ide-io.c revision 374e042c3e767ac2e5a40b78529220e0b3de793c
1/* 2 * IDE I/O functions 3 * 4 * Basic PIO and command management functionality. 5 * 6 * This code was split off from ide.c. See ide.c for history and original 7 * copyrights. 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms of the GNU General Public License as published by the 11 * Free Software Foundation; either version 2, or (at your option) any 12 * later version. 13 * 14 * This program is distributed in the hope that it will be useful, but 15 * WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 17 * General Public License for more details. 18 * 19 * For the avoidance of doubt the "preferred form" of this code is one which 20 * is in an open non patent encumbered format. Where cryptographic key signing 21 * forms part of the process of creating an executable the information 22 * including keys needed to generate an equivalently functional executable 23 * are deemed to be part of the source code. 24 */ 25 26 27#include <linux/module.h> 28#include <linux/types.h> 29#include <linux/string.h> 30#include <linux/kernel.h> 31#include <linux/timer.h> 32#include <linux/mm.h> 33#include <linux/interrupt.h> 34#include <linux/major.h> 35#include <linux/errno.h> 36#include <linux/genhd.h> 37#include <linux/blkpg.h> 38#include <linux/slab.h> 39#include <linux/init.h> 40#include <linux/pci.h> 41#include <linux/delay.h> 42#include <linux/ide.h> 43#include <linux/completion.h> 44#include <linux/reboot.h> 45#include <linux/cdrom.h> 46#include <linux/seq_file.h> 47#include <linux/device.h> 48#include <linux/kmod.h> 49#include <linux/scatterlist.h> 50#include <linux/bitops.h> 51 52#include <asm/byteorder.h> 53#include <asm/irq.h> 54#include <asm/uaccess.h> 55#include <asm/io.h> 56 57static int __ide_end_request(ide_drive_t *drive, struct request *rq, 58 int uptodate, unsigned int nr_bytes, int dequeue) 59{ 60 int ret = 1; 61 int error = 0; 62 63 if (uptodate <= 0) 64 error = uptodate ? uptodate : -EIO; 65 66 /* 67 * if failfast is set on a request, override number of sectors and 68 * complete the whole request right now 69 */ 70 if (blk_noretry_request(rq) && error) 71 nr_bytes = rq->hard_nr_sectors << 9; 72 73 if (!blk_fs_request(rq) && error && !rq->errors) 74 rq->errors = -EIO; 75 76 /* 77 * decide whether to reenable DMA -- 3 is a random magic for now, 78 * if we DMA timeout more than 3 times, just stay in PIO 79 */ 80 if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) { 81 drive->state = 0; 82 ide_dma_on(drive); 83 } 84 85 if (!__blk_end_request(rq, error, nr_bytes)) { 86 if (dequeue) 87 HWGROUP(drive)->rq = NULL; 88 ret = 0; 89 } 90 91 return ret; 92} 93 94/** 95 * ide_end_request - complete an IDE I/O 96 * @drive: IDE device for the I/O 97 * @uptodate: 98 * @nr_sectors: number of sectors completed 99 * 100 * This is our end_request wrapper function. We complete the I/O 101 * update random number input and dequeue the request, which if 102 * it was tagged may be out of order. 103 */ 104 105int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors) 106{ 107 unsigned int nr_bytes = nr_sectors << 9; 108 struct request *rq; 109 unsigned long flags; 110 int ret = 1; 111 112 /* 113 * room for locking improvements here, the calls below don't 114 * need the queue lock held at all 115 */ 116 spin_lock_irqsave(&ide_lock, flags); 117 rq = HWGROUP(drive)->rq; 118 119 if (!nr_bytes) { 120 if (blk_pc_request(rq)) 121 nr_bytes = rq->data_len; 122 else 123 nr_bytes = rq->hard_cur_sectors << 9; 124 } 125 126 ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1); 127 128 spin_unlock_irqrestore(&ide_lock, flags); 129 return ret; 130} 131EXPORT_SYMBOL(ide_end_request); 132 133/* 134 * Power Management state machine. This one is rather trivial for now, 135 * we should probably add more, like switching back to PIO on suspend 136 * to help some BIOSes, re-do the door locking on resume, etc... 137 */ 138 139enum { 140 ide_pm_flush_cache = ide_pm_state_start_suspend, 141 idedisk_pm_standby, 142 143 idedisk_pm_restore_pio = ide_pm_state_start_resume, 144 idedisk_pm_idle, 145 ide_pm_restore_dma, 146}; 147 148static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error) 149{ 150 struct request_pm_state *pm = rq->data; 151 152 if (drive->media != ide_disk) 153 return; 154 155 switch (pm->pm_step) { 156 case ide_pm_flush_cache: /* Suspend step 1 (flush cache) complete */ 157 if (pm->pm_state == PM_EVENT_FREEZE) 158 pm->pm_step = ide_pm_state_completed; 159 else 160 pm->pm_step = idedisk_pm_standby; 161 break; 162 case idedisk_pm_standby: /* Suspend step 2 (standby) complete */ 163 pm->pm_step = ide_pm_state_completed; 164 break; 165 case idedisk_pm_restore_pio: /* Resume step 1 complete */ 166 pm->pm_step = idedisk_pm_idle; 167 break; 168 case idedisk_pm_idle: /* Resume step 2 (idle) complete */ 169 pm->pm_step = ide_pm_restore_dma; 170 break; 171 } 172} 173 174static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq) 175{ 176 struct request_pm_state *pm = rq->data; 177 ide_task_t *args = rq->special; 178 179 memset(args, 0, sizeof(*args)); 180 181 switch (pm->pm_step) { 182 case ide_pm_flush_cache: /* Suspend step 1 (flush cache) */ 183 if (drive->media != ide_disk) 184 break; 185 /* Not supported? Switch to next step now. */ 186 if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) { 187 ide_complete_power_step(drive, rq, 0, 0); 188 return ide_stopped; 189 } 190 if (ide_id_has_flush_cache_ext(drive->id)) 191 args->tf.command = WIN_FLUSH_CACHE_EXT; 192 else 193 args->tf.command = WIN_FLUSH_CACHE; 194 goto out_do_tf; 195 196 case idedisk_pm_standby: /* Suspend step 2 (standby) */ 197 args->tf.command = WIN_STANDBYNOW1; 198 goto out_do_tf; 199 200 case idedisk_pm_restore_pio: /* Resume step 1 (restore PIO) */ 201 ide_set_max_pio(drive); 202 /* 203 * skip idedisk_pm_idle for ATAPI devices 204 */ 205 if (drive->media != ide_disk) 206 pm->pm_step = ide_pm_restore_dma; 207 else 208 ide_complete_power_step(drive, rq, 