ide-io.c revision 3c8a2cce47c6813383c9e38134e31f7e5f72e9d8
1/* 2 * IDE I/O functions 3 * 4 * Basic PIO and command management functionality. 5 * 6 * This code was split off from ide.c. See ide.c for history and original 7 * copyrights. 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms of the GNU General Public License as published by the 11 * Free Software Foundation; either version 2, or (at your option) any 12 * later version. 13 * 14 * This program is distributed in the hope that it will be useful, but 15 * WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 17 * General Public License for more details. 18 * 19 * For the avoidance of doubt the "preferred form" of this code is one which 20 * is in an open non patent encumbered format. Where cryptographic key signing 21 * forms part of the process of creating an executable the information 22 * including keys needed to generate an equivalently functional executable 23 * are deemed to be part of the source code. 24 */ 25 26 27#include <linux/module.h> 28#include <linux/types.h> 29#include <linux/string.h> 30#include <linux/kernel.h> 31#include <linux/timer.h> 32#include <linux/mm.h> 33#include <linux/interrupt.h> 34#include <linux/major.h> 35#include <linux/errno.h> 36#include <linux/genhd.h> 37#include <linux/blkpg.h> 38#include <linux/slab.h> 39#include <linux/init.h> 40#include <linux/pci.h> 41#include <linux/delay.h> 42#include <linux/ide.h> 43#include <linux/hdreg.h> 44#include <linux/completion.h> 45#include <linux/reboot.h> 46#include <linux/cdrom.h> 47#include <linux/seq_file.h> 48#include <linux/device.h> 49#include <linux/kmod.h> 50#include <linux/scatterlist.h> 51#include <linux/bitops.h> 52 53#include <asm/byteorder.h> 54#include <asm/irq.h> 55#include <asm/uaccess.h> 56#include <asm/io.h> 57 58static int __ide_end_request(ide_drive_t *drive, struct request *rq, 59 int uptodate, unsigned int nr_bytes, int dequeue) 60{ 61 int ret = 1; 62 int error = 0; 63 64 if (uptodate <= 0) 65 error = uptodate ? uptodate : -EIO; 66 67 /* 68 * if failfast is set on a request, override number of sectors and 69 * complete the whole request right now 70 */ 71 if (blk_noretry_request(rq) && error) 72 nr_bytes = rq->hard_nr_sectors << 9; 73 74 if (!blk_fs_request(rq) && error && !rq->errors) 75 rq->errors = -EIO; 76 77 /* 78 * decide whether to reenable DMA -- 3 is a random magic for now, 79 * if we DMA timeout more than 3 times, just stay in PIO 80 */ 81 if ((drive->dev_flags & IDE_DFLAG_DMA_PIO_RETRY) && 82 drive->retry_pio <= 3) { 83 drive->dev_flags &= ~IDE_DFLAG_DMA_PIO_RETRY; 84 ide_dma_on(drive); 85 } 86 87 if (!blk_end_request(rq, error, nr_bytes)) 88 ret = 0; 89 90 if (ret == 0 && dequeue) 91 drive->hwif->hwgroup->rq = NULL; 92 93 return ret; 94} 95 96/** 97 * ide_end_request - complete an IDE I/O 98 * @drive: IDE device for the I/O 99 * @uptodate: 100 * @nr_sectors: number of sectors completed 101 * 102 * This is our end_request wrapper function. We complete the I/O 103 * update random number input and dequeue the request, which if 104 * it was tagged may be out of order. 105 */ 106 107int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors) 108{ 109 unsigned int nr_bytes = nr_sectors << 9; 110 struct request *rq = drive->hwif->hwgroup->rq; 111 112 if (!nr_bytes) { 113 if (blk_pc_request(rq)) 114 nr_bytes = rq->data_len; 115 else 116 nr_bytes = rq->hard_cur_sectors << 9; 117 } 118 119 return __ide_end_request(drive, rq, uptodate, nr_bytes, 1); 120} 121EXPORT_SYMBOL(ide_end_request); 122 123static void ide_complete_power_step(ide_drive_t *drive, struct request *rq) 124{ 125 struct request_pm_state *pm = rq->data; 126 127#ifdef DEBUG_PM 128 printk(KERN_INFO "%s: complete_power_step(step: %d)\n", 129 drive->name, pm->pm_step); 130#endif 131 if (drive->media != ide_disk) 132 return; 133 134 switch (pm->pm_step) { 135 case IDE_PM_FLUSH_CACHE: /* Suspend step 1 (flush cache) */ 136 if (pm->pm_state == PM_EVENT_FREEZE) 137 pm->pm_step = IDE_PM_COMPLETED; 138 else 139 pm->pm_step = IDE_PM_STANDBY; 140 break; 141 case IDE_PM_STANDBY: /* Suspend step 2 (standby) */ 142 pm->pm_step = IDE_PM_COMPLETED; 143 break; 144 case IDE_PM_RESTORE_PIO: /* Resume step 1 (restore PIO) */ 145 pm->pm_step = IDE_PM_IDLE; 146 break; 147 case IDE_PM_IDLE: /* Resume step 2 (idle)*/ 148 pm->pm_step = IDE_PM_RESTORE_DMA; 149 break; 150 } 151} 152 153static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq) 154{ 155 struct request_pm_state *pm = rq->data; 156 ide_task_t *args = rq->special; 157 158 memset(args, 0, sizeof(*args)); 159 160 switch (pm->pm_step) { 161 case IDE_PM_FLUSH_CACHE: /* Suspend step 1 (flush cache) */ 162 if (drive->media != ide_disk) 163 break; 164 /* Not supported? Switch to next step now. */ 165 if (ata_id_flush_enabled(drive->id) == 0 || 166 (drive->dev_flags & IDE_DFLAG_WCACHE) == 0) { 167 ide_complete_power_step(drive, rq); 168 return ide_stopped; 169 } 170 if (ata_id_flush_ext_enabled(drive->id)) 171 args->tf.command = ATA_CMD_FLUSH_EXT; 172 else 173 args->tf.command = ATA_CMD_FLUSH; 174 goto out_do_tf; 175 case IDE_PM_STANDBY: /* Suspend step 2 (standby) */ 176 args->tf.command = ATA_CMD_STANDBYNOW1; 177 goto out_do_tf; 178 case IDE_PM_RESTORE_PIO: /* Resume step 1 (restore PIO) */ 179 ide_set_max_pio(drive); 180 /* 181 * skip IDE_PM_IDLE for ATAPI devices 182 */ 183 if (drive->media != ide_disk) 184 pm->pm_step = IDE_PM_RESTORE_DMA; 185 else 186 ide_complete_power_step(drive, rq); 187 return ide_stopped; 188 case IDE_PM_IDLE: /* Resume step 2 (idle) */ 189 args->tf.command = ATA_CMD_IDLEIMMEDIATE; 190 goto out_do_tf; 191 case IDE_PM_RESTORE_DMA: /* Resume step 3 (restore DMA) */ 192 /* 193 * Right now, all we do is call ide_set_dma(drive), 194 * we could be smarter and check for current xfer_speed 195 * in struct drive etc... 196 */ 197 if (drive->hwif->dma_ops == NULL) 198 break; 199 /* 200 * TODO: respect IDE_DFLAG_USING_DMA 201 */ 202 ide_set_dma(drive); 203 break; 204 } 205 206 pm->pm_step = IDE_PM_COMPLETED; 207 return ide_stopped; 208 209out_do_tf: 210 args->tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE; 211 args->data_phase = TASKFILE_NO_DATA; 212 return do_rw_taskfile(drive, args); 213} 214 215/** 216 * ide_end_dequeued_request - complete an IDE I/O 217 * @drive: IDE device for the I/O 218 * @uptodate: 219 * @nr_sectors: number of sectors completed 220 * 221 * Complete an I/O that is no longer on the request queue. This 222 * typically occurs when we pull the request and issue a REQUEST_SENSE. 