ide-io.c revision 23579a2a170265aacf78069f4817a41c1d6e9323
1/*
2 *	IDE I/O functions
3 *
4 *	Basic PIO and command management functionality.
5 *
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * General Public License for more details.
18 *
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
24 */
25
26
27#include <linux/module.h>
28#include <linux/types.h>
29#include <linux/string.h>
30#include <linux/kernel.h>
31#include <linux/timer.h>
32#include <linux/mm.h>
33#include <linux/interrupt.h>
34#include <linux/major.h>
35#include <linux/errno.h>
36#include <linux/genhd.h>
37#include <linux/blkpg.h>
38#include <linux/slab.h>
39#include <linux/init.h>
40#include <linux/pci.h>
41#include <linux/delay.h>
42#include <linux/ide.h>
43#include <linux/completion.h>
44#include <linux/reboot.h>
45#include <linux/cdrom.h>
46#include <linux/seq_file.h>
47#include <linux/device.h>
48#include <linux/kmod.h>
49#include <linux/scatterlist.h>
50#include <linux/bitops.h>
51
52#include <asm/byteorder.h>
53#include <asm/irq.h>
54#include <asm/uaccess.h>
55#include <asm/io.h>
56
57static int __ide_end_request(ide_drive_t *drive, struct request *rq,
58			     int uptodate, unsigned int nr_bytes, int dequeue)
59{
60	int ret = 1;
61	int error = 0;
62
63	if (uptodate <= 0)
64		error = uptodate ? uptodate : -EIO;
65
66	/*
67	 * if failfast is set on a request, override number of sectors and
68	 * complete the whole request right now
69	 */
70	if (blk_noretry_request(rq) && error)
71		nr_bytes = rq->hard_nr_sectors << 9;
72
73	if (!blk_fs_request(rq) && error && !rq->errors)
74		rq->errors = -EIO;
75
76	/*
77	 * decide whether to reenable DMA -- 3 is a random magic for now,
78	 * if we DMA timeout more than 3 times, just stay in PIO
79	 */
80	if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
81		drive->state = 0;
82		ide_dma_on(drive);
83	}
84
85	if (!__blk_end_request(rq, error, nr_bytes)) {
86		if (dequeue)
87			HWGROUP(drive)->rq = NULL;
88		ret = 0;
89	}
90
91	return ret;
92}
93
94/**
95 *	ide_end_request		-	complete an IDE I/O
96 *	@drive: IDE device for the I/O
97 *	@uptodate:
98 *	@nr_sectors: number of sectors completed
99 *
100 *	This is our end_request wrapper function. We complete the I/O
101 *	update random number input and dequeue the request, which if
102 *	it was tagged may be out of order.
103 */
104
105int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
106{
107	unsigned int nr_bytes = nr_sectors << 9;
108	struct request *rq;
109	unsigned long flags;
110	int ret = 1;
111
112	/*
113	 * room for locking improvements here, the calls below don't
114	 * need the queue lock held at all
115	 */
116	spin_lock_irqsave(&ide_lock, flags);
117	rq = HWGROUP(drive)->rq;
118
119	if (!nr_bytes) {
120		if (blk_pc_request(rq))
121			nr_bytes = rq->data_len;
122		else
123			nr_bytes = rq->hard_cur_sectors << 9;
124	}
125
126	ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
127
128	spin_unlock_irqrestore(&ide_lock, flags);
129	return ret;
130}
131EXPORT_SYMBOL(ide_end_request);
132
133/*
134 * Power Management state machine. This one is rather trivial for now,
135 * we should probably add more, like switching back to PIO on suspend
136 * to help some BIOSes, re-do the door locking on resume, etc...
137 */
138
139enum {
140	ide_pm_flush_cache	= ide_pm_state_start_suspend,
141	idedisk_pm_standby,
142
143	idedisk_pm_restore_pio	= ide_pm_state_start_resume,
144	idedisk_pm_idle,
145	ide_pm_restore_dma,
146};
147
148static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
149{
150	struct request_pm_state *pm = rq->data;
151
152	if (drive->media != ide_disk)
153		return;
154
155	switch (pm->pm_step) {
156	case ide_pm_flush_cache:	/* Suspend step 1 (flush cache) complete */
157		if (pm->pm_state == PM_EVENT_FREEZE)
158			pm->pm_step = ide_pm_state_completed;
159		else
160			pm->pm_step = idedisk_pm_standby;
161		break;
162	case idedisk_pm_standby:	/* Suspend step 2 (standby) complete */
163		pm->pm_step = ide_pm_state_completed;
164		break;
165	case idedisk_pm_restore_pio:	/* Resume step 1 complete */
166		pm->pm_step = idedisk_pm_idle;
167		break;
168	case idedisk_pm_idle:		/* Resume step 2 (idle) complete */
169		pm->pm_step = ide_pm_restore_dma;
170		break;
171	}
172}
173
174static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
175{
176	struct request_pm_state *pm = rq->data;
177	ide_task_t *args = rq->special;
178
179	memset(args, 0, sizeof(*args));
180
181	switch (pm->pm_step) {
182	case ide_pm_flush_cache:	/* Suspend step 1 (flush cache) */
183		if (drive->media != ide_disk)
184			break;
185		/* Not supported? Switch to next step now. */
186		if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
187			ide_complete_power_step(drive, rq, 0, 0);
188			return ide_stopped;
189		}
190		if (ide_id_has_flush_cache_ext(drive->id))
191			args->tf.command = WIN_FLUSH_CACHE_EXT;
192		else
193			args->tf.command = WIN_FLUSH_CACHE;
194		goto out_do_tf;
195
196	case idedisk_pm_standby:	/* Suspend step 2 (standby) */
197		args->tf.command = WIN_STANDBYNOW1;
198		goto out_do_tf;
199
200	case idedisk_pm_restore_pio:	/* Resume step 1 (restore PIO) */
201		ide_set_max_pio(drive);
202		/*
203		 * skip idedisk_pm_idle for ATAPI devices
204		 */
205		if (drive->media != ide_disk)
206			pm->pm_step = ide_pm_restore_dma;
207		else
208			ide_complete_power_step(drive, rq, 0, 0);
209		return ide_stopped;
210
211	case idedisk_pm_idle:		/* Resume step 2 (idle) */
212		args->tf.command = WIN_IDLEIMMEDIATE;
213		goto out_do_tf;
214
215	case ide_pm_restore_dma:	/* Resume step 3 (restore DMA) */
216		/*
217		 * Right now, all we do is call ide_set_dma(drive),
218		 * we could be smarter and check for current xfer_speed
219		 * in struct drive etc...
220		 */
221		if (drive->hwif->dma_host_set == NULL)
222			break;
223		/*
224		 * TODO: respect ->using_dma setting
225		 */
226		ide_set_dma(drive);
227		break;
228	}
229	pm->pm_step = ide_pm_state_completed;
230	return ide_stopped;
231
232out_do_tf:
233	args->tf_flags	 = IDE_TFLAG_TF | IDE_TFLAG_DEVICE;
234	args->data_phase = TASKFILE_NO_DATA;
235	return do_rw_taskfile(drive, args);
236}
237
238/**
239 *	ide_end_dequeued_request	-	complete an IDE I/O
240 *	@drive: IDE device for the I/O
241 *	@uptodate:
242 *	@nr_sectors: number of sectors completed
243 *
244 *	Complete an I/O that is no longer on the request queue. This
245 *	typically occurs when we pull the request and issue a REQUEST_SENSE.
