break; 169 case idedisk_pm_idle: /* Resume step 2 (idle) complete */ 170 pm->pm_step = ide_pm_restore_dma; 171 break; 172 } 173} 174 175static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq) 176{ 177 struct request_pm_state *pm = rq->data; 178 ide_task_t *args = rq->special; 179 180 memset(args, 0, sizeof(*args)); 181 182 switch (pm->pm_step) { 183 case ide_pm_flush_cache: /* Suspend step 1 (flush cache) */ 184 if (drive->media != ide_disk) 185 break; 186 /* Not supported? Switch to next step now. */ 187 if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) { 188 ide_complete_power_step(drive, rq, 0, 0); 189 return ide_stopped; 190 } 191 if (ide_id_has_flush_cache_ext(drive->id)) 192 args->tf.command = WIN_FLUSH_CACHE_EXT; 193 else 194 args->tf.command = WIN_FLUSH_CACHE; 195 goto out_do_tf; 196 197 case idedisk_pm_standby: /* Suspend step 2 (standby) */ 198 args->tf.command = WIN_STANDBYNOW1; 199 goto out_do_tf; 200 201 case idedisk_pm_restore_pio: /* Resume step 1 (restore PIO) */ 202 ide_set_max_pio(drive); 203 /* 204 * skip idedisk_pm_idle for ATAPI devices 205 */ 206 if (drive->media != ide_disk) 207 pm->pm_step = ide_pm_restore_dma; 208 else 209 ide_complete_power_step(drive, rq, 0, 0); 210 return ide_stopped; 211 212 case idedisk_pm_idle: /* Resume step 2 (idle) */ 213 args->tf.command = WIN_IDLEIMMEDIATE; 214 goto out_do_tf; 215 216 case ide_pm_restore_dma: /* Resume step 3 (restore DMA) */ 217 /* 218 * Right now, all we do is call ide_set_dma(drive), 219 * we could be smarter and check for current xfer_speed 220 * in struct drive etc... 221 */ 222 if (drive->hwif->ide_dma_on == NULL) 223 break; 224 drive->hwif->dma_off_quietly(drive); 225 /* 226 * TODO: respect ->using_dma setting 227 */ 228 ide_set_dma(drive); 229 break; 230 } 231 pm->pm_step = ide_pm_state_completed; 232 return ide_stopped; 233 234out_do_tf: 235 args->tf_flags = IDE_TFLAG_OUT_TF | IDE_TFLAG_OUT_DEVICE; 236 args->command_type = IDE_DRIVE_TASK_NO_DATA; 237 args->handler = task_no_data_intr; 238 return do_rw_taskfile(drive, args); 239} 240 241/** 242 * ide_end_dequeued_request - complete an IDE I/O 243 * @drive: IDE device for the I/O 244 * @uptodate: 245 * @nr_sectors: number of sectors completed 246 * 247 * Complete an I/O that is no longer on the request queue. This 248 * typically occurs when we pull the request and issue a REQUEST_SENSE. 249 * We must still finish the old request but we must not tamper with the 250 * queue in the meantime. 251 * 252 * NOTE: This path does not handle barrier, but barrier is not supported 253 * on ide-cd anyway. 254 */ 255 256int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq, 257 int uptodate, int nr_sectors) 258{ 259 unsigned long flags; 260 int ret; 261 262 spin_lock_irqsave(&ide_lock, flags); 263 BUG_ON(!blk_rq_started(rq)); 264 ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0); 265 spin_unlock_irqrestore(&ide_lock, flags); 266 267 return ret; 268} 269EXPORT_SYMBOL_GPL(ide_end_dequeued_request); 270 271 272/** 273 * ide_complete_pm_request - end the current Power Management request 274 * @drive: target drive 275 * @rq: request 276 * 277 * This function cleans up the current PM request and stops the queue 278 * if necessary. 279 */ 280static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq) 281{ 282 unsigned long flags; 283 284#ifdef DEBUG_PM 285 printk("%s: completing PM request, %s\n", drive->name, 286 blk_pm_suspend_request(rq) ? "suspend" : "resume"); 287#endif 288 spin_lock_irqsave(&ide_lock, flags); 289 if (blk_pm_suspend_request(rq)) { 290 blk_stop_queue(drive->queue); 291 } else { 292 drive->blocked = 0; 293 blk_start_queue(drive->queue); 294 } 295 blkdev_dequeue_request(rq); 296 HWGROUP(drive)->rq = NULL; 297 end_that_request_last(rq, 1); 298 spin_unlock_irqrestore(&ide_lock, flags); 299} 300 301/** 302 * ide_end_drive_cmd - end an explicit drive command 303 * @drive: command 304 * @stat: status bits 305 * @err: error bits 306 * 307 * Clean up after success/failure of an explicit drive command. 308 * These get thrown onto the queue so they are synchronized with 309 * real I/O operations on the drive. 310 * 311 * In LBA48 mode we have to read the register set twice to get 312 * all the extra information out. 313 */ 314 315void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err) 316{ 317 ide_hwif_t *hwif = HWIF(drive); 318 unsigned long flags; 319 struct request *rq; 320 321 spin_lock_irqsave(&ide_lock, flags); 322 rq = HWGROUP(drive)->rq; 323 spin_unlock_irqrestore(&ide_lock, flags); 324 325 if (rq->cmd_type == REQ_TYPE_ATA_CMD) { 326 u8 *args = (u8 *) rq->buffer; 327 if (rq->errors == 0) 328 rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT); 329 330 if (args) { 331 args[0] = stat; 332 args[1] = err; 333 args[2] = hwif->INB(IDE_NSECTOR_REG); 334 } 335 } else if (rq->cmd_type == REQ_TYPE_ATA_TASK) { 336 u8 *args = (u8 *) rq->buffer; 337 if (rq->errors == 0) 338 rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT); 339 340 if (args) { 341 args[0] = stat; 342 args[1] = err; 343 /* be sure we're looking at the low order bits */ 344 hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG); 345 args[2] = hwif->INB(IDE_NSECTOR_REG); 346 args[3] = hwif->INB(IDE_SECTOR_REG); 347 args[4] = hwif->INB(IDE_LCYL_REG); 348 args[5] = hwif->INB(IDE_HCYL_REG); 349 args[6] = hwif->INB(IDE_SELECT_REG); 350 } 351 } else if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) { 352 ide_task_t *args = (ide_task_t *) rq->special; 353 if (rq->errors == 0) 354 rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT); 355 356 if (args) { 357 struct ide_taskfile *tf = &args->tf; 358 359 if (args->tf_in_flags.b.data) { 360 u16 data = hwif->INW(IDE_DATA_REG); 361 362 tf->data = data & 0xff; 363 tf->hob_data = (data >> 8) & 0xff; 364 } 365 tf->error = err; 366 /* be sure we're looking at the low order bits */ 367 hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG); 368 tf->nsect = hwif->INB(IDE_NSECTOR_REG); 369 tf->lbal = hwif->INB(IDE_SECTOR_REG); 370 tf->lbam = hwif->INB(IDE_LCYL_REG); 371 tf->lbah = hwif->INB(IDE_HCYL_REG); 372 tf->device = hwif->INB(IDE_SELECT_REG); 373 tf->status = stat; 374 375 if (args->tf_flags & IDE_TFLAG_LBA48) { 