0, 0); 209 return ide_stopped; 210 211 case idedisk_pm_idle: /* Resume step 2 (idle) */ 212 args->tf.command = WIN_IDLEIMMEDIATE; 213 goto out_do_tf; 214 215 case ide_pm_restore_dma: /* Resume step 3 (restore DMA) */ 216 /* 217 * Right now, all we do is call ide_set_dma(drive), 218 * we could be smarter and check for current xfer_speed 219 * in struct drive etc... 220 */ 221 if (drive->hwif->dma_ops == NULL) 222 break; 223 /* 224 * TODO: respect ->using_dma setting 225 */ 226 ide_set_dma(drive); 227 break; 228 } 229 pm->pm_step = ide_pm_state_completed; 230 return ide_stopped; 231 232out_do_tf: 233 args->tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE; 234 args->data_phase = TASKFILE_NO_DATA; 235 return do_rw_taskfile(drive, args); 236} 237 238/** 239 * ide_end_dequeued_request - complete an IDE I/O 240 * @drive: IDE device for the I/O 241 * @uptodate: 242 * @nr_sectors: number of sectors completed 243 * 244 * Complete an I/O that is no longer on the request queue. This 245 * typically occurs when we pull the request and issue a REQUEST_SENSE. 246 * We must still finish the old request but we must not tamper with the 247 * queue in the meantime. 248 * 249 * NOTE: This path does not handle barrier, but barrier is not supported 250 * on ide-cd anyway. 251 */ 252 253int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq, 254 int uptodate, int nr_sectors) 255{ 256 unsigned long flags; 257 int ret; 258 259 spin_lock_irqsave(&ide_lock, flags); 260 BUG_ON(!blk_rq_started(rq)); 261 ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0); 262 spin_unlock_irqrestore(&ide_lock, flags); 263 264 return ret; 265} 266EXPORT_SYMBOL_GPL(ide_end_dequeued_request); 267 268 269/** 270 * ide_complete_pm_request - end the current Power Management request 271 * @drive: target drive 272 * @rq: request 273 * 274 * This function cleans up the current PM request and stops the queue 275 * if necessary. 276 */ 277static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq) 278{ 279 unsigned long flags; 280 281#ifdef DEBUG_PM 282 printk("%s: completing PM request, %s\n", drive->name, 283 blk_pm_suspend_request(rq) ? "suspend" : "resume"); 284#endif 285 spin_lock_irqsave(&ide_lock, flags); 286 if (blk_pm_suspend_request(rq)) { 287 blk_stop_queue(drive->queue); 288 } else { 289 drive->blocked = 0; 290 blk_start_queue(drive->queue); 291 } 292 HWGROUP(drive)->rq = NULL; 293 if (__blk_end_request(rq, 0, 0)) 294 BUG(); 295 spin_unlock_irqrestore(&ide_lock, flags); 296} 297 298/** 299 * ide_end_drive_cmd - end an explicit drive command 300 * @drive: command 301 * @stat: status bits 302 * @err: error bits 303 * 304 * Clean up after success/failure of an explicit drive command. 305 * These get thrown onto the queue so they are synchronized with 306 * real I/O operations on the drive. 307 * 308 * In LBA48 mode we have to read the register set twice to get 309 * all the extra information out. 310 */ 311 312void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err) 313{ 314 unsigned long flags; 315 struct request *rq; 316 317 spin_lock_irqsave(&ide_lock, flags); 318 rq = HWGROUP(drive)->rq; 319 spin_unlock_irqrestore(&ide_lock, flags); 320 321 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) { 322 ide_task_t *task = (ide_task_t *)rq->special; 323 324 if (rq->errors == 0) 325 rq->errors = !OK_STAT(stat, READY_STAT, BAD_STAT); 326 327 if (task) { 328 struct ide_taskfile *tf = &task->tf; 329 330 tf->error = err; 331 tf->status = stat; 332 333 drive->hwif->tp_ops->tf_read(drive, task); 334 335 if (task->tf_flags & IDE_TFLAG_DYN) 336 kfree(task); 337 } 338 } else if (blk_pm_request(rq)) { 339 struct request_pm_state *pm = rq->data; 340#ifdef DEBUG_PM 341 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n", 342 drive->name, rq->pm->pm_step, stat, err); 343#endif 344 ide_complete_power_step(drive, rq, stat, err); 345 if (pm->pm_step == ide_pm_state_completed) 346 ide_complete_pm_request(drive, rq); 347 return; 348 } 349 350 spin_lock_irqsave(&ide_lock, flags); 351 HWGROUP(drive)->rq = NULL; 352 rq->errors = err; 353 if (unlikely(__blk_end_request(rq, (rq->errors ? -EIO : 0), 354 blk_rq_bytes(rq)))) 355 BUG(); 356 spin_unlock_irqrestore(&ide_lock, flags); 357} 358 359EXPORT_SYMBOL(ide_end_drive_cmd); 360 361static void ide_kill_rq(ide_drive_t *drive, struct request *rq) 362{ 363 if (rq->rq_disk) { 364 ide_driver_t *drv; 365 366 drv = *(ide_driver_t **)rq->rq_disk->private_data; 367 drv->end_request(drive, 0, 0); 368 } else 369 ide_end_request(drive, 0, 0); 370} 371 372static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err) 373{ 374 ide_hwif_t *hwif = drive->hwif; 375 376 if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) { 377 /* other bits are useless when BUSY */ 378 rq->errors |= ERROR_RESET; 379 } else if (stat & ERR_STAT) { 380 /* err has different meaning on cdrom and tape */ 381 if (err == ABRT_ERR) { 382 if (drive->select.b.lba && 383 /* some newer drives don't support WIN_SPECIFY */ 384 hwif->tp_ops->read_status(hwif) == WIN_SPECIFY) 385 return ide_stopped; 386 } else if ((err & BAD_CRC) == BAD_CRC) { 387 /* UDMA crc error, just retry the operation */ 388 drive->crc_count++; 389 } else if (err & (BBD_ERR | ECC_ERR)) { 390 /* retries won't help these */ 391 rq->errors = ERROR_MAX; 392 } else if (err & TRK0_ERR) { 393 /* help it find track zero */ 394 rq->errors |= ERROR_RECAL; 395 } 396 } 397 398 if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ && 399 (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0) { 400 int nsect = drive->mult_count ? drive->mult_count : 1; 401 402 ide_pad_transfer(drive, READ, nsect * SECTOR_SIZE); 403 } 404 405 if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) { 406 ide_kill_rq(drive, rq); 407 return ide_stopped; 408 } 409 410 if (hwif->tp_ops->read_status(hwif) & (BUSY_STAT | DRQ_STAT)) 411 rq->errors |= ERROR_RESET; 412 413 if ((rq->errors & ERROR_RESET) == ERROR_RESET) { 414 ++rq->errors; 415 return