ide-io.c revision 49c746ee6cc791202172483277a249c12ba437d8
1/*
2 *	IDE I/O functions
3 *
4 *	Basic PIO and command management functionality.
5 *
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * General Public License for more details.
18 *
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
24 */
25
26
27#include <linux/module.h>
28#include <linux/types.h>
29#include <linux/string.h>
30#include <linux/kernel.h>
31#include <linux/timer.h>
32#include <linux/mm.h>
33#include <linux/interrupt.h>
34#include <linux/major.h>
35#include <linux/errno.h>
36#include <linux/genhd.h>
37#include <linux/blkpg.h>
38#include <linux/slab.h>
39#include <linux/init.h>
40#include <linux/pci.h>
41#include <linux/delay.h>
42#include <linux/ide.h>
43#include <linux/completion.h>
44#include <linux/reboot.h>
45#include <linux/cdrom.h>
46#include <linux/seq_file.h>
47#include <linux/device.h>
48#include <linux/kmod.h>
49#include <linux/scatterlist.h>
50#include <linux/bitops.h>
51
52#include <asm/byteorder.h>
53#include <asm/irq.h>
54#include <asm/uaccess.h>
55#include <asm/io.h>
56
57static int __ide_end_request(ide_drive_t *drive, struct request *rq,
58			     int uptodate, unsigned int nr_bytes, int dequeue)
59{
60	int ret = 1;
61
62	/*
63	 * if failfast is set on a request, override number of sectors and
64	 * complete the whole request right now
65	 */
66	if (blk_noretry_request(rq) && end_io_error(uptodate))
67		nr_bytes = rq->hard_nr_sectors << 9;
68
69	if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
70		rq->errors = -EIO;
71
72	/*
73	 * decide whether to reenable DMA -- 3 is a random magic for now,
74	 * if we DMA timeout more than 3 times, just stay in PIO
75	 */
76	if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
77		drive->state = 0;
78		ide_dma_on(drive);
79	}
80
81	if (!end_that_request_chunk(rq, uptodate, nr_bytes)) {
82		add_disk_randomness(rq->rq_disk);
83		if (dequeue) {
84			if (!list_empty(&rq->queuelist))
85				blkdev_dequeue_request(rq);
86			HWGROUP(drive)->rq = NULL;
87		}
88		end_that_request_last(rq, uptodate);
89		ret = 0;
90	}
91
92	return ret;
93}
94
95/**
96 *	ide_end_request		-	complete an IDE I/O
97 *	@drive: IDE device for the I/O
98 *	@uptodate:
99 *	@nr_sectors: number of sectors completed
100 *
101 *	This is our end_request wrapper function. We complete the I/O
102 *	update random number input and dequeue the request, which if
103 *	it was tagged may be out of order.
104 */
105
106int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
107{
108	unsigned int nr_bytes = nr_sectors << 9;
109	struct request *rq;
110	unsigned long flags;
111	int ret = 1;
112
113	/*
114	 * room for locking improvements here, the calls below don't
115	 * need the queue lock held at all
116	 */
117	spin_lock_irqsave(&ide_lock, flags);
118	rq = HWGROUP(drive)->rq;
119
120	if (!nr_bytes) {
121		if (blk_pc_request(rq))
122			nr_bytes = rq->data_len;
123		else
124			nr_bytes = rq->hard_cur_sectors << 9;
125	}
126
127	ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
128
129	spin_unlock_irqrestore(&ide_lock, flags);
130	return ret;
131}
132EXPORT_SYMBOL(ide_end_request);
133
134/*
135 * Power Management state machine. This one is rather trivial for now,
136 * we should probably add more, like switching back to PIO on suspend
137 * to help some BIOSes, re-do the door locking on resume, etc...
138 */
139
140enum {
141	ide_pm_flush_cache	= ide_pm_state_start_suspend,
142	idedisk_pm_standby,
143
144	idedisk_pm_restore_pio	= ide_pm_state_start_resume,
145	idedisk_pm_idle,
146	ide_pm_restore_dma,
147};
148
149static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
150{
151	struct request_pm_state *pm = rq->data;
152
153	if (drive->media != ide_disk)
154		return;
155
156	switch (pm->pm_step) {
157	case ide_pm_flush_cache:	/* Suspend step 1 (flush cache) complete */
158		if (pm->pm_state == PM_EVENT_FREEZE)
159			pm->pm_step = ide_pm_state_completed;
160		else
161			pm->pm_step = idedisk_pm_standby;
162		break;
163	case idedisk_pm_standby:	/* Suspend step 2 (standby) complete */
164		pm->pm_step = ide_pm_state_completed;
165		break;
166	case idedisk_pm_restore_pio:	/* Resume step 1 complete */
167		pm->pm_step = idedisk_pm_idle;
168		break;
169	case idedisk_pm_idle:		/* Resume step 2 (idle) complete */
170		pm->pm_step = ide_pm_restore_dma;
171		break;
172	}
173}
174
175static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
176{
177	struct request_pm_state *pm = rq->data;
178	ide_task_t *args = rq->special;
179
180	memset(args, 0, sizeof(*args));
181
182	switch (pm->pm_step) {
183	case ide_pm_flush_cache:	/* Suspend step 1 (flush cache) */
184		if (drive->media != ide_disk)
185			break;
186		/* Not supported? Switch to next step now. */
187		if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
188			ide_complete_power_step(drive, rq, 0, 0);
189			return ide_stopped;
190		}
191		if (ide_id_has_flush_cache_ext(drive->id))
192			args->tf.command = WIN_FLUSH_CACHE_EXT;
193		else
194			args->tf.command = WIN_FLUSH_CACHE;
195		goto out_do_tf;
196
197	case idedisk_pm_standby:	/* Suspend step 2 (standby) */
198		args->tf.command = WIN_STANDBYNOW1;
199		goto out_do_tf;
200
201	case idedisk_pm_restore_pio:	/* Resume step 1 (restore PIO) */
202		ide_set_max_pio(drive);
203		/*
204		 * skip idedisk_pm_idle for ATAPI devices
205		 */
206		if (drive->media != ide_disk)
207			pm->pm_step = ide_pm_restore_dma;
208		else
209			ide_complete_power_step(drive, rq, 0, 0);
210		return ide_stopped;
211
212	case idedisk_pm_idle:		/* Resume step 2 (idle) */
213		args->tf.command = WIN_IDLEIMMEDIATE;
214		goto out_do_tf;
215
216	case ide_pm_restore_dma:	/* Resume step 3 (restore DMA) */
217		/*
218		 * Right now, all we do is call ide_set_dma(drive),
219		 * we could be smarter and check for current xfer_speed
220		 * in struct drive etc...