376 hwif->OUTB(drive->ctl|0x80, IDE_CONTROL_REG); 377 tf->hob_feature = hwif->INB(IDE_FEATURE_REG); 378 tf->hob_nsect = hwif->INB(IDE_NSECTOR_REG); 379 tf->hob_lbal = hwif->INB(IDE_SECTOR_REG); 380 tf->hob_lbam = hwif->INB(IDE_LCYL_REG); 381 tf->hob_lbah = hwif->INB(IDE_HCYL_REG); 382 } 383 } 384 } else if (blk_pm_request(rq)) { 385 struct request_pm_state *pm = rq->data; 386#ifdef DEBUG_PM 387 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n", 388 drive->name, rq->pm->pm_step, stat, err); 389#endif 390 ide_complete_power_step(drive, rq, stat, err); 391 if (pm->pm_step == ide_pm_state_completed) 392 ide_complete_pm_request(drive, rq); 393 return; 394 } 395 396 spin_lock_irqsave(&ide_lock, flags); 397 blkdev_dequeue_request(rq); 398 HWGROUP(drive)->rq = NULL; 399 rq->errors = err; 400 end_that_request_last(rq, !rq->errors); 401 spin_unlock_irqrestore(&ide_lock, flags); 402} 403 404EXPORT_SYMBOL(ide_end_drive_cmd); 405 406/** 407 * try_to_flush_leftover_data - flush junk 408 * @drive: drive to flush 409 * 410 * try_to_flush_leftover_data() is invoked in response to a drive 411 * unexpectedly having its DRQ_STAT bit set. As an alternative to 412 * resetting the drive, this routine tries to clear the condition 413 * by read a sector's worth of data from the drive. Of course, 414 * this may not help if the drive is *waiting* for data from *us*. 415 */ 416static void try_to_flush_leftover_data (ide_drive_t *drive) 417{ 418 int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS; 419 420 if (drive->media != ide_disk) 421 return; 422 while (i > 0) { 423 u32 buffer[16]; 424 u32 wcount = (i > 16) ? 16 : i; 425 426 i -= wcount; 427 HWIF(drive)->ata_input_data(drive, buffer, wcount); 428 } 429} 430 431static void ide_kill_rq(ide_drive_t *drive, struct request *rq) 432{ 433 if (rq->rq_disk) { 434 ide_driver_t *drv; 435 436 drv = *(ide_driver_t **)rq->rq_disk->private_data; 437 drv->end_request(drive, 0, 0); 438 } else 439 ide_end_request(drive, 0, 0); 440} 441 442static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err) 443{ 444 ide_hwif_t *hwif = drive->hwif; 445 446 if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) { 447 /* other bits are useless when BUSY */ 448 rq->errors |= ERROR_RESET; 449 } else if (stat & ERR_STAT) { 450 /* err has different meaning on cdrom and tape */ 451 if (err == ABRT_ERR) { 452 if (drive->select.b.lba && 453 /* some newer drives don't support WIN_SPECIFY */ 454 hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY) 455 return ide_stopped; 456 } else if ((err & BAD_CRC) == BAD_CRC) { 457 /* UDMA crc error, just retry the operation */ 458 drive->crc_count++; 459 } else if (err & (BBD_ERR | ECC_ERR)) { 460 /* retries won't help these */ 461 rq->errors = ERROR_MAX; 462 } else if (err & TRK0_ERR) { 463 /* help it find track zero */ 464 rq->errors |= ERROR_RECAL; 465 } 466 } 467 468 if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ && 469 (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0) 470 try_to_flush_leftover_data(drive); 471 472 if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) { 473 ide_kill_rq(drive, rq); 474 return ide_stopped; 475 } 476 477 if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT)) 478 rq->errors |= ERROR_RESET; 479 480 if ((rq->errors & ERROR_RESET) == ERROR_RESET) { 481 ++rq->errors; 482 return ide_do_reset(drive); 483 } 484 485 if ((rq->errors & ERROR_RECAL) == ERROR_RECAL) 486 drive->special.b.recalibrate = 1; 487 488 ++rq->errors; 489 490 return ide_stopped; 491} 492 493static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err) 494{ 495 ide_hwif_t *hwif = drive->hwif; 496 497 if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) { 498 /* other bits are useless when BUSY */ 499 rq->errors |= ERROR_RESET; 500 } else { 501 /* add decoding error stuff */ 502 } 503 504 if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT)) 505 /* force an abort */ 506 hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG); 507 508 if (rq->errors >= ERROR_MAX) { 509 ide_kill_rq(drive, rq); 510 } else { 511 if ((rq->errors & ERROR_RESET) == ERROR_RESET) { 512 ++rq->errors; 513 return ide_do_reset(drive); 514 } 515 ++rq->errors; 516 } 517 518 return ide_stopped; 519} 520 521ide_startstop_t 522__ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err) 523{ 524 if (drive->media == ide_disk) 525 return ide_ata_error(drive, rq, stat, err); 526 return ide_atapi_error(drive, rq, stat, err); 527} 528 529EXPORT_SYMBOL_GPL(__ide_error); 530 531/** 532 * ide_error - handle an error on the IDE 533 * @drive: drive the error occurred on 534 * @msg: message to report 535 * @stat: status bits 536 * 537 * ide_error() takes action based on the error returned by the drive. 538 * For normal I/O that may well include retries. We deal with 539 * both new-style (taskfile) and old style command handling here. 540 * In the case of taskfile command handling there is work left to 541 * do 542 */ 543 544ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat) 545{ 546 struct request *rq; 547 u8 err; 548 549 err = ide_dump_status(drive, msg, stat); 550 551 if ((rq = HWGROUP(drive)->rq) == NULL) 552 return ide_stopped; 553 554 /* retry only "normal" I/O: */ 555 if (!blk_fs_request(rq)) { 556 rq->errors = 1; 557 ide_end_drive_cmd(drive, stat, err); 558 return ide_stopped; 559 } 560 561 if (rq->rq_disk) { 562 ide_driver_t *drv; 563 564 drv = *(ide_driver_t **)rq->rq_disk->private_data; 565 return drv->error(drive, rq, stat, err); 566 } else 567 return __ide_error(drive, rq, stat, err); 568} 569 570EXPORT_SYMBOL_GPL(ide_error); 571 572ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq) 573{ 574 if (drive->media != ide_disk) 575 rq->errors |= ERROR_RESET; 576 577 ide_kill_rq(drive, rq); 578 579 return ide_stopped; 580} 581 582EXPORT_SYMBOL_GPL(__ide_abort); 583 584/** 585 * ide_abort - abort pending IDE operations 586 * @drive: drive the error occurred on 587 * @msg: message to report 588 * 589 * ide_abort kills and cleans up when we are about to do a 590 * host initiated reset on active commands. Longer term we 591 * want handlers to have sensible abort handling themselves 592 * 593 * This differs fundamentally from ide_error