223 * We must still finish the old request but we must not tamper with the 224 * queue in the meantime. 225 * 226 * NOTE: This path does not handle barrier, but barrier is not supported 227 * on ide-cd anyway. 228 */ 229 230int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq, 231 int uptodate, int nr_sectors) 232{ 233 BUG_ON(!blk_rq_started(rq)); 234 235 return __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0); 236} 237EXPORT_SYMBOL_GPL(ide_end_dequeued_request); 238 239 240/** 241 * ide_complete_pm_request - end the current Power Management request 242 * @drive: target drive 243 * @rq: request 244 * 245 * This function cleans up the current PM request and stops the queue 246 * if necessary. 247 */ 248static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq) 249{ 250 unsigned long flags; 251 252#ifdef DEBUG_PM 253 printk("%s: completing PM request, %s\n", drive->name, 254 blk_pm_suspend_request(rq) ? "suspend" : "resume"); 255#endif 256 spin_lock_irqsave(&ide_lock, flags); 257 if (blk_pm_suspend_request(rq)) { 258 blk_stop_queue(drive->queue); 259 } else { 260 drive->dev_flags &= ~IDE_DFLAG_BLOCKED; 261 blk_start_queue(drive->queue); 262 } 263 spin_unlock_irqrestore(&ide_lock, flags); 264 265 drive->hwif->hwgroup->rq = NULL; 266 267 if (blk_end_request(rq, 0, 0)) 268 BUG(); 269} 270 271/** 272 * ide_end_drive_cmd - end an explicit drive command 273 * @drive: command 274 * @stat: status bits 275 * @err: error bits 276 * 277 * Clean up after success/failure of an explicit drive command. 278 * These get thrown onto the queue so they are synchronized with 279 * real I/O operations on the drive. 280 * 281 * In LBA48 mode we have to read the register set twice to get 282 * all the extra information out. 283 */ 284 285void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err) 286{ 287 ide_hwgroup_t *hwgroup = drive->hwif->hwgroup; 288 struct request *rq = hwgroup->rq; 289 290 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) { 291 ide_task_t *task = (ide_task_t *)rq->special; 292 293 if (rq->errors == 0) 294 rq->errors = !OK_STAT(stat, ATA_DRDY, BAD_STAT); 295 296 if (task) { 297 struct ide_taskfile *tf = &task->tf; 298 299 tf->error = err; 300 tf->status = stat; 301 302 drive->hwif->tp_ops->tf_read(drive, task); 303 304 if (task->tf_flags & IDE_TFLAG_DYN) 305 kfree(task); 306 } 307 } else if (blk_pm_request(rq)) { 308 struct request_pm_state *pm = rq->data; 309 310 ide_complete_power_step(drive, rq); 311 if (pm->pm_step == IDE_PM_COMPLETED) 312 ide_complete_pm_request(drive, rq); 313 return; 314 } 315 316 hwgroup->rq = NULL; 317 318 rq->errors = err; 319 320 if (unlikely(blk_end_request(rq, (rq->errors ? -EIO : 0), 321 blk_rq_bytes(rq)))) 322 BUG(); 323} 324EXPORT_SYMBOL(ide_end_drive_cmd); 325 326static void ide_kill_rq(ide_drive_t *drive, struct request *rq) 327{ 328 if (rq->rq_disk) { 329 ide_driver_t *drv; 330 331 drv = *(ide_driver_t **)rq->rq_disk->private_data; 332 drv->end_request(drive, 0, 0); 333 } else 334 ide_end_request(drive, 0, 0); 335} 336 337static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err) 338{ 339 ide_hwif_t *hwif = drive->hwif; 340 341 if ((stat & ATA_BUSY) || 342 ((stat & ATA_DF) && (drive->dev_flags & IDE_DFLAG_NOWERR) == 0)) { 343 /* other bits are useless when BUSY */ 344 rq->errors |= ERROR_RESET; 345 } else if (stat & ATA_ERR) { 346 /* err has different meaning on cdrom and tape */ 347 if (err == ATA_ABORTED) { 348 if ((drive->dev_flags & IDE_DFLAG_LBA) && 349 /* some newer drives don't support ATA_CMD_INIT_DEV_PARAMS */ 350 hwif->tp_ops->read_status(hwif) == ATA_CMD_INIT_DEV_PARAMS) 351 return ide_stopped; 352 } else if ((err & BAD_CRC) == BAD_CRC) { 353 /* UDMA crc error, just retry the operation */ 354 drive->crc_count++; 355 } else if (err & (ATA_BBK | ATA_UNC)) { 356 /* retries won't help these */ 357 rq->errors = ERROR_MAX; 358 } else if (err & ATA_TRK0NF) { 359 /* help it find track zero */ 360 rq->errors |= ERROR_RECAL; 361 } 362 } 363 364 if ((stat & ATA_DRQ) && rq_data_dir(rq) == READ && 365 (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0) { 366 int nsect = drive->mult_count ? drive->mult_count : 1; 367 368 ide_pad_transfer(drive, READ, nsect * SECTOR_SIZE); 369 } 370 371 if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) { 372 ide_kill_rq(drive, rq); 373 return ide_stopped; 374 } 375 376 if (hwif->tp_ops->read_status(hwif) & (ATA_BUSY | ATA_DRQ)) 377 rq->errors |= ERROR_RESET; 378 379 if ((rq->errors & ERROR_RESET) == ERROR_RESET) { 380 ++rq->errors; 381 return ide_do_reset(drive); 382 } 383 384 if ((rq->errors & ERROR_RECAL) == ERROR_RECAL) 385 drive->special.b.recalibrate = 1; 386 387 ++rq->errors; 388 389 return ide_stopped; 390} 391 392static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err) 393{ 394 ide_hwif_t *hwif = drive->hwif; 395 396 if ((stat & ATA_BUSY) || 397 ((stat & ATA_DF) && (drive->dev_flags & IDE_DFLAG_NOWERR) == 0)) { 398 /* other bits are useless when BUSY */ 399 rq->errors |= ERROR_RESET; 400 } else { 401 /* add decoding error stuff */ 402 } 403 404 if (hwif->tp_ops->read_status(hwif) & (ATA_BUSY | ATA_DRQ)) 405 /* force an abort */ 406 hwif->tp_ops->exec_command(hwif, ATA_CMD_IDLEIMMEDIATE); 407 408 if (rq->errors >= ERROR_MAX) { 409 ide_kill_rq(drive, rq); 410 } else { 411 if ((rq->errors & ERROR_RESET) == ERROR_RESET) { 412 ++rq->errors; 413 return ide_do_reset(drive); 414 } 415 ++rq->errors; 416 } 417 418 return ide_stopped; 419} 420 421ide_startstop_t 422__ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err) 423{ 424 if (drive->media == ide_disk) 425 return ide_ata_error(drive, rq, stat, err); 426 return ide_atapi_error(drive, rq, stat, err); 427} 428 429EXPORT_SYMBOL_GPL(__ide_error); 430 431/** 432 * ide_error - handle an error on the IDE 433 * @drive: drive the error occurred on 434 * @msg: message to report 435 * @stat: status bits 436 * 437 * ide_error() takes action based on the error returned by the drive. 