221		 */
222		if (drive->hwif->dma_host_set == NULL)
223			break;
224		/*
225		 * TODO: respect ->using_dma setting
226		 */
227		ide_set_dma(drive);
228		break;
229	}
230	pm->pm_step = ide_pm_state_completed;
231	return ide_stopped;
232
233out_do_tf:
234	args->tf_flags	 = IDE_TFLAG_OUT_TF | IDE_TFLAG_OUT_DEVICE;
235	args->data_phase = TASKFILE_NO_DATA;
236	return do_rw_taskfile(drive, args);
237}
238
239/**
240 *	ide_end_dequeued_request	-	complete an IDE I/O
241 *	@drive: IDE device for the I/O
242 *	@uptodate:
243 *	@nr_sectors: number of sectors completed
244 *
245 *	Complete an I/O that is no longer on the request queue. This
246 *	typically occurs when we pull the request and issue a REQUEST_SENSE.
247 *	We must still finish the old request but we must not tamper with the
248 *	queue in the meantime.
249 *
250 *	NOTE: This path does not handle barrier, but barrier is not supported
251 *	on ide-cd anyway.
252 */
253
254int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
255			     int uptodate, int nr_sectors)
256{
257	unsigned long flags;
258	int ret;
259
260	spin_lock_irqsave(&ide_lock, flags);
261	BUG_ON(!blk_rq_started(rq));
262	ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
263	spin_unlock_irqrestore(&ide_lock, flags);
264
265	return ret;
266}
267EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
268
269
270/**
271 *	ide_complete_pm_request - end the current Power Management request
272 *	@drive: target drive
273 *	@rq: request
274 *
275 *	This function cleans up the current PM request and stops the queue
276 *	if necessary.
277 */
278static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
279{
280	unsigned long flags;
281
282#ifdef DEBUG_PM
283	printk("%s: completing PM request, %s\n", drive->name,
284	       blk_pm_suspend_request(rq) ? "suspend" : "resume");
285#endif
286	spin_lock_irqsave(&ide_lock, flags);
287	if (blk_pm_suspend_request(rq)) {
288		blk_stop_queue(drive->queue);
289	} else {
290		drive->blocked = 0;
291		blk_start_queue(drive->queue);
292	}
293	blkdev_dequeue_request(rq);
294	HWGROUP(drive)->rq = NULL;
295	end_that_request_last(rq, 1);
296	spin_unlock_irqrestore(&ide_lock, flags);
297}
298
299void ide_tf_read(ide_drive_t *drive, ide_task_t *task)
300{
301	ide_hwif_t *hwif = drive->hwif;
302	struct ide_taskfile *tf = &task->tf;
303
304	if (task->tf_flags & IDE_TFLAG_IN_DATA) {
305		u16 data = hwif->INW(IDE_DATA_REG);
306
307		tf->data = data & 0xff;
308		tf->hob_data = (data >> 8) & 0xff;
309	}
310
311	/* be sure we're looking at the low order bits */
312	hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
313
314	if (task->tf_flags & IDE_TFLAG_IN_NSECT)
315		tf->nsect  = hwif->INB(IDE_NSECTOR_REG);
316	if (task->tf_flags & IDE_TFLAG_IN_LBAL)
317		tf->lbal   = hwif->INB(IDE_SECTOR_REG);
318	if (task->tf_flags & IDE_TFLAG_IN_LBAM)
319		tf->lbam   = hwif->INB(IDE_LCYL_REG);
320	if (task->tf_flags & IDE_TFLAG_IN_LBAH)
321		tf->lbah   = hwif->INB(IDE_HCYL_REG);
322	if (task->tf_flags & IDE_TFLAG_IN_DEVICE)
323		tf->device = hwif->INB(IDE_SELECT_REG);
324
325	if (task->tf_flags & IDE_TFLAG_LBA48) {
326		hwif->OUTB(drive->ctl | 0x80, IDE_CONTROL_REG);
327
328		if (task->tf_flags & IDE_TFLAG_IN_HOB_FEATURE)
329			tf->hob_feature = hwif->INB(IDE_FEATURE_REG);
330		if (task->tf_flags & IDE_TFLAG_IN_HOB_NSECT)
331			tf->hob_nsect   = hwif->INB(IDE_NSECTOR_REG);
332		if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAL)
333			tf->hob_lbal    = hwif->INB(IDE_SECTOR_REG);
334		if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAM)
335			tf->hob_lbam    = hwif->INB(IDE_LCYL_REG);
336		if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAH)
337			tf->hob_lbah    = hwif->INB(IDE_HCYL_REG);
338	}
339}
340
341/**
342 *	ide_end_drive_cmd	-	end an explicit drive command
343 *	@drive: command
344 *	@stat: status bits
345 *	@err: error bits
346 *
347 *	Clean up after success/failure of an explicit drive command.