because in 594 * this case the command is doing just fine when we 595 * blow it away. 596 */ 597 598ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg) 599{ 600 struct request *rq; 601 602 if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL) 603 return ide_stopped; 604 605 /* retry only "normal" I/O: */ 606 if (!blk_fs_request(rq)) { 607 rq->errors = 1; 608 ide_end_drive_cmd(drive, BUSY_STAT, 0); 609 return ide_stopped; 610 } 611 612 if (rq->rq_disk) { 613 ide_driver_t *drv; 614 615 drv = *(ide_driver_t **)rq->rq_disk->private_data; 616 return drv->abort(drive, rq); 617 } else 618 return __ide_abort(drive, rq); 619} 620 621/** 622 * drive_cmd_intr - drive command completion interrupt 623 * @drive: drive the completion interrupt occurred on 624 * 625 * drive_cmd_intr() is invoked on completion of a special DRIVE_CMD. 626 * We do any necessary data reading and then wait for the drive to 627 * go non busy. At that point we may read the error data and complete 628 * the request 629 */ 630 631static ide_startstop_t drive_cmd_intr (ide_drive_t *drive) 632{ 633 struct request *rq = HWGROUP(drive)->rq; 634 ide_hwif_t *hwif = HWIF(drive); 635 u8 *args = (u8 *) rq->buffer; 636 u8 stat = hwif->INB(IDE_STATUS_REG); 637 int retries = 10; 638 639 local_irq_enable_in_hardirq(); 640 if (rq->cmd_type == REQ_TYPE_ATA_CMD && 641 (stat & DRQ_STAT) && args && args[3]) { 642 u8 io_32bit = drive->io_32bit; 643 drive->io_32bit = 0; 644 hwif->ata_input_data(drive, &args[4], args[3] * SECTOR_WORDS); 645 drive->io_32bit = io_32bit; 646 while (((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) && retries--) 647 udelay(100); 648 } 649 650 if (!OK_STAT(stat, READY_STAT, BAD_STAT)) 651 return ide_error(drive, "drive_cmd", stat); 652 /* calls ide_end_drive_cmd */ 653 ide_end_drive_cmd(drive, stat, hwif->INB(IDE_ERROR_REG)); 654 return ide_stopped; 655} 656 657static void ide_init_specify_cmd(ide_drive_t *drive, ide_task_t *task) 658{ 659 task->tf.nsect = drive->sect; 660 task->tf.lbal = drive->sect; 661 task->tf.lbam = drive->cyl; 662 task->tf.lbah = drive->cyl >> 8; 663 task->tf.device = ((drive->head - 1) | drive->select.all) & ~ATA_LBA; 664 task->tf.command = WIN_SPECIFY; 665 666 task->handler = &set_geometry_intr; 667} 668 669static void ide_init_restore_cmd(ide_drive_t *drive, ide_task_t *task) 670{ 671 task->tf.nsect = drive->sect; 672 task->tf.command = WIN_RESTORE; 673 674 task->handler = &recal_intr; 675} 676 677static void ide_init_setmult_cmd(ide_drive_t *drive, ide_task_t *task) 678{ 679 task->tf.nsect = drive->mult_req; 680 task->tf.command = WIN_SETMULT; 681 682 task->handler = &set_multmode_intr; 683} 684 685static ide_startstop_t ide_disk_special(ide_drive_t *drive) 686{ 687 special_t *s = &drive->special; 688 ide_task_t args; 689 690 memset(&args, 0, sizeof(ide_task_t)); 691 args.command_type = IDE_DRIVE_TASK_NO_DATA; 692 693 if (s->b.set_geometry) { 694 s->b.set_geometry = 0; 695 ide_init_specify_cmd(drive, &args); 696 } else if (s->b.recalibrate) { 697 s->b.recalibrate = 0; 698 ide_init_restore_cmd(drive, &args); 699 } else if (s->b.set_multmode) { 700 s->b.set_multmode = 0; 701 if (drive->mult_req > drive->id->max_multsect) 702 drive->mult_req = drive->id->max_multsect; 703 ide_init_setmult_cmd(drive, &args); 704 } else if (s->all) { 705 int special = s->all; 706 s->all = 0; 707 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special); 708 return ide_stopped; 709 } 710 711 args.tf_flags = IDE_TFLAG_OUT_TF | IDE_TFLAG_OUT_DEVICE; 712 713 do_rw_taskfile(drive, &args); 714 715 return ide_started; 716} 717 718/* 719 * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away 720 */ 721static int set_pio_mode_abuse(ide_hwif_t *hwif, u8 req_pio) 722{ 723 switch (req_pio) { 724 case 202: 725 case 201: 726 case 200: 727 case 102: 728 case 101: 729 case 100: 730 return (hwif->host_flags & IDE_HFLAG_ABUSE_DMA_MODES) ? 1 : 0; 731 case 9: 732 case 8: 733 return (hwif->host_flags & IDE_HFLAG_ABUSE_PREFETCH) ? 1 : 0; 734 case 7: 735 case 6: 736 return (hwif->host_flags & IDE_HFLAG_ABUSE_FAST_DEVSEL) ? 1 : 0; 737 default: 738 return 0; 739 } 740} 741 742/** 743 * do_special - issue some special commands 744 * @drive: drive the command is for 745 * 746 * do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT 747 * commands to a drive. It used to do much more, but has been scaled 748 * back. 749 */ 750 751static ide_startstop_t do_special (ide_drive_t *drive) 752{ 753 special_t *s = &drive->special; 754 755#ifdef DEBUG 756 printk("%s: do_special: 0x%02x\n", drive->name, s->all); 757#endif 758 if (s->b.set_tune) { 759 ide_hwif_t *hwif = drive->hwif; 760 u8 req_pio = drive->tune_req; 761 762 s->b.set_tune = 0; 763 764 if (set_pio_mode_abuse(drive->hwif, req_pio)) { 765 766 if (hwif->set_pio_mode == NULL) 767 return ide_stopped; 768 769 /* 770 * take ide_lock for drive->[no_]unmask/[no_]io_32bit 771 */ 772 if (req_pio == 8 || req_pio == 9) { 773 unsigned long flags; 774 775 spin_lock_irqsave(&ide_lock, flags); 776 hwif->set_pio_mode(drive, req_pio); 777 spin_unlock_irqrestore(&ide_lock, flags); 778 } else 779 hwif->set_pio_mode(drive, req_pio); 780 } else { 781 int keep_dma = drive->using_dma; 782 783 ide_set_pio(drive, req_pio); 784 785 if (hwif->host_flags & IDE_HFLAG_SET_PIO_MODE_KEEP_DMA) { 786 if (keep_dma) 787 hwif->ide_dma_on(drive); 788 } 789 } 790 791 return ide_stopped; 792 } else { 793 if (drive->media == ide_disk) 794 return ide_disk_special(drive); 795 796 s->all = 0; 797 drive->mult_req = 0; 798 return ide_stopped; 799 } 800} 801 802void ide_map_sg(ide_drive_t *drive, struct request *rq) 803{ 804 ide_hwif_t *hwif = drive->hwif; 805 struct scatterlist *sg = hwif->sg_table; 806 807 if (hwif->sg_mapped) /* needed by ide-scsi */ 808 return; 809 810 if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) { 811 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg); 812 } else { 813 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE); 814 hwif->sg_nents = 1; 815 } 816} 817 818EXPORT_SYMBOL_GPL(ide_map_sg); 819 820void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq) 821{ 822 ide_hwif_t *hwif = drive->hwif; 823 824 hwif->nsect = hwif->nleft = rq->nr_sectors; 825 