438 * For normal I/O that may well include retries. We deal with 439 * both new-style (taskfile) and old style command handling here. 440 * In the case of taskfile command handling there is work left to 441 * do 442 */ 443 444ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat) 445{ 446 struct request *rq; 447 u8 err; 448 449 err = ide_dump_status(drive, msg, stat); 450 451 if ((rq = HWGROUP(drive)->rq) == NULL) 452 return ide_stopped; 453 454 /* retry only "normal" I/O: */ 455 if (!blk_fs_request(rq)) { 456 rq->errors = 1; 457 ide_end_drive_cmd(drive, stat, err); 458 return ide_stopped; 459 } 460 461 if (rq->rq_disk) { 462 ide_driver_t *drv; 463 464 drv = *(ide_driver_t **)rq->rq_disk->private_data; 465 return drv->error(drive, rq, stat, err); 466 } else 467 return __ide_error(drive, rq, stat, err); 468} 469 470EXPORT_SYMBOL_GPL(ide_error); 471 472static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf) 473{ 474 tf->nsect = drive->sect; 475 tf->lbal = drive->sect; 476 tf->lbam = drive->cyl; 477 tf->lbah = drive->cyl >> 8; 478 tf->device = (drive->head - 1) | drive->select; 479 tf->command = ATA_CMD_INIT_DEV_PARAMS; 480} 481 482static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf) 483{ 484 tf->nsect = drive->sect; 485 tf->command = ATA_CMD_RESTORE; 486} 487 488static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf) 489{ 490 tf->nsect = drive->mult_req; 491 tf->command = ATA_CMD_SET_MULTI; 492} 493 494static ide_startstop_t ide_disk_special(ide_drive_t *drive) 495{ 496 special_t *s = &drive->special; 497 ide_task_t args; 498 499 memset(&args, 0, sizeof(ide_task_t)); 500 args.data_phase = TASKFILE_NO_DATA; 501 502 if (s->b.set_geometry) { 503 s->b.set_geometry = 0; 504 ide_tf_set_specify_cmd(drive, &args.tf); 505 } else if (s->b.recalibrate) { 506 s->b.recalibrate = 0; 507 ide_tf_set_restore_cmd(drive, &args.tf); 508 } else if (s->b.set_multmode) { 509 s->b.set_multmode = 0; 510 ide_tf_set_setmult_cmd(drive, &args.tf); 511 } else if (s->all) { 512 int special = s->all; 513 s->all = 0; 514 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special); 515 return ide_stopped; 516 } 517 518 args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE | 519 IDE_TFLAG_CUSTOM_HANDLER; 520 521 do_rw_taskfile(drive, &args); 522 523 return ide_started; 524} 525 526/** 527 * do_special - issue some special commands 528 * @drive: drive the command is for 529 * 530 * do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS, 531 * ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive. 532 * 533 * It used to do much more, but has been scaled back. 534 */ 535 536static ide_startstop_t do_special (ide_drive_t *drive) 537{ 538 special_t *s = &drive->special; 539 540#ifdef DEBUG 541 printk("%s: do_special: 0x%02x\n", drive->name, s->all); 542#endif 543 if (drive->media == ide_disk) 544 return ide_disk_special(drive); 545 546 s->all = 0; 547 drive->mult_req = 0; 548 return ide_stopped; 549} 550 551void ide_map_sg(ide_drive_t *drive, struct request *rq) 552{ 553 ide_hwif_t *hwif = drive->hwif; 554 struct scatterlist *sg = hwif->sg_table; 555 556 if (hwif->sg_mapped) /* needed by ide-scsi */ 557 return; 558 559 if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) { 560 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg); 561 } else { 562 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE); 563 hwif->sg_nents = 1; 564 } 565} 566 567EXPORT_SYMBOL_GPL(ide_map_sg); 568 569void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq) 570{ 571 ide_hwif_t *hwif = drive->hwif; 572 573 hwif->nsect = hwif->nleft = rq->nr_sectors; 574 hwif->cursg_ofs = 0; 575 hwif->cursg = NULL; 576} 577 578EXPORT_SYMBOL_GPL(ide_init_sg_cmd); 579 580/** 581 * execute_drive_command - issue special drive command 582 * @drive: the drive to issue the command on 583 * @rq: the request structure holding the command 584 * 585 * execute_drive_cmd() issues a special drive command, usually 586 * initiated by ioctl() from the external hdparm program. The 587 * command can be a drive command, drive task or taskfile 588 * operation. Weirdly you can call it with NULL to wait for 589 * all commands to finish. Don't do this as that is due to change 590 */ 591 592static ide_startstop_t execute_drive_cmd (ide_drive_t *drive, 593 struct request *rq) 594{ 595 ide_hwif_t *hwif = HWIF(drive); 596 ide_task_t *task = rq->special; 597 598 if (task) { 599 hwif->data_phase = task->data_phase; 600 601 switch (hwif->data_phase) { 602 case TASKFILE_MULTI_OUT: 603 case TASKFILE_OUT: 604 case TASKFILE_MULTI_IN: 605 case TASKFILE_IN: 606 ide_init_sg_cmd(drive, rq); 607 ide_map_sg(drive, rq); 608 default: 609 break; 610 } 611 612 return do_rw_taskfile(drive, task); 613 } 614 615 /* 616 * NULL is actually a valid way of waiting for 617 * all current requests to be flushed from the queue. 