348 *	These get thrown onto the queue so they are synchronized with
349 *	real I/O operations on the drive.
350 *
351 *	In LBA48 mode we have to read the register set twice to get
352 *	all the extra information out.
353 */
354
355void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
356{
357	ide_hwif_t *hwif = HWIF(drive);
358	unsigned long flags;
359	struct request *rq;
360
361	spin_lock_irqsave(&ide_lock, flags);
362	rq = HWGROUP(drive)->rq;
363	spin_unlock_irqrestore(&ide_lock, flags);
364
365	if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
366		u8 *args = (u8 *) rq->buffer;
367		if (rq->errors == 0)
368			rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
369
370		if (args) {
371			args[0] = stat;
372			args[1] = err;
373			/* be sure we're looking at the low order bits */
374			hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
375			args[2] = hwif->INB(IDE_NSECTOR_REG);
376		}
377	} else if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
378		ide_task_t *args = (ide_task_t *) rq->special;
379		if (rq->errors == 0)
380			rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
381
382		if (args) {
383			struct ide_taskfile *tf = &args->tf;
384
385			tf->error = err;
386			tf->status = stat;
387
388			args->tf_flags |= (IDE_TFLAG_IN_TF|IDE_TFLAG_IN_DEVICE);
389			if (args->tf_flags & IDE_TFLAG_LBA48)
390				args->tf_flags |= IDE_TFLAG_IN_HOB;
391
392			ide_tf_read(drive, args);
393		}
394	} else if (blk_pm_request(rq)) {
395		struct request_pm_state *pm = rq->data;
396#ifdef DEBUG_PM
397		printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
398			drive->name, rq->pm->pm_step, stat, err);
399#endif
400		ide_complete_power_step(drive, rq, stat, err);
401		if (pm->pm_step == ide_pm_state_completed)
402			ide_complete_pm_request(drive, rq);
403		return;
404	}
405
406	spin_lock_irqsave(&ide_lock, flags);
407	blkdev_dequeue_request(rq);
408	HWGROUP(drive)->rq = NULL;
409	rq->errors = err;
410	end_that_request_last(rq, !rq->errors);
411	spin_unlock_irqrestore(&ide_lock, flags);
412}
413
414EXPORT_SYMBOL(ide_end_drive_cmd);
415
416/**
417 *	try_to_flush_leftover_data	-	flush junk
418 *	@drive: drive to flush
419 *
420 *	try_to_flush_leftover_data() is invoked in response to a drive
421 *	unexpectedly having its DRQ_STAT bit set.  As an alternative to
422 *	resetting the drive, this routine tries to clear the condition
423 *	by read a sector's worth of data from the drive.  Of course,
424 *	this may not help if the drive is *waiting* for data from *us*.
425 */
426static void try_to_flush_leftover_data (ide_drive_t *drive)
427{
428	int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS;
429
430	if (drive->media != ide_disk)
431		return;
432	while (i > 0) {
433		u32 buffer[16];
434		u32 wcount = (i > 16) ? 16 : i;
435
436		i -= wcount;
437		HWIF(drive)->ata_input_data(drive, buffer, wcount);
438	}
439}
440
441static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
442{
443	if (rq->rq_disk) {
444		ide_driver_t *drv;
445
446		drv = *(ide_driver_t **)rq->rq_disk->private_data;
447		drv->end_request(drive, 0, 0);
448	} else
449		ide_end_request(drive, 0, 0);
450}
451
452static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
453{
454	ide_hwif_t *hwif = drive->hwif;
455
456	if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
457		/* other bits are useless when BUSY */
458		rq->errors |= ERROR_RESET;
459	} else if (stat & ERR_STAT) {
460		/* err has different meaning on cdrom and tape */
461		if (err == ABRT_ERR) {
462			if (drive->select.b.lba &&
463			    /* some newer drives don't support WIN_SPECIFY */
464			    hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY)
465				return ide_stopped;
466		} else if ((err & BAD_CRC) == BAD_CRC) {
467			/* UDMA crc error, just retry the operation */
468			drive->crc_count++;
469		} else if (err & (BBD_ERR | ECC_ERR)) {
470			/* retries won't help these */
471			rq->errors = ERROR_MAX;
472		} else if (err & TRK0_ERR) {
473			/* help it find track zero */
474			rq->errors |= ERROR_RECAL;
475		}
476	}
477
478	if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ &&
479	    (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0)
480		try_to_flush_leftover_data(drive);
481
482	if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
483		ide_kill_rq(drive, rq);
484		return ide_stopped;
485	}
486
487	if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
488		rq->errors |= ERROR_RESET;
489
490	if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
491		++rq->errors;
492		return ide_do_reset(drive);
493	}
494
495	if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
496		drive->special.b.recalibrate = 1;
497
498	++rq->errors;
499
500	return ide_stopped;
501}
502
503static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
504{
505	ide_hwif_t *hwif = drive->hwif;
506
507	if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
508		/* other bits are useless when BUSY */
509		rq->errors |= ERROR_RESET;
510	} else {
511		/* add decoding error stuff */
512	}
513
514	if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
515		/* force an abort */
516		hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG);
517
518	if (rq->errors >= ERROR_MAX) {
519		ide_kill_rq(drive, rq);
520	} else {
521		if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
522			++rq->errors;
523			return ide_do_reset(drive);
524		}
525		++rq->errors;
526	}
527
528	return ide_stopped;
529}
530
531ide_startstop_t
532__ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
533{
534	if (drive->media == ide_disk)
535		return ide_ata_error(drive, rq, stat, err);
536	return ide_atapi_error(drive, rq, stat, err);
537}
538
539EXPORT_SYMBOL_GPL(__ide_error);
540
541/**
542 *	ide_error	-	handle an error on the IDE
543 *	@drive: drive the error occurred on
544 *	@msg: message to report
545 *	@stat: status bits
546 *
547 *	ide_error() takes action based on the error returned by the drive.