246 *	We must still finish the old request but we must not tamper with the
247 *	queue in the meantime.
248 *
249 *	NOTE: This path does not handle barrier, but barrier is not supported
250 *	on ide-cd anyway.
251 */
252
253int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
254			     int uptodate, int nr_sectors)
255{
256	unsigned long flags;
257	int ret;
258
259	spin_lock_irqsave(&ide_lock, flags);
260	BUG_ON(!blk_rq_started(rq));
261	ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
262	spin_unlock_irqrestore(&ide_lock, flags);
263
264	return ret;
265}
266EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
267
268
269/**
270 *	ide_complete_pm_request - end the current Power Management request
271 *	@drive: target drive
272 *	@rq: request
273 *
274 *	This function cleans up the current PM request and stops the queue
275 *	if necessary.
276 */
277static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
278{
279	unsigned long flags;
280
281#ifdef DEBUG_PM
282	printk("%s: completing PM request, %s\n", drive->name,
283	       blk_pm_suspend_request(rq) ? "suspend" : "resume");
284#endif
285	spin_lock_irqsave(&ide_lock, flags);
286	if (blk_pm_suspend_request(rq)) {
287		blk_stop_queue(drive->queue);
288	} else {
289		drive->blocked = 0;
290		blk_start_queue(drive->queue);
291	}
292	HWGROUP(drive)->rq = NULL;
293	if (__blk_end_request(rq, 0, 0))
294		BUG();
295	spin_unlock_irqrestore(&ide_lock, flags);
296}
297
298void ide_tf_read(ide_drive_t *drive, ide_task_t *task)
299{
300	ide_hwif_t *hwif = drive->hwif;
301	struct ide_taskfile *tf = &task->tf;
302
303	if (task->tf_flags & IDE_TFLAG_IN_DATA) {
304		u16 data = hwif->INW(hwif->io_ports[IDE_DATA_OFFSET]);
305
306		tf->data = data & 0xff;
307		tf->hob_data = (data >> 8) & 0xff;
308	}
309
310	/* be sure we're looking at the low order bits */
311	hwif->OUTB(drive->ctl & ~0x80, hwif->io_ports[IDE_CONTROL_OFFSET]);
312
313	if (task->tf_flags & IDE_TFLAG_IN_NSECT)
314		tf->nsect  = hwif->INB(hwif->io_ports[IDE_NSECTOR_OFFSET]);
315	if (task->tf_flags & IDE_TFLAG_IN_LBAL)
316		tf->lbal   = hwif->INB(hwif->io_ports[IDE_SECTOR_OFFSET]);
317	if (task->tf_flags & IDE_TFLAG_IN_LBAM)
318		tf->lbam   = hwif->INB(hwif->io_ports[IDE_LCYL_OFFSET]);
319	if (task->tf_flags & IDE_TFLAG_IN_LBAH)
320		tf->lbah   = hwif->INB(hwif->io_ports[IDE_HCYL_OFFSET]);
321	if (task->tf_flags & IDE_TFLAG_IN_DEVICE)
322		tf->device = hwif->INB(hwif->io_ports[IDE_SELECT_OFFSET]);
323
324	if (task->tf_flags & IDE_TFLAG_LBA48) {
325		hwif->OUTB(drive->ctl | 0x80,
326			   hwif->io_ports[IDE_CONTROL_OFFSET]);
327
328		if (task->tf_flags & IDE_TFLAG_IN_HOB_FEATURE)
329			tf->hob_feature =
330				hwif->INB(hwif->io_ports[IDE_FEATURE_OFFSET]);
331		if (task->tf_flags & IDE_TFLAG_IN_HOB_NSECT)
332			tf->hob_nsect   =
333				hwif->INB(hwif->io_ports[IDE_NSECTOR_OFFSET]);
334		if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAL)
335			tf->hob_lbal    =
336				hwif->INB(hwif->io_ports[IDE_SECTOR_OFFSET]);
337		if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAM)
338			tf->hob_lbam    =
339				hwif->INB(hwif->io_ports[IDE_LCYL_OFFSET]);
340		if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAH)
341			tf->hob_lbah    =
342				hwif->INB(hwif->io_ports[IDE_HCYL_OFFSET]);
343	}
344}
345
346/**
347 *	ide_end_drive_cmd	-	end an explicit drive command
348 *	@drive: command
349 *	@stat: status bits
350 *	@err: error bits
351 *
352 *	Clean up after success/failure of an explicit drive command.
353 *	These get thrown onto the queue so they are synchronized with
354 *	real I/O operations on the drive.
355 *
356 *	In LBA48 mode we have to read the register set twice to get
357 *	all the extra information out.
358 */
359
360void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
361{
362	unsigned long flags;
363	struct request *rq;
364
365	spin_lock_irqsave(&ide_lock, flags);
366	rq = HWGROUP(drive)->rq;
367	spin_unlock_irqrestore(&ide_lock, flags);
368
369	if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
370		ide_task_t *task = (ide_task_t *)rq->special;
371
372		if (rq->errors == 0)
373			rq->errors = !OK_STAT(stat, READY_STAT, BAD_STAT);
374
375		if (task) {
376			struct ide_taskfile *tf = &task->tf;
377
378			tf->error = err;
379			tf->status = stat;
380
381			ide_tf_read(drive, task);
382
383			if (task->tf_flags & IDE_TFLAG_DYN)
384				kfree(task);
385		}
386	} else if (blk_pm_request(rq)) {
387		struct request_pm_state *pm = rq->data;
388#ifdef DEBUG_PM
389		printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
390			drive->name, rq->pm->pm_step, stat, err);
391#endif
392		ide_complete_power_step(drive, rq, stat, err);
393		if (pm->pm_step == ide_pm_state_completed)
394			ide_complete_pm_request(drive, rq);
395		return;
396	}
397
398	spin_lock_irqsave(&ide_lock, flags);
399	HWGROUP(drive)->rq = NULL;
400	rq->errors = err;
401	if (unlikely(__blk_end_request(rq, (rq->errors ? -EIO : 0),
402				       blk_rq_bytes(rq))))
403		BUG();
404	spin_unlock_irqrestore(&ide_lock, flags);
405}
406
407EXPORT_SYMBOL(ide_end_drive_cmd);
408
409/**
410 *	try_to_flush_leftover_data	-	flush junk
411 *	@drive: drive to flush
412 *
413 *	try_to_flush_leftover_data() is invoked in response to a drive
414 *	unexpectedly having its DRQ_STAT bit set.  As an alternative to
415 *	resetting the drive, this routine tries to clear the condition
416 *	by read a sector's worth of data from the drive.  Of course,
417 *	this may not help if the drive is *waiting* for data from *us*.
418 */
419static void try_to_flush_leftover_data (ide_drive_t *drive)
420{
421	int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS;
422
423	if (drive->media != ide_disk)
424		return;
425	while (i > 0) {
426		u32 buffer[16];
427		u32 wcount = (i > 16) ? 16 : i;
428
429		i -= wcount;
430		HWIF(drive)->ata_input_data(drive, buffer, wcount);
431	}
432}
433
434static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
435{
436	if (rq->rq_disk) {
437		ide_driver_t *drv;
438
439		drv = *(ide_driver_t **)rq->rq_disk->private_data;
440		drv->end_request(drive, 0, 0);
441	} else
442		ide_end_request(drive, 0, 0);
443}
444
445static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
446{
447	ide_hwif_t *hwif = drive->hwif;
448
449	if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
450		/* other bits are useless when BUSY */
451		rq->errors |= ERROR_RESET;
452	} else if (stat & ERR_STAT) {
453		/* err has different meaning on cdrom and tape */
454		if (err == ABRT_ERR) {
455			if (drive->select.b.lba &&
456			    /* some newer drives don't support WIN_SPECIFY */
457			    hwif->INB(hwif->io_ports[IDE_COMMAND_OFFSET]) ==
458				WIN_SPECIFY)
459				return ide_stopped;
460		} else if ((err & BAD_CRC) == BAD_CRC) {
461			/* UDMA crc error, just retry the operation */
462			drive->crc_count++;
463		} else if (err & (BBD_ERR | ECC_ERR)) {
464			/* retries won't help these */
465			rq->errors = ERROR_MAX;
466		} else if (err & TRK0_ERR) {
467			/* help it find track zero */
468			rq->errors |= ERROR_RECAL;
469		}
470	}
471
472	if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ &&
473	    (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0)
474		try_to_flush_leftover_data(drive);
475
476	if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
477		ide_kill_rq(drive, rq);
478		return ide_stopped;
479	}
480
481	if (ide_read_status(drive) & (BUSY_STAT | DRQ_STAT))
482		rq->errors |= ERROR_RESET;
483
484	if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
485		++rq->errors;
486		return ide_do_reset(drive);
487	}
488
489	if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
490		drive->special.b.recalibrate = 1;
491
492	++rq->errors;
493
494	return ide_stopped;
495}
496
497static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
498{
499	ide_hwif_t *hwif = drive->hwif;
500
501	if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
502		/* other bits are useless when BUSY */
503		rq->errors |= ERROR_RESET;
504	} else {
505		/* add decoding error stuff */
506	}
507
508	if (ide_read_status(drive) & (BUSY_STAT | DRQ_STAT))
509		/* force an abort */
510		hwif->OUTB(WIN_IDLEIMMEDIATE,
511			   hwif->io_ports[IDE_COMMAND_OFFSET]);
512
513	if (rq->errors >= ERROR_MAX) {
514		ide_kill_rq(drive, rq);
515	} else {
516		if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
517			++rq->errors;
518			return ide_do_reset(drive);
519		}
520		++rq->errors;
521	}
522
523	return ide_stopped;
524}
525
526ide_startstop_t
527__ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
528{
529	if (drive->media == ide_disk)
530		return ide_ata_error(drive, rq, stat, err);
531	return ide_atapi_error(drive, rq, stat, err);
532}
533
534EXPORT_SYMBOL_GPL(__ide_error);
535
536/**
537 *	ide_error	-	handle an error on the IDE
538 *	@drive: drive the error occurred on
539 *	@msg: message to report
540 *	@stat: status bits
541 *
542 *	ide_error() takes action based on the error returned by the drive.
543 *	For normal I/O that may well include retries. We deal with
544 *	both new-style (taskfile) and old style command handling here.
545 *	In the case of taskfile command handling there is work left to
546 *	do
547 */
548
549ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
550{
551	struct request *rq;
552	u8 err;
553
554	err = ide_dump_status(drive, msg, stat);
555
556	if ((rq = HWGROUP(drive)->rq) == NULL)
557		return ide_stopped;
558
559	/* retry only "normal" I/O: */
560	if (!blk_fs_request(rq)) {
561		rq->errors = 1;
562		ide_end_drive_cmd(drive, stat, err);
563		return ide_stopped;
564	}
565
566	if (rq->rq_disk) {
567		ide_driver_t *drv;
568
569		drv = *(ide_driver_t **)rq->rq_disk->private_data;
570		return drv->error(drive, rq, stat, err);
571	} else
572		return __ide_error(drive, rq, stat, err);
573}
574
575EXPORT_SYMBOL_GPL(ide_error);
576
577ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq)
578{
579	if (drive->media != ide_disk)
580		rq->errors |= ERROR_RESET;
581
582	ide_kill_rq(drive, rq);
583
584	return ide_stopped;
585}
586
587EXPORT_SYMBOL_GPL(__ide_abort);
588
589/**
590 *	ide_abort	-	abort pending IDE operations
591 *	@drive: drive the error occurred on
592 *	@msg: message to report
593 *
594 *	ide_abort kills and cleans up when we are about to do a
595 *	host initiated reset on active commands. Longer term we
596 *	want handlers to have sensible abort handling themselves
597 *
598 *	This differs fundamentally from ide_error because in
599 *	this case the command is doing just fine when we
600 *	blow it away.
601 */
602
603ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
604{
605	struct request *rq;
606
607	if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
608		return ide_stopped;
609
610	/* retry only "normal" I/O: */
611	if (!blk_fs_request(rq)) {
612		rq->errors = 1;
613		ide_end_drive_cmd(drive, BUSY_STAT, 0);
614		return ide_stopped;
615	}
616
617	if (rq->rq_disk) {
618		ide_driver_t *drv;
619
620		drv = *(ide_driver_t **)rq->rq_disk->private_data;
621		return drv->abort(drive, rq);
622	} else
623		return __ide_abort(drive, rq);
624}
625
626static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
627{
628	tf->nsect   = drive->sect;
629	tf->lbal    = drive->sect;
630	tf->lbam    = drive->cyl;
631	tf->lbah    = drive->cyl >> 8;
632	tf->device  = ((drive->head - 1) | drive->select.all) & ~ATA_LBA;
633	tf->command = WIN_SPECIFY;
634}
635
636static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
637{
638	tf->nsect   = drive->sect;
639	tf->command = WIN_RESTORE;
640}
641
642static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
643{
644	tf->nsect   = drive->mult_req;
645	tf->command = WIN_SETMULT;
646}
647
648static ide_startstop_t ide_disk_special(ide_drive_t *drive)
649{
650	special_t *s = &drive->special;
651	ide_task_t args;
652
653	memset(&args, 0, sizeof(ide_task_t));
654	args.data_phase = TASKFILE_NO_DATA;
655
656	if (s->b.set_geometry) {
657		s->b.set_geometry = 0;
658		ide_tf_set_specify_cmd(drive, &args.tf);
659	} else if (s->b.recalibrate) {
660		s->b.recalibrate = 0;
661		ide_tf_set_restore_cmd(drive, &args.tf);
662	} else if (s->b.set_multmode) {
663		s->b.set_multmode = 0;
664		if (drive->mult_req > drive->id->max_multsect)
665			drive->mult_req = drive->id->max_multsect;
666		ide_tf_set_setmult_cmd(drive, &args.tf);
667	} else if (s->all) {
668		int special = s->all;
669		s->all = 0;
670		printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
671		return ide_stopped;
672	}
673
674	args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
675			IDE_TFLAG_CUSTOM_HANDLER;
676
677	do_rw_taskfile(drive, &args);
678
679	return ide_started;
680}
681
682/*
683 * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
684 */
685static int set_pio_mode_abuse(ide_hwif_t *hwif, u8 req_pio)
686{
687	switch (req_pio) {
688	case 202:
689	case 201:
690	case 200:
691	case 102:
692	case 101:
693	case 100:
694		return (hwif->host_flags & IDE_HFLAG_ABUSE_DMA_MODES) ? 1 : 0;
695	case 9:
696	case 8:
697		return (hwif->host_flags & IDE_HFLAG_ABUSE_PREFETCH) ? 1 : 0;
698	case 7:
699	case 6:
700		return (hwif->host_flags & IDE_HFLAG_ABUSE_FAST_DEVSEL) ? 1 : 0;
701	default:
702		return 0;
703	}
704}
705
706/**
707 *	do_special		-	issue some special commands
708 *	@drive: drive the command is for
709 *
710 *	do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
711 *	commands to a drive.  It used to do much more, but has been scaled
712 *	back.
713 */
714
715static ide_startstop_t do_special (ide_drive_t *drive)
716{
717	special_t *s = &drive->special;
718
719#ifdef DEBUG
720	printk("%s: do_special: 0x%02x\n", drive->name, s->all);
721#endif
722	if (s->b.set_tune) {
723		ide_hwif_t *hwif = drive->hwif;
724		u8 req_pio = drive->tune_req;
725
726		s->b.set_tune = 0;
727
728		if (set_pio_mode_abuse(drive->hwif, req_pio)) {
729
730			if (hwif->set_pio_mode == NULL)
731				return ide_stopped;
732
733			/*
734			 * take ide_lock for drive->[no_]unmask/[no_]io_32bit
735			 */
736			if (req_pio == 8 || req_pio == 9) {
737				unsigned long flags;
738
739				spin_lock_irqsave(&ide_lock, flags);
740				hwif->set_pio_mode(drive, req_pio);
741				spin_unlock_irqrestore(&ide_lock, flags);
742			} else
743				hwif->set_pio_mode(drive, req_pio);
744		} else {
745			int keep_dma = drive->using_dma;
746
747			ide_set_pio(drive, req_pio);
748
749			if (hwif->host_flags & IDE_HFLAG_SET_PIO_MODE_KEEP_DMA) {
750				if (keep_dma)
751					ide_dma_on(drive);
752			}
753		}
754
755		return ide_stopped;
756	} else {
757		if (drive->media == ide_disk)
758			return ide_disk_special(drive);
759
760		s->all = 0;
761		drive->mult_req = 0;
762		return ide_stopped;
763	}
764}
765
766void ide_map_sg(ide_drive_t *drive, struct request *rq)
767{
768	ide_hwif_t *hwif = drive->hwif;
769	struct scatterlist *sg = hwif->sg_table;
770
771	if (hwif->sg_mapped)	/* needed by ide-scsi */
772		return;
773
774	if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
775		hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
776	} else {
777		sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
778		hwif->sg_nents = 1;
779	}
780}
781
782EXPORT_SYMBOL_GPL(ide_map_sg);
783
784void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
785{
786	ide_hwif_t *hwif = drive->hwif;
787
788	hwif->nsect = hwif->nleft = rq->nr_sectors;
789	hwif->cursg_ofs = 0;
790	hwif->cursg = NULL;
791}
792
793EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
794
795/**
796 *	execute_drive_command	-	issue special drive command
797 *	@drive: the drive to issue the command on
798 *	@rq: the request structure holding the command
799 *
800 *	execute_drive_cmd() issues a special drive command,  usually
801 *	initiated by ioctl() from the external hdparm program. The
802 *	command can be a drive command, drive task or taskfile
803 *	operation. Weirdly you can call it with NULL to wait for
804 *	all commands to finish. Don't do this as that is due to change
805 */
806
807static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
808		struct request *rq)
809{
810	ide_hwif_t *hwif = HWIF(drive);
811	ide_task_t *task = rq->special;
812
813	if (task) {
814		hwif->data_phase = task->data_phase;
815
816		switch (hwif->data_phase) {
817		case TASKFILE_MULTI_OUT:
818		case TASKFILE_OUT:
819		case TASKFILE_MULTI_IN:
820		case TASKFILE_IN:
821			ide_init_sg_cmd(drive, rq);
822			ide_map_sg(drive, rq);
823		default:
824			break;
825		}
826
827		return do_rw_taskfile(drive, task);
828	}
829
830 	/*
831 	 * NULL is actually a valid way of waiting for
832 	 * all current requests to be flushed from the queue.
833 	 */
834#ifdef DEBUG
835 	printk("%s: DRIVE_CMD (null)\n", drive->name);
836#endif
837	ide_end_drive_cmd(drive, ide_read_status(drive), ide_read_error(drive));
838
839 	return ide_stopped;
840}
841
842static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
843{
844	struct request_pm_state *pm = rq->data;
845
846	if (blk_pm_suspend_request(rq) &&
847	    pm->pm_step == ide_pm_state_start_suspend)
848		/* Mark drive blocked when starting the suspend sequence. */
849		drive->blocked = 1;
850	else if (blk_pm_resume_request(rq) &&
851		 pm->pm_step == ide_pm_state_start_resume) {
852		/*
853		 * The first thing we do on wakeup is to wait for BSY bit to
854		 * go away (with a looong timeout) as a drive on this hwif may
855		 * just be POSTing itself.
856		 * We do that before even selecting as the "other" device on
857		 * the bus may be broken enough to walk on our toes at this
858		 * point.
859		 */
860		int rc;
861#ifdef DEBUG_PM
862		printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
863#endif
864		rc = ide_wait_not_busy(HWIF(drive), 35000);
865		if (rc)
866			printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
867		SELECT_DRIVE(drive);
868		ide_set_irq(drive, 1);
869		rc = ide_wait_not_busy(HWIF(drive), 100000);
870		if (rc)
871			printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
872	}
873}
874
875/**
876 *	start_request	-	start of I/O and command issuing for IDE
877 *
878 *	start_request() initiates handling of a new I/O request. It
879 *	accepts commands and I/O (read/write) requests. It also does
880 *	the final remapping for weird stuff like EZDrive. Once
881 *	device mapper can work sector level the EZDrive stuff can go away
882 *
883 *	FIXME: this function needs a rename
884 */
885
886static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
887{
888	ide_startstop_t startstop;
889	sector_t block;
890
891	BUG_ON(!blk_rq_started(rq));
892
893#ifdef DEBUG
894	printk("%s: start_request: current=0x%08lx\n",
895		HWIF(drive)->name, (unsigned long) rq);
896#endif
897
898	/* bail early if we've exceeded max_failures */
899	if (drive->max_failures && (drive->failures > drive->max_failures)) {
900		rq->cmd_flags |= REQ_FAILED;
901		goto kill_rq;
902	}
903
904	block    = rq->sector;
905	if (blk_fs_request(rq) &&
906	    (drive->media == ide_disk || drive->media == ide_floppy)) {
907		block += drive->sect0;
908	}
909	/* Yecch - this will shift the entire interval,
910	   possibly killing some innocent following sector */
911	if (block == 0 && drive->remap_0_to_1 == 1)
912		block = 1;  /* redirect MBR access to EZ-Drive partn table */
913
914	if (blk_pm_request(rq))
915		ide_check_pm_state(drive, rq);
916
917	SELECT_DRIVE(drive);
918	if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
919		printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
920		return startstop;
921	}
922	if (!drive->special.all) {
923		ide_driver_t *drv;
924
925		/*
926		 * We reset the drive so we need to issue a SETFEATURES.
927		 * Do it _after_ do_special() restored device parameters.
928		 */
929		if (drive->current_speed == 0xff)
930			ide_config_drive_speed(drive, drive->desired_speed);
931
932		if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
933			return execute_drive_cmd(drive, rq);
934		else if (blk_pm_request(rq)) {
935			struct request_pm_state *pm = rq->data;
936#ifdef DEBUG_PM
937			printk("%s: start_power_step(step: %d)\n",
938				drive->name, rq->pm->pm_step);
939#endif
940			startstop = ide_start_power_step(drive, rq);
941			if (startstop == ide_stopped &&
942			    pm->pm_step == ide_pm_state_completed)
943				ide_complete_pm_request(drive, rq);
944			return startstop;
945		}
946
947		drv = *(ide_driver_t **)rq->rq_disk->private_data;
948		return drv->do_request(drive, rq, block);
949	}
950	return do_special(drive);
951kill_rq:
952	ide_kill_rq(drive, rq);
953	return ide_stopped;
954}
955
956/**
957 *	ide_stall_queue		-	pause an IDE device
958 *	@drive: drive to stall
959 *	@timeout: time to stall for (jiffies)
960 *
961 *	ide_stall_queue() can be used by a drive to give excess bandwidth back
962 *	to the hwgroup by sleeping for timeout jiffies.
963 */
964
965void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
966{
967	if (timeout > WAIT_WORSTCASE)
968		timeout = WAIT_WORSTCASE;
969	drive->sleep = timeout + jiffies;
970	drive->sleeping = 1;
971}
972
973EXPORT_SYMBOL(ide_stall_queue);
974
975#define WAKEUP(drive)	((drive)->service_start + 2 * (drive)->service_time)
976
977/**
978 *	choose_drive		-	select a drive to service
979 *	@hwgroup: hardware group to select on
980 *
981 *	choose_drive() selects the next drive which will be serviced.
982 *	This is necessary because the IDE layer can't issue commands
983 *	to both drives on the same cable, unlike SCSI.
984 */
985
986static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
987{
988	ide_drive_t *drive, *best;
989
990repeat:
991	best = NULL;
992	drive = hwgroup->drive;
993
994	/*
995	 * drive is doing pre-flush, ordered write, post-flush sequence. even
996	 * though that is 3 requests, it must be seen as a single transaction.
997	 * we must not preempt this drive until that is complete
998	 */
999	if (blk_queue_flushing(drive->queue)) {
1000		/*
1001		 * small race where queue could get replugged during
1002		 * the 3-request flush cycle, just yank the plug since
1003		 * we want it to finish asap
1004		 */
1005		blk_remove_plug(drive->queue);
1006		return drive;
1007	}
1008
1009	do {
1010		if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
1011		    && !elv_queue_empty(drive->queue)) {
1012			if (!best
1013			 || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
1014			 || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
1015			{
1016				if (!blk_queue_plugged(drive->queue))
1017					best = drive;
1018			}
1019		}
1020	} while ((drive = drive->next) != hwgroup->drive);
1021	if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
1022		long t = (signed long)(WAKEUP(best) - jiffies);
1023		if (t >= WAIT_MIN_SLEEP) {
1024		/*
1025		 * We *may* have some time to spare, but first let's see if
1026		 * someone can potentially benefit from our nice mood today..
1027		 */
1028			drive = best->next;
1029			do {
1030				if (!drive->sleeping
1031				 && time_before(jiffies - best->service_time, WAKEUP(drive))
1032				 && time_before(WAKEUP(drive), jiffies + t))
1033				{
1034					ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
1035					goto repeat;
1036				}
1037			} while ((drive = drive->next) != best);
1038		}
1039	}
1040	return best;
1041}
1042
1043/*
1044 * Issue a new request to a drive from hwgroup
1045 * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
1046 *
1047 * A hwgroup is a serialized group of IDE interfaces.  Usually there is
1048 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
1049 * may have both interfaces in a single hwgroup to "serialize" access.
1050 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
1051 * together into one hwgroup for serialized access.
1052 *
1053 * Note also that several hwgroups can end up sharing a single IRQ,
1054 * possibly along with many other devices.  This is especially common in
1055 * PCI-based systems with off-board IDE controller cards.
1056 *
1057 * The IDE driver uses the single global ide_lock spinlock to protect
1058 * access to the request queues, and to protect the hwgroup->busy flag.
1059 *
1060 * The first thread into the driver for a particular hwgroup sets the
1061 * hwgroup->busy flag to indicate that this hwgroup is now active,
1062 * and then initiates processing of the top request from the request queue.
1063 *
1064 * Other threads attempting entry notice the busy setting, and will simply
1065 * queue their new requests and exit immediately.  Note that hwgroup->busy
1066 * remains set even when the driver is merely awaiting the next interrupt.
1067 * Thus, the meaning is "this hwgroup is busy processing a request".
1068 *
1069 * When processing of a request completes, the completing thread or IRQ-handler
1070 * will start the next request from the queue.  If no more work remains,
1071 * the driver will clear the hwgroup->busy flag and exit.
1072 *
1073 * The ide_lock (spinlock) is used to protect all access to the
1074 * hwgroup->busy flag, but is otherwise not needed for most processing in
1075 * the driver.  This makes the driver much more friendlier to shared IRQs
1076 * than previous designs, while remaining 100% (?) SMP safe and capable.
1077 */
1078static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
1079{
1080	ide_drive_t	*drive;
1081	ide_hwif_t	*hwif;
1082	struct request	*rq;
1083	ide_startstop_t	startstop;
1084	int             loops = 0;
1085
1086	/* for atari only: POSSIBLY BROKEN HERE(?) */
1087	ide_get_lock(ide_intr, hwgroup);
1088
1089	/* caller must own ide_lock */
1090	BUG_ON(!irqs_disabled());
1091
1092	while (!hwgroup->busy) {
1093		hwgroup->busy = 1;
1094		drive = choose_drive(hwgroup);
1095		if (drive == NULL) {
1096			int sleeping = 0;
1097			unsigned long sleep = 0; /* shut up, gcc */
1098			hwgroup->rq = NULL;
1099			drive = hwgroup->drive;
1100			do {
1101				if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
1102					sleeping = 1;
1103					sleep = drive->sleep;
1104				}
1105			} while ((drive = drive->next) != hwgroup->drive);
1106			if (sleeping) {
1107		/*
1108		 * Take a short snooze, and then wake up this hwgroup again.
1109		 * This gives other hwgroups on the same a chance to
1110		 * play fairly with us, just in case there are big differences
1111		 * in relative throughputs.. don't want to hog the cpu too much.