618 */ 619#ifdef DEBUG 620 printk("%s: DRIVE_CMD (null)\n", drive->name); 621#endif 622 ide_end_drive_cmd(drive, hwif->tp_ops->read_status(hwif), 623 ide_read_error(drive)); 624 625 return ide_stopped; 626} 627 628int ide_devset_execute(ide_drive_t *drive, const struct ide_devset *setting, 629 int arg) 630{ 631 struct request_queue *q = drive->queue; 632 struct request *rq; 633 int ret = 0; 634 635 if (!(setting->flags & DS_SYNC)) 636 return setting->set(drive, arg); 637 638 rq = blk_get_request(q, READ, __GFP_WAIT); 639 rq->cmd_type = REQ_TYPE_SPECIAL; 640 rq->cmd_len = 5; 641 rq->cmd[0] = REQ_DEVSET_EXEC; 642 *(int *)&rq->cmd[1] = arg; 643 rq->special = setting->set; 644 645 if (blk_execute_rq(q, NULL, rq, 0)) 646 ret = rq->errors; 647 blk_put_request(rq); 648 649 return ret; 650} 651EXPORT_SYMBOL_GPL(ide_devset_execute); 652 653static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq) 654{ 655 u8 cmd = rq->cmd[0]; 656 657 if (cmd == REQ_PARK_HEADS || cmd == REQ_UNPARK_HEADS) { 658 ide_task_t task; 659 struct ide_taskfile *tf = &task.tf; 660 661 memset(&task, 0, sizeof(task)); 662 if (cmd == REQ_PARK_HEADS) { 663 drive->sleep = *(unsigned long *)rq->special; 664 drive->dev_flags |= IDE_DFLAG_SLEEPING; 665 tf->command = ATA_CMD_IDLEIMMEDIATE; 666 tf->feature = 0x44; 667 tf->lbal = 0x4c; 668 tf->lbam = 0x4e; 669 tf->lbah = 0x55; 670 task.tf_flags |= IDE_TFLAG_CUSTOM_HANDLER; 671 } else /* cmd == REQ_UNPARK_HEADS */ 672 tf->command = ATA_CMD_CHK_POWER; 673 674 task.tf_flags |= IDE_TFLAG_TF | IDE_TFLAG_DEVICE; 675 task.rq = rq; 676 drive->hwif->data_phase = task.data_phase = TASKFILE_NO_DATA; 677 return do_rw_taskfile(drive, &task); 678 } 679 680 switch (cmd) { 681 case REQ_DEVSET_EXEC: 682 { 683 int err, (*setfunc)(ide_drive_t *, int) = rq->special; 684 685 err = setfunc(drive, *(int *)&rq->cmd[1]); 686 if (err) 687 rq->errors = err; 688 else 689 err = 1; 690 ide_end_request(drive, err, 0); 691 return ide_stopped; 692 } 693 case REQ_DRIVE_RESET: 694 return ide_do_reset(drive); 695 default: 696 blk_dump_rq_flags(rq, "ide_special_rq - bad request"); 697 ide_end_request(drive, 0, 0); 698 return ide_stopped; 699 } 700} 701 702static void ide_check_pm_state(ide_drive_t *drive, struct request *rq) 703{ 704 struct request_pm_state *pm = rq->data; 705 706 if (blk_pm_suspend_request(rq) && 707 pm->pm_step == IDE_PM_START_SUSPEND) 708 /* Mark drive blocked when starting the suspend sequence. */ 709 drive->dev_flags |= IDE_DFLAG_BLOCKED; 710 else if (blk_pm_resume_request(rq) && 711 pm->pm_step == IDE_PM_START_RESUME) { 712 /* 713 * The first thing we do on wakeup is to wait for BSY bit to 714 * go away (with a looong timeout) as a drive on this hwif may 715 * just be POSTing itself. 716 * We do that before even selecting as the "other" device on 717 * the bus may be broken enough to walk on our toes at this 718 * point. 719 */ 720 ide_hwif_t *hwif = drive->hwif; 721 int rc; 722#ifdef DEBUG_PM 723 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name); 724#endif 725 rc = ide_wait_not_busy(hwif, 35000); 726 if (rc) 727 printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name); 728 SELECT_DRIVE(drive); 729 hwif->tp_ops->set_irq(hwif, 1); 730 rc = ide_wait_not_busy(hwif, 100000); 731 if (rc) 732 printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name); 733 } 734} 735 736/** 737 * start_request - start of I/O and command issuing for IDE 738 * 739 * start_request() initiates handling of a new I/O request. It 740 * accepts commands and I/O (read/write) requests. 741 * 742 * FIXME: this function needs a rename 743 */ 744 745static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq) 746{ 747 ide_startstop_t startstop; 748 749 BUG_ON(!blk_rq_started(rq)); 750 751#ifdef DEBUG 752 printk("%s: start_request: current=0x%08lx\n", 753 HWIF(drive)->name, (unsigned long) rq); 754#endif 755 756 /* bail early if we've exceeded max_failures */ 757 if (drive->max_failures && (drive->failures > drive->max_failures)) { 758 rq->cmd_flags |= REQ_FAILED; 759 goto kill_rq; 760 } 761 762 if (blk_pm_request(rq)) 763 ide_check_pm_state(drive, rq); 764 765 SELECT_DRIVE(drive); 766 if (ide_wait_stat(&startstop, drive, drive->ready_stat, 767 ATA_BUSY | ATA_DRQ, WAIT_READY)) { 768 printk(KERN_ERR "%s: drive not ready for command\n", drive->name); 769 return startstop; 770 } 771 if (!drive->special.all) { 772 ide_driver_t *drv; 773 774 /* 775 * We reset the drive so we need to issue a SETFEATURES. 776 * Do it _after_ do_special() restored device parameters. 777 */ 778 if (drive->current_speed == 0xff) 779 ide_config_drive_speed(drive, drive->desired_speed); 780 781 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) 782 return execute_drive_cmd(drive, rq); 783 else if (blk_pm_request(rq)) { 784 struct request_pm_state *pm = rq->data; 785#ifdef DEBUG_PM 786 printk("%s: start_power_step(step: %d)\n", 787 drive->name, pm->pm_step); 788#endif 789 startstop = ide_start_power_step(drive, rq); 790 if (startstop == ide_stopped && 791 pm->pm_step == IDE_PM_COMPLETED) 792 ide_complete_pm_request(drive, rq); 793 return startstop; 794 } else if (!rq->rq_disk && blk_special_request(rq)) 795 /* 796 * TODO: Once all ULDs have been modified to 797 * check for specific op codes rather than 798 * blindly accepting any special request, the 799 * check for ->rq_disk above may be replaced 800 * by a more suitable mechanism or even 801 * dropped entirely. 802 */ 803 return ide_special_rq(drive, rq); 804 805 drv = *(ide_driver_t **)rq->rq_disk->private_data; 806 807 return drv->do_request(drive, rq, rq->sector); 808 } 809 return do_special(drive); 810kill_rq: 811 ide_kill_rq(drive, rq); 812 return ide_stopped; 813} 814 815/** 816 * ide_stall_queue - pause an IDE device 817 * @drive: drive to stall 818 * @timeout: time to stall for (jiffies) 819 * 820 * ide_stall_queue() can be used by a drive to give excess bandwidth back 821 * to the hwgroup by sleeping for timeout jiffies. 