hwif->cursg_ofs = 0; 826 hwif->cursg = NULL; 827} 828 829EXPORT_SYMBOL_GPL(ide_init_sg_cmd); 830 831/** 832 * execute_drive_command - issue special drive command 833 * @drive: the drive to issue the command on 834 * @rq: the request structure holding the command 835 * 836 * execute_drive_cmd() issues a special drive command, usually 837 * initiated by ioctl() from the external hdparm program. The 838 * command can be a drive command, drive task or taskfile 839 * operation. Weirdly you can call it with NULL to wait for 840 * all commands to finish. Don't do this as that is due to change 841 */ 842 843static ide_startstop_t execute_drive_cmd (ide_drive_t *drive, 844 struct request *rq) 845{ 846 ide_hwif_t *hwif = HWIF(drive); 847 u8 *args = rq->buffer; 848 ide_task_t ltask; 849 struct ide_taskfile *tf = <ask.tf; 850 851 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) { 852 ide_task_t *task = rq->special; 853 854 if (task == NULL) 855 goto done; 856 857 hwif->data_phase = task->data_phase; 858 859 switch (hwif->data_phase) { 860 case TASKFILE_MULTI_OUT: 861 case TASKFILE_OUT: 862 case TASKFILE_MULTI_IN: 863 case TASKFILE_IN: 864 ide_init_sg_cmd(drive, rq); 865 ide_map_sg(drive, rq); 866 default: 867 break; 868 } 869 870 if (task->tf_flags & IDE_TFLAG_FLAGGED) 871 return flagged_taskfile(drive, task); 872 873 return do_rw_taskfile(drive, task); 874 } 875 876 if (args == NULL) 877 goto done; 878 879 memset(<ask, 0, sizeof(ltask)); 880 if (rq->cmd_type == REQ_TYPE_ATA_TASK) { 881#ifdef DEBUG 882 printk("%s: DRIVE_TASK_CMD\n", drive->name); 883#endif 884 memcpy(<ask.tf_array[7], &args[1], 6); 885 ltask.tf_flags = IDE_TFLAG_OUT_TF | IDE_TFLAG_OUT_DEVICE; 886 } else { /* rq->cmd_type == REQ_TYPE_ATA_CMD */ 887#ifdef DEBUG 888 printk("%s: DRIVE_CMD\n", drive->name); 889#endif 890 tf->feature = args[2]; 891 if (args[0] == WIN_SMART) { 892 tf->nsect = args[3]; 893 tf->lbal = args[1]; 894 tf->lbam = 0x4f; 895 tf->lbah = 0xc2; 896 ltask.tf_flags = IDE_TFLAG_OUT_TF; 897 } else { 898 tf->nsect = args[1]; 899 ltask.tf_flags = IDE_TFLAG_OUT_FEATURE | 900 IDE_TFLAG_OUT_NSECT; 901 } 902 } 903 tf->command = args[0]; 904 ide_tf_load(drive, <ask); 905 ide_execute_command(drive, args[0], &drive_cmd_intr, WAIT_WORSTCASE, NULL); 906 return ide_started; 907 908done: 909 /* 910 * NULL is actually a valid way of waiting for 911 * all current requests to be flushed from the queue. 912 */ 913#ifdef DEBUG 914 printk("%s: DRIVE_CMD (null)\n", drive->name); 915#endif 916 ide_end_drive_cmd(drive, 917 hwif->INB(IDE_STATUS_REG), 918 hwif->INB(IDE_ERROR_REG)); 919 return ide_stopped; 920} 921 922static void ide_check_pm_state(ide_drive_t *drive, struct request *rq) 923{ 924 struct request_pm_state *pm = rq->data; 925 926 if (blk_pm_suspend_request(rq) && 927 pm->pm_step == ide_pm_state_start_suspend) 928 /* Mark drive blocked when starting the suspend sequence. */ 929 drive->blocked = 1; 930 else if (blk_pm_resume_request(rq) && 931 pm->pm_step == ide_pm_state_start_resume) { 932 /* 933 * The first thing we do on wakeup is to wait for BSY bit to 934 * go away (with a looong timeout) as a drive on this hwif may 935 * just be POSTing itself. 936 * We do that before even selecting as the "other" device on 937 * the bus may be broken enough to walk on our toes at this 938 * point. 939 */ 940 int rc; 941#ifdef DEBUG_PM 942 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name); 943#endif 944 rc = ide_wait_not_busy(HWIF(drive), 35000); 945 if (rc) 946 printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name); 947 SELECT_DRIVE(drive); 948 if (IDE_CONTROL_REG) 949 HWIF(drive)->OUTB(drive->ctl, IDE_CONTROL_REG); 950 rc = ide_wait_not_busy(HWIF(drive), 100000); 951 if (rc) 952 printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name); 953 } 954} 955 956/** 957 * start_request - start of I/O and command issuing for IDE 958 * 959 * start_request() initiates handling of a new I/O request. It 960 * accepts commands and I/O (read/write) requests. It also does 961 * the final remapping for weird stuff like EZDrive. Once 962 * device mapper can work sector level the EZDrive stuff can go away 963 * 964 * FIXME: this function needs a rename 965 */ 966 967static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq) 968{ 969 ide_startstop_t startstop; 970 sector_t block; 971 972 BUG_ON(!blk_rq_started(rq)); 973 974#ifdef DEBUG 975 printk("%s: start_request: current=0x%08lx\n", 976 HWIF(drive)->name, (unsigned long) rq); 977#endif 978 979 /* bail early if we've exceeded max_failures */ 980 if (drive->max_failures && (drive->failures > drive->max_failures)) { 981 rq->cmd_flags |= REQ_FAILED; 982 goto kill_rq; 983 } 984 985 block = rq->sector; 986 if (blk_fs_request(rq) && 987 (drive->media == ide_disk || drive->media == ide_floppy)) { 988 block += drive->sect0; 989 } 990 /* Yecch - this will shift the entire interval, 991 possibly killing some innocent following sector */ 992 if (block == 0 && drive->remap_0_to_1 == 1) 993 block = 1; /* redirect MBR access to EZ-Drive partn table */ 994 995 if (blk_pm_request(rq)) 996 ide_check_pm_state(drive, rq); 997 998 SELECT_DRIVE(drive); 999 if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) { 1000 printk(KERN_ERR "%s: drive not ready for command\n", drive->name); 1001 return startstop; 1002 } 1003 if (!drive->special.all) { 1004 ide_driver_t *drv; 1005 1006 /* 1007 * We reset the drive so we need to issue a SETFEATURES. 1008 * Do it _after_ do_special() restored device parameters. 1009 */ 1010 if (drive->current_speed == 0xff) 1011 ide_config_drive_speed(drive, drive->desired_speed); 1012 1013 if (rq->cmd_type == REQ_TYPE_ATA_CMD || 1014 rq->cmd_type == REQ_TYPE_ATA_TASK || 1015 rq->cmd_type == REQ_TYPE_ATA_TASKFILE) 1016 return execute_drive_cmd(drive, rq); 1017 else if (blk_pm_request(rq)) { 1018 struct request_pm_state *pm = rq->data; 1019#ifdef DEBUG_PM 1020 printk("%s: start_power_step(step: %d)\n", 1021 drive->name, rq->pm->pm_step); 1022#endif 1023 startstop = ide_start_power_step(drive, rq); 1024 if (startstop == ide_stopped && 1025 pm->pm_step == ide_pm_state_completed) 1026 ide_complete_pm_request(drive, rq); 1027 return startstop; 1028 } 1029 1030 drv = *(ide_driver_t **)rq->rq_disk->private_data; 1031 return drv->do_request(drive, rq, block); 1032 } 1033 return do_special(drive); 1034kill_rq: 1035 ide_kill_rq(drive, rq); 1036 return ide_stopped; 1037} 1038 1039/** 1040 * ide_stall_queue - pause an IDE device 1041 * @drive: drive to stall 1042 * @timeout: time to stall for (jiffies) 1043 * 1044 * ide_stall_queue() can be used by a drive to give excess bandwidth back 1045 * to the hwgroup by sleeping for timeout jiffies. 