1112		 */
1113				if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1114					sleep = jiffies + WAIT_MIN_SLEEP;
1115#if 1
1116				if (timer_pending(&hwgroup->timer))
1117					printk(KERN_CRIT "ide_set_handler: timer already active\n");
1118#endif
1119				/* so that ide_timer_expiry knows what to do */
1120				hwgroup->sleeping = 1;
1121				hwgroup->req_gen_timer = hwgroup->req_gen;
1122				mod_timer(&hwgroup->timer, sleep);
1123				/* we purposely leave hwgroup->busy==1
1124				 * while sleeping */
1125			} else {
1126				/* Ugly, but how can we sleep for the lock
1127				 * otherwise? perhaps from tq_disk?
1128				 */
1129
1130				/* for atari only */
1131				ide_release_lock();
1132				hwgroup->busy = 0;
1133			}
1134
1135			/* no more work for this hwgroup (for now) */
1136			return;
1137		}
1138	again:
1139		hwif = HWIF(drive);
1140		if (hwgroup->hwif->sharing_irq && hwif != hwgroup->hwif) {
1141			/*
1142			 * set nIEN for previous hwif, drives in the
1143			 * quirk_list may not like intr setups/cleanups
1144			 */
1145			if (drive->quirk_list != 1)
1146				ide_set_irq(drive, 0);
1147		}
1148		hwgroup->hwif = hwif;
1149		hwgroup->drive = drive;
1150		drive->sleeping = 0;
1151		drive->service_start = jiffies;
1152
1153		if (blk_queue_plugged(drive->queue)) {
1154			printk(KERN_ERR "ide: huh? queue was plugged!\n");
1155			break;
1156		}
1157
1158		/*
1159		 * we know that the queue isn't empty, but this can happen
1160		 * if the q->prep_rq_fn() decides to kill a request
1161		 */
1162		rq = elv_next_request(drive->queue);
1163		if (!rq) {
1164			hwgroup->busy = 0;
1165			break;
1166		}
1167
1168		/*
1169		 * Sanity: don't accept a request that isn't a PM request
1170		 * if we are currently power managed. This is very important as
1171		 * blk_stop_queue() doesn't prevent the elv_next_request()
1172		 * above to return us whatever is in the queue. Since we call
1173		 * ide_do_request() ourselves, we end up taking requests while
1174		 * the queue is blocked...
1175		 *
1176		 * We let requests forced at head of queue with ide-preempt
1177		 * though. I hope that doesn't happen too much, hopefully not
1178		 * unless the subdriver triggers such a thing in its own PM
1179		 * state machine.
1180		 *
1181		 * We count how many times we loop here to make sure we service
1182		 * all drives in the hwgroup without looping for ever
1183		 */
1184		if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) {
1185			drive = drive->next ? drive->next : hwgroup->drive;
1186			if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1187				goto again;
1188			/* We clear busy, there should be no pending ATA command at this point. */
1189			hwgroup->busy = 0;
1190			break;
1191		}
1192
1193		hwgroup->rq = rq;
1194
1195		/*
1196		 * Some systems have trouble with IDE IRQs arriving while
1197		 * the driver is still setting things up.  So, here we disable
1198		 * the IRQ used by this interface while the request is being started.
1199		 * This may look bad at first, but pretty much the same thing
1200		 * happens anyway when any interrupt comes in, IDE or otherwise
1201		 *  -- the kernel masks the IRQ while it is being handled.
1202		 */
1203		if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1204			disable_irq_nosync(hwif->irq);
1205		spin_unlock(&ide_lock);
1206		local_irq_enable_in_hardirq();
1207			/* allow other IRQs while we start this request */
1208		startstop = start_request(drive, rq);
1209		spin_lock_irq(&ide_lock);
1210		if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1211			enable_irq(hwif->irq);
1212		if (startstop == ide_stopped)
1213			hwgroup->busy = 0;
1214	}
1215}
1216
1217/*
1218 * Passes the stuff to ide_do_request
1219 */
1220void do_ide_request(struct request_queue *q)
1221{
1222	ide_drive_t *drive = q->queuedata;
1223
1224	ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1225}
1226
1227/*
1228 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1229 * retry the current request in pio mode instead of risking tossing it
1230 * all away
1231 */
1232static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1233{
1234	ide_hwif_t *hwif = HWIF(drive);
1235	struct request *rq;
1236	ide_startstop_t ret = ide_stopped;
1237
1238	/*
1239	 * end current dma transaction
1240	 */
1241
1242	if (error < 0) {
1243		printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1244		(void)HWIF(drive)->ide_dma_end(drive);
1245		ret = ide_error(drive, "dma timeout error",
1246				ide_read_status(drive));
1247	} else {
1248		printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1249		hwif->dma_timeout(drive);
1250	}
1251
1252	/*
1253	 * disable dma for now, but remember that we did so because of
1254	 * a timeout -- we'll reenable after we finish this next request
1255	 * (or rather the first chunk of it) in pio.
1256	 */
1257	drive->retry_pio++;
1258	drive->state = DMA_PIO_RETRY;
1259	ide_dma_off_quietly(drive);
1260
1261	/*
1262	 * un-busy drive etc (hwgroup->busy is cleared on return) and
1263	 * make sure request is sane
1264	 */
1265	rq = HWGROUP(drive)->rq;
1266
1267	if (!rq)
1268		goto out;
1269
1270	HWGROUP(drive)->rq = NULL;
1271
1272	rq->errors = 0;
1273
1274	if (!rq->bio)
1275		goto out;
1276
1277	rq->sector = rq->bio->bi_sector;
1278	rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1279	rq->hard_cur_sectors = rq->current_nr_sectors;
1280	rq->buffer = bio_data(rq->bio);
1281out:
1282	return ret;
1283}
1284
1285/**
1286 *	ide_timer_expiry	-	handle lack of an IDE interrupt
1287 *	@data: timer callback magic (hwgroup)
1288 *
1289 *	An IDE command has timed out before the expected drive return
1290 *	occurred. At this point we attempt to clean up the current
1291 *	mess. If the current handler includes an expiry handler then
1292 *	we invoke the expiry handler, and providing it is happy the
1293 *	work is done. If that fails we apply generic recovery rules
1294 *	invoking the handler and checking the drive DMA status. We
1295 *	have an excessively incestuous relationship with the DMA
1296 *	logic that wants cleaning up.
1297 */
1298
1299void ide_timer_expiry (unsigned long data)
1300{
1301	ide_hwgroup_t	*hwgroup = (ide_hwgroup_t *) data;
1302	ide_handler_t	*handler;
1303	ide_expiry_t	*expiry;
1304	unsigned long	flags;
1305	unsigned long	wait = -1;
1306
1307	spin_lock_irqsave(&ide_lock, flags);
1308
1309	if (((handler = hwgroup->handler) == NULL) ||
1310	    (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1311		/*
1312		 * Either a marginal timeout occurred
1313		 * (got the interrupt just as timer expired),
1314		 * or we were "sleeping" to give other devices a chance.
1315		 * Either way, we don't really want to complain about anything.