548 *	For normal I/O that may well include retries. We deal with
549 *	both new-style (taskfile) and old style command handling here.
550 *	In the case of taskfile command handling there is work left to
551 *	do
552 */
553
554ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
555{
556	struct request *rq;
557	u8 err;
558
559	err = ide_dump_status(drive, msg, stat);
560
561	if ((rq = HWGROUP(drive)->rq) == NULL)
562		return ide_stopped;
563
564	/* retry only "normal" I/O: */
565	if (!blk_fs_request(rq)) {
566		rq->errors = 1;
567		ide_end_drive_cmd(drive, stat, err);
568		return ide_stopped;
569	}
570
571	if (rq->rq_disk) {
572		ide_driver_t *drv;
573
574		drv = *(ide_driver_t **)rq->rq_disk->private_data;
575		return drv->error(drive, rq, stat, err);
576	} else
577		return __ide_error(drive, rq, stat, err);
578}
579
580EXPORT_SYMBOL_GPL(ide_error);
581
582ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq)
583{
584	if (drive->media != ide_disk)
585		rq->errors |= ERROR_RESET;
586
587	ide_kill_rq(drive, rq);
588
589	return ide_stopped;
590}
591
592EXPORT_SYMBOL_GPL(__ide_abort);
593
594/**
595 *	ide_abort	-	abort pending IDE operations
596 *	@drive: drive the error occurred on
597 *	@msg: message to report
598 *
599 *	ide_abort kills and cleans up when we are about to do a
600 *	host initiated reset on active commands. Longer term we
601 *	want handlers to have sensible abort handling themselves
602 *
603 *	This differs fundamentally from ide_error because in
604 *	this case the command is doing just fine when we
605 *	blow it away.
606 */
607
608ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
609{
610	struct request *rq;
611
612	if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
613		return ide_stopped;
614
615	/* retry only "normal" I/O: */
616	if (!blk_fs_request(rq)) {
617		rq->errors = 1;
618		ide_end_drive_cmd(drive, BUSY_STAT, 0);
619		return ide_stopped;
620	}
621
622	if (rq->rq_disk) {
623		ide_driver_t *drv;
624
625		drv = *(ide_driver_t **)rq->rq_disk->private_data;
626		return drv->abort(drive, rq);
627	} else
628		return __ide_abort(drive, rq);
629}
630
631/**
632 *	drive_cmd_intr		- 	drive command completion interrupt
633 *	@drive: drive the completion interrupt occurred on
634 *
635 *	drive_cmd_intr() is invoked on completion of a special DRIVE_CMD.
636 *	We do any necessary data reading and then wait for the drive to
637 *	go non busy. At that point we may read the error data and complete
638 *	the request
639 */
640
641static ide_startstop_t drive_cmd_intr (ide_drive_t *drive)
642{
643	struct request *rq = HWGROUP(drive)->rq;
644	ide_hwif_t *hwif = HWIF(drive);
645	u8 *args = (u8 *) rq->buffer;
646	u8 stat = hwif->INB(IDE_STATUS_REG);
647	int retries = 10;
648
649	local_irq_enable_in_hardirq();
650	if (rq->cmd_type == REQ_TYPE_ATA_CMD &&
651	    (stat & DRQ_STAT) && args && args[3]) {
652		u8 io_32bit = drive->io_32bit;
653		drive->io_32bit = 0;
654		hwif->ata_input_data(drive, &args[4], args[3] * SECTOR_WORDS);
655		drive->io_32bit = io_32bit;
656		while (((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) && retries--)
657			udelay(100);
658	}
659
660	if (!OK_STAT(stat, READY_STAT, BAD_STAT))
661		return ide_error(drive, "drive_cmd", stat);
662		/* calls ide_end_drive_cmd */
663	ide_end_drive_cmd(drive, stat, hwif->INB(IDE_ERROR_REG));
664	return ide_stopped;
665}
666
667static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
668{
669	tf->nsect   = drive->sect;
670	tf->lbal    = drive->sect;
671	tf->lbam    = drive->cyl;
672	tf->lbah    = drive->cyl >> 8;
673	tf->device  = ((drive->head - 1) | drive->select.all) & ~ATA_LBA;
674	tf->command = WIN_SPECIFY;
675}
676
677static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
678{
679	tf->nsect   = drive->sect;
680	tf->command = WIN_RESTORE;
681}
682
683static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
684{
685	tf->nsect   = drive->mult_req;
686	tf->command = WIN_SETMULT;
687}
688
689static ide_startstop_t ide_disk_special(ide_drive_t *drive)
690{
691	special_t *s = &drive->special;
692	ide_task_t args;
693
694	memset(&args, 0, sizeof(ide_task_t));
695	args.data_phase = TASKFILE_NO_DATA;
696
697	if (s->b.set_geometry) {
698		s->b.set_geometry = 0;
699		ide_tf_set_specify_cmd(drive, &args.tf);
700	} else if (s->b.recalibrate) {
701		s->b.recalibrate = 0;
702		ide_tf_set_restore_cmd(drive, &args.tf);
703	} else if (s->b.set_multmode) {
704		s->b.set_multmode = 0;
705		if (drive->mult_req > drive->id->max_multsect)
706			drive->mult_req = drive->id->max_multsect;
707		ide_tf_set_setmult_cmd(drive, &args.tf);
708	} else if (s->all) {
709		int special = s->all;
710		s->all = 0;
711		printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
712		return ide_stopped;
713	}
714
715	args.tf_flags = IDE_TFLAG_OUT_TF | IDE_TFLAG_OUT_DEVICE |
716			IDE_TFLAG_CUSTOM_HANDLER;
717
718	do_rw_taskfile(drive, &args);
719
720	return ide_started;
721}
722
723/*
724 * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
725 */
726static int set_pio_mode_abuse(ide_hwif_t *hwif, u8 req_pio)
727{
728	switch (req_pio) {
729	case 202:
730	case 201:
731	case 200:
732	case 102:
733	case 101:
734	case 100:
735		return (hwif->host_flags & IDE_HFLAG_ABUSE_DMA_MODES) ? 1 : 0;
736	case 9:
737	case 8:
738		return (hwif->host_flags & IDE_HFLAG_ABUSE_PREFETCH) ? 1 : 0;
739	case 7:
740	case 6:
741		return (hwif->host_flags & IDE_HFLAG_ABUSE_FAST_DEVSEL) ? 1 : 0;
742	default:
743		return 0;
744	}
745}
746
747/**
748 *	do_special		-	issue some special commands
749 *	@drive: drive the command is for
750 *
751 *	do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
752 *	commands to a drive.  It used to do much more, but has been scaled
753 *	back.