1046 */ 1047 1048void ide_stall_queue (ide_drive_t *drive, unsigned long timeout) 1049{ 1050 if (timeout > WAIT_WORSTCASE) 1051 timeout = WAIT_WORSTCASE; 1052 drive->sleep = timeout + jiffies; 1053 drive->sleeping = 1; 1054} 1055 1056EXPORT_SYMBOL(ide_stall_queue); 1057 1058#define WAKEUP(drive) ((drive)->service_start + 2 * (drive)->service_time) 1059 1060/** 1061 * choose_drive - select a drive to service 1062 * @hwgroup: hardware group to select on 1063 * 1064 * choose_drive() selects the next drive which will be serviced. 1065 * This is necessary because the IDE layer can't issue commands 1066 * to both drives on the same cable, unlike SCSI. 1067 */ 1068 1069static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup) 1070{ 1071 ide_drive_t *drive, *best; 1072 1073repeat: 1074 best = NULL; 1075 drive = hwgroup->drive; 1076 1077 /* 1078 * drive is doing pre-flush, ordered write, post-flush sequence. even 1079 * though that is 3 requests, it must be seen as a single transaction. 1080 * we must not preempt this drive until that is complete 1081 */ 1082 if (blk_queue_flushing(drive->queue)) { 1083 /* 1084 * small race where queue could get replugged during 1085 * the 3-request flush cycle, just yank the plug since 1086 * we want it to finish asap 1087 */ 1088 blk_remove_plug(drive->queue); 1089 return drive; 1090 } 1091 1092 do { 1093 if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep)) 1094 && !elv_queue_empty(drive->queue)) { 1095 if (!best 1096 || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep))) 1097 || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best)))) 1098 { 1099 if (!blk_queue_plugged(drive->queue)) 1100 best = drive; 1101 } 1102 } 1103 } while ((drive = drive->next) != hwgroup->drive); 1104 if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) { 1105 long t = (signed long)(WAKEUP(best) - jiffies); 1106 if (t >= WAIT_MIN_SLEEP) { 1107 /* 1108 * We *may* have some time to spare, but first let's see if 1109 * someone can potentially benefit from our nice mood today.. 1110 */ 1111 drive = best->next; 1112 do { 1113 if (!drive->sleeping 1114 && time_before(jiffies - best->service_time, WAKEUP(drive)) 1115 && time_before(WAKEUP(drive), jiffies + t)) 1116 { 1117 ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP)); 1118 goto repeat; 1119 } 1120 } while ((drive = drive->next) != best); 1121 } 1122 } 1123 return best; 1124} 1125 1126/* 1127 * Issue a new request to a drive from hwgroup 1128 * Caller must have already done spin_lock_irqsave(&ide_lock, ..); 1129 * 1130 * A hwgroup is a serialized group of IDE interfaces. Usually there is 1131 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640) 1132 * may have both interfaces in a single hwgroup to "serialize" access. 1133 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped 1134 * together into one hwgroup for serialized access. 1135 * 1136 * Note also that several hwgroups can end up sharing a single IRQ, 1137 * possibly along with many other devices. This is especially common in 1138 * PCI-based systems with off-board IDE controller cards. 1139 * 1140 * The IDE driver uses the single global ide_lock spinlock to protect 1141 * access to the request queues, and to protect the hwgroup->busy flag. 1142 * 1143 * The first thread into the driver for a particular hwgroup sets the 1144 * hwgroup->busy flag to indicate that this hwgroup is now active, 1145 * and then initiates processing of the top request from the request queue. 1146 * 1147 * Other threads attempting entry notice the busy setting, and will simply 1148 * queue their new requests and exit immediately. Note that hwgroup->busy 1149 * remains set even when the driver is merely awaiting the next interrupt. 1150 * Thus, the meaning is "this hwgroup is busy processing a request". 1151 * 1152 * When processing of a request completes, the completing thread or IRQ-handler 1153 * will start the next request from the queue. If no more work remains, 1154 * the driver will clear the hwgroup->busy flag and exit. 1155 * 1156 * The ide_lock (spinlock) is used to protect all access to the 1157 * hwgroup->busy flag, but is otherwise not needed for most processing in 1158 * the driver. This makes the driver much more friendlier to shared IRQs 1159 * than previous designs, while remaining 100% (?) SMP safe and capable. 1160 */ 1161static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq) 1162{ 1163 ide_drive_t *drive; 1164 ide_hwif_t *hwif; 1165 struct request *rq; 1166 ide_startstop_t startstop; 1167 int loops = 0; 1168 1169 /* for atari only: POSSIBLY BROKEN HERE(?) */ 1170 ide_get_lock(ide_intr, hwgroup); 1171 1172 /* caller must own ide_lock */ 1173 BUG_ON(!irqs_disabled()); 1174 1175 while (!hwgroup->busy) { 1176 hwgroup->busy = 1; 1177 drive = choose_drive(hwgroup); 1178 if (drive == NULL) { 1179 int sleeping = 0; 1180 unsigned long sleep = 0; /* shut up, gcc */ 1181 hwgroup->rq = NULL; 1182 drive = hwgroup->drive; 1183 do { 1184 if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) { 1185 sleeping = 1; 1186 sleep = drive->sleep; 1187 } 1188 } while ((drive = drive->next) != hwgroup->drive); 1189 if (sleeping) { 1190 /* 1191 * Take a short snooze, and then wake up this hwgroup again. 