1316		 */
1317		if (hwgroup->sleeping) {
1318			hwgroup->sleeping = 0;
1319			hwgroup->busy = 0;
1320		}
1321	} else {
1322		ide_drive_t *drive = hwgroup->drive;
1323		if (!drive) {
1324			printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1325			hwgroup->handler = NULL;
1326		} else {
1327			ide_hwif_t *hwif;
1328			ide_startstop_t startstop = ide_stopped;
1329			if (!hwgroup->busy) {
1330				hwgroup->busy = 1;	/* paranoia */
1331				printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1332			}
1333			if ((expiry = hwgroup->expiry) != NULL) {
1334				/* continue */
1335				if ((wait = expiry(drive)) > 0) {
1336					/* reset timer */
1337					hwgroup->timer.expires  = jiffies + wait;
1338					hwgroup->req_gen_timer = hwgroup->req_gen;
1339					add_timer(&hwgroup->timer);
1340					spin_unlock_irqrestore(&ide_lock, flags);
1341					return;
1342				}
1343			}
1344			hwgroup->handler = NULL;
1345			/*
1346			 * We need to simulate a real interrupt when invoking
1347			 * the handler() function, which means we need to
1348			 * globally mask the specific IRQ:
1349			 */
1350			spin_unlock(&ide_lock);
1351			hwif  = HWIF(drive);
1352			/* disable_irq_nosync ?? */
1353			disable_irq(hwif->irq);
1354			/* local CPU only,
1355			 * as if we were handling an interrupt */
1356			local_irq_disable();
1357			if (hwgroup->polling) {
1358				startstop = handler(drive);
1359			} else if (drive_is_ready(drive)) {
1360				if (drive->waiting_for_dma)
1361					hwgroup->hwif->dma_lost_irq(drive);
1362				(void)ide_ack_intr(hwif);
1363				printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1364				startstop = handler(drive);
1365			} else {
1366				if (drive->waiting_for_dma) {
1367					startstop = ide_dma_timeout_retry(drive, wait);
1368				} else
1369					startstop =
1370					ide_error(drive, "irq timeout",
1371						  ide_read_status(drive));
1372			}
1373			drive->service_time = jiffies - drive->service_start;
1374			spin_lock_irq(&ide_lock);
1375			enable_irq(hwif->irq);
1376			if (startstop == ide_stopped)
1377				hwgroup->busy = 0;
1378		}
1379	}
1380	ide_do_request(hwgroup, IDE_NO_IRQ);
1381	spin_unlock_irqrestore(&ide_lock, flags);
1382}
1383
1384/**
1385 *	unexpected_intr		-	handle an unexpected IDE interrupt
1386 *	@irq: interrupt line
1387 *	@hwgroup: hwgroup being processed
1388 *
1389 *	There's nothing really useful we can do with an unexpected interrupt,
1390 *	other than reading the status register (to clear it), and logging it.
1391 *	There should be no way that an irq can happen before we're ready for it,
1392 *	so we needn't worry much about losing an "important" interrupt here.
1393 *
1394 *	On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1395 *	the drive enters "idle", "standby", or "sleep" mode, so if the status
1396 *	looks "good", we just ignore the interrupt completely.
1397 *
1398 *	This routine assumes __cli() is in effect when called.
1399 *
1400 *	If an unexpected interrupt happens on irq15 while we are handling irq14
1401 *	and if the two interfaces are "serialized" (CMD640), then it looks like
1402 *	we could screw up by interfering with a new request being set up for
1403 *	irq15.
1404 *
1405 *	In reality, this is a non-issue.  The new command is not sent unless
1406 *	the drive is ready to accept one, in which case we know the drive is
1407 *	not trying to interrupt us.  And ide_set_handler() is always invoked
1408 *	before completing the issuance of any new drive command, so we will not
1409 *	be accidentally invoked as a result of any valid command completion
1410 *	interrupt.
1411 *
1412 *	Note that we must walk the entire hwgroup here. We know which hwif
1413 *	is doing the current command, but we don't know which hwif burped
1414 *	mysteriously.
1415 */
1416
1417static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1418{
1419	u8 stat;
1420	ide_hwif_t *hwif = hwgroup->hwif;
1421
1422	/*
1423	 * handle the unexpected interrupt
1424	 */
1425	do {
1426		if (hwif->irq == irq) {
1427			stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1428			if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1429				/* Try to not flood the console with msgs */
1430				static unsigned long last_msgtime, count;
1431				++count;
1432				if (time_after(jiffies, last_msgtime + HZ)) {
1433					last_msgtime = jiffies;
1434					printk(KERN_ERR "%s%s: unexpected interrupt, "
1435						"status=0x%02x, count=%ld\n",
1436						hwif->name,
1437						(hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1438				}
1439			}
1440		}
1441	} while ((hwif = hwif->next) != hwgroup->hwif);
1442}
1443
1444/**
1445 *	ide_intr	-	default IDE interrupt handler
1446 *	@irq: interrupt number
1447 *	@dev_id: hwif group
1448 *	@regs: unused weirdness from the kernel irq layer
1449 *
1450 *	This is the default IRQ handler for the IDE layer. You should
1451 *	not need to override it. If you do be aware it is subtle in
1452 *	places
1453 *
1454 *	hwgroup->hwif is the interface in the group currently performing
1455 *	a command. hwgroup->drive is the drive and hwgroup->handler is
1456 *	the IRQ handler to call. As we issue a command the handlers
1457 *	step through multiple states, reassigning the handler to the
1458 *	next step in the process. Unlike a smart SCSI controller IDE
1459 *	expects the main processor to sequence the various transfer
1460 *	stages. We also manage a poll timer to catch up with most
1461 *	timeout situations. There are still a few where the handlers
1462 *	don't ever decide to give up.
1463 *
1464 *	The handler eventually returns ide_stopped to indicate the
1465 *	request completed. At this point we issue the next request
1466 *	on the hwgroup and the process begins again.
1467 */
1468
1469irqreturn_t ide_intr (int irq, void *dev_id)
1470{
1471	unsigned long flags;
1472	ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1473	ide_hwif_t *hwif;
1474	ide_drive_t *drive;
1475	ide_handler_t *handler;
1476	ide_startstop_t startstop;
1477
1478	spin_lock_irqsave(&ide_lock, flags);
1479	hwif = hwgroup->hwif;
1480
1481	if (!ide_ack_intr(hwif)) {
1482		spin_unlock_irqrestore(&ide_lock, flags);
1483		return IRQ_NONE;
1484	}
1485
1486	if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1487		/*
1488		 * Not expecting an interrupt from this drive.
1489		 * That means this could be:
1490		 *	(1) an interrupt from another PCI device
1491		 *	sharing the same PCI INT# as us.
1492		 * or	(2) a drive just entered sleep or standby mode,
1493		 *	and is interrupting to let us know.
1494		 * or	(3) a spurious interrupt of unknown origin.
1495		 *
1496		 * For PCI, we cannot tell the difference,
1497		 * so in that case we just ignore it and hope it goes away.
1498		 *
1499		 * FIXME: unexpected_intr should be hwif-> then we can
1500		 * remove all the ifdef PCI crap
1501		 */
1502#ifdef CONFIG_BLK_DEV_IDEPCI
1503		if (hwif->chipset != ide_pci)
1504#endif	/* CONFIG_BLK_DEV_IDEPCI */
1505		{
1506			/*
1507			 * Probably not a shared PCI interrupt,
1508			 * so we can safely try to do something about it:
1509			 */
1510			unexpected_intr(irq, hwgroup);
1511#ifdef CONFIG_BLK_DEV_IDEPCI
1512		} else {
1513			/*
1514			 * Whack the status register, just in case
1515			 * we have a leftover pending IRQ.
1516			 */
1517			(void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1518#endif /* CONFIG_BLK_DEV_IDEPCI */
1519		}
1520		spin_unlock_irqrestore(&ide_lock, flags);
1521		return IRQ_NONE;
1522	}
1523	drive = hwgroup->drive;
1524	if (!drive) {
1525		/*
1526		 * This should NEVER happen, and there isn't much
1527		 * we could do about it here.
1528		 *
1529		 * [Note - this can occur if the drive is hot unplugged]
1530		 */
1531		spin_unlock_irqrestore(&ide_lock, flags);
1532		return IRQ_HANDLED;
1533	}
1534	if (!drive_is_ready(drive)) {
1535		/*
1536		 * This happens regularly when we share a PCI IRQ with
1537		 * another device.  Unfortunately, it can also happen
1538		 * with some buggy drives that trigger the IRQ before
1539		 * their status register is up to date.  Hopefully we have
1540		 * enough advance overhead that the latter isn't a problem.
1541		 */
1542		spin_unlock_irqrestore(&ide_lock, flags);
1543		return IRQ_NONE;
1544	}
1545	if (!hwgroup->busy) {
1546		hwgroup->busy = 1;	/* paranoia */
1547		printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1548	}
1549	hwgroup->handler = NULL;
1550	hwgroup->req_gen++;
1551	del_timer(&hwgroup->timer);
1552	spin_unlock(&ide_lock);
1553
1554	/* Some controllers might set DMA INTR no matter DMA or PIO;
1555	 * bmdma status might need to be cleared even for
1556	 * PIO interrupts to prevent spurious/lost irq.
1557	 */
1558	if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
1559		/* ide_dma_end() needs bmdma status for error checking.
1560		 * So, skip clearing bmdma status here and leave it
1561		 * to ide_dma_end() if this is dma interrupt.
1562		 */
1563		hwif->ide_dma_clear_irq(drive);
1564
1565	if (drive->unmask)
1566		local_irq_enable_in_hardirq();
1567	/* service this interrupt, may set handler for next interrupt */
1568	startstop = handler(drive);
1569	spin_lock_irq(&ide_lock);
1570
1571	/*
1572	 * Note that handler() may have set things up for another
1573	 * interrupt to occur soon, but it cannot happen until
1574	 * we exit from this routine, because it will be the
1575	 * same irq as is currently being serviced here, and Linux
1576	 * won't allow another of the same (on any CPU) until we return.
1577	 */
1578	drive->service_time = jiffies - drive->service_start;
1579	if (startstop == ide_stopped) {
1580		if (hwgroup->handler == NULL) {	/* paranoia */
1581			hwgroup->busy = 0;
1582			ide_do_request(hwgroup, hwif->irq);
1583		} else {
1584			printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1585				"on exit\n", drive->name);
1586		}
1587	}
1588	spin_unlock_irqrestore(&ide_lock, flags);
1589	return IRQ_HANDLED;
1590}
1591
1592/**
1593 *	ide_init_drive_cmd	-	initialize a drive command request
1594 *	@rq: request object
1595 *
1596 *	Initialize a request before we fill it in and send it down to
1597 *	ide_do_drive_cmd. Commands must be set up by this function. Right
1598 *	now it doesn't do a lot, but if that changes abusers will have a
1599 *	nasty surprise.
1600 */
1601
1602void ide_init_drive_cmd (struct request *rq)
1603{
1604	memset(rq, 0, sizeof(*rq));
1605	rq->ref_count = 1;
1606}
1607
1608EXPORT_SYMBOL(ide_init_drive_cmd);
1609
1610/**
1611 *	ide_do_drive_cmd	-	issue IDE special command
1612 *	@drive: device to issue command
1613 *	@rq: request to issue
1614 *	@action: action for processing
1615 *
1616 *	This function issues a special IDE device request
1617 *	onto the request queue.
1618 *
1619 *	If action is ide_wait, then the rq is queued at the end of the
1620 *	request queue, and the function sleeps until it has been processed.
1621 *	This is for use when invoked from an ioctl handler.
1622 *
1623 *	If action is ide_preempt, then the rq is queued at the head of
1624 *	the request queue, displacing the currently-being-processed
1625 *	request and this function returns immediately without waiting
1626 *	for the new rq to be completed.  This is VERY DANGEROUS, and is
1627 *	intended for careful use by the ATAPI tape/cdrom driver code.
1628 *
1629 *	If action is ide_end, then the rq is queued at the end of the
1630 *	request queue, and the function returns immediately without waiting
1631 *	for the new rq to be completed. This is again intended for careful
1632 *	use by the ATAPI tape/cdrom driver code.
1633 */
1634
1635int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
1636{
1637	unsigned long flags;
1638	ide_hwgroup_t *hwgroup = HWGROUP(drive);
1639	DECLARE_COMPLETION_ONSTACK(wait);
1640	int where = ELEVATOR_INSERT_BACK, err;
1641	int must_wait = (action == ide_wait || action == ide_head_wait);
1642
1643	rq->errors = 0;
1644
1645	/*
1646	 * we need to hold an extra reference to request for safe inspection
1647	 * after completion
1648	 */
1649	if (must_wait) {
1650		rq->ref_count++;
1651		rq->end_io_data = &wait;
1652		rq->end_io = blk_end_sync_rq;
1653	}
1654
1655	spin_lock_irqsave(&ide_lock, flags);
1656	if (action == ide_preempt)
1657		hwgroup->rq = NULL;
1658	if (action == ide_preempt || action == ide_head_wait) {
1659		where = ELEVATOR_INSERT_FRONT;
1660		rq->cmd_flags |= REQ_PREEMPT;
1661	}
1662	__elv_add_request(drive->queue, rq, where, 0);
1663	ide_do_request(hwgroup, IDE_NO_IRQ);
1664	spin_unlock_irqrestore(&ide_lock, flags);
1665
1666	err = 0;
1667	if (must_wait) {
1668		wait_for_completion(&wait);
1669		if (rq->errors)
1670			err = -EIO;
1671
1672		blk_put_request(rq);
1673	}
1674
1675	return err;
1676}
1677
1678EXPORT_SYMBOL(ide_do_drive_cmd);
1679
1680void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma)
1681{
1682	ide_task_t task;
1683
1684	memset(&task, 0, sizeof(task));
1685	task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM |
1686			IDE_TFLAG_OUT_FEATURE | tf_flags;
1687	task.tf.feature = dma;		/* Use PIO/DMA */
1688	task.tf.lbam    = bcount & 0xff;
1689	task.tf.lbah    = (bcount >> 8) & 0xff;
1690
1691	ide_tf_load(drive, &task);
1692}
1693
1694EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load);
1695