ide_do_reset(drive); 416 } 417 418 if ((rq->errors & ERROR_RECAL) == ERROR_RECAL) 419 drive->special.b.recalibrate = 1; 420 421 ++rq->errors; 422 423 return ide_stopped; 424} 425 426static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err) 427{ 428 ide_hwif_t *hwif = drive->hwif; 429 430 if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) { 431 /* other bits are useless when BUSY */ 432 rq->errors |= ERROR_RESET; 433 } else { 434 /* add decoding error stuff */ 435 } 436 437 if (hwif->tp_ops->read_status(hwif) & (BUSY_STAT | DRQ_STAT)) 438 /* force an abort */ 439 hwif->tp_ops->exec_command(hwif, WIN_IDLEIMMEDIATE); 440 441 if (rq->errors >= ERROR_MAX) { 442 ide_kill_rq(drive, rq); 443 } else { 444 if ((rq->errors & ERROR_RESET) == ERROR_RESET) { 445 ++rq->errors; 446 return ide_do_reset(drive); 447 } 448 ++rq->errors; 449 } 450 451 return ide_stopped; 452} 453 454ide_startstop_t 455__ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err) 456{ 457 if (drive->media == ide_disk) 458 return ide_ata_error(drive, rq, stat, err); 459 return ide_atapi_error(drive, rq, stat, err); 460} 461 462EXPORT_SYMBOL_GPL(__ide_error); 463 464/** 465 * ide_error - handle an error on the IDE 466 * @drive: drive the error occurred on 467 * @msg: message to report 468 * @stat: status bits 469 * 470 * ide_error() takes action based on the error returned by the drive. 471 * For normal I/O that may well include retries. We deal with 472 * both new-style (taskfile) and old style command handling here. 473 * In the case of taskfile command handling there is work left to 474 * do 475 */ 476 477ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat) 478{ 479 struct request *rq; 480 u8 err; 481 482 err = ide_dump_status(drive, msg, stat); 483 484 if ((rq = HWGROUP(drive)->rq) == NULL) 485 return ide_stopped; 486 487 /* retry only "normal" I/O: */ 488 if (!blk_fs_request(rq)) { 489 rq->errors = 1; 490 ide_end_drive_cmd(drive, stat, err); 491 return ide_stopped; 492 } 493 494 if (rq->rq_disk) { 495 ide_driver_t *drv; 496 497 drv = *(ide_driver_t **)rq->rq_disk->private_data; 498 return drv->error(drive, rq, stat, err); 499 } else 500 return __ide_error(drive, rq, stat, err); 501} 502 503EXPORT_SYMBOL_GPL(ide_error); 504 505static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf) 506{ 507 tf->nsect = drive->sect; 508 tf->lbal = drive->sect; 509 tf->lbam = drive->cyl; 510 tf->lbah = drive->cyl >> 8; 511 tf->device = ((drive->head - 1) | drive->select.all) & ~ATA_LBA; 512 tf->command = WIN_SPECIFY; 513} 514 515static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf) 516{ 517 tf->nsect = drive->sect; 518 tf->command = WIN_RESTORE; 519} 520 521static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf) 522{ 523 tf->nsect = drive->mult_req; 524 tf->command = WIN_SETMULT; 525} 526 527static ide_startstop_t ide_disk_special(ide_drive_t *drive) 528{ 529 special_t *s = &drive->special; 530 ide_task_t args; 531 532 memset(&args, 0, sizeof(ide_task_t)); 533 args.data_phase = TASKFILE_NO_DATA; 534 535 if (s->b.set_geometry) { 536 s->b.set_geometry = 0; 537 ide_tf_set_specify_cmd(drive, &args.tf); 538 } else if (s->b.recalibrate) { 539 s->b.recalibrate = 0; 540 ide_tf_set_restore_cmd(drive, &args.tf); 541 } else if (s->b.set_multmode) { 542 s->b.set_multmode = 0; 543 if (drive->mult_req > drive->id->max_multsect) 544 drive->mult_req = drive->id->max_multsect; 545 ide_tf_set_setmult_cmd(drive, &args.tf); 546 } else if (s->all) { 547 int special = s->all; 548 s->all = 0; 549 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special); 550 return ide_stopped; 551 } 552 553 args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE | 554 IDE_TFLAG_CUSTOM_HANDLER; 555 556 do_rw_taskfile(drive, &args); 557 558 return ide_started; 559} 560 561/* 562 * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away 563 */ 564static int set_pio_mode_abuse(ide_hwif_t *hwif, u8 req_pio) 565{ 566 switch (req_pio) { 567 case 202: 568 case 201: 569 case 200: 570 case 102: 571 case 101: 572 case 100: 573 return (hwif->host_flags & IDE_HFLAG_ABUSE_DMA_MODES) ? 1 : 0; 574 case 9: 575 case 8: 576 return (hwif->host_flags & IDE_HFLAG_ABUSE_PREFETCH) ? 1 : 0; 577 case 7: 578 case 6: 579 return (hwif->host_flags & IDE_HFLAG_ABUSE_FAST_DEVSEL) ? 1 : 0; 580 default: 581 return 0; 582 } 583} 584 585/** 586 * do_special - issue some special commands 587 * @drive: drive the command is for 588 * 589 * do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT 590 * commands to a drive. It used to do much more, but has been scaled 591 * back. 592 */ 593 594static ide_startstop_t do_special (ide_drive_t *drive) 595{ 596 special_t *s = &drive->special; 597 598#ifdef DEBUG 599 printk("%s: do_special: 0x%02x\n", drive->name, s->all); 600#endif 601 if (s->b.set_tune) { 602 ide_hwif_t *hwif = drive->hwif; 603 const struct ide_port_ops *port_ops = hwif->port_ops; 604 u8 req_pio = drive->tune_req; 605 606 s->b.set_tune = 0; 607 608 if (set_pio_mode_abuse(drive->hwif, req_pio)) { 609 /* 610 * take ide_lock for drive->[no_]unmask/[no_]io_32bit 611 */ 612 if (req_pio == 8 || req_pio == 9) { 613 unsigned long flags; 614 615 spin_lock_irqsave(&ide_lock, flags); 616 port_ops->set_pio_mode(drive, req_pio); 617 spin_unlock_irqrestore(&ide_lock, flags); 618 } else 619 port_ops->set_pio_mode(drive, req_pio); 620 } else { 621 int keep_dma = drive->using_dma; 622 623 ide_set_pio(drive, req_pio); 624 625 if (hwif->host_flags & IDE_HFLAG_SET_PIO_MODE_KEEP_DMA) { 626 if (keep_dma) 627 ide_dma_on(drive); 628 } 629 } 630 631 return ide_stopped; 632 } else { 633 if (drive->media == ide_disk) 634 return ide_disk_special(drive); 635 636 s->all = 0; 637 drive->mult_req = 0; 638 return ide_stopped; 639 } 640} 641 642void ide_map_sg(ide_drive_t *drive, struct request *rq) 643{ 644 ide_hwif_t *hwif = drive->hwif; 645 struct scatterlist *sg = hwif->sg_table; 646 647 if (hwif->sg_mapped) /* needed by ide-scsi */ 648 return; 649 650 