1192 * This gives other hwgroups on the same a chance to 1193 * play fairly with us, just in case there are big differences 1194 * in relative throughputs.. don't want to hog the cpu too much. 1195 */ 1196 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP)) 1197 sleep = jiffies + WAIT_MIN_SLEEP; 1198#if 1 1199 if (timer_pending(&hwgroup->timer)) 1200 printk(KERN_CRIT "ide_set_handler: timer already active\n"); 1201#endif 1202 /* so that ide_timer_expiry knows what to do */ 1203 hwgroup->sleeping = 1; 1204 hwgroup->req_gen_timer = hwgroup->req_gen; 1205 mod_timer(&hwgroup->timer, sleep); 1206 /* we purposely leave hwgroup->busy==1 1207 * while sleeping */ 1208 } else { 1209 /* Ugly, but how can we sleep for the lock 1210 * otherwise? perhaps from tq_disk? 1211 */ 1212 1213 /* for atari only */ 1214 ide_release_lock(); 1215 hwgroup->busy = 0; 1216 } 1217 1218 /* no more work for this hwgroup (for now) */ 1219 return; 1220 } 1221 again: 1222 hwif = HWIF(drive); 1223 if (hwgroup->hwif->sharing_irq && 1224 hwif != hwgroup->hwif && 1225 hwif->io_ports[IDE_CONTROL_OFFSET]) { 1226 /* set nIEN for previous hwif */ 1227 SELECT_INTERRUPT(drive); 1228 } 1229 hwgroup->hwif = hwif; 1230 hwgroup->drive = drive; 1231 drive->sleeping = 0; 1232 drive->service_start = jiffies; 1233 1234 if (blk_queue_plugged(drive->queue)) { 1235 printk(KERN_ERR "ide: huh? queue was plugged!\n"); 1236 break; 1237 } 1238 1239 /* 1240 * we know that the queue isn't empty, but this can happen 1241 * if the q->prep_rq_fn() decides to kill a request 1242 */ 1243 rq = elv_next_request(drive->queue); 1244 if (!rq) { 1245 hwgroup->busy = 0; 1246 break; 1247 } 1248 1249 /* 1250 * Sanity: don't accept a request that isn't a PM request 1251 * if we are currently power managed. This is very important as 1252 * blk_stop_queue() doesn't prevent the elv_next_request() 1253 * above to return us whatever is in the queue. Since we call 1254 * ide_do_request() ourselves, we end up taking requests while 1255 * the queue is blocked... 1256 * 1257 * We let requests forced at head of queue with ide-preempt 1258 * though. I hope that doesn't happen too much, hopefully not 1259 * unless the subdriver triggers such a thing in its own PM 1260 * state machine. 1261 * 1262 * We count how many times we loop here to make sure we service 1263 * all drives in the hwgroup without looping for ever 1264 */ 1265 if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) { 1266 drive = drive->next ? drive->next : hwgroup->drive; 1267 if (loops++ < 4 && !blk_queue_plugged(drive->queue)) 1268 goto again; 1269 /* We clear busy, there should be no pending ATA command at this point. */ 1270 hwgroup->busy = 0; 1271 break; 1272 } 1273 1274 hwgroup->rq = rq; 1275 1276 /* 1277 * Some systems have trouble with IDE IRQs arriving while 1278 * the driver is still setting things up. So, here we disable 1279 * the IRQ used by this interface while the request is being started. 1280 * This may look bad at first, but pretty much the same thing 1281 * happens anyway when any interrupt comes in, IDE or otherwise 1282 * -- the kernel masks the IRQ while it is being handled. 1283 */ 1284 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq) 1285 disable_irq_nosync(hwif->irq); 1286 spin_unlock(&ide_lock); 1287 local_irq_enable_in_hardirq(); 1288 /* allow other IRQs while we start this request */ 1289 startstop = start_request(drive, rq); 1290 spin_lock_irq(&ide_lock); 1291 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq) 1292 enable_irq(hwif->irq); 1293 if (startstop == ide_stopped) 1294 hwgroup->busy = 0; 1295 } 1296} 1297 1298/* 1299 * Passes the stuff to ide_do_request 1300 */ 1301void do_ide_request(struct request_queue *q) 1302{ 1303 ide_drive_t *drive = q->queuedata; 1304 1305 ide_do_request(HWGROUP(drive), IDE_NO_IRQ); 1306} 1307 1308/* 1309 * un-busy the hwgroup etc, and clear any pending DMA status. we want to 1310 * retry the current request in pio mode instead of risking tossing it 1311 * all away 1312 */ 1313static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error) 1314{ 1315 ide_hwif_t *hwif = HWIF(drive); 1316 struct request *rq; 1317 ide_startstop_t ret = ide_stopped; 1318 1319 /* 1320 * end current dma transaction 1321 */ 1322 1323 if (error < 0) { 1324 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name); 1325 (void)HWIF(drive)->ide_dma_end(drive); 1326 ret = ide_error(drive, "dma timeout error", 1327 hwif->INB(IDE_STATUS_REG)); 1328 } else { 1329 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name); 1330 hwif->dma_timeout(drive); 1331 } 1332 1333 /* 1334 * disable dma for now, but remember that we did so because of 1335 * a timeout -- we'll reenable after we finish this next request 1336 * (or rather the first chunk of it) in pio. 1337 */ 1338 drive->retry_pio++; 1339 drive->state = DMA_PIO_RETRY; 1340 hwif->dma_off_quietly(drive); 1341 1342 /* 1343 * un-busy drive etc (hwgroup->busy is cleared on return) and 1344 * make sure request is sane 1345 */ 1346 rq = HWGROUP(drive)->rq; 1347 1348 if (!rq) 1349 goto out; 1350 1351 HWGROUP(drive)->rq = NULL; 1352 1353 rq->errors = 0; 1354 1355 if (!rq->bio) 1356 goto out; 1357 1358 rq->sector = rq->bio->bi_sector; 1359 rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9; 1360 rq->hard_cur_sectors = rq->current_nr_sectors; 1361 rq->buffer = bio_data(rq->bio); 1362out: 1363 return ret; 1364} 1365 1366/** 1367 * ide_timer_expiry - handle lack of an IDE interrupt 1368 * @data: timer callback magic (hwgroup) 1369 * 1370 * An IDE command has timed out before the expected drive return 1371 * occurred. At this point we attempt to clean up the current 1372 * mess. If the current handler includes an expiry handler then 1373 * we invoke the expiry handler, and providing it is happy the 1374 * work is done. If that fails we apply generic recovery rules 1375 * invoking the handler and checking the drive DMA status. We 1376 * have an excessively incestuous relationship with the DMA 1377 * logic that wants cleaning up. 1378 */ 1379 1380void ide_timer_expiry (unsigned long data) 1381{ 1382 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *) data; 1383 ide_handler_t *handler; 1384 ide_expiry_t *expiry; 1385 unsigned long flags; 1386 unsigned long wait = -1; 1387 1388 spin_lock_irqsave(&ide_lock, flags); 1389 1390 if (((handler = hwgroup->handler) == NULL) || 1391 (hwgroup->req_gen != hwgroup->req_gen_timer)) { 1392 /* 1393 * Either a marginal timeout occurred 1394 * (got the interrupt just as timer expired), 1395 * or we were "sleeping" to give other devices a chance. 1396 * Either way, we don't really want to complain about anything. 