822 */ 823 824void ide_stall_queue (ide_drive_t *drive, unsigned long timeout) 825{ 826 if (timeout > WAIT_WORSTCASE) 827 timeout = WAIT_WORSTCASE; 828 drive->sleep = timeout + jiffies; 829 drive->dev_flags |= IDE_DFLAG_SLEEPING; 830} 831 832EXPORT_SYMBOL(ide_stall_queue); 833 834#define WAKEUP(drive) ((drive)->service_start + 2 * (drive)->service_time) 835 836/** 837 * choose_drive - select a drive to service 838 * @hwgroup: hardware group to select on 839 * 840 * choose_drive() selects the next drive which will be serviced. 841 * This is necessary because the IDE layer can't issue commands 842 * to both drives on the same cable, unlike SCSI. 843 */ 844 845static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup) 846{ 847 ide_drive_t *drive, *best; 848 849repeat: 850 best = NULL; 851 drive = hwgroup->drive; 852 853 /* 854 * drive is doing pre-flush, ordered write, post-flush sequence. even 855 * though that is 3 requests, it must be seen as a single transaction. 856 * we must not preempt this drive until that is complete 857 */ 858 if (blk_queue_flushing(drive->queue)) { 859 /* 860 * small race where queue could get replugged during 861 * the 3-request flush cycle, just yank the plug since 862 * we want it to finish asap 863 */ 864 blk_remove_plug(drive->queue); 865 return drive; 866 } 867 868 do { 869 u8 dev_s = !!(drive->dev_flags & IDE_DFLAG_SLEEPING); 870 u8 best_s = (best && !!(best->dev_flags & IDE_DFLAG_SLEEPING)); 871 872 if ((dev_s == 0 || time_after_eq(jiffies, drive->sleep)) && 873 !elv_queue_empty(drive->queue)) { 874 if (best == NULL || 875 (dev_s && (best_s == 0 || time_before(drive->sleep, best->sleep))) || 876 (best_s == 0 && time_before(WAKEUP(drive), WAKEUP(best)))) { 877 if (!blk_queue_plugged(drive->queue)) 878 best = drive; 879 } 880 } 881 } while ((drive = drive->next) != hwgroup->drive); 882 883 if (best && (best->dev_flags & IDE_DFLAG_NICE1) && 884 (best->dev_flags & IDE_DFLAG_SLEEPING) == 0 && 885 best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) { 886 long t = (signed long)(WAKEUP(best) - jiffies); 887 if (t >= WAIT_MIN_SLEEP) { 888 /* 889 * We *may* have some time to spare, but first let's see if 890 * someone can potentially benefit from our nice mood today.. 891 */ 892 drive = best->next; 893 do { 894 if ((drive->dev_flags & IDE_DFLAG_SLEEPING) == 0 895 && time_before(jiffies - best->service_time, WAKEUP(drive)) 896 && time_before(WAKEUP(drive), jiffies + t)) 897 { 898 ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP)); 899 goto repeat; 900 } 901 } while ((drive = drive->next) != best); 902 } 903 } 904 return best; 905} 906 907/* 908 * Issue a new request to a drive from hwgroup 909 * Caller must have already done spin_lock_irqsave(&ide_lock, ..); 910 * 911 * A hwgroup is a serialized group of IDE interfaces. Usually there is 912 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640) 913 * may have both interfaces in a single hwgroup to "serialize" access. 914 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped 915 * together into one hwgroup for serialized access. 916 * 917 * Note also that several hwgroups can end up sharing a single IRQ, 918 * possibly along with many other devices. This is especially common in 919 * PCI-based systems with off-board IDE controller cards. 920 * 921 * The IDE driver uses the single global ide_lock spinlock to protect 922 * access to the request queues, and to protect the hwgroup->busy flag. 923 * 924 * The first thread into the driver for a particular hwgroup sets the 925 * hwgroup->busy flag to indicate that this hwgroup is now active, 926 * and then initiates processing of the top request from the request queue. 927 * 928 * Other threads attempting entry notice the busy setting, and will simply 929 * queue their new requests and exit immediately. Note that hwgroup->busy 930 * remains set even when the driver is merely awaiting the next interrupt. 931 * Thus, the meaning is "this hwgroup is busy processing a request". 932 * 933 * When processing of a request completes, the completing thread or IRQ-handler 934 * will start the next request from the queue. If no more work remains, 935 * the driver will clear the hwgroup->busy flag and exit. 936 * 937 * The ide_lock (spinlock) is used to protect all access to the 938 * hwgroup->busy flag, but is otherwise not needed for most processing in 939 * the driver. This makes the driver much more friendlier to shared IRQs 940 * than previous designs, while remaining 100% (?) SMP safe and capable. 941 */ 942static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq) 943{ 944 ide_drive_t *drive; 945 ide_hwif_t *hwif; 946 struct request *rq; 947 ide_startstop_t startstop; 948 int loops = 0; 949 950 /* caller must own ide_lock */ 951 BUG_ON(!irqs_disabled()); 952 953 while (!hwgroup->busy) { 954 hwgroup->busy = 1; 955 /* for atari only */ 956 ide_get_lock(ide_intr, hwgroup); 957 drive = choose_drive(hwgroup); 958 if (drive == NULL) { 959 int sleeping = 0; 960 unsigned long sleep = 0; /* shut up, gcc */ 961 hwgroup->rq = NULL; 962 drive = hwgroup->drive; 963 do { 964 if ((drive->dev_flags & IDE_DFLAG_SLEEPING) && 965 (sleeping == 0 || 966 time_before(drive->sleep, sleep))) { 967 sleeping = 1; 968 sleep = drive->sleep; 969 } 970 } while ((drive = drive->next) != hwgroup->drive); 971 if (sleeping) { 972 /* 973 * Take a short snooze, and then wake up this hwgroup again. 