if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) { 651 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg); 652 } else { 653 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE); 654 hwif->sg_nents = 1; 655 } 656} 657 658EXPORT_SYMBOL_GPL(ide_map_sg); 659 660void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq) 661{ 662 ide_hwif_t *hwif = drive->hwif; 663 664 hwif->nsect = hwif->nleft = rq->nr_sectors; 665 hwif->cursg_ofs = 0; 666 hwif->cursg = NULL; 667} 668 669EXPORT_SYMBOL_GPL(ide_init_sg_cmd); 670 671/** 672 * execute_drive_command - issue special drive command 673 * @drive: the drive to issue the command on 674 * @rq: the request structure holding the command 675 * 676 * execute_drive_cmd() issues a special drive command, usually 677 * initiated by ioctl() from the external hdparm program. The 678 * command can be a drive command, drive task or taskfile 679 * operation. Weirdly you can call it with NULL to wait for 680 * all commands to finish. Don't do this as that is due to change 681 */ 682 683static ide_startstop_t execute_drive_cmd (ide_drive_t *drive, 684 struct request *rq) 685{ 686 ide_hwif_t *hwif = HWIF(drive); 687 ide_task_t *task = rq->special; 688 689 if (task) { 690 hwif->data_phase = task->data_phase; 691 692 switch (hwif->data_phase) { 693 case TASKFILE_MULTI_OUT: 694 case TASKFILE_OUT: 695 case TASKFILE_MULTI_IN: 696 case TASKFILE_IN: 697 ide_init_sg_cmd(drive, rq); 698 ide_map_sg(drive, rq); 699 default: 700 break; 701 } 702 703 return do_rw_taskfile(drive, task); 704 } 705 706 /* 707 * NULL is actually a valid way of waiting for 708 * all current requests to be flushed from the queue. 709 */ 710#ifdef DEBUG 711 printk("%s: DRIVE_CMD (null)\n", drive->name); 712#endif 713 ide_end_drive_cmd(drive, hwif->tp_ops->read_status(hwif), 714 ide_read_error(drive)); 715 716 return ide_stopped; 717} 718 719static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq) 720{ 721 switch (rq->cmd[0]) { 722 case REQ_DRIVE_RESET: 723 return ide_do_reset(drive); 724 default: 725 blk_dump_rq_flags(rq, "ide_special_rq - bad request"); 726 ide_end_request(drive, 0, 0); 727 return ide_stopped; 728 } 729} 730 731static void ide_check_pm_state(ide_drive_t *drive, struct request *rq) 732{ 733 struct request_pm_state *pm = rq->data; 734 735 if (blk_pm_suspend_request(rq) && 736 pm->pm_step == ide_pm_state_start_suspend) 737 /* Mark drive blocked when starting the suspend sequence. */ 738 drive->blocked = 1; 739 else if (blk_pm_resume_request(rq) && 740 pm->pm_step == ide_pm_state_start_resume) { 741 /* 742 * The first thing we do on wakeup is to wait for BSY bit to 743 * go away (with a looong timeout) as a drive on this hwif may 744 * just be POSTing itself. 745 * We do that before even selecting as the "other" device on 746 * the bus may be broken enough to walk on our toes at this 747 * point. 748 */ 749 ide_hwif_t *hwif = drive->hwif; 750 int rc; 751#ifdef DEBUG_PM 752 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name); 753#endif 754 rc = ide_wait_not_busy(hwif, 35000); 755 if (rc) 756 printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name); 757 SELECT_DRIVE(drive); 758 hwif->tp_ops->set_irq(hwif, 1); 759 rc = ide_wait_not_busy(hwif, 100000); 760 if (rc) 761 printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name); 762 } 763} 764 765/** 766 * start_request - start of I/O and command issuing for IDE 767 * 768 * start_request() initiates handling of a new I/O request. It 769 * accepts commands and I/O (read/write) requests. It also does 770 * the final remapping for weird stuff like EZDrive. Once 771 * device mapper can work sector level the EZDrive stuff can go away 772 * 773 * FIXME: this function needs a rename 774 */ 775 776static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq) 777{ 778 ide_startstop_t startstop; 779 sector_t block; 780 781 BUG_ON(!blk_rq_started(rq)); 782 783#ifdef DEBUG 784 printk("%s: start_request: current=0x%08lx\n", 785 HWIF(drive)->name, (unsigned long) rq); 786#endif 787 788 /* bail early if we've exceeded max_failures */ 789 if (drive->max_failures && (drive->failures > drive->max_failures)) { 790 rq->cmd_flags |= REQ_FAILED; 791 goto kill_rq; 792 } 793 794 block = rq->sector; 795 if (blk_fs_request(rq) && 796 (drive->media == ide_disk || drive->media == ide_floppy)) { 797 block += drive->sect0; 798 } 799 /* Yecch - this will shift the entire interval, 800 possibly killing some innocent following sector */ 801 if (block == 0 && drive->remap_0_to_1 == 1) 802 block = 1; /* redirect MBR access to EZ-Drive partn table */ 803 804 if (blk_pm_request(rq)) 805 ide_check_pm_state(drive, rq); 806 807 SELECT_DRIVE(drive); 808 if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) { 809 printk(KERN_ERR "%s: drive not ready for command\n", drive->name); 810 return startstop; 811 } 812 if (!drive->special.all) { 813 ide_driver_t *drv; 814 815 /* 816 * We reset the drive so we need to issue a SETFEATURES. 817 * Do it _after_ do_special() restored device parameters. 818 */ 819 if (drive->current_speed == 0xff) 820 ide_config_drive_speed(drive, drive->desired_speed); 821 822 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) 823 return execute_drive_cmd(drive, rq); 824 else if (blk_pm_request(rq)) { 825 struct request_pm_state *pm = rq->data; 826#ifdef DEBUG_PM 827 printk("%s: start_power_step(step: %d)\n", 828 drive->name, rq->pm->pm_step); 829#endif 830 startstop = ide_start_power_step(drive, rq); 831 if (startstop == ide_stopped && 832 pm->pm_step == ide_pm_state_completed) 833 ide_complete_pm_request(drive, rq); 834 return startstop; 835 } else if (!rq->rq_disk && blk_special_request(rq)) 836 /* 837 * TODO: Once all ULDs have been modified to 838 * check for specific op codes rather than 839 * blindly accepting any special request, the 840 * check for ->rq_disk above may be replaced 841 * by a more suitable mechanism or even 842 * dropped entirely. 843 */ 844 return ide_special_rq(drive, rq); 845 846 drv = *(ide_driver_t **)rq->rq_disk->private_data; 847 return drv->do_request(drive, rq, block); 848 } 849 return do_special(drive); 850kill_rq: 851 ide_kill_rq(drive, rq); 852 return ide_stopped; 853} 854 855/** 856 * ide_stall_queue - pause an IDE device 857 * @drive: drive to stall 858 * @timeout: time to stall for (jiffies) 859 * 860 * ide_stall_queue() can be used by a drive to give excess bandwidth back 861 * to the hwgroup by sleeping for timeout jiffies. 862 */ 863 864void ide_stall_queue (ide_drive_t *drive, unsigned long timeout) 865{ 866 if (timeout > WAIT_WORSTCASE) 867 timeout = WAIT_WORSTCASE; 868 drive->sleep = timeout + jiffies; 869 drive->sleeping = 1; 870} 871 872EXPORT_SYMBOL(ide_stall_queue); 873 874#define WAKEUP(drive) ((drive)->service_start + 2 * (drive)->service_time) 875 876/** 877 * choose_drive - select a drive to service 878 * @hwgroup: hardware group to select on 879 * 880 * choose_drive() selects the next drive which will be serviced. 881 * This is necessary because the IDE layer can't issue commands 882 * to both drives on the same cable, unlike SCSI. 883 */ 884 885static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup) 886{ 887 ide_drive_t *drive, *best; 888 889repeat: 890 best = NULL; 891 drive = hwgroup->drive; 892 893 /* 894 * drive is doing pre-flush, ordered write, post-flush sequence. even 895 * though that is 3 requests, it must be seen as a single transaction. 896 * we must not preempt this drive until that is complete 897 */ 898 if (blk_queue_flushing(drive->queue)) { 899 /* 900 * small race where queue could get replugged during 901 * the 3-request flush cycle, just yank the plug since 902 * we want it to finish asap 903 */ 904 blk_remove_plug(drive->queue); 905 return drive; 906 } 907 908 do { 909 if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep)) 910 && !elv_queue_empty(drive->queue)) { 911 if (!best 912 || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep))) 913 || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best)))) 914 { 915 if (!blk_queue_plugged(drive->queue)) 916 best = drive; 917 } 918 } 919 } while ((drive = drive->next) != hwgroup->drive); 920 if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) { 921 long t = (signed long)(WAKEUP(best) - jiffies); 922 if (t >= WAIT_MIN_SLEEP) { 923 /* 924 * We *may* have some time to spare, but first let's see if 925 * someone can potentially benefit from our nice mood today.. 926 */ 927 drive = best->next; 928 do { 929 if (!drive->sleeping 930 && time_before(jiffies - best->service_time, WAKEUP(drive)) 931 && time_before(WAKEUP(drive), jiffies + t)) 932 { 933 ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP)); 934 goto repeat; 935 } 936 } while ((drive = drive->next) != best); 937 } 938 } 939 return best; 940} 941 942/* 943 * Issue a new request to a drive from hwgroup 944 * Caller must have already done spin_lock_irqsave(&ide_lock, ..); 945 * 946 * A hwgroup is a serialized group of IDE interfaces. Usually there is 947 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640) 948 * may have both interfaces in a single hwgroup to "serialize" access. 949 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped 950 * together into one hwgroup for serialized access. 951 * 952 * Note also that several hwgroups can end up sharing a single IRQ, 953 * possibly along with many other devices. This is especially common in 954 * PCI-based systems with off-board IDE controller cards. 955 * 956 * The IDE driver uses the single global ide_lock spinlock to protect 957 * access to the request queues, and to protect the hwgroup->busy flag. 958 * 959 * The first thread into the driver for a particular hwgroup sets the 960 * hwgroup->busy flag to indicate that this hwgroup is now active, 961 * and then initiates processing of the top request from the request queue. 962 * 963 * Other threads attempting entry notice the busy setting, and will simply 964 * queue their new requests and exit immediately. Note that hwgroup->busy 965 * remains set even when the driver is merely awaiting the next interrupt. 966 * Thus, the meaning is "this hwgroup is busy processing a request". 967 * 968 * When processing of a request completes, the completing thread or IRQ-handler 969 * will start the next request from the queue. If no more work remains, 970 * the driver will clear the hwgroup->busy flag and exit. 971 * 972 * The ide_lock (spinlock) is used to protect all access to the 973 * hwgroup->busy flag, but is otherwise not needed for most processing in 974 * the driver. This makes the driver much more friendlier to shared IRQs 975 * than previous designs, while remaining 100% (?) SMP safe and capable. 976 */ 977static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq) 978{ 979 ide_drive_t *drive; 980 ide_hwif_t *hwif; 981 struct request *rq; 982 ide_startstop_t startstop; 983 int loops = 0; 984 985 /* for atari only: POSSIBLY BROKEN HERE(?) */ 986 ide_get_lock(ide_intr, hwgroup); 987 988 /* caller must own ide_lock */ 989 BUG_ON(!irqs_disabled()); 990 991 while (!hwgroup->busy) { 992 hwgroup->busy = 1; 993 drive = choose_drive(hwgroup); 994 if (drive == NULL) { 995 int sleeping = 0; 996 unsigned long sleep = 0; /* shut up, gcc */ 997 hwgroup->rq = NULL; 998 drive = hwgroup->drive; 999 do { 1000 if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) { 1001 sleeping = 1; 1002 sleep = drive->sleep; 1003 } 1004 } while ((drive = drive->next) != hwgroup->drive); 1005 if (sleeping) { 1006 /* 1007 * Take a short snooze, and then wake up this hwgroup again. 1008 * This gives other hwgroups on the same a chance to 1009 * play fairly with us, just in case there are big differences 1010 * in relative throughputs.. don't want to hog the cpu too much. 1011 */ 1012 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP)) 1013 sleep = jiffies + WAIT_MIN_SLEEP; 1014#if 1 1015 if (timer_pending(&hwgroup->timer)) 1016 printk(KERN_CRIT "ide_set_handler: timer already active\n"); 1017#endif 1018 /* so that ide_timer_expiry knows what to do */ 1019 hwgroup->sleeping = 1; 1020 hwgroup->req_gen_timer = hwgroup->req_gen; 1021 mod_timer(&hwgroup->timer, sleep); 1022 /* we purposely leave hwgroup->busy==1 1023 * while sleeping */ 1024 } else { 1025 /* Ugly, but how can we sleep for the lock 1026 * otherwise? perhaps from tq_disk? 1027 */ 1028 1029 /* for atari only */ 1030 ide_release_lock(); 1031 hwgroup->busy = 0; 1032 } 1033 1034 /* no more work for this hwgroup (for now) */ 1035 return; 1036 } 1037 again: 1038 hwif = HWIF(drive); 1039 if (hwgroup->hwif->sharing_irq && hwif != hwgroup->hwif) { 1040 /* 1041 * set nIEN for previous hwif, drives in the 1042 * quirk_list may not like intr setups/cleanups 1043 */ 1044 if (drive->quirk_list != 1) 1045 hwif->tp_ops->set_irq(hwif, 0); 1046 } 1047 hwgroup->hwif = hwif; 1048 hwgroup->drive = drive; 1049 drive->sleeping = 0; 1050 drive->service_start = jiffies; 1051 1052 if (blk_queue_plugged(drive->queue)) { 1053 printk(KERN_ERR "ide: huh? queue was plugged!\n"); 1054 break; 1055 } 1056 1057 /* 1058 * we know that the queue isn't empty, but this can happen 1059 * if the q->prep_rq_fn() decides to kill a request 1060 */ 1061 rq = elv_next_request(drive->queue); 1062 if (!rq) { 1063 hwgroup->busy = 0; 1064 break; 1065 } 1066 1067 /* 1068 * Sanity: don't accept a request that isn't a PM request 1069 * if we are currently power managed. This is very important as 1070 * blk_stop_queue() doesn't prevent the elv_next_request() 1071 * above to return us whatever is in the queue. Since we call 1072 * ide_do_request() ourselves, we end up taking requests while 1073 * the queue is blocked... 1074 * 1075 * We let requests forced at head of queue with ide-preempt 1076 * though. I hope that doesn't happen too much, hopefully not 1077 * unless the subdriver triggers such a thing in its own PM 1078 * state machine. 1079 * 1080 * We count how many times we loop here to make sure we service 1081 * all drives in the hwgroup without looping for ever 1082 */ 1083 if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) { 1084 drive = drive->next ? drive->next : hwgroup->drive; 1085 if (loops++ < 4 && !blk_queue_plugged(drive->queue)) 1086 goto again; 1087 /* We clear busy, there should be no pending ATA command at this point. */ 1088 hwgroup->busy = 0; 1089 break; 1090 } 1091 1092 hwgroup->rq = rq; 1093 1094 /* 1095 * Some systems have trouble with IDE IRQs arriving while 1096 * the driver is still setting things up. So, here we disable 1097 * the IRQ used by this interface while the request is being started. 1098 * This may look bad at first, but pretty much the same thing 1099 * happens anyway when any interrupt comes in, IDE or otherwise 1100 * -- the kernel masks the IRQ while it is being handled. 1101 */ 1102 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq) 1103 disable_irq_nosync(hwif->irq); 1104 spin_unlock(&ide_lock); 1105 local_irq_enable_in_hardirq(); 1106 /* allow other IRQs while we start this request */ 1107 startstop = start_request(drive, rq); 1108 spin_lock_irq(&ide_lock); 1109 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq) 1110 enable_irq(hwif->irq); 1111 if (startstop == ide_stopped) 1112 hwgroup->busy = 0; 1113 } 1114} 1115 1116/* 1117 * Passes the stuff to ide_do_request 1118 */ 1119void do_ide_request(struct request_queue *q) 1120{ 1121 ide_drive_t *drive = q->queuedata; 1122 1123 ide_do_request(HWGROUP(drive), IDE_NO_IRQ); 1124} 1125 1126/* 1127 * un-busy the hwgroup etc, and clear any pending DMA status. we want to 1128 * retry the current request in pio mode instead of risking tossing it 1129 * all away 1130 */ 1131static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error) 1132{ 1133 ide_hwif_t *hwif = HWIF(drive); 1134 struct request *rq; 1135 ide_startstop_t ret = ide_stopped; 1136 1137 /* 1138 * end current dma transaction 1139 */ 1140 1141 if (error < 0) { 1142 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name); 1143 (void)hwif->dma_ops->dma_end(drive); 1144 ret = ide_error(drive, "dma timeout error", 1145 hwif->tp_ops->read_status(hwif)); 1146 } else { 1147 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name); 1148 hwif->dma_ops->dma_timeout(drive); 1149 } 1150 1151 /* 1152 * disable dma for now, but remember that we did so because of 1153 * a timeout -- we'll reenable after we finish this next request 1154 * (or rather the first chunk of it) in pio. 1155 */ 1156 drive->retry_pio++; 1157 drive->state = DMA_PIO_RETRY; 1158 ide_dma_off_quietly(drive); 1159 1160 /* 1161 * un-busy drive etc (hwgroup->busy is cleared on return) and 1162 * make sure request is sane 1163 */ 1164 rq = HWGROUP(drive)->rq; 1165 1166 if (!rq) 1167 goto out; 1168 1169 HWGROUP(drive)->rq = NULL; 1170 1171 rq->errors = 0; 1172 1173 if (!rq->bio) 1174 goto out; 1175 1176 rq->sector = rq->bio->bi_sector; 1177 rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9; 1178 rq->hard_cur_sectors = rq->current_nr_sectors; 1179 rq->buffer = bio_data(rq->bio); 1180out: 1181 return ret; 1182} 1183 1184/** 1185 * ide_timer_expiry - handle lack of an IDE interrupt 1186 * @data: timer callback magic (hwgroup) 1187 * 1188 * An IDE command has timed out before the expected drive return 1189 * occurred. At this point we attempt to clean up the current 1190 * mess. If the current handler includes an expiry handler then 1191 * we invoke the expiry handler, and providing it is happy the 1192 * work is done. If that fails we apply generic recovery rules 1193 * invoking the handler and checking the drive DMA status. We 1194 * have an excessively incestuous relationship with the DMA 1195 * logic that wants cleaning up. 1196 */ 1197 1198void ide_timer_expiry (unsigned long data) 1199{ 1200 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *) data; 1201 ide_handler_t *handler; 1202 ide_expiry_t *expiry; 1203 unsigned long flags; 1204 unsigned long wait = -1; 1205 1206 spin_lock_irqsave(&ide_lock, flags); 1207 1208 if (((handler = hwgroup->handler) == NULL) || 1209 (hwgroup->req_gen != hwgroup->req_gen_timer)) { 1210 /* 1211 * Either a marginal timeout occurred 1212 * (got the interrupt just as timer expired), 1213 * or we were "sleeping" to give other devices a chance. 1214 * Either way, we don't really want to complain about anything. 1215 */ 1216 if (hwgroup->sleeping) { 1217 hwgroup->sleeping = 0; 1218 hwgroup->busy = 0; 1219 } 1220 } else { 1221 ide_drive_t *drive = hwgroup->drive; 1222 if (!drive) { 1223 printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n"); 1224 hwgroup->handler = NULL; 1225 } else { 1226 ide_hwif_t *hwif; 1227 ide_startstop_t startstop = ide_stopped; 1228 if (!hwgroup->busy) { 1229 hwgroup->busy = 1; /* paranoia */ 1230 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name); 1231 } 1232 if ((expiry = hwgroup->expiry) != NULL) { 1233 /* continue */ 1234 if ((wait = expiry(drive)) > 0) { 1235 /* reset timer */ 1236 hwgroup->timer.expires = jiffies + wait; 1237 hwgroup->req_gen_timer = hwgroup->req_gen; 1238 add_timer(&hwgroup->timer); 1239 spin_unlock_irqrestore(&ide_lock, flags); 1240 return; 1241 } 1242 } 1243 hwgroup->handler = NULL; 1244 /* 1245 * We need to simulate a real interrupt when invoking 1246 * the handler() function, which means we need to 1247 * globally mask the specific IRQ: 1248 */ 1249 spin_unlock(&ide_lock); 1250 hwif = HWIF(drive); 1251 /* disable_irq_nosync ?? */ 1252 disable_irq(hwif->irq); 1253 /* local CPU only, 1254 * as if we were handling an interrupt */ 1255 local_irq_disable(); 1256 if (hwgroup->polling) { 1257 startstop = handler(drive); 1258 } else if (drive_is_ready(drive)) { 1259 if (drive->waiting_for_dma) 1260 hwif->dma_ops->dma_lost_irq(drive); 1261 (void)ide_ack_intr(hwif); 1262 printk(KERN_WARNING "%s: lost interrupt\n", drive->name); 1263 startstop = handler(drive); 1264 } else { 1265 if (drive->waiting_for_dma) { 1266 startstop = ide_dma_timeout_retry(drive, wait); 1267 } else 1268 startstop = 1269 ide_error(drive, "irq timeout", 1270 hwif->tp_ops->read_status(hwif)); 1271 } 1272 drive->service_time = jiffies - drive->service_start; 1273 spin_lock_irq(&ide_lock); 1274 enable_irq(hwif->irq); 1275 if (startstop == ide_stopped) 1276 hwgroup->busy = 0; 1277 } 1278 } 1279 ide_do_request(hwgroup, IDE_NO_IRQ); 1280 spin_unlock_irqrestore(&ide_lock, flags); 1281} 1282 1283/** 1284 * unexpected_intr - handle an unexpected IDE interrupt 1285 * @irq: interrupt line 1286 * @hwgroup: hwgroup being processed 1287 * 1288 * There's nothing really useful we can do with an unexpected interrupt, 1289 * other than reading the status register (to clear it), and logging it. 1290 * There should be no way that an irq can happen before we're ready for it, 1291 * so we needn't worry much about losing an "important" interrupt here. 1292 * 1293 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever 1294 * the drive enters "idle", "standby", or "sleep" mode, so if the status 1295 * looks "good", we just ignore the interrupt completely. 1296 * 1297 * This routine assumes __cli() is in effect when called. 1298 * 1299 * If an unexpected interrupt happens on irq15 while we are handling irq14 1300 * and if the two interfaces are "serialized" (CMD640), then it looks like 1301 * we could screw up by interfering with a new request being set up for 1302 * irq15. 1303 * 1304 * In reality, this is a non-issue. The new command is not sent unless 1305 * the drive is ready to accept one, in which case we know the drive is 1306 * not trying to interrupt us. And ide_set_handler() is always invoked 1307 * before completing the issuance of any new drive command, so we will not 1308 * be accidentally invoked as a result of any valid command completion 1309 * interrupt. 1310 * 1311 * Note that we must walk the entire hwgroup here. We know which hwif 1312 * is doing the current command, but we don't know which hwif burped 1313 * mysteriously. 1314 */ 1315 1316static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup) 1317{ 1318 u8 stat; 1319 ide_hwif_t *hwif = hwgroup->hwif; 1320 1321 /* 1322 * handle the unexpected interrupt 1323 */ 1324 do { 1325 if (hwif->irq == irq) { 1326 stat = hwif->tp_ops->read_status(hwif); 1327 1328 if (!OK_STAT(stat, READY_STAT, BAD_STAT)) { 1329 /* Try to not flood the console with msgs */ 1330 static unsigned long last_msgtime, count; 1331 ++count; 1332 if (time_after(jiffies, last_msgtime + HZ)) { 1333 last_msgtime = jiffies; 1334 printk(KERN_ERR "%s%s: unexpected interrupt, " 1335 "status=0x%02x, count=%ld\n", 1336 hwif->name, 1337 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count); 1338 } 1339 } 1340 } 1341 } while ((hwif = hwif->next) != hwgroup->hwif); 1342} 1343 1344/** 1345 * ide_intr - default IDE interrupt handler 1346 * @irq: interrupt number 1347 * @dev_id: hwif group 1348 * @regs: unused weirdness from the kernel irq layer 1349 * 1350 * This is the default IRQ handler for the IDE layer. You should 1351 * not need to override it. If you do be aware it is subtle in 1352 * places 1353 * 1354 * hwgroup->hwif is the interface in the group currently performing 1355 * a command. hwgroup->drive is the drive and hwgroup->handler is 1356 * the IRQ handler to call. As we issue a command the handlers 1357 * step through multiple states, reassigning the handler to the 1358 * next step in the process. Unlike a smart SCSI controller IDE 1359 * expects the main processor to sequence the various transfer 1360 * stages. We also manage a poll timer to catch up with most 1361 * timeout situations. There are still a few where the handlers 1362 * don't ever decide to give up. 1363 * 1364 * The handler eventually returns ide_stopped to indicate the 1365 * request completed. At this point we issue the next request 1366 * on the hwgroup and the process begins again. 1367 */ 1368 1369irqreturn_t ide_intr (int irq, void *dev_id) 1370{ 1371 unsigned long flags; 1372 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id; 1373 ide_hwif_t *hwif; 1374 ide_drive_t *drive; 1375 ide_handler_t *handler; 1376 ide_startstop_t startstop; 1377 1378 spin_lock_irqsave(&ide_lock, flags); 1379 hwif = hwgroup->hwif; 1380 1381 if (!ide_ack_intr(hwif)) { 1382 spin_unlock_irqrestore(&ide_lock, flags); 1383 return IRQ_NONE; 1384 } 1385 1386 if ((handler = hwgroup->handler) == NULL || hwgroup->polling) { 1387 /* 1388 * Not expecting an interrupt from this drive. 1389 * That means this could be: 1390 * (1) an interrupt from another PCI device 1391 * sharing the same PCI INT# as us. 1392 * or (2) a drive just entered sleep or standby mode, 1393 * and is interrupting to let us know. 1394 * or (3) a spurious interrupt of unknown origin. 1395 * 1396 * For PCI, we cannot tell the difference, 1397 * so in that case we just ignore it and hope it goes away. 1398 * 1399 * FIXME: unexpected_intr should be hwif-> then we can 1400 * remove all the ifdef PCI crap 1401 */ 1402#ifdef CONFIG_BLK_DEV_IDEPCI 1403 if (hwif->chipset != ide_pci) 1404#endif /* CONFIG_BLK_DEV_IDEPCI */ 1405 { 1406 /* 1407 * Probably not a shared PCI interrupt, 1408 * so we can safely try to do something about it: 1409 */ 1410 unexpected_intr(irq, hwgroup); 1411#ifdef CONFIG_BLK_DEV_IDEPCI 1412 } else { 1413 /* 1414 * Whack the status register, just in case 1415 * we have a leftover pending IRQ. 1416 */ 1417 (void)hwif->tp_ops->read_status(hwif); 1418#endif /* CONFIG_BLK_DEV_IDEPCI */ 1419 } 1420 spin_unlock_irqrestore(&ide_lock, flags); 1421 return IRQ_NONE; 1422 } 1423 drive = hwgroup->drive; 1424 if (!drive) { 1425 /* 1426 * This should NEVER happen, and there isn't much 1427 * we could do about it here. 1428 * 1429 * [Note - this can occur if the drive is hot unplugged] 1430 */ 1431 spin_unlock_irqrestore(&ide_lock, flags); 1432 return IRQ_HANDLED; 1433 } 1434 if (!drive_is_ready(drive)) { 1435 /* 1436 * This happens regularly when we share a PCI IRQ with 1437 * another device. Unfortunately, it can also happen 1438 * with some buggy drives that trigger the IRQ before 1439 * their status register is up to date. Hopefully we have 1440 * enough advance overhead that the latter isn't a problem. 1441 */ 1442 spin_unlock_irqrestore(&ide_lock, flags); 1443 return IRQ_NONE; 1444 } 1445 if (!hwgroup->busy) { 1446 hwgroup->busy = 1; /* paranoia */ 1447 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name); 1448 } 1449 hwgroup->handler = NULL; 1450 hwgroup->req_gen++; 1451 del_timer(&hwgroup->timer); 1452 spin_unlock(&ide_lock); 1453 1454 /* Some controllers might set DMA INTR no matter DMA or PIO; 1455 * bmdma status might need to be cleared even for 1456 * PIO interrupts to prevent spurious/lost irq. 1457 */ 1458 if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma)) 1459 /* ide_dma_end() needs bmdma status for error checking. 1460 * So, skip clearing bmdma status here and leave it 1461 * to ide_dma_end() if this is dma interrupt. 1462 */ 1463 hwif->ide_dma_clear_irq(drive); 1464 1465 if (drive->unmask) 1466 local_irq_enable_in_hardirq(); 1467 /* service this interrupt, may set handler for next interrupt */ 1468 startstop = handler(drive); 1469 spin_lock_irq(&ide_lock); 1470 1471 /* 1472 * Note that handler() may have set things up for another 1473 * interrupt to occur soon, but it cannot happen until 1474 * we exit from this routine, because it will be the 1475 * same irq as is currently being serviced here, and Linux 1476 * won't allow another of the same (on any CPU) until we return. 1477 */ 1478 drive->service_time = jiffies - drive->service_start; 1479 if (startstop == ide_stopped) { 1480 if (hwgroup->handler == NULL) { /* paranoia */ 1481 hwgroup->busy = 0; 1482 ide_do_request(hwgroup, hwif->irq); 1483 } else { 1484 printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler " 1485 "on exit\n", drive->name); 1486 } 1487 } 1488 spin_unlock_irqrestore(&ide_lock, flags); 1489 return IRQ_HANDLED; 1490} 1491 1492/** 1493 * ide_do_drive_cmd - issue IDE special command 1494 * @drive: device to issue command 1495 * @rq: request to issue 1496 * 1497 * This function issues a special IDE device request 1498 * onto the request queue. 1499 * 1500 * the rq is queued at the head of the request queue, displacing 1501 * the currently-being-processed request and this function 1502 * returns immediately without waiting for the new rq to be 1503 * completed. This is VERY DANGEROUS, and is intended for 1504 * careful use by the ATAPI tape/cdrom driver code. 1505 */ 1506 1507void ide_do_drive_cmd(ide_drive_t *drive, struct request *rq) 1508{ 1509 unsigned long flags; 1510 ide_hwgroup_t *hwgroup = HWGROUP(drive); 1511 1512 spin_lock_irqsave(&ide_lock, flags); 1513 hwgroup->rq = NULL; 1514 __elv_add_request(drive->queue, rq, ELEVATOR_INSERT_FRONT, 1); 1515 __generic_unplug_device(drive->queue); 1516 spin_unlock_irqrestore(&ide_lock, flags); 1517} 1518 1519EXPORT_SYMBOL(ide_do_drive_cmd); 1520 1521void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma) 1522{ 1523 ide_hwif_t *hwif = drive->hwif; 1524 ide_task_t task; 1525 1526 memset(&task, 0, sizeof(task)); 1527 task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM | 1528 IDE_TFLAG_OUT_FEATURE | tf_flags; 1529 task.tf.feature = dma; /* Use PIO/DMA */ 1530 task.tf.lbam = bcount & 0xff; 1531 task.tf.lbah = (bcount >> 8) & 0xff; 1532 1533 ide_tf_dump(drive->name, &task.tf); 1534 hwif->tp_ops->set_irq(hwif, 1); 1535 SELECT_MASK(drive, 0); 1536 hwif->tp_ops->tf_load(drive, &task); 1537} 1538 1539EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load); 1540 1541void ide_pad_transfer(ide_drive_t *drive, int write, int len) 1542{ 1543 ide_hwif_t *hwif = drive->hwif; 1544 u8 buf[4] = { 0 }; 1545 1546 while (len > 0) { 1547 if (write) 1548 hwif->tp_ops->output_data(drive, NULL, buf, min(4, len)); 1549 else 1550 hwif->tp_ops->input_data(drive, NULL, buf, min(4, len)); 1551 len -= 4; 1552 } 1553} 1554EXPORT_SYMBOL_GPL(ide_pad_transfer); 1555