1397 */ 1398 if (hwgroup->sleeping) { 1399 hwgroup->sleeping = 0; 1400 hwgroup->busy = 0; 1401 } 1402 } else { 1403 ide_drive_t *drive = hwgroup->drive; 1404 if (!drive) { 1405 printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n"); 1406 hwgroup->handler = NULL; 1407 } else { 1408 ide_hwif_t *hwif; 1409 ide_startstop_t startstop = ide_stopped; 1410 if (!hwgroup->busy) { 1411 hwgroup->busy = 1; /* paranoia */ 1412 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name); 1413 } 1414 if ((expiry = hwgroup->expiry) != NULL) { 1415 /* continue */ 1416 if ((wait = expiry(drive)) > 0) { 1417 /* reset timer */ 1418 hwgroup->timer.expires = jiffies + wait; 1419 hwgroup->req_gen_timer = hwgroup->req_gen; 1420 add_timer(&hwgroup->timer); 1421 spin_unlock_irqrestore(&ide_lock, flags); 1422 return; 1423 } 1424 } 1425 hwgroup->handler = NULL; 1426 /* 1427 * We need to simulate a real interrupt when invoking 1428 * the handler() function, which means we need to 1429 * globally mask the specific IRQ: 1430 */ 1431 spin_unlock(&ide_lock); 1432 hwif = HWIF(drive); 1433 /* disable_irq_nosync ?? */ 1434 disable_irq(hwif->irq); 1435 /* local CPU only, 1436 * as if we were handling an interrupt */ 1437 local_irq_disable(); 1438 if (hwgroup->polling) { 1439 startstop = handler(drive); 1440 } else if (drive_is_ready(drive)) { 1441 if (drive->waiting_for_dma) 1442 hwgroup->hwif->dma_lost_irq(drive); 1443 (void)ide_ack_intr(hwif); 1444 printk(KERN_WARNING "%s: lost interrupt\n", drive->name); 1445 startstop = handler(drive); 1446 } else { 1447 if (drive->waiting_for_dma) { 1448 startstop = ide_dma_timeout_retry(drive, wait); 1449 } else 1450 startstop = 1451 ide_error(drive, "irq timeout", hwif->INB(IDE_STATUS_REG)); 1452 } 1453 drive->service_time = jiffies - drive->service_start; 1454 spin_lock_irq(&ide_lock); 1455 enable_irq(hwif->irq); 1456 if (startstop == ide_stopped) 1457 hwgroup->busy = 0; 1458 } 1459 } 1460 ide_do_request(hwgroup, IDE_NO_IRQ); 1461 spin_unlock_irqrestore(&ide_lock, flags); 1462} 1463 1464/** 1465 * unexpected_intr - handle an unexpected IDE interrupt 1466 * @irq: interrupt line 1467 * @hwgroup: hwgroup being processed 1468 * 1469 * There's nothing really useful we can do with an unexpected interrupt, 1470 * other than reading the status register (to clear it), and logging it. 1471 * There should be no way that an irq can happen before we're ready for it, 1472 * so we needn't worry much about losing an "important" interrupt here. 1473 * 1474 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever 1475 * the drive enters "idle", "standby", or "sleep" mode, so if the status 1476 * looks "good", we just ignore the interrupt completely. 1477 * 1478 * This routine assumes __cli() is in effect when called. 1479 * 1480 * If an unexpected interrupt happens on irq15 while we are handling irq14 1481 * and if the two interfaces are "serialized" (CMD640), then it looks like 1482 * we could screw up by interfering with a new request being set up for 1483 * irq15. 1484 * 1485 * In reality, this is a non-issue. The new command is not sent unless 1486 * the drive is ready to accept one, in which case we know the drive is 1487 * not trying to interrupt us. And ide_set_handler() is always invoked 1488 * before completing the issuance of any new drive command, so we will not 1489 * be accidentally invoked as a result of any valid command completion 1490 * interrupt. 1491 * 1492 * Note that we must walk the entire hwgroup here. We know which hwif 1493 * is doing the current command, but we don't know which hwif burped 1494 * mysteriously. 1495 */ 1496 1497static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup) 1498{ 1499 u8 stat; 1500 ide_hwif_t *hwif = hwgroup->hwif; 1501 1502 /* 1503 * handle the unexpected interrupt 1504 */ 1505 do { 1506 if (hwif->irq == irq) { 1507 stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]); 1508 if (!OK_STAT(stat, READY_STAT, BAD_STAT)) { 1509 /* Try to not flood the console with msgs */ 1510 static unsigned long last_msgtime, count; 1511 ++count; 1512 if (time_after(jiffies, last_msgtime + HZ)) { 1513 last_msgtime = jiffies; 1514 printk(KERN_ERR "%s%s: unexpected interrupt, " 1515 "status=0x%02x, count=%ld\n", 1516 hwif->name, 1517 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count); 1518 } 1519 } 1520 } 1521 } while ((hwif = hwif->next) != hwgroup->hwif); 1522} 1523 1524/** 1525 * ide_intr - default IDE interrupt handler 1526 * @irq: interrupt number 1527 * @dev_id: hwif group 1528 * @regs: unused weirdness from the kernel irq layer 1529 * 1530 * This is the default IRQ handler for the IDE layer. You should 1531 * not need to override it. If you do be aware it is subtle in 1532 * places 1533 * 1534 * hwgroup->hwif is the interface in the group currently performing 1535 * a command. hwgroup->drive is the drive and hwgroup->handler is 1536 * the IRQ handler to call. As we issue a command the handlers 1537 * step through multiple states, reassigning the handler to the 1538 * next step in the process. Unlike a smart SCSI controller IDE 1539 * expects the main processor to sequence the various transfer 1540 * stages. We also manage a poll timer to catch up with most 1541 * timeout situations. There are still a few where the handlers 1542 * don't ever decide to give up. 1543 * 1544 * The handler eventually returns ide_stopped to indicate the 1545 * request completed. At this point we issue the next request 1546 * on the hwgroup and the process begins again. 1547 */ 1548 1549irqreturn_t ide_intr (int irq, void *dev_id) 1550{ 1551 unsigned long flags; 1552 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id; 1553 ide_hwif_t *hwif; 1554 ide_drive_t *drive; 1555 ide_handler_t *handler; 1556 ide_startstop_t startstop; 1557 1558 spin_lock_irqsave(&ide_lock, flags); 1559 hwif = hwgroup->hwif; 1560 1561 if (!ide_ack_intr(hwif)) { 1562 spin_unlock_irqrestore(&ide_lock, flags); 1563 return IRQ_NONE; 1564 } 1565 1566 if ((handler = hwgroup->handler) == NULL || hwgroup->polling) { 1567 /* 1568 * Not expecting an interrupt from this drive. 1569 * That means this could be: 1570 * (1) an interrupt from another PCI device 1571 * sharing the same PCI INT# as us. 1572 * or (2) a drive just entered sleep or standby mode, 1573 * and is interrupting to let us know. 1574 * or (3) a spurious interrupt of unknown origin. 