754 */
755
756static ide_startstop_t do_special (ide_drive_t *drive)
757{
758	special_t *s = &drive->special;
759
760#ifdef DEBUG
761	printk("%s: do_special: 0x%02x\n", drive->name, s->all);
762#endif
763	if (s->b.set_tune) {
764		ide_hwif_t *hwif = drive->hwif;
765		u8 req_pio = drive->tune_req;
766
767		s->b.set_tune = 0;
768
769		if (set_pio_mode_abuse(drive->hwif, req_pio)) {
770
771			if (hwif->set_pio_mode == NULL)
772				return ide_stopped;
773
774			/*
775			 * take ide_lock for drive->[no_]unmask/[no_]io_32bit
776			 */
777			if (req_pio == 8 || req_pio == 9) {
778				unsigned long flags;
779
780				spin_lock_irqsave(&ide_lock, flags);
781				hwif->set_pio_mode(drive, req_pio);
782				spin_unlock_irqrestore(&ide_lock, flags);
783			} else
784				hwif->set_pio_mode(drive, req_pio);
785		} else {
786			int keep_dma = drive->using_dma;
787
788			ide_set_pio(drive, req_pio);
789
790			if (hwif->host_flags & IDE_HFLAG_SET_PIO_MODE_KEEP_DMA) {
791				if (keep_dma)
792					ide_dma_on(drive);
793			}
794		}
795
796		return ide_stopped;
797	} else {
798		if (drive->media == ide_disk)
799			return ide_disk_special(drive);
800
801		s->all = 0;
802		drive->mult_req = 0;
803		return ide_stopped;
804	}
805}
806
807void ide_map_sg(ide_drive_t *drive, struct request *rq)
808{
809	ide_hwif_t *hwif = drive->hwif;
810	struct scatterlist *sg = hwif->sg_table;
811
812	if (hwif->sg_mapped)	/* needed by ide-scsi */
813		return;
814
815	if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
816		hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
817	} else {
818		sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
819		hwif->sg_nents = 1;
820	}
821}
822
823EXPORT_SYMBOL_GPL(ide_map_sg);
824
825void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
826{
827	ide_hwif_t *hwif = drive->hwif;
828
829	hwif->nsect = hwif->nleft = rq->nr_sectors;
830	hwif->cursg_ofs = 0;
831	hwif->cursg = NULL;
832}
833
834EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
835
836/**
837 *	execute_drive_command	-	issue special drive command
838 *	@drive: the drive to issue the command on
839 *	@rq: the request structure holding the command
840 *
841 *	execute_drive_cmd() issues a special drive command,  usually
842 *	initiated by ioctl() from the external hdparm program. The
843 *	command can be a drive command, drive task or taskfile
844 *	operation. Weirdly you can call it with NULL to wait for
845 *	all commands to finish. Don't do this as that is due to change
846 */
847
848static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
849		struct request *rq)
850{
851	ide_hwif_t *hwif = HWIF(drive);
852	u8 *args = rq->buffer;
853	ide_task_t ltask;
854	struct ide_taskfile *tf = &ltask.tf;
855
856	if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
857		ide_task_t *task = rq->special;
858
859		if (task == NULL)
860			goto done;
861
862		hwif->data_phase = task->data_phase;
863
864		switch (hwif->data_phase) {
865		case TASKFILE_MULTI_OUT:
866		case TASKFILE_OUT:
867		case TASKFILE_MULTI_IN:
868		case TASKFILE_IN:
869			ide_init_sg_cmd(drive, rq);
870			ide_map_sg(drive, rq);
871		default:
872			break;
873		}
874
875		return do_rw_taskfile(drive, task);
876	}
877
878	if (args == NULL)
879		goto done;
880
881	memset(&ltask, 0, sizeof(ltask));
882	if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
883#ifdef DEBUG
884		printk("%s: DRIVE_CMD\n", drive->name);
885#endif
886		tf->feature = args[2];
887		if (args[0] == WIN_SMART) {
888			tf->nsect = args[3];
889			tf->lbal  = args[1];
890			tf->lbam  = 0x4f;
891			tf->lbah  = 0xc2;
892			ltask.tf_flags = IDE_TFLAG_OUT_TF;
893		} else {
894			tf->nsect = args[1];
895			ltask.tf_flags = IDE_TFLAG_OUT_FEATURE |
896					 IDE_TFLAG_OUT_NSECT;
897		}
898 	}
899	tf->command = args[0];
900	ide_tf_load(drive, &ltask);
901	ide_execute_command(drive, args[0], &drive_cmd_intr, WAIT_WORSTCASE, NULL);
902	return ide_started;
903
904done:
905 	/*
906 	 * NULL is actually a valid way of waiting for
907 	 * all current requests to be flushed from the queue.