974 * This gives other hwgroups on the same a chance to 975 * play fairly with us, just in case there are big differences 976 * in relative throughputs.. don't want to hog the cpu too much. 977 */ 978 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP)) 979 sleep = jiffies + WAIT_MIN_SLEEP; 980#if 1 981 if (timer_pending(&hwgroup->timer)) 982 printk(KERN_CRIT "ide_set_handler: timer already active\n"); 983#endif 984 /* so that ide_timer_expiry knows what to do */ 985 hwgroup->sleeping = 1; 986 hwgroup->req_gen_timer = hwgroup->req_gen; 987 mod_timer(&hwgroup->timer, sleep); 988 /* we purposely leave hwgroup->busy==1 989 * while sleeping */ 990 } else { 991 /* Ugly, but how can we sleep for the lock 992 * otherwise? perhaps from tq_disk? 993 */ 994 995 /* for atari only */ 996 ide_release_lock(); 997 hwgroup->busy = 0; 998 } 999 1000 /* no more work for this hwgroup (for now) */ 1001 return; 1002 } 1003 again: 1004 hwif = HWIF(drive); 1005 if (hwgroup->hwif->sharing_irq && hwif != hwgroup->hwif) { 1006 /* 1007 * set nIEN for previous hwif, drives in the 1008 * quirk_list may not like intr setups/cleanups 1009 */ 1010 if (drive->quirk_list != 1) 1011 hwif->tp_ops->set_irq(hwif, 0); 1012 } 1013 hwgroup->hwif = hwif; 1014 hwgroup->drive = drive; 1015 drive->dev_flags &= ~(IDE_DFLAG_SLEEPING | IDE_DFLAG_PARKED); 1016 drive->service_start = jiffies; 1017 1018 if (blk_queue_plugged(drive->queue)) { 1019 printk(KERN_ERR "ide: huh? queue was plugged!\n"); 1020 break; 1021 } 1022 1023 /* 1024 * we know that the queue isn't empty, but this can happen 1025 * if the q->prep_rq_fn() decides to kill a request 1026 */ 1027 rq = elv_next_request(drive->queue); 1028 if (!rq) { 1029 hwgroup->busy = 0; 1030 break; 1031 } 1032 1033 /* 1034 * Sanity: don't accept a request that isn't a PM request 1035 * if we are currently power managed. This is very important as 1036 * blk_stop_queue() doesn't prevent the elv_next_request() 1037 * above to return us whatever is in the queue. Since we call 1038 * ide_do_request() ourselves, we end up taking requests while 1039 * the queue is blocked... 1040 * 1041 * We let requests forced at head of queue with ide-preempt 1042 * though. I hope that doesn't happen too much, hopefully not 1043 * unless the subdriver triggers such a thing in its own PM 1044 * state machine. 1045 * 1046 * We count how many times we loop here to make sure we service 1047 * all drives in the hwgroup without looping for ever 1048 */ 1049 if ((drive->dev_flags & IDE_DFLAG_BLOCKED) && 1050 blk_pm_request(rq) == 0 && 1051 (rq->cmd_flags & REQ_PREEMPT) == 0) { 1052 drive = drive->next ? drive->next : hwgroup->drive; 1053 if (loops++ < 4 && !blk_queue_plugged(drive->queue)) 1054 goto again; 1055 /* We clear busy, there should be no pending ATA command at this point. */ 1056 hwgroup->busy = 0; 1057 break; 1058 } 1059 1060 hwgroup->rq = rq; 1061 1062 /* 1063 * Some systems have trouble with IDE IRQs arriving while 1064 * the driver is still setting things up. So, here we disable 1065 * the IRQ used by this interface while the request is being started. 1066 * This may look bad at first, but pretty much the same thing 1067 * happens anyway when any interrupt comes in, IDE or otherwise 1068 * -- the kernel masks the IRQ while it is being handled. 1069 */ 1070 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq) 1071 disable_irq_nosync(hwif->irq); 1072 spin_unlock(&ide_lock); 1073 local_irq_enable_in_hardirq(); 1074 /* allow other IRQs while we start this request */ 1075 startstop = start_request(drive, rq); 1076 spin_lock_irq(&ide_lock); 1077 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq) 1078 enable_irq(hwif->irq); 1079 if (startstop == ide_stopped) 1080 hwgroup->busy = 0; 1081 } 1082} 1083 1084/* 1085 * Passes the stuff to ide_do_request 1086 */ 1087void do_ide_request(struct request_queue *q) 1088{ 1089 ide_drive_t *drive = q->queuedata; 1090 1091 ide_do_request(HWGROUP(drive), IDE_NO_IRQ); 1092} 1093 1094/* 1095 * un-busy the hwgroup etc, and clear any pending DMA status. we want to 1096 * retry the current request in pio mode instead of risking tossing it 1097 * all away 1098 */ 1099static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error) 1100{ 1101 ide_hwif_t *hwif = HWIF(drive); 1102 struct request *rq; 1103 ide_startstop_t ret = ide_stopped; 1104 1105 /* 1106 * end current dma transaction 1107 */ 1108 1109 if (error < 0) { 1110 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name); 1111 (void)hwif->dma_ops->dma_end(drive); 1112 ret = ide_error(drive, "dma timeout error", 1113 hwif->tp_ops->read_status(hwif)); 1114 } else { 1115 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name); 1116 hwif->dma_ops->dma_timeout(drive); 1117 } 1118 1119 /* 1120 * disable dma for now, but remember that we did so because of 1121 * a timeout -- we'll reenable after we finish this next request 1122 * (or rather the first chunk of it) in pio. 1123 */ 1124 drive->dev_flags |= IDE_DFLAG_DMA_PIO_RETRY; 1125 drive->retry_pio++; 1126 ide_dma_off_quietly(drive); 1127 1128 /* 1129 * un-busy drive etc (hwgroup->busy is cleared on return) and 1130 * make sure request is sane 1131 */ 1132 rq = HWGROUP(drive)->rq; 1133 1134 if (!rq) 1135 goto out; 1136 1137 HWGROUP(drive)->rq = NULL; 1138 1139 rq->errors = 0; 1140 1141 if (!rq->bio) 1142 goto out; 1143 1144 rq->sector = rq->bio->bi_sector; 1145 rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9; 1146 rq->hard_cur_sectors = rq->current_nr_sectors; 1147 rq->buffer = bio_data(rq->bio); 1148out: 1149 return ret; 1150} 1151 1152/** 1153 * ide_timer_expiry - handle lack of an IDE interrupt 1154 * @data: timer callback magic (hwgroup) 1155 * 1156 * An IDE command has timed out before the expected drive return 1157 * occurred. At this point we attempt to clean up the current 1158 * mess. If the current handler includes an expiry handler then 1159 * we invoke the expiry handler, and providing it is happy the 1160 * work is done. If that fails we apply generic recovery rules 1161 * invoking the handler and checking the drive DMA status. We 1162 * have an excessively incestuous relationship with the DMA 1163 * logic that wants cleaning up. 1164 */ 1165 1166void ide_timer_expiry (unsigned long data) 1167{ 1168 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *) data; 1169 ide_handler_t *handler; 1170 ide_expiry_t *expiry; 1171 unsigned long flags; 1172 unsigned long wait = -1; 1173 1174 spin_lock_irqsave(&ide_lock, flags); 1175 1176 if (((handler = hwgroup->handler) == NULL) || 1177 (hwgroup->req_gen != hwgroup->req_gen_timer)) { 1178 /* 1179 * Either a marginal timeout occurred 1180 * (got the interrupt just as timer expired), 1181 * or we were "sleeping" to give other devices a chance. 1182 * Either way, we don't really want to complain about anything. 1183 */ 1184 if (hwgroup->sleeping) { 1185 hwgroup->sleeping = 0; 1186 hwgroup->busy = 0; 1187 } 1188 } else { 1189 ide_drive_t *drive = hwgroup->drive; 1190 if (!drive) { 1191 printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n"); 1192 hwgroup->handler = NULL; 1193 } else { 1194 ide_hwif_t *hwif; 1195 ide_startstop_t startstop = ide_stopped; 1196 if (!hwgroup->busy) { 1197 hwgroup->busy = 1; /* paranoia */ 1198 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name); 1199 } 1200 if ((expiry = hwgroup->expiry) != NULL) { 1201 /* continue */ 1202 if ((wait = expiry(drive)) > 0) { 1203 /* reset timer */ 1204 hwgroup->timer.expires = jiffies + wait; 1205 hwgroup->req_gen_timer = hwgroup->req_gen; 1206 add_timer(&hwgroup->timer); 1207 spin_unlock_irqrestore(&ide_lock, flags); 1208 return; 1209 } 1210 } 1211 hwgroup->handler = NULL; 1212 /* 1213 * We need to simulate a real interrupt when invoking 1214 * the handler() function, which means we need to 1215 * globally mask the specific IRQ: 1216 */ 1217 spin_unlock(&ide_lock); 1218 hwif = HWIF(drive); 1219 /* disable_irq_nosync ?? */ 1220 disable_irq(hwif->irq); 1221 /* local CPU only, 1222 * as if we were handling an interrupt */ 1223 local_irq_disable(); 1224 if (hwgroup->polling) { 1225 startstop = handler(drive); 1226 } else if (drive_is_ready(drive)) { 1227 if (drive->waiting_for_dma) 1228 hwif->dma_ops->dma_lost_irq(drive); 1229 (void)ide_ack_intr(hwif); 1230 printk(KERN_WARNING "%s: lost interrupt\n", drive->name); 1231 startstop = handler(drive); 1232 } else { 1233 if (drive->waiting_for_dma) { 1234 startstop = ide_dma_timeout_retry(drive, wait); 1235 } else 1236 startstop = 1237 ide_error(drive, "irq timeout", 1238 hwif->tp_ops->read_status(hwif)); 1239 } 1240 drive->service_time = jiffies - drive->service_start; 1241 spin_lock_irq(&ide_lock); 1242 enable_irq(hwif->irq); 1243 if (startstop == ide_stopped) 1244 hwgroup->busy = 0; 1245 } 1246 } 1247 ide_do_request(hwgroup, IDE_NO_IRQ); 1248 spin_unlock_irqrestore(&ide_lock, flags); 1249} 1250 1251/** 1252 * unexpected_intr - handle an unexpected IDE interrupt 1253 * @irq: interrupt line 1254 * @hwgroup: hwgroup being processed 1255 * 1256 * There's nothing really useful we can do with an unexpected interrupt, 1257 * other than reading the status register (to clear it), and logging it. 1258 * There should be no way that an irq can happen before we're ready for it, 1259 * so we needn't worry much about losing an "important" interrupt here. 1260 * 1261 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever 1262 * the drive enters "idle", "standby", or "sleep" mode, so if the status 1263 * looks "good", we just ignore the interrupt completely. 1264 * 1265 * This routine assumes __cli() is in effect when called. 1266 * 1267 * If an unexpected interrupt happens on irq15 while we are handling irq14 1268 * and if the two interfaces are "serialized" (CMD640), then it looks like 1269 * we could screw up by interfering with a new request being set up for 1270 * irq15. 1271 * 1272 * In reality, this is a non-issue. The new command is not sent unless 1273 * the drive is ready to accept one, in which case we know the drive is 1274 * not trying to interrupt us. And ide_set_handler() is always invoked 1275 * before completing the issuance of any new drive command, so we will not 1276 * be accidentally invoked as a result of any valid command completion 1277 * interrupt. 1278 * 1279 * Note that we must walk the entire hwgroup here. We know which hwif 1280 * is doing the current command, but we don't know which hwif burped 1281 * mysteriously. 1282 */ 1283 1284static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup) 1285{ 1286 u8 stat; 1287 ide_hwif_t *hwif = hwgroup->hwif; 1288 1289 /* 1290 * handle the unexpected interrupt 1291 */ 1292 do { 1293 if (hwif->irq == irq) { 1294 stat = hwif->tp_ops->read_status(hwif); 1295 1296 if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) { 1297 /* Try to not flood the console with msgs */ 1298 static unsigned long last_msgtime, count; 1299 ++count; 1300 if (time_after(jiffies, last_msgtime + HZ)) { 1301 last_msgtime = jiffies; 1302 printk(KERN_ERR "%s%s: unexpected interrupt, " 1303 "status=0x%02x, count=%ld\n", 1304 hwif->name, 1305 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count); 1306 } 1307 } 1308 } 1309 } while ((hwif = hwif->next) != hwgroup->hwif); 1310} 1311 1312/** 1313 * ide_intr - default IDE interrupt handler 1314 * @irq: interrupt number 1315 * @dev_id: hwif group 1316 * @regs: unused weirdness from the kernel irq layer 1317 * 1318 * This is the default IRQ handler for the IDE layer. You should 1319 * not need to override it. If you do be aware it is subtle in 1320 * places 1321 * 1322 * hwgroup->hwif is the interface in the group currently performing 1323 * a command. hwgroup->drive is the drive and hwgroup->handler is 1324 * the IRQ handler to call. As we issue a command the handlers 1325 * step through multiple states, reassigning the handler to the 1326 * next step in the process. Unlike a smart SCSI controller IDE 1327 * expects the main processor to sequence the various transfer 1328 * stages. We also manage a poll timer to catch up with most 1329 * timeout situations. There are still a few where the handlers 1330 * don't ever decide to give up. 1331 * 1332 * The handler eventually returns ide_stopped to indicate the 1333 * request completed. At this point we issue the next request 1334 * on the hwgroup and the process begins again. 1335 */ 1336 1337irqreturn_t ide_intr (int irq, void *dev_id) 1338{ 1339 unsigned long flags; 1340 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id; 1341 ide_hwif_t *hwif; 1342 ide_drive_t *drive; 1343 ide_handler_t *handler; 1344 ide_startstop_t startstop; 1345 irqreturn_t irq_ret = IRQ_NONE; 1346 1347 spin_lock_irqsave(&ide_lock, flags); 1348 hwif = hwgroup->hwif; 1349 1350 if (!ide_ack_intr(hwif)) 1351 goto out; 1352 1353 if ((handler = hwgroup->handler) == NULL || hwgroup->polling) { 1354 /* 1355 * Not expecting an interrupt from this drive. 1356 * That means this could be: 1357 * (1) an interrupt from another PCI device 1358 * sharing the same PCI INT# as us. 1359 * or (2) a drive just entered sleep or standby mode, 1360 * and is interrupting to let us know. 1361 * or (3) a spurious interrupt of unknown origin. 1362 * 1363 * For PCI, we cannot tell the difference, 1364 * so in that case we just ignore it and hope it goes away. 1365 * 1366 * FIXME: unexpected_intr should be hwif-> then we can 1367 * remove all the ifdef PCI crap 1368 */ 1369#ifdef CONFIG_BLK_DEV_IDEPCI 1370 if (hwif->chipset != ide_pci) 1371#endif /* CONFIG_BLK_DEV_IDEPCI */ 1372 { 1373 /* 1374 * Probably not a shared PCI interrupt, 1375 * so we can safely try to do something about it: 1376 */ 1377 unexpected_intr(irq, hwgroup); 1378#ifdef CONFIG_BLK_DEV_IDEPCI 1379 } else { 1380 /* 1381 * Whack the status register, just in case 1382 * we have a leftover pending IRQ. 1383 */ 1384 (void)hwif->tp_ops->read_status(hwif); 1385#endif /* CONFIG_BLK_DEV_IDEPCI */ 1386 } 1387 goto out; 1388 } 1389 1390 drive = hwgroup->drive; 1391 if (!drive) { 1392 /* 1393 * This should NEVER happen, and there isn't much 1394 * we could do about it here. 1395 * 1396 * [Note - this can occur if the drive is hot unplugged] 1397 */ 1398 goto out_handled; 1399 } 1400 1401 if (!drive_is_ready(drive)) 1402 /* 1403 * This happens regularly when we share a PCI IRQ with 1404 * another device. Unfortunately, it can also happen 1405 * with some buggy drives that trigger the IRQ before 1406 * their status register is up to date. Hopefully we have 1407 * enough advance overhead that the latter isn't a problem. 1408 */ 1409 goto out; 1410 1411 if (!hwgroup->busy) { 1412 hwgroup->busy = 1; /* paranoia */ 1413 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name); 1414 } 1415 hwgroup->handler = NULL; 1416 hwgroup->req_gen++; 1417 del_timer(&hwgroup->timer); 1418 spin_unlock(&ide_lock); 1419 1420 if (hwif->port_ops && hwif->port_ops->clear_irq) 1421 hwif->port_ops->clear_irq(drive); 1422 1423 if (drive->dev_flags & IDE_DFLAG_UNMASK) 1424 local_irq_enable_in_hardirq(); 1425 1426 /* service this interrupt, may set handler for next interrupt */ 1427 startstop = handler(drive); 1428 1429 spin_lock_irq(&ide_lock); 1430 /* 1431 * Note that handler() may have set things up for another 1432 * interrupt to occur soon, but it cannot happen until 1433 * we exit from this routine, because it will be the 1434 * same irq as is currently being serviced here, and Linux 1435 * won't allow another of the same (on any CPU) until we return. 1436 */ 1437 drive->service_time = jiffies - drive->service_start; 1438 if (startstop == ide_stopped) { 1439 if (hwgroup->handler == NULL) { /* paranoia */ 1440 hwgroup->busy = 0; 1441 ide_do_request(hwgroup, hwif->irq); 1442 } else { 1443 printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler " 1444 "on exit\n", drive->name); 1445 } 1446 } 1447out_handled: 1448 irq_ret = IRQ_HANDLED; 1449out: 1450 spin_unlock_irqrestore(&ide_lock, flags); 1451 return irq_ret; 1452} 1453 1454/** 1455 * ide_do_drive_cmd - issue IDE special command 1456 * @drive: device to issue command 1457 * @rq: request to issue 1458 * 1459 * This function issues a special IDE device request 1460 * onto the request queue. 1461 * 1462 * the rq is queued at the head of the request queue, displacing 1463 * the currently-being-processed request and this function 1464 * returns immediately without waiting for the new rq to be 1465 * completed. This is VERY DANGEROUS, and is intended for 1466 * careful use by the ATAPI tape/cdrom driver code. 1467 */ 1468 1469void ide_do_drive_cmd(ide_drive_t *drive, struct request *rq) 1470{ 1471 ide_hwgroup_t *hwgroup = drive->hwif->hwgroup; 1472 unsigned long flags; 1473 1474 hwgroup->rq = NULL; 1475 1476 spin_lock_irqsave(&ide_lock, flags); 1477 __elv_add_request(drive->queue, rq, ELEVATOR_INSERT_FRONT, 0); 1478 blk_start_queueing(drive->queue); 1479 spin_unlock_irqrestore(&ide_lock, flags); 1480} 1481 1482EXPORT_SYMBOL(ide_do_drive_cmd); 1483 1484void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma) 1485{ 1486 ide_hwif_t *hwif = drive->hwif; 1487 ide_task_t task; 1488 1489 memset(&task, 0, sizeof(task)); 1490 task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM | 1491 IDE_TFLAG_OUT_FEATURE | tf_flags; 1492 task.tf.feature = dma; /* Use PIO/DMA */ 1493 task.tf.lbam = bcount & 0xff; 1494 task.tf.lbah = (bcount >> 8) & 0xff; 1495 1496 ide_tf_dump(drive->name, &task.tf); 1497 hwif->tp_ops->set_irq(hwif, 1); 1498 SELECT_MASK(drive, 0); 1499 hwif->tp_ops->tf_load(drive, &task); 1500} 1501 1502EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load); 1503 1504void ide_pad_transfer(ide_drive_t *drive, int write, int len) 1505{ 1506 ide_hwif_t *hwif = drive->hwif; 1507 u8 buf[4] = { 0 }; 1508 1509 while (len > 0) { 1510 if (write) 1511 hwif->tp_ops->output_data(drive, NULL, buf, min(4, len)); 1512 else 1513 hwif->tp_ops->input_data(drive, NULL, buf, min(4, len)); 1514 len -= 4; 1515 } 1516} 1517EXPORT_SYMBOL_GPL(ide_pad_transfer); 1518