1575 * 1576 * For PCI, we cannot tell the difference, 1577 * so in that case we just ignore it and hope it goes away. 1578 * 1579 * FIXME: unexpected_intr should be hwif-> then we can 1580 * remove all the ifdef PCI crap 1581 */ 1582#ifdef CONFIG_BLK_DEV_IDEPCI 1583 if (hwif->pci_dev && !hwif->pci_dev->vendor) 1584#endif /* CONFIG_BLK_DEV_IDEPCI */ 1585 { 1586 /* 1587 * Probably not a shared PCI interrupt, 1588 * so we can safely try to do something about it: 1589 */ 1590 unexpected_intr(irq, hwgroup); 1591#ifdef CONFIG_BLK_DEV_IDEPCI 1592 } else { 1593 /* 1594 * Whack the status register, just in case 1595 * we have a leftover pending IRQ. 1596 */ 1597 (void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]); 1598#endif /* CONFIG_BLK_DEV_IDEPCI */ 1599 } 1600 spin_unlock_irqrestore(&ide_lock, flags); 1601 return IRQ_NONE; 1602 } 1603 drive = hwgroup->drive; 1604 if (!drive) { 1605 /* 1606 * This should NEVER happen, and there isn't much 1607 * we could do about it here. 1608 * 1609 * [Note - this can occur if the drive is hot unplugged] 1610 */ 1611 spin_unlock_irqrestore(&ide_lock, flags); 1612 return IRQ_HANDLED; 1613 } 1614 if (!drive_is_ready(drive)) { 1615 /* 1616 * This happens regularly when we share a PCI IRQ with 1617 * another device. Unfortunately, it can also happen 1618 * with some buggy drives that trigger the IRQ before 1619 * their status register is up to date. Hopefully we have 1620 * enough advance overhead that the latter isn't a problem. 1621 */ 1622 spin_unlock_irqrestore(&ide_lock, flags); 1623 return IRQ_NONE; 1624 } 1625 if (!hwgroup->busy) { 1626 hwgroup->busy = 1; /* paranoia */ 1627 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name); 1628 } 1629 hwgroup->handler = NULL; 1630 hwgroup->req_gen++; 1631 del_timer(&hwgroup->timer); 1632 spin_unlock(&ide_lock); 1633 1634 /* Some controllers might set DMA INTR no matter DMA or PIO; 1635 * bmdma status might need to be cleared even for 1636 * PIO interrupts to prevent spurious/lost irq. 1637 */ 1638 if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma)) 1639 /* ide_dma_end() needs bmdma status for error checking. 1640 * So, skip clearing bmdma status here and leave it 1641 * to ide_dma_end() if this is dma interrupt. 1642 */ 1643 hwif->ide_dma_clear_irq(drive); 1644 1645 if (drive->unmask) 1646 local_irq_enable_in_hardirq(); 1647 /* service this interrupt, may set handler for next interrupt */ 1648 startstop = handler(drive); 1649 spin_lock_irq(&ide_lock); 1650 1651 /* 1652 * Note that handler() may have set things up for another 1653 * interrupt to occur soon, but it cannot happen until 1654 * we exit from this routine, because it will be the 1655 * same irq as is currently being serviced here, and Linux 1656 * won't allow another of the same (on any CPU) until we return. 1657 */ 1658 drive->service_time = jiffies - drive->service_start; 1659 if (startstop == ide_stopped) { 1660 if (hwgroup->handler == NULL) { /* paranoia */ 1661 hwgroup->busy = 0; 1662 ide_do_request(hwgroup, hwif->irq); 1663 } else { 1664 printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler " 1665 "on exit\n", drive->name); 1666 } 1667 } 1668 spin_unlock_irqrestore(&ide_lock, flags); 1669 return IRQ_HANDLED; 1670} 1671 1672/** 1673 * ide_init_drive_cmd - initialize a drive command request 1674 * @rq: request object 1675 * 1676 * Initialize a request before we fill it in and send it down to 1677 * ide_do_drive_cmd. Commands must be set up by this function. Right 1678 * now it doesn't do a lot, but if that changes abusers will have a 1679 * nasty surprise. 1680 */ 1681 1682void ide_init_drive_cmd (struct request *rq) 1683{ 1684 memset(rq, 0, sizeof(*rq)); 1685 rq->cmd_type = REQ_TYPE_ATA_CMD; 1686 rq->ref_count = 1; 1687} 1688 1689EXPORT_SYMBOL(ide_init_drive_cmd); 1690 1691/** 1692 * ide_do_drive_cmd - issue IDE special command 1693 * @drive: device to issue command 1694 * @rq: request to issue 1695 * @action: action for processing 1696 * 1697 * This function issues a special IDE device request 1698 * onto the request queue. 1699 * 1700 * If action is ide_wait, then the rq is queued at the end of the 1701 * request queue, and the function sleeps until it has been processed. 1702 * This is for use when invoked from an ioctl handler. 1703 * 1704 * If action is ide_preempt, then the rq is queued at the head of 1705 * the request queue, displacing the currently-being-processed 1706 * request and this function returns immediately without waiting 1707 * for the new rq to be completed. This is VERY DANGEROUS, and is 1708 * intended for careful use by the ATAPI tape/cdrom driver code. 1709 * 1710 * If action is ide_end, then the rq is queued at the end of the 1711 * request queue, and the function returns immediately without waiting 1712 * for the new rq to be completed. This is again intended for careful 1713 * use by the ATAPI tape/cdrom driver code. 1714 */ 1715 1716int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action) 1717{ 1718 unsigned long flags; 1719 ide_hwgroup_t *hwgroup = HWGROUP(drive); 1720 DECLARE_COMPLETION_ONSTACK(wait); 1721 int where = ELEVATOR_INSERT_BACK, err; 1722 int must_wait = (action == ide_wait || action == ide_head_wait); 1723 1724 rq->errors = 0; 1725 1726 /* 1727 * we need to hold an extra reference to request for safe inspection 1728 * after completion 1729 */ 1730 if (must_wait) { 1731 rq->ref_count++; 1732 rq->end_io_data = &wait; 1733 rq->end_io = blk_end_sync_rq; 1734 } 1735 1736 spin_lock_irqsave(&ide_lock, flags); 1737 if (action == ide_preempt) 1738 hwgroup->rq = NULL; 1739 if (action == ide_preempt || action == ide_head_wait) { 1740 where = ELEVATOR_INSERT_FRONT; 1741 rq->cmd_flags |= REQ_PREEMPT; 1742 } 1743 __elv_add_request(drive->queue, rq, where, 0); 1744 ide_do_request(hwgroup, IDE_NO_IRQ); 1745 spin_unlock_irqrestore(&ide_lock, flags); 1746 1747 err = 0; 1748 if (must_wait) { 1749 wait_for_completion(&wait); 1750 if (rq->errors) 1751 err = -EIO; 1752 1753 blk_put_request(rq); 1754 } 1755 1756 return err; 1757} 1758 1759EXPORT_SYMBOL(ide_do_drive_cmd); 1760