908 	 */
909#ifdef DEBUG
910 	printk("%s: DRIVE_CMD (null)\n", drive->name);
911#endif
912 	ide_end_drive_cmd(drive,
913			hwif->INB(IDE_STATUS_REG),
914			hwif->INB(IDE_ERROR_REG));
915 	return ide_stopped;
916}
917
918static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
919{
920	struct request_pm_state *pm = rq->data;
921
922	if (blk_pm_suspend_request(rq) &&
923	    pm->pm_step == ide_pm_state_start_suspend)
924		/* Mark drive blocked when starting the suspend sequence. */
925		drive->blocked = 1;
926	else if (blk_pm_resume_request(rq) &&
927		 pm->pm_step == ide_pm_state_start_resume) {
928		/*
929		 * The first thing we do on wakeup is to wait for BSY bit to
930		 * go away (with a looong timeout) as a drive on this hwif may
931		 * just be POSTing itself.
932		 * We do that before even selecting as the "other" device on
933		 * the bus may be broken enough to walk on our toes at this
934		 * point.
935		 */
936		int rc;
937#ifdef DEBUG_PM
938		printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
939#endif
940		rc = ide_wait_not_busy(HWIF(drive), 35000);
941		if (rc)
942			printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
943		SELECT_DRIVE(drive);
944		ide_set_irq(drive, 1);
945		rc = ide_wait_not_busy(HWIF(drive), 100000);
946		if (rc)
947			printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
948	}
949}
950
951/**
952 *	start_request	-	start of I/O and command issuing for IDE
953 *
954 *	start_request() initiates handling of a new I/O request. It
955 *	accepts commands and I/O (read/write) requests. It also does
956 *	the final remapping for weird stuff like EZDrive. Once
957 *	device mapper can work sector level the EZDrive stuff can go away
958 *
959 *	FIXME: this function needs a rename
960 */
961
962static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
963{
964	ide_startstop_t startstop;
965	sector_t block;
966
967	BUG_ON(!blk_rq_started(rq));
968
969#ifdef DEBUG
970	printk("%s: start_request: current=0x%08lx\n",
971		HWIF(drive)->name, (unsigned long) rq);
972#endif
973
974	/* bail early if we've exceeded max_failures */
975	if (drive->max_failures && (drive->failures > drive->max_failures)) {
976		rq->cmd_flags |= REQ_FAILED;
977		goto kill_rq;
978	}
979
980	block    = rq->sector;
981	if (blk_fs_request(rq) &&
982	    (drive->media == ide_disk || drive->media == ide_floppy)) {
983		block += drive->sect0;
984	}
985	/* Yecch - this will shift the entire interval,
986	   possibly killing some innocent following sector */
987	if (block == 0 && drive->remap_0_to_1 == 1)
988		block = 1;  /* redirect MBR access to EZ-Drive partn table */
989
990	if (blk_pm_request(rq))
991		ide_check_pm_state(drive, rq);
992
993	SELECT_DRIVE(drive);
994	if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
995		printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
996		return startstop;
997	}
998	if (!drive->special.all) {
999		ide_driver_t *drv;
1000
1001		/*
1002		 * We reset the drive so we need to issue a SETFEATURES.
1003		 * Do it _after_ do_special() restored device parameters.
1004		 */
1005		if (drive->current_speed == 0xff)
1006			ide_config_drive_speed(drive, drive->desired_speed);
1007
1008		if (rq->cmd_type == REQ_TYPE_ATA_CMD ||
1009		    rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
1010			return execute_drive_cmd(drive, rq);
1011		else if (blk_pm_request(rq)) {
1012			struct request_pm_state *pm = rq->data;
1013#ifdef DEBUG_PM
1014			printk("%s: start_power_step(step: %d)\n",
1015				drive->name, rq->pm->pm_step);
1016#endif
1017			startstop = ide_start_power_step(drive, rq);
1018			if (startstop == ide_stopped &&
1019			    pm->pm_step == ide_pm_state_completed)
1020				ide_complete_pm_request(drive, rq);
1021			return startstop;
1022		}
1023
1024		drv = *(ide_driver_t **)rq->rq_disk->private_data;
1025		return drv->do_request(drive, rq, block);
1026	}
1027	return do_special(drive);
1028kill_rq:
1029	ide_kill_rq(drive, rq);
1030	return ide_stopped;
1031}
1032
1033/**
1034 *	ide_stall_queue		-	pause an IDE device
1035 *	@drive: drive to stall
1036 *	@timeout: time to stall for (jiffies)
1037 *
1038 *	ide_stall_queue() can be used by a drive to give excess bandwidth back
1039 *	to the hwgroup by sleeping for timeout jiffies.
1040 */
1041
1042void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
1043{
1044	if (timeout > WAIT_WORSTCASE)
1045		timeout = WAIT_WORSTCASE;
1046	drive->sleep = timeout + jiffies;
1047	drive->sleeping = 1;
1048}
1049
1050EXPORT_SYMBOL(ide_stall_queue);
1051
1052#define WAKEUP(drive)	((drive)->service_start + 2 * (drive)->service_time)
1053
1054/**
1055 *	choose_drive		-	select a drive to service
1056 *	@hwgroup: hardware group to select on
1057 *
1058 *	choose_drive() selects the next drive which will be serviced.
1059 *	This is necessary because the IDE layer can't issue commands
1060 *	to both drives on the same cable, unlike SCSI.
1061 */
1062
1063static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
1064{
1065	ide_drive_t *drive, *best;
1066
1067repeat:
1068	best = NULL;
1069	drive = hwgroup->drive;
1070
1071	/*
1072	 * drive is doing pre-flush, ordered write, post-flush sequence. even
1073	 * though that is 3 requests, it must be seen as a single transaction.
1074	 * we must not preempt this drive until that is complete
1075	 */
1076	if (blk_queue_flushing(drive->queue)) {
1077		/*
1078		 * small race where queue could get replugged during
1079		 * the 3-request flush cycle, just yank the plug since
1080		 * we want it to finish asap
1081		 */
1082		blk_remove_plug(drive->queue);
1083		return drive;
1084	}
1085
1086	do {
1087		if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
1088		    && !elv_queue_empty(drive->queue)) {
1089			if (!best
1090			 || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
1091			 || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
1092			{
1093				if (!blk_queue_plugged(drive->queue))
1094					best = drive;
1095			}
1096		}
1097	} while ((drive = drive->next) != hwgroup->drive);
1098	if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
1099		long t = (signed long)(WAKEUP(best) - jiffies);
1100		if (t >= WAIT_MIN_SLEEP) {
1101		/*
1102		 * We *may* have some time to spare, but first let's see if
1103		 * someone can potentially benefit from our nice mood today..
1104		 */
1105			drive = best->next;
1106			do {
1107				if (!drive->sleeping
1108				 && time_before(jiffies - best->service_time, WAKEUP(drive))
1109				 && time_before(WAKEUP(drive), jiffies + t))
1110				{
1111					ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
1112					goto repeat;
1113				}
1114			} while ((drive = drive->next) != best);
1115		}
1116	}
1117	return best;
1118}
1119
1120/*
1121 * Issue a new request to a drive from hwgroup
1122 * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
1123 *
1124 * A hwgroup is a serialized group of IDE interfaces.  Usually there is
1125 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
1126 * may have both interfaces in a single hwgroup to "serialize" access.
1127 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
1128 * together into one hwgroup for serialized access.
1129 *
1130 * Note also that several hwgroups can end up sharing a single IRQ,
1131 * possibly along with many other devices.  This is especially common in
1132 * PCI-based systems with off-board IDE controller cards.
1133 *
1134 * The IDE driver uses the single global ide_lock spinlock to protect
1135 * access to the request queues, and to protect the hwgroup->busy flag.
1136 *
1137 * The first thread into the driver for a particular hwgroup sets the
1138 * hwgroup->busy flag to indicate that this hwgroup is now active,
1139 * and then initiates processing of the top request from the request queue.
1140 *
1141 * Other threads attempting entry notice the busy setting, and will simply
1142 * queue their new requests and exit immediately.  Note that hwgroup->busy
1143 * remains set even when the driver is merely awaiting the next interrupt.
1144 * Thus, the meaning is "this hwgroup is busy processing a request".
1145 *
1146 * When processing of a request completes, the completing thread or IRQ-handler
1147 * will start the next request from the queue.  If no more work remains,
1148 * the driver will clear the hwgroup->busy flag and exit.
1149 *
1150 * The ide_lock (spinlock) is used to protect all access to the
1151 * hwgroup->busy flag, but is otherwise not needed for most processing in
1152 * the driver.  This makes the driver much more friendlier to shared IRQs
1153 * than previous designs, while remaining 100% (?) SMP safe and capable.
1154 */
1155static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
1156{
1157	ide_drive_t	*drive;
1158	ide_hwif_t	*hwif;
1159	struct request	*rq;
1160	ide_startstop_t	startstop;
1161	int             loops = 0;
1162
1163	/* for atari only: POSSIBLY BROKEN HERE(?) */
1164	ide_get_lock(ide_intr, hwgroup);
1165
1166	/* caller must own ide_lock */
1167	BUG_ON(!irqs_disabled());
1168
1169	while (!hwgroup->busy) {
1170		hwgroup->busy = 1;
1171		drive = choose_drive(hwgroup);
1172		if (drive == NULL) {
1173			int sleeping = 0;
1174			unsigned long sleep = 0; /* shut up, gcc */
1175			hwgroup->rq = NULL;
1176			drive = hwgroup->drive;
1177			do {
1178				if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
1179					sleeping = 1;
1180					sleep = drive->sleep;
1181				}
1182			} while ((drive = drive->next) != hwgroup->drive);
1183			if (sleeping) {
1184		/*
1185		 * Take a short snooze, and then wake up this hwgroup again.
1186		 * This gives other hwgroups on the same a chance to
1187		 * play fairly with us, just in case there are big differences
1188		 * in relative throughputs.. don't want to hog the cpu too much.
1189		 */
1190				if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1191					sleep = jiffies + WAIT_MIN_SLEEP;
1192#if 1
1193				if (timer_pending(&hwgroup->timer))
1194					printk(KERN_CRIT "ide_set_handler: timer already active\n");
1195#endif
1196				/* so that ide_timer_expiry knows what to do */
1197				hwgroup->sleeping = 1;
1198				hwgroup->req_gen_timer = hwgroup->req_gen;
1199				mod_timer(&hwgroup->timer, sleep);
1200				/* we purposely leave hwgroup->busy==1
1201				 * while sleeping */
1202			} else {
1203				/* Ugly, but how can we sleep for the lock
1204				 * otherwise? perhaps from tq_disk?
1205				 */
1206
1207				/* for atari only */
1208				ide_release_lock();
1209				hwgroup->busy = 0;
1210			}
1211
1212			/* no more work for this hwgroup (for now) */
1213			return;
1214		}
1215	again:
1216		hwif = HWIF(drive);
1217		if (hwgroup->hwif->sharing_irq && hwif != hwgroup->hwif) {
1218			/*
1219			 * set nIEN for previous hwif, drives in the
1220			 * quirk_list may not like intr setups/cleanups
1221			 */
1222			if (drive->quirk_list != 1)
1223				ide_set_irq(drive, 0);
1224		}
1225		hwgroup->hwif = hwif;
1226		hwgroup->drive = drive;
1227		drive->sleeping = 0;
1228		drive->service_start = jiffies;
1229
1230		if (blk_queue_plugged(drive->queue)) {
1231			printk(KERN_ERR "ide: huh? queue was plugged!\n");
1232			break;
1233		}
1234
1235		/*
1236		 * we know that the queue isn't empty, but this can happen
1237		 * if the q->prep_rq_fn() decides to kill a request
1238		 */
1239		rq = elv_next_request(drive->queue);
1240		if (!rq) {
1241			hwgroup->busy = 0;
1242			break;
1243		}
1244
1245		/*
1246		 * Sanity: don't accept a request that isn't a PM request
1247		 * if we are currently power managed. This is very important as
1248		 * blk_stop_queue() doesn't prevent the elv_next_request()
1249		 * above to return us whatever is in the queue. Since we call
1250		 * ide_do_request() ourselves, we end up taking requests while
1251		 * the queue is blocked...
1252		 *
1253		 * We let requests forced at head of queue with ide-preempt
1254		 * though. I hope that doesn't happen too much, hopefully not
1255		 * unless the subdriver triggers such a thing in its own PM
1256		 * state machine.
1257		 *
1258		 * We count how many times we loop here to make sure we service
1259		 * all drives in the hwgroup without looping for ever
1260		 */
1261		if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) {
1262			drive = drive->next ? drive->next : hwgroup->drive;
1263			if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1264				goto again;
1265			/* We clear busy, there should be no pending ATA command at this point. */
1266			hwgroup->busy = 0;
1267			break;
1268		}
1269
1270		hwgroup->rq = rq;
1271
1272		/*
1273		 * Some systems have trouble with IDE IRQs arriving while
1274		 * the driver is still setting things up.  So, here we disable
1275		 * the IRQ used by this interface while the request is being started.
1276		 * This may look bad at first, but pretty much the same thing
1277		 * happens anyway when any interrupt comes in, IDE or otherwise
1278		 *  -- the kernel masks the IRQ while it is being handled.
1279		 */
1280		if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1281			disable_irq_nosync(hwif->irq);
1282		spin_unlock(&ide_lock);
1283		local_irq_enable_in_hardirq();
1284			/* allow other IRQs while we start this request */
1285		startstop = start_request(drive, rq);
1286		spin_lock_irq(&ide_lock);
1287		if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1288			enable_irq(hwif->irq);
1289		if (startstop == ide_stopped)
1290			hwgroup->busy = 0;
1291	}
1292}
1293
1294/*
1295 * Passes the stuff to ide_do_request
1296 */
1297void do_ide_request(struct request_queue *q)
1298{
1299	ide_drive_t *drive = q->queuedata;
1300
1301	ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1302}
1303
1304/*
1305 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1306 * retry the current request in pio mode instead of risking tossing it
1307 * all away
1308 */
1309static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1310{
1311	ide_hwif_t *hwif = HWIF(drive);
1312	struct request *rq;
1313	ide_startstop_t ret = ide_stopped;
1314
1315	/*
1316	 * end current dma transaction
1317	 */
1318
1319	if (error < 0) {
1320		printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1321		(void)HWIF(drive)->ide_dma_end(drive);
1322		ret = ide_error(drive, "dma timeout error",
1323						hwif->INB(IDE_STATUS_REG));
1324	} else {
1325		printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1326		hwif->dma_timeout(drive);
1327	}
1328
1329	/*
1330	 * disable dma for now, but remember that we did so because of
1331	 * a timeout -- we'll reenable after we finish this next request
1332	 * (or rather the first chunk of it) in pio.
1333	 */
1334	drive->retry_pio++;
1335	drive->state = DMA_PIO_RETRY;
1336	ide_dma_off_quietly(drive);
1337
1338	/*
1339	 * un-busy drive etc (hwgroup->busy is cleared on return) and
1340	 * make sure request is sane
1341	 */
1342	rq = HWGROUP(drive)->rq;
1343
1344	if (!rq)
1345		goto out;
1346
1347	HWGROUP(drive)->rq = NULL;
1348
1349	rq->errors = 0;
1350
1351	if (!rq->bio)
1352		goto out;
1353
1354	rq->sector = rq->bio->bi_sector;
1355	rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1356	rq->hard_cur_sectors = rq->current_nr_sectors;
1357	rq->buffer = bio_data(rq->bio);
1358out:
1359	return ret;
1360}
1361
1362/**
1363 *	ide_timer_expiry	-	handle lack of an IDE interrupt
1364 *	@data: timer callback magic (hwgroup)
1365 *
1366 *	An IDE command has timed out before the expected drive return
1367 *	occurred. At this point we attempt to clean up the current
1368 *	mess. If the current handler includes an expiry handler then
1369 *	we invoke the expiry handler, and providing it is happy the
1370 *	work is done. If that fails we apply generic recovery rules
1371 *	invoking the handler and checking the drive DMA status. We
1372 *	have an excessively incestuous relationship with the DMA
1373 *	logic that wants cleaning up.
1374 */
1375
1376void ide_timer_expiry (unsigned long data)
1377{
1378	ide_hwgroup_t	*hwgroup = (ide_hwgroup_t *) data;
1379	ide_handