ide-io.c revision 29ed2a5f8c4380959f18e9cbaff13bc61e09889c
1/*
2 *	IDE I/O functions
3 *
4 *	Basic PIO and command management functionality.
5 *
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * General Public License for more details.
18 *
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
24 */
25
26
27#include <linux/module.h>
28#include <linux/types.h>
29#include <linux/string.h>
30#include <linux/kernel.h>
31#include <linux/timer.h>
32#include <linux/mm.h>
33#include <linux/interrupt.h>
34#include <linux/major.h>
35#include <linux/errno.h>
36#include <linux/genhd.h>
37#include <linux/blkpg.h>
38#include <linux/slab.h>
39#include <linux/init.h>
40#include <linux/pci.h>
41#include <linux/delay.h>
42#include <linux/ide.h>
43#include <linux/completion.h>
44#include <linux/reboot.h>
45#include <linux/cdrom.h>
46#include <linux/seq_file.h>
47#include <linux/device.h>
48#include <linux/kmod.h>
49#include <linux/scatterlist.h>
50#include <linux/bitops.h>
51
52#include <asm/byteorder.h>
53#include <asm/irq.h>
54#include <asm/uaccess.h>
55#include <asm/io.h>
56
57static int __ide_end_request(ide_drive_t *drive, struct request *rq,
58			     int uptodate, unsigned int nr_bytes, int dequeue)
59{
60	int ret = 1;
61
62	/*
63	 * if failfast is set on a request, override number of sectors and
64	 * complete the whole request right now
65	 */
66	if (blk_noretry_request(rq) && end_io_error(uptodate))
67		nr_bytes = rq->hard_nr_sectors << 9;
68
69	if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
70		rq->errors = -EIO;
71
72	/*
73	 * decide whether to reenable DMA -- 3 is a random magic for now,
74	 * if we DMA timeout more than 3 times, just stay in PIO
75	 */
76	if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
77		drive->state = 0;
78		HWGROUP(drive)->hwif->ide_dma_on(drive);
79	}
80
81	if (!end_that_request_chunk(rq, uptodate, nr_bytes)) {
82		add_disk_randomness(rq->rq_disk);
83		if (dequeue) {
84			if (!list_empty(&rq->queuelist))
85				blkdev_dequeue_request(rq);
86			HWGROUP(drive)->rq = NULL;
87		}
88		end_that_request_last(rq, uptodate);
89		ret = 0;
90	}
91
92	return ret;
93}
94
95/**
96 *	ide_end_request		-	complete an IDE I/O
97 *	@drive: IDE device for the I/O
98 *	@uptodate:
99 *	@nr_sectors: number of sectors completed
100 *
101 *	This is our end_request wrapper function. We complete the I/O
102 *	update random number input and dequeue the request, which if
103 *	it was tagged may be out of order.
104 */
105
106int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
107{
108	unsigned int nr_bytes = nr_sectors << 9;
109	struct request *rq;
110	unsigned long flags;
111	int ret = 1;
112
113	/*
114	 * room for locking improvements here, the calls below don't
115	 * need the queue lock held at all
116	 */
117	spin_lock_irqsave(&ide_lock, flags);
118	rq = HWGROUP(drive)->rq;
119
120	if (!nr_bytes) {
121		if (blk_pc_request(rq))
122			nr_bytes = rq->data_len;
123		else
124			nr_bytes = rq->hard_cur_sectors << 9;
125	}
126
127	ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
128
129	spin_unlock_irqrestore(&ide_lock, flags);
130	return ret;
131}
132EXPORT_SYMBOL(ide_end_request);
133
134/*
135 * Power Management state machine. This one is rather trivial for now,
136 * we should probably add more, like switching back to PIO on suspend
137 * to help some BIOSes, re-do the door locking on resume, etc...
138 */
139
140enum {
141	ide_pm_flush_cache	= ide_pm_state_start_suspend,
142	idedisk_pm_standby,
143
144	idedisk_pm_restore_pio	= ide_pm_state_start_resume,
145	idedisk_pm_idle,
146	ide_pm_restore_dma,
147};
148
149static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
150{
151	struct request_pm_state *pm = rq->data;
152
153	if (drive->media != ide_disk)
154		return;
155
156	switch (pm->pm_step) {
157	case ide_pm_flush_cache:	/* Suspend step 1 (flush cache) complete */
158		if (pm->pm_state == PM_EVENT_FREEZE)
159			pm->pm_step = ide_pm_state_completed;
160		else
161			pm->pm_step = idedisk_pm_standby;
162		break;
163	case idedisk_pm_standby:	/* Suspend step 2 (standby) complete */
164		pm->pm_step = ide_pm_state_completed;
165		break;
166	case idedisk_pm_restore_pio:	/* Resume step 1 complete */
167		pm->pm_step = idedisk_pm_idle;
168		break;
169	case idedisk_pm_idle:		/* Resume step 2 (idle) complete */
170		pm->pm_step = ide_pm_restore_dma;
171		break;
172	}
173}
174
175static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
176{
177	struct request_pm_state *pm = rq->data;
178	ide_task_t *args = rq->special;
179
180	memset(args, 0, sizeof(*args));
181
182	switch (pm->pm_step) {
183	case ide_pm_flush_cache:	/* Suspend step 1 (flush cache) */
184		if (drive->media != ide_disk)
185			break;
186		/* Not supported? Switch to next step now. */
187		if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
188			ide_complete_power_step(drive, rq, 0, 0);
189			return ide_stopped;
190		}
191		if (ide_id_has_flush_cache_ext(drive->id))
192			args->tf.command = WIN_FLUSH_CACHE_EXT;
193		else
194			args->tf.command = WIN_FLUSH_CACHE;
195		goto out_do_tf;
196
197	case idedisk_pm_standby:	/* Suspend step 2 (standby) */
198		args->tf.command = WIN_STANDBYNOW1;
199		goto out_do_tf;
200
201	case idedisk_pm_restore_pio:	/* Resume step 1 (restore PIO) */
202		ide_set_max_pio(drive);
203		/*
204		 * skip idedisk_pm_idle for ATAPI devices
205		 */
206		if (drive->media != ide_disk)
207			pm->pm_step = ide_pm_restore_dma;
208		else
209			ide_complete_power_step(drive, rq, 0, 0);
210		return ide_stopped;
211
212	case idedisk_pm_idle:		/* Resume step 2 (idle) */
213		args->tf.command = WIN_IDLEIMMEDIATE;
214		goto out_do_tf;
215
216	case ide_pm_restore_dma:	/* Resume step 3 (restore DMA) */
217		/*
218		 * Right now, all we do is call ide_set_dma(drive),
219		 * we could be smarter and check for current xfer_speed
220		 * in struct drive etc...
221		 */
222		if (drive->hwif->ide_dma_on == NULL)
223			break;
224		drive->hwif->dma_off_quietly(drive);
225		/*
226		 * TODO: respect ->using_dma setting
227		 */
228		ide_set_dma(drive);
229		break;
230	}
231	pm->pm_step = ide_pm_state_completed;
232	return ide_stopped;
233
234out_do_tf:
235	args->tf_flags = IDE_TFLAG_OUT_TF | IDE_TFLAG_OUT_DEVICE;
236	args->command_type = IDE_DRIVE_TASK_NO_DATA;
237	args->handler      = task_no_data_intr;
238	return do_rw_taskfile(drive, args);
239}
240
241/**
242 *	ide_end_dequeued_request	-	complete an IDE I/O
243 *	@drive: IDE device for the I/O
244 *	@uptodate:
245 *	@nr_sectors: number of sectors completed
246 *
247 *	Complete an I/O that is no longer on the request queue. This
248 *	typically occurs when we pull the request and issue a REQUEST_SENSE.
249 *	We must still finish the old request but we must not tamper with the
250 *	queue in the meantime.
251 *
252 *	NOTE: This path does not handle barrier, but barrier is not supported
253 *	on ide-cd anyway.
254 */
255
256int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
257			     int uptodate, int nr_sectors)
258{
259	unsigned long flags;
260	int ret;
261
262	spin_lock_irqsave(&ide_lock, flags);
263	BUG_ON(!blk_rq_started(rq));
264	ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
265	spin_unlock_irqrestore(&ide_lock, flags);
266
267	return ret;
268}
269EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
270
271
272/**
273 *	ide_complete_pm_request - end the current Power Management request
274 *	@drive: target drive
275 *	@rq: request
276 *
277 *	This function cleans up the current PM request and stops the queue
278 *	if necessary.
279 */
280static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
281{
282	unsigned long flags;
283
284#ifdef DEBUG_PM
285	printk("%s: completing PM request, %s\n", drive->name,
286	       blk_pm_suspend_request(rq) ? "suspend" : "resume");
287#endif
288	spin_lock_irqsave(&ide_lock, flags);
289	if (blk_pm_suspend_request(rq)) {
290		blk_stop_queue(drive->queue);
291	} else {
292		drive->blocked = 0;
293		blk_start_queue(drive->queue);
294	}
295	blkdev_dequeue_request(rq);
296	HWGROUP(drive)->rq = NULL;
297	end_that_request_last(rq, 1);
298	spin_unlock_irqrestore(&ide_lock, flags);
299}
300
301/**
302 *	ide_end_drive_cmd	-	end an explicit drive command
303 *	@drive: command
304 *	@stat: status bits
305 *	@err: error bits
306 *
307 *	Clean up after success/failure of an explicit drive command.
308 *	These get thrown onto the queue so they are synchronized with
309 *	real I/O operations on the drive.
310 *
311 *	In LBA48 mode we have to read the register set twice to get
312 *	all the extra information out.
313 */
314
315void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
316{
317	ide_hwif_t *hwif = HWIF(drive);
318	unsigned long flags;
319	struct request *rq;
320
321	spin_lock_irqsave(&ide_lock, flags);
322	rq = HWGROUP(drive)->rq;
323	spin_unlock_irqrestore(&ide_lock, flags);
324
325	if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
326		u8 *args = (u8 *) rq->buffer;
327		if (rq->errors == 0)
328			rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
329
330		if (args) {
331			args[0] = stat;
332			args[1] = err;
333			args[2] = hwif->INB(IDE_NSECTOR_REG);
334		}
335	} else if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
336		ide_task_t *args = (ide_task_t *) rq->special;
337		if (rq->errors == 0)
338			rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
339
340		if (args) {
341			struct ide_taskfile *tf = &args->tf;
342
343			if (args->tf_in_flags.b.data) {
344				u16 data = hwif->INW(IDE_DATA_REG);
345
346				tf->data = data & 0xff;
347				tf->hob_data = (data >> 8) & 0xff;
348			}
349			tf->error = err;
350			/* be sure we're looking at the low order bits */
351			hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
352			tf->nsect  = hwif->INB(IDE_NSECTOR_REG);
353			tf->lbal   = hwif->INB(IDE_SECTOR_REG);
354			tf->lbam   = hwif->INB(IDE_LCYL_REG);
355			tf->lbah   = hwif->INB(IDE_HCYL_REG);
356			tf->device = hwif->INB(IDE_SELECT_REG);
357			tf->status = stat;
358
359			if (args->tf_flags & IDE_TFLAG_LBA48) {
360				hwif->OUTB(drive->ctl|0x80, IDE_CONTROL_REG);
361				tf->hob_feature = hwif->INB(IDE_FEATURE_REG);
362				tf->hob_nsect   = hwif->INB(IDE_NSECTOR_REG);
363				tf->hob_lbal    = hwif->INB(IDE_SECTOR_REG);
364				tf->hob_lbam    = hwif->INB(IDE_LCYL_REG);
365				tf->hob_lbah    = hwif->INB(IDE_HCYL_REG);
366			}
367		}
368	} else if (blk_pm_request(rq)) {
369		struct request_pm_state *pm = rq->data;
370#ifdef DEBUG_PM
371		printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
372			drive->name, rq->pm->pm_step, stat, err);
373#endif
374		ide_complete_power_step(drive, rq, stat, err);
375		if (pm->pm_step == ide_pm_state_completed)
376			ide_complete_pm_request(drive, rq);
377		return;
378	}
379
380	spin_lock_irqsave(&ide_lock, flags);
381	blkdev_dequeue_request(rq);
382	HWGROUP(drive)->rq = NULL;
383	rq->errors = err;
384	end_that_request_last(rq, !rq->errors);
385	spin_unlock_irqrestore(&ide_lock, flags);
386}
387
388EXPORT_SYMBOL(ide_end_drive_cmd);
389
390/**
391 *	try_to_flush_leftover_data	-	flush junk
392 *	@drive: drive to flush
393 *
394 *	try_to_flush_leftover_data() is invoked in response to a drive
395 *	unexpectedly having its DRQ_STAT bit set.  As an alternative to
396 *	resetting the drive, this routine tries to clear the condition
397 *	by read a sector's worth of data from the drive.  Of course,
398 *	this may not help if the drive is *waiting* for data from *us*.
399 */
400static void try_to_flush_leftover_data (ide_drive_t *drive)
401{
402	int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS;
403
404	if (drive->media != ide_disk)
405		return;
406	while (i > 0) {
407		u32 buffer[16];
408		u32 wcount = (i > 16) ? 16 : i;
409
410		i -= wcount;
411		HWIF(drive)->ata_input_data(drive, buffer, wcount);
412	}
413}
414
415static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
416{
417	if (rq->rq_disk) {
418		ide_driver_t *drv;
419
420		drv = *(ide_driver_t **)rq->rq_disk->private_data;
421		drv->end_request(drive, 0, 0);
422	} else
423		ide_end_request(drive, 0, 0);
424}
425
426static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
427{
428	ide_hwif_t *hwif = drive->hwif;
429
430	if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
431		/* other bits are useless when BUSY */
432		rq->errors |= ERROR_RESET;
433	} else if (stat & ERR_STAT) {
434		/* err has different meaning on cdrom and tape */
435		if (err == ABRT_ERR) {
436			if (drive->select.b.lba &&
437			    /* some newer drives don't support WIN_SPECIFY */
438			    hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY)
439				return ide_stopped;
440		} else if ((err & BAD_CRC) == BAD_CRC) {
441			/* UDMA crc error, just retry the operation */
442			drive->crc_count++;
443		} else if (err & (BBD_ERR | ECC_ERR)) {
444			/* retries won't help these */
445			rq->errors = ERROR_MAX;
446		} else if (err & TRK0_ERR) {
447			/* help it find track zero */
448			rq->errors |= ERROR_RECAL;
449		}
450	}
451
452	if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ &&
453	    (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0)
454		try_to_flush_leftover_data(drive);
455
456	if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
457		ide_kill_rq(drive, rq);
458		return ide_stopped;
459	}
460
461	if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
462		rq->errors |= ERROR_RESET;
463
464	if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
465		++rq->errors;
466		return ide_do_reset(drive);
467	}
468
469	if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
470		drive->special.b.recalibrate = 1;
471
472	++rq->errors;
473
474	return ide_stopped;
475}
476
477static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
478{
479	ide_hwif_t *hwif = drive->hwif;
480
481	if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
482		/* other bits are useless when BUSY */
483		rq->errors |= ERROR_RESET;
484	} else {
485		/* add decoding error stuff */
486	}
487
488	if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
489		/* force an abort */
490		hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG);
491
492	if (rq->errors >= ERROR_MAX) {
493		ide_kill_rq(drive, rq);
494	} else {
495		if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
496			++rq->errors;
497			return ide_do_reset(drive);
498		}
499		++rq->errors;
500	}
501
502	return ide_stopped;
503}
504
505ide_startstop_t
506__ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
507{
508	if (drive->media == ide_disk)
509		return ide_ata_error(drive, rq, stat, err);
510	return ide_atapi_error(drive, rq, stat, err);
511}
512
513EXPORT_SYMBOL_GPL(__ide_error);
514
515/**
516 *	ide_error	-	handle an error on the IDE
517 *	@drive: drive the error occurred on
518 *	@msg: message to report
519 *	@stat: status bits
520 *
521 *	ide_error() takes action based on the error returned by the drive.
522 *	For normal I/O that may well include retries. We deal with
523 *	both new-style (taskfile) and old style command handling here.
524 *	In the case of taskfile command handling there is work left to
525 *	do
526 */
527
528ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
529{
530	struct request *rq;
531	u8 err;
532
533	err = ide_dump_status(drive, msg, stat);
534
535	if ((rq = HWGROUP(drive)->rq) == NULL)
536		return ide_stopped;
537
538	/* retry only "normal" I/O: */
539	if (!blk_fs_request(rq)) {
540		rq->errors = 1;
541		ide_end_drive_cmd(drive, stat, err);
542		return ide_stopped;
543	}
544
545	if (rq->rq_disk) {
546		ide_driver_t *drv;
547
548		drv = *(ide_driver_t **)rq->rq_disk->private_data;
549		return drv->error(drive, rq, stat, err);
550	} else
551		return __ide_error(drive, rq, stat, err);
552}
553
554EXPORT_SYMBOL_GPL(ide_error);
555
556ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq)
557{
558	if (drive->media != ide_disk)
559		rq->errors |= ERROR_RESET;
560
561	ide_kill_rq(drive, rq);
562
563	return ide_stopped;
564}
565
566EXPORT_SYMBOL_GPL(__ide_abort);
567
568/**
569 *	ide_abort	-	abort pending IDE operations
570 *	@drive: drive the error occurred on
571 *	@msg: message to report
572 *
573 *	ide_abort kills and cleans up when we are about to do a
574 *	host initiated reset on active commands. Longer term we
575 *	want handlers to have sensible abort handling themselves
576 *
577 *	This differs fundamentally from ide_error because in
578 *	this case the command is doing just fine when we
579 *	blow it away.
580 */
581
582ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
583{
584	struct request *rq;
585
586	if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
587		return ide_stopped;
588
589	/* retry only "normal" I/O: */
590	if (!blk_fs_request(rq)) {
591		rq->errors = 1;
592		ide_end_drive_cmd(drive, BUSY_STAT, 0);
593		return ide_stopped;
594	}
595
596	if (rq->rq_disk) {
597		ide_driver_t *drv;
598
599		drv = *(ide_driver_t **)rq->rq_disk->private_data;
600		return drv->abort(drive, rq);
601	} else
602		return __ide_abort(drive, rq);
603}
604
605/**
606 *	drive_cmd_intr		- 	drive command completion interrupt
607 *	@drive: drive the completion interrupt occurred on
608 *
609 *	drive_cmd_intr() is invoked on completion of a special DRIVE_CMD.
610 *	We do any necessary data reading and then wait for the drive to
611 *	go non busy. At that point we may read the error data and complete
612 *	the request
613 */
614
615static ide_startstop_t drive_cmd_intr (ide_drive_t *drive)
616{
617	struct request *rq = HWGROUP(drive)->rq;
618	ide_hwif_t *hwif = HWIF(drive);
619	u8 *args = (u8 *) rq->buffer;
620	u8 stat = hwif->INB(IDE_STATUS_REG);
621	int retries = 10;
622
623	local_irq_enable_in_hardirq();
624	if (rq->cmd_type == REQ_TYPE_ATA_CMD &&
625	    (stat & DRQ_STAT) && args && args[3]) {
626		u8 io_32bit = drive->io_32bit;
627		drive->io_32bit = 0;
628		hwif->ata_input_data(drive, &args[4], args[3] * SECTOR_WORDS);
629		drive->io_32bit = io_32bit;
630		while (((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) && retries--)
631			udelay(100);
632	}
633
634	if (!OK_STAT(stat, READY_STAT, BAD_STAT))
635		return ide_error(drive, "drive_cmd", stat);
636		/* calls ide_end_drive_cmd */
637	ide_end_drive_cmd(drive, stat, hwif->INB(IDE_ERROR_REG));
638	return ide_stopped;
639}
640
641static void ide_init_specify_cmd(ide_drive_t *drive, ide_task_t *task)
642{
643	task->tf.nsect   = drive->sect;
644	task->tf.lbal    = drive->sect;
645	task->tf.lbam    = drive->cyl;
646	task->tf.lbah    = drive->cyl >> 8;
647	task->tf.device  = ((drive->head - 1) | drive->select.all) & ~ATA_LBA;
648	task->tf.command = WIN_SPECIFY;
649
650	task->handler = &set_geometry_intr;
651}
652
653static void ide_init_restore_cmd(ide_drive_t *drive, ide_task_t *task)
654{
655	task->tf.nsect   = drive->sect;
656	task->tf.command = WIN_RESTORE;
657
658	task->handler = &recal_intr;
659}
660
661static void ide_init_setmult_cmd(ide_drive_t *drive, ide_task_t *task)
662{
663	task->tf.nsect   = drive->mult_req;
664	task->tf.command = WIN_SETMULT;
665
666	task->handler = &set_multmode_intr;
667}
668
669static ide_startstop_t ide_disk_special(ide_drive_t *drive)
670{
671	special_t *s = &drive->special;
672	ide_task_t args;
673
674	memset(&args, 0, sizeof(ide_task_t));
675	args.command_type = IDE_DRIVE_TASK_NO_DATA;
676
677	if (s->b.set_geometry) {
678		s->b.set_geometry = 0;
679		ide_init_specify_cmd(drive, &args);
680	} else if (s->b.recalibrate) {
681		s->b.recalibrate = 0;
682		ide_init_restore_cmd(drive, &args);
683	} else if (s->b.set_multmode) {
684		s->b.set_multmode = 0;
685		if (drive->mult_req > drive->id->max_multsect)
686			drive->mult_req = drive->id->max_multsect;
687		ide_init_setmult_cmd(drive, &args);
688	} else if (s->all) {
689		int special = s->all;
690		s->all = 0;
691		printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
692		return ide_stopped;
693	}
694
695	args.tf_flags = IDE_TFLAG_OUT_TF | IDE_TFLAG_OUT_DEVICE;
696
697	do_rw_taskfile(drive, &args);
698
699	return ide_started;
700}
701
702/*
703 * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
704 */
705static int set_pio_mode_abuse(ide_hwif_t *hwif, u8 req_pio)
706{
707	switch (req_pio) {
708	case 202:
709	case 201:
710	case 200:
711	case 102:
712	case 101:
713	case 100:
714		return (hwif->host_flags & IDE_HFLAG_ABUSE_DMA_MODES) ? 1 : 0;
715	case 9:
716	case 8:
717		return (hwif->host_flags & IDE_HFLAG_ABUSE_PREFETCH) ? 1 : 0;
718	case 7:
719	case 6:
720		return (hwif->host_flags & IDE_HFLAG_ABUSE_FAST_DEVSEL) ? 1 : 0;
721	default:
722		return 0;
723	}
724}
725
726/**
727 *	do_special		-	issue some special commands
728 *	@drive: drive the command is for
729 *
730 *	do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
731 *	commands to a drive.  It used to do much more, but has been scaled
732 *	back.
733 */
734
735static ide_startstop_t do_special (ide_drive_t *drive)
736{
737	special_t *s = &drive->special;
738
739#ifdef DEBUG
740	printk("%s: do_special: 0x%02x\n", drive->name, s->all);
741#endif
742	if (s->b.set_tune) {
743		ide_hwif_t *hwif = drive->hwif;
744		u8 req_pio = drive->tune_req;
745
746		s->b.set_tune = 0;
747
748		if (set_pio_mode_abuse(drive->hwif, req_pio)) {
749
750			if (hwif->set_pio_mode == NULL)
751				return ide_stopped;
752
753			/*
754			 * take ide_lock for drive->[no_]unmask/[no_]io_32bit
755			 */
756			if (req_pio == 8 || req_pio == 9) {
757				unsigned long flags;
758
759				spin_lock_irqsave(&ide_lock, flags);
760				hwif->set_pio_mode(drive, req_pio);
761				spin_unlock_irqrestore(&ide_lock, flags);
762			} else
763				hwif->set_pio_mode(drive, req_pio);
764		} else {
765			int keep_dma = drive->using_dma;
766
767			ide_set_pio(drive, req_pio);
768
769			if (hwif->host_flags & IDE_HFLAG_SET_PIO_MODE_KEEP_DMA) {
770				if (keep_dma)
771					hwif->ide_dma_on(drive);
772			}
773		}
774
775		return ide_stopped;
776	} else {
777		if (drive->media == ide_disk)
778			return ide_disk_special(drive);
779
780		s->all = 0;
781		drive->mult_req = 0;
782		return ide_stopped;
783	}
784}
785
786void ide_map_sg(ide_drive_t *drive, struct request *rq)
787{
788	ide_hwif_t *hwif = drive->hwif;
789	struct scatterlist *sg = hwif->sg_table;
790
791	if (hwif->sg_mapped)	/* needed by ide-scsi */
792		return;
793
794	if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
795		hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
796	} else {
797		sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
798		hwif->sg_nents = 1;
799	}
800}
801
802EXPORT_SYMBOL_GPL(ide_map_sg);
803
804void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
805{
806	ide_hwif_t *hwif = drive->hwif;
807
808	hwif->nsect = hwif->nleft = rq->nr_sectors;
809	hwif->cursg_ofs = 0;
810	hwif->cursg = NULL;
811}
812
813EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
814
815/**
816 *	execute_drive_command	-	issue special drive command
817 *	@drive: the drive to issue the command on
818 *	@rq: the request structure holding the command
819 *
820 *	execute_drive_cmd() issues a special drive command,  usually
821 *	initiated by ioctl() from the external hdparm program. The
822 *	command can be a drive command, drive task or taskfile
823 *	operation. Weirdly you can call it with NULL to wait for
824 *	all commands to finish. Don't do this as that is due to change
825 */
826
827static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
828		struct request *rq)
829{
830	ide_hwif_t *hwif = HWIF(drive);
831	u8 *args = rq->buffer;
832	ide_task_t ltask;
833	struct ide_taskfile *tf = &ltask.tf;
834
835	if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
836		ide_task_t *task = rq->special;
837
838		if (task == NULL)
839			goto done;
840
841		hwif->data_phase = task->data_phase;
842
843		switch (hwif->data_phase) {
844		case TASKFILE_MULTI_OUT:
845		case TASKFILE_OUT:
846		case TASKFILE_MULTI_IN:
847		case TASKFILE_IN:
848			ide_init_sg_cmd(drive, rq);
849			ide_map_sg(drive, rq);
850		default:
851			break;
852		}
853
854		if (task->tf_flags & IDE_TFLAG_FLAGGED)
855			return flagged_taskfile(drive, task);
856
857		return do_rw_taskfile(drive, task);
858	}
859
860	if (args == NULL)
861		goto done;
862
863	memset(&ltask, 0, sizeof(ltask));
864	if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
865#ifdef DEBUG
866		printk("%s: DRIVE_CMD\n", drive->name);
867#endif
868		tf->feature = args[2];
869		if (args[0] == WIN_SMART) {
870			tf->nsect = args[3];
871			tf->lbal  = args[1];
872			tf->lbam  = 0x4f;
873			tf->lbah  = 0xc2;
874			ltask.tf_flags = IDE_TFLAG_OUT_TF;
875		} else {
876			tf->nsect = args[1];
877			ltask.tf_flags = IDE_TFLAG_OUT_FEATURE |
878					 IDE_TFLAG_OUT_NSECT;
879		}
880 	}
881	tf->command = args[0];
882	ide_tf_load(drive, &ltask);
883	ide_execute_command(drive, args[0], &drive_cmd_intr, WAIT_WORSTCASE, NULL);
884	return ide_started;
885
886done:
887 	/*
888 	 * NULL is actually a valid way of waiting for
889 	 * all current requests to be flushed from the queue.
890 	 */
891#ifdef DEBUG
892 	printk("%s: DRIVE_CMD (null)\n", drive->name);
893#endif
894 	ide_end_drive_cmd(drive,
895			hwif->INB(IDE_STATUS_REG),
896			hwif->INB(IDE_ERROR_REG));
897 	return ide_stopped;
898}
899
900static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
901{
902	struct request_pm_state *pm = rq->data;
903
904	if (blk_pm_suspend_request(rq) &&
905	    pm->pm_step == ide_pm_state_start_suspend)
906		/* Mark drive blocked when starting the suspend sequence. */
907		drive->blocked = 1;
908	else if (blk_pm_resume_request(rq) &&
909		 pm->pm_step == ide_pm_state_start_resume) {
910		/*
911		 * The first thing we do on wakeup is to wait for BSY bit to
912		 * go away (with a looong timeout) as a drive on this hwif may
913		 * just be POSTing itself.
914		 * We do that before even selecting as the "other" device on
915		 * the bus may be broken enough to walk on our toes at this
916		 * point.
917		 */
918		int rc;
919#ifdef DEBUG_PM
920		printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
921#endif
922		rc = ide_wait_not_busy(HWIF(drive), 35000);
923		if (rc)
924			printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
925		SELECT_DRIVE(drive);
926		if (IDE_CONTROL_REG)
927			HWIF(drive)->OUTB(drive->ctl, IDE_CONTROL_REG);
928		rc = ide_wait_not_busy(HWIF(drive), 100000);
929		if (rc)
930			printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
931	}
932}
933
934/**
935 *	start_request	-	start of I/O and command issuing for IDE
936 *
937 *	start_request() initiates handling of a new I/O request. It
938 *	accepts commands and I/O (read/write) requests. It also does
939 *	the final remapping for weird stuff like EZDrive. Once
940 *	device mapper can work sector level the EZDrive stuff can go away
941 *
942 *	FIXME: this function needs a rename
943 */
944
945static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
946{
947	ide_startstop_t startstop;
948	sector_t block;
949
950	BUG_ON(!blk_rq_started(rq));
951
952#ifdef DEBUG
953	printk("%s: start_request: current=0x%08lx\n",
954		HWIF(drive)->name, (unsigned long) rq);
955#endif
956
957	/* bail early if we've exceeded max_failures */
958	if (drive->max_failures && (drive->failures > drive->max_failures)) {
959		rq->cmd_flags |= REQ_FAILED;
960		goto kill_rq;
961	}
962
963	block    = rq->sector;
964	if (blk_fs_request(rq) &&
965	    (drive->media == ide_disk || drive->media == ide_floppy)) {
966		block += drive->sect0;
967	}
968	/* Yecch - this will shift the entire interval,
969	   possibly killing some innocent following sector */
970	if (block == 0 && drive->remap_0_to_1 == 1)
971		block = 1;  /* redirect MBR access to EZ-Drive partn table */
972
973	if (blk_pm_request(rq))
974		ide_check_pm_state(drive, rq);
975
976	SELECT_DRIVE(drive);
977	if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
978		printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
979		return startstop;
980	}
981	if (!drive->special.all) {
982		ide_driver_t *drv;
983
984		/*
985		 * We reset the drive so we need to issue a SETFEATURES.
986		 * Do it _after_ do_special() restored device parameters.
987		 */
988		if (drive->current_speed == 0xff)
989			ide_config_drive_speed(drive, drive->desired_speed);
990
991		if (rq->cmd_type == REQ_TYPE_ATA_CMD ||
992		    rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
993			return execute_drive_cmd(drive, rq);
994		else if (blk_pm_request(rq)) {
995			struct request_pm_state *pm = rq->data;
996#ifdef DEBUG_PM
997			printk("%s: start_power_step(step: %d)\n",
998				drive->name, rq->pm->pm_step);
999#endif
1000			startstop = ide_start_power_step(drive, rq);
1001			if (startstop == ide_stopped &&
1002			    pm->pm_step == ide_pm_state_completed)
1003				ide_complete_pm_request(drive, rq);
1004			return startstop;
1005		}
1006
1007		drv = *(ide_driver_t **)rq->rq_disk->private_data;
1008		return drv->do_request(drive, rq, block);
1009	}
1010	return do_special(drive);
1011kill_rq:
1012	ide_kill_rq(drive, rq);
1013	return ide_stopped;
1014}
1015
1016/**
1017 *	ide_stall_queue		-	pause an IDE device
1018 *	@drive: drive to stall
1019 *	@timeout: time to stall for (jiffies)
1020 *
1021 *	ide_stall_queue() can be used by a drive to give excess bandwidth back
1022 *	to the hwgroup by sleeping for timeout jiffies.
1023 */
1024
1025void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
1026{
1027	if (timeout > WAIT_WORSTCASE)
1028		timeout = WAIT_WORSTCASE;
1029	drive->sleep = timeout + jiffies;
1030	drive->sleeping = 1;
1031}
1032
1033EXPORT_SYMBOL(ide_stall_queue);
1034
1035#define WAKEUP(drive)	((drive)->service_start + 2 * (drive)->service_time)
1036
1037/**
1038 *	choose_drive		-	select a drive to service
1039 *	@hwgroup: hardware group to select on
1040 *
1041 *	choose_drive() selects the next drive which will be serviced.
1042 *	This is necessary because the IDE layer can't issue commands
1043 *	to both drives on the same cable, unlike SCSI.
1044 */
1045
1046static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
1047{
1048	ide_drive_t *drive, *best;
1049
1050repeat:
1051	best = NULL;
1052	drive = hwgroup->drive;
1053
1054	/*
1055	 * drive is doing pre-flush, ordered write, post-flush sequence. even
1056	 * though that is 3 requests, it must be seen as a single transaction.
1057	 * we must not preempt this drive until that is complete
1058	 */
1059	if (blk_queue_flushing(drive->queue)) {
1060		/*
1061		 * small race where queue could get replugged during
1062		 * the 3-request flush cycle, just yank the plug since
1063		 * we want it to finish asap
1064		 */
1065		blk_remove_plug(drive->queue);
1066		return drive;
1067	}
1068
1069	do {
1070		if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
1071		    && !elv_queue_empty(drive->queue)) {
1072			if (!best
1073			 || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
1074			 || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
1075			{
1076				if (!blk_queue_plugged(drive->queue))
1077					best = drive;
1078			}
1079		}
1080	} while ((drive = drive->next) != hwgroup->drive);
1081	if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
1082		long t = (signed long)(WAKEUP(best) - jiffies);
1083		if (t >= WAIT_MIN_SLEEP) {
1084		/*
1085		 * We *may* have some time to spare, but first let's see if
1086		 * someone can potentially benefit from our nice mood today..
1087		 */
1088			drive = best->next;
1089			do {
1090				if (!drive->sleeping
1091				 && time_before(jiffies - best->service_time, WAKEUP(drive))
1092				 && time_before(WAKEUP(drive), jiffies + t))
1093				{
1094					ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
1095					goto repeat;
1096				}
1097			} while ((drive = drive->next) != best);
1098		}
1099	}
1100	return best;
1101}
1102
1103/*
1104 * Issue a new request to a drive from hwgroup
1105 * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
1106 *
1107 * A hwgroup is a serialized group of IDE interfaces.  Usually there is
1108 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
1109 * may have both interfaces in a single hwgroup to "serialize" access.
1110 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
1111 * together into one hwgroup for serialized access.
1112 *
1113 * Note also that several hwgroups can end up sharing a single IRQ,
1114 * possibly along with many other devices.  This is especially common in
1115 * PCI-based systems with off-board IDE controller cards.
1116 *
1117 * The IDE driver uses the single global ide_lock spinlock to protect
1118 * access to the request queues, and to protect the hwgroup->busy flag.
1119 *
1120 * The first thread into the driver for a particular hwgroup sets the
1121 * hwgroup->busy flag to indicate that this hwgroup is now active,
1122 * and then initiates processing of the top request from the request queue.
1123 *
1124 * Other threads attempting entry notice the busy setting, and will simply
1125 * queue their new requests and exit immediately.  Note that hwgroup->busy
1126 * remains set even when the driver is merely awaiting the next interrupt.
1127 * Thus, the meaning is "this hwgroup is busy processing a request".
1128 *
1129 * When processing of a request completes, the completing thread or IRQ-handler
1130 * will start the next request from the queue.  If no more work remains,
1131 * the driver will clear the hwgroup->busy flag and exit.
1132 *
1133 * The ide_lock (spinlock) is used to protect all access to the
1134 * hwgroup->busy flag, but is otherwise not needed for most processing in
1135 * the driver.  This makes the driver much more friendlier to shared IRQs
1136 * than previous designs, while remaining 100% (?) SMP safe and capable.
1137 */
1138static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
1139{
1140	ide_drive_t	*drive;
1141	ide_hwif_t	*hwif;
1142	struct request	*rq;
1143	ide_startstop_t	startstop;
1144	int             loops = 0;
1145
1146	/* for atari only: POSSIBLY BROKEN HERE(?) */
1147	ide_get_lock(ide_intr, hwgroup);
1148
1149	/* caller must own ide_lock */
1150	BUG_ON(!irqs_disabled());
1151
1152	while (!hwgroup->busy) {
1153		hwgroup->busy = 1;
1154		drive = choose_drive(hwgroup);
1155		if (drive == NULL) {
1156			int sleeping = 0;
1157			unsigned long sleep = 0; /* shut up, gcc */
1158			hwgroup->rq = NULL;
1159			drive = hwgroup->drive;
1160			do {
1161				if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
1162					sleeping = 1;
1163					sleep = drive->sleep;
1164				}
1165			} while ((drive = drive->next) != hwgroup->drive);
1166			if (sleeping) {
1167		/*
1168		 * Take a short snooze, and then wake up this hwgroup again.
1169		 * This gives other hwgroups on the same a chance to
1170		 * play fairly with us, just in case there are big differences
1171		 * in relative throughputs.. don't want to hog the cpu too much.
1172		 */
1173				if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1174					sleep = jiffies + WAIT_MIN_SLEEP;
1175#if 1
1176				if (timer_pending(&hwgroup->timer))
1177					printk(KERN_CRIT "ide_set_handler: timer already active\n");
1178#endif
1179				/* so that ide_timer_expiry knows what to do */
1180				hwgroup->sleeping = 1;
1181				hwgroup->req_gen_timer = hwgroup->req_gen;
1182				mod_timer(&hwgroup->timer, sleep);
1183				/* we purposely leave hwgroup->busy==1
1184				 * while sleeping */
1185			} else {
1186				/* Ugly, but how can we sleep for the lock
1187				 * otherwise? perhaps from tq_disk?
1188				 */
1189
1190				/* for atari only */
1191				ide_release_lock();
1192				hwgroup->busy = 0;
1193			}
1194
1195			/* no more work for this hwgroup (for now) */
1196			return;
1197		}
1198	again:
1199		hwif = HWIF(drive);
1200		if (hwgroup->hwif->sharing_irq &&
1201		    hwif != hwgroup->hwif &&
1202		    hwif->io_ports[IDE_CONTROL_OFFSET]) {
1203			/* set nIEN for previous hwif */
1204			SELECT_INTERRUPT(drive);
1205		}
1206		hwgroup->hwif = hwif;
1207		hwgroup->drive = drive;
1208		drive->sleeping = 0;
1209		drive->service_start = jiffies;
1210
1211		if (blk_queue_plugged(drive->queue)) {
1212			printk(KERN_ERR "ide: huh? queue was plugged!\n");
1213			break;
1214		}
1215
1216		/*
1217		 * we know that the queue isn't empty, but this can happen
1218		 * if the q->prep_rq_fn() decides to kill a request
1219		 */
1220		rq = elv_next_request(drive->queue);
1221		if (!rq) {
1222			hwgroup->busy = 0;
1223			break;
1224		}
1225
1226		/*
1227		 * Sanity: don't accept a request that isn't a PM request
1228		 * if we are currently power managed. This is very important as
1229		 * blk_stop_queue() doesn't prevent the elv_next_request()
1230		 * above to return us whatever is in the queue. Since we call
1231		 * ide_do_request() ourselves, we end up taking requests while
1232		 * the queue is blocked...
1233		 *
1234		 * We let requests forced at head of queue with ide-preempt
1235		 * though. I hope that doesn't happen too much, hopefully not
1236		 * unless the subdriver triggers such a thing in its own PM
1237		 * state machine.
1238		 *
1239		 * We count how many times we loop here to make sure we service
1240		 * all drives in the hwgroup without looping for ever
1241		 */
1242		if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) {
1243			drive = drive->next ? drive->next : hwgroup->drive;
1244			if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1245				goto again;
1246			/* We clear busy, there should be no pending ATA command at this point. */
1247			hwgroup->busy = 0;
1248			break;
1249		}
1250
1251		hwgroup->rq = rq;
1252
1253		/*
1254		 * Some systems have trouble with IDE IRQs arriving while
1255		 * the driver is still setting things up.  So, here we disable
1256		 * the IRQ used by this interface while the request is being started.
1257		 * This may look bad at first, but pretty much the same thing
1258		 * happens anyway when any interrupt comes in, IDE or otherwise
1259		 *  -- the kernel masks the IRQ while it is being handled.
1260		 */
1261		if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1262			disable_irq_nosync(hwif->irq);
1263		spin_unlock(&ide_lock);
1264		local_irq_enable_in_hardirq();
1265			/* allow other IRQs while we start this request */
1266		startstop = start_request(drive, rq);
1267		spin_lock_irq(&ide_lock);
1268		if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1269			enable_irq(hwif->irq);
1270		if (startstop == ide_stopped)
1271			hwgroup->busy = 0;
1272	}
1273}
1274
1275/*
1276 * Passes the stuff to ide_do_request
1277 */
1278void do_ide_request(struct request_queue *q)
1279{
1280	ide_drive_t *drive = q->queuedata;
1281
1282	ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1283}
1284
1285/*
1286 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1287 * retry the current request in pio mode instead of risking tossing it
1288 * all away
1289 */
1290static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1291{
1292	ide_hwif_t *hwif = HWIF(drive);
1293	struct request *rq;
1294	ide_startstop_t ret = ide_stopped;
1295
1296	/*
1297	 * end current dma transaction
1298	 */
1299
1300	if (error < 0) {
1301		printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1302		(void)HWIF(drive)->ide_dma_end(drive);
1303		ret = ide_error(drive, "dma timeout error",
1304						hwif->INB(IDE_STATUS_REG));
1305	} else {
1306		printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1307		hwif->dma_timeout(drive);
1308	}
1309
1310	/*
1311	 * disable dma for now, but remember that we did so because of
1312	 * a timeout -- we'll reenable after we finish this next request
1313	 * (or rather the first chunk of it) in pio.
1314	 */
1315	drive->retry_pio++;
1316	drive->state = DMA_PIO_RETRY;
1317	hwif->dma_off_quietly(drive);
1318
1319	/*
1320	 * un-busy drive etc (hwgroup->busy is cleared on return) and
1321	 * make sure request is sane
1322	 */
1323	rq = HWGROUP(drive)->rq;
1324
1325	if (!rq)
1326		goto out;
1327
1328	HWGROUP(drive)->rq = NULL;
1329
1330	rq->errors = 0;
1331
1332	if (!rq->bio)
1333		goto out;
1334
1335	rq->sector = rq->bio->bi_sector;
1336	rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1337	rq->hard_cur_sectors = rq->current_nr_sectors;
1338	rq->buffer = bio_data(rq->bio);
1339out:
1340	return ret;
1341}
1342
1343/**
1344 *	ide_timer_expiry	-	handle lack of an IDE interrupt
1345 *	@data: timer callback magic (hwgroup)
1346 *
1347 *	An IDE command has timed out before the expected drive return
1348 *	occurred. At this point we attempt to clean up the current
1349 *	mess. If the current handler includes an expiry handler then
1350 *	we invoke the expiry handler, and providing it is happy the
1351 *	work is done. If that fails we apply generic recovery rules
1352 *	invoking the handler and checking the drive DMA status. We
1353 *	have an excessively incestuous relationship with the DMA
1354 *	logic that wants cleaning up.
1355 */
1356
1357void ide_timer_expiry (unsigned long data)
1358{
1359	ide_hwgroup_t	*hwgroup = (ide_hwgroup_t *) data;
1360	ide_handler_t	*handler;
1361	ide_expiry_t	*expiry;
1362	unsigned long	flags;
1363	unsigned long	wait = -1;
1364
1365	spin_lock_irqsave(&ide_lock, flags);
1366
1367	if (((handler = hwgroup->handler) == NULL) ||
1368	    (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1369		/*
1370		 * Either a marginal timeout occurred
1371		 * (got the interrupt just as timer expired),
1372		 * or we were "sleeping" to give other devices a chance.
1373		 * Either way, we don't really want to complain about anything.
1374		 */
1375		if (hwgroup->sleeping) {
1376			hwgroup->sleeping = 0;
1377			hwgroup->busy = 0;
1378		}
1379	} else {
1380		ide_drive_t *drive = hwgroup->drive;
1381		if (!drive) {
1382			printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1383			hwgroup->handler = NULL;
1384		} else {
1385			ide_hwif_t *hwif;
1386			ide_startstop_t startstop = ide_stopped;
1387			if (!hwgroup->busy) {
1388				hwgroup->busy = 1;	/* paranoia */
1389				printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1390			}
1391			if ((expiry = hwgroup->expiry) != NULL) {
1392				/* continue */
1393				if ((wait = expiry(drive)) > 0) {
1394					/* reset timer */
1395					hwgroup->timer.expires  = jiffies + wait;
1396					hwgroup->req_gen_timer = hwgroup->req_gen;
1397					add_timer(&hwgroup->timer);
1398					spin_unlock_irqrestore(&ide_lock, flags);
1399					return;
1400				}
1401			}
1402			hwgroup->handler = NULL;
1403			/*
1404			 * We need to simulate a real interrupt when invoking
1405			 * the handler() function, which means we need to
1406			 * globally mask the specific IRQ:
1407			 */
1408			spin_unlock(&ide_lock);
1409			hwif  = HWIF(drive);
1410			/* disable_irq_nosync ?? */
1411			disable_irq(hwif->irq);
1412			/* local CPU only,
1413			 * as if we were handling an interrupt */
1414			local_irq_disable();
1415			if (hwgroup->polling) {
1416				startstop = handler(drive);
1417			} else if (drive_is_ready(drive)) {
1418				if (drive->waiting_for_dma)
1419					hwgroup->hwif->dma_lost_irq(drive);
1420				(void)ide_ack_intr(hwif);
1421				printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1422				startstop = handler(drive);
1423			} else {
1424				if (drive->waiting_for_dma) {
1425					startstop = ide_dma_timeout_retry(drive, wait);
1426				} else
1427					startstop =
1428					ide_error(drive, "irq timeout", hwif->INB(IDE_STATUS_REG));
1429			}
1430			drive->service_time = jiffies - drive->service_start;
1431			spin_lock_irq(&ide_lock);
1432			enable_irq(hwif->irq);
1433			if (startstop == ide_stopped)
1434				hwgroup->busy = 0;
1435		}
1436	}
1437	ide_do_request(hwgroup, IDE_NO_IRQ);
1438	spin_unlock_irqrestore(&ide_lock, flags);
1439}
1440
1441/**
1442 *	unexpected_intr		-	handle an unexpected IDE interrupt
1443 *	@irq: interrupt line
1444 *	@hwgroup: hwgroup being processed
1445 *
1446 *	There's nothing really useful we can do with an unexpected interrupt,
1447 *	other than reading the status register (to clear it), and logging it.
1448 *	There should be no way that an irq can happen before we're ready for it,
1449 *	so we needn't worry much about losing an "important" interrupt here.
1450 *
1451 *	On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1452 *	the drive enters "idle", "standby", or "sleep" mode, so if the status
1453 *	looks "good", we just ignore the interrupt completely.
1454 *
1455 *	This routine assumes __cli() is in effect when called.
1456 *
1457 *	If an unexpected interrupt happens on irq15 while we are handling irq14
1458 *	and if the two interfaces are "serialized" (CMD640), then it looks like
1459 *	we could screw up by interfering with a new request being set up for
1460 *	irq15.
1461 *
1462 *	In reality, this is a non-issue.  The new command is not sent unless
1463 *	the drive is ready to accept one, in which case we know the drive is
1464 *	not trying to interrupt us.  And ide_set_handler() is always invoked
1465 *	before completing the issuance of any new drive command, so we will not
1466 *	be accidentally invoked as a result of any valid command completion
1467 *	interrupt.
1468 *
1469 *	Note that we must walk the entire hwgroup here. We know which hwif
1470 *	is doing the current command, but we don't know which hwif burped
1471 *	mysteriously.
1472 */
1473
1474static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1475{
1476	u8 stat;
1477	ide_hwif_t *hwif = hwgroup->hwif;
1478
1479	/*
1480	 * handle the unexpected interrupt
1481	 */
1482	do {
1483		if (hwif->irq == irq) {
1484			stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1485			if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1486				/* Try to not flood the console with msgs */
1487				static unsigned long last_msgtime, count;
1488				++count;
1489				if (time_after(jiffies, last_msgtime + HZ)) {
1490					last_msgtime = jiffies;
1491					printk(KERN_ERR "%s%s: unexpected interrupt, "
1492						"status=0x%02x, count=%ld\n",
1493						hwif->name,
1494						(hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1495				}
1496			}
1497		}
1498	} while ((hwif = hwif->next) != hwgroup->hwif);
1499}
1500
1501/**
1502 *	ide_intr	-	default IDE interrupt handler
1503 *	@irq: interrupt number
1504 *	@dev_id: hwif group
1505 *	@regs: unused weirdness from the kernel irq layer
1506 *
1507 *	This is the default IRQ handler for the IDE layer. You should
1508 *	not need to override it. If you do be aware it is subtle in
1509 *	places
1510 *
1511 *	hwgroup->hwif is the interface in the group currently performing
1512 *	a command. hwgroup->drive is the drive and hwgroup->handler is
1513 *	the IRQ handler to call. As we issue a command the handlers
1514 *	step through multiple states, reassigning the handler to the
1515 *	next step in the process. Unlike a smart SCSI controller IDE
1516 *	expects the main processor to sequence the various transfer
1517 *	stages. We also manage a poll timer to catch up with most
1518 *	timeout situations. There are still a few where the handlers
1519 *	don't ever decide to give up.
1520 *
1521 *	The handler eventually returns ide_stopped to indicate the
1522 *	request completed. At this point we issue the next request
1523 *	on the hwgroup and the process begins again.
1524 */
1525
1526irqreturn_t ide_intr (int irq, void *dev_id)
1527{
1528	unsigned long flags;
1529	ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1530	ide_hwif_t *hwif;
1531	ide_drive_t *drive;
1532	ide_handler_t *handler;
1533	ide_startstop_t startstop;
1534
1535	spin_lock_irqsave(&ide_lock, flags);
1536	hwif = hwgroup->hwif;
1537
1538	if (!ide_ack_intr(hwif)) {
1539		spin_unlock_irqrestore(&ide_lock, flags);
1540		return IRQ_NONE;
1541	}
1542
1543	if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1544		/*
1545		 * Not expecting an interrupt from this drive.
1546		 * That means this could be:
1547		 *	(1) an interrupt from another PCI device
1548		 *	sharing the same PCI INT# as us.
1549		 * or	(2) a drive just entered sleep or standby mode,
1550		 *	and is interrupting to let us know.
1551		 * or	(3) a spurious interrupt of unknown origin.
1552		 *
1553		 * For PCI, we cannot tell the difference,
1554		 * so in that case we just ignore it and hope it goes away.
1555		 *
1556		 * FIXME: unexpected_intr should be hwif-> then we can
1557		 * remove all the ifdef PCI crap
1558		 */
1559#ifdef CONFIG_BLK_DEV_IDEPCI
1560		if (hwif->pci_dev && !hwif->pci_dev->vendor)
1561#endif	/* CONFIG_BLK_DEV_IDEPCI */
1562		{
1563			/*
1564			 * Probably not a shared PCI interrupt,
1565			 * so we can safely try to do something about it:
1566			 */
1567			unexpected_intr(irq, hwgroup);
1568#ifdef CONFIG_BLK_DEV_IDEPCI
1569		} else {
1570			/*
1571			 * Whack the status register, just in case
1572			 * we have a leftover pending IRQ.
1573			 */
1574			(void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1575#endif /* CONFIG_BLK_DEV_IDEPCI */
1576		}
1577		spin_unlock_irqrestore(&ide_lock, flags);
1578		return IRQ_NONE;
1579	}
1580	drive = hwgroup->drive;
1581	if (!drive) {
1582		/*
1583		 * This should NEVER happen, and there isn't much
1584		 * we could do about it here.
1585		 *
1586		 * [Note - this can occur if the drive is hot unplugged]
1587		 */
1588		spin_unlock_irqrestore(&ide_lock, flags);
1589		return IRQ_HANDLED;
1590	}
1591	if (!drive_is_ready(drive)) {
1592		/*
1593		 * This happens regularly when we share a PCI IRQ with
1594		 * another device.  Unfortunately, it can also happen
1595		 * with some buggy drives that trigger the IRQ before
1596		 * their status register is up to date.  Hopefully we have
1597		 * enough advance overhead that the latter isn't a problem.
1598		 */
1599		spin_unlock_irqrestore(&ide_lock, flags);
1600		return IRQ_NONE;
1601	}
1602	if (!hwgroup->busy) {
1603		hwgroup->busy = 1;	/* paranoia */
1604		printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1605	}
1606	hwgroup->handler = NULL;
1607	hwgroup->req_gen++;
1608	del_timer(&hwgroup->timer);
1609	spin_unlock(&ide_lock);
1610
1611	/* Some controllers might set DMA INTR no matter DMA or PIO;
1612	 * bmdma status might need to be cleared even for
1613	 * PIO interrupts to prevent spurious/lost irq.
1614	 */
1615	if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
1616		/* ide_dma_end() needs bmdma status for error checking.
1617		 * So, skip clearing bmdma status here and leave it
1618		 * to ide_dma_end() if this is dma interrupt.
1619		 */
1620		hwif->ide_dma_clear_irq(drive);
1621
1622	if (drive->unmask)
1623		local_irq_enable_in_hardirq();
1624	/* service this interrupt, may set handler for next interrupt */
1625	startstop = handler(drive);
1626	spin_lock_irq(&ide_lock);
1627
1628	/*
1629	 * Note that handler() may have set things up for another
1630	 * interrupt to occur soon, but it cannot happen until
1631	 * we exit from this routine, because it will be the
1632	 * same irq as is currently being serviced here, and Linux
1633	 * won't allow another of the same (on any CPU) until we return.
1634	 */
1635	drive->service_time = jiffies - drive->service_start;
1636	if (startstop == ide_stopped) {
1637		if (hwgroup->handler == NULL) {	/* paranoia */
1638			hwgroup->busy = 0;
1639			ide_do_request(hwgroup, hwif->irq);
1640		} else {
1641			printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1642				"on exit\n", drive->name);
1643		}
1644	}
1645	spin_unlock_irqrestore(&ide_lock, flags);
1646	return IRQ_HANDLED;
1647}
1648
1649/**
1650 *	ide_init_drive_cmd	-	initialize a drive command request
1651 *	@rq: request object
1652 *
1653 *	Initialize a request before we fill it in and send it down to
1654 *	ide_do_drive_cmd. Commands must be set up by this function. Right
1655 *	now it doesn't do a lot, but if that changes abusers will have a
1656 *	nasty surprise.
1657 */
1658
1659void ide_init_drive_cmd (struct request *rq)
1660{
1661	memset(rq, 0, sizeof(*rq));
1662	rq->cmd_type = REQ_TYPE_ATA_CMD;
1663	rq->ref_count = 1;
1664}
1665
1666EXPORT_SYMBOL(ide_init_drive_cmd);
1667
1668/**
1669 *	ide_do_drive_cmd	-	issue IDE special command
1670 *	@drive: device to issue command
1671 *	@rq: request to issue
1672 *	@action: action for processing
1673 *
1674 *	This function issues a special IDE device request
1675 *	onto the request queue.
1676 *
1677 *	If action is ide_wait, then the rq is queued at the end of the
1678 *	request queue, and the function sleeps until it has been processed.
1679 *	This is for use when invoked from an ioctl handler.
1680 *
1681 *	If action is ide_preempt, then the rq is queued at the head of
1682 *	the request queue, displacing the currently-being-processed
1683 *	request and this function returns immediately without waiting
1684 *	for the new rq to be completed.  This is VERY DANGEROUS, and is
1685 *	intended for careful use by the ATAPI tape/cdrom driver code.
1686 *
1687 *	If action is ide_end, then the rq is queued at the end of the
1688 *	request queue, and the function returns immediately without waiting
1689 *	for the new rq to be completed. This is again intended for careful
1690 *	use by the ATAPI tape/cdrom driver code.
1691 */
1692
1693int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
1694{
1695	unsigned long flags;
1696	ide_hwgroup_t *hwgroup = HWGROUP(drive);
1697	DECLARE_COMPLETION_ONSTACK(wait);
1698	int where = ELEVATOR_INSERT_BACK, err;
1699	int must_wait = (action == ide_wait || action == ide_head_wait);
1700
1701	rq->errors = 0;
1702
1703	/*
1704	 * we need to hold an extra reference to request for safe inspection
1705	 * after completion
1706	 */
1707	if (must_wait) {
1708		rq->ref_count++;
1709		rq->end_io_data = &wait;
1710		rq->end_io = blk_end_sync_rq;
1711	}
1712
1713	spin_lock_irqsave(&ide_lock, flags);
1714	if (action == ide_preempt)
1715		hwgroup->rq = NULL;
1716	if (action == ide_preempt || action == ide_head_wait) {
1717		where = ELEVATOR_INSERT_FRONT;
1718		rq->cmd_flags |= REQ_PREEMPT;
1719	}
1720	__elv_add_request(drive->queue, rq, where, 0);
1721	ide_do_request(hwgroup, IDE_NO_IRQ);
1722	spin_unlock_irqrestore(&ide_lock, flags);
1723
1724	err = 0;
1725	if (must_wait) {
1726		wait_for_completion(&wait);
1727		if (rq->errors)
1728			err = -EIO;
1729
1730		blk_put_request(rq);
1731	}
1732
1733	return err;
1734}
1735
1736EXPORT_SYMBOL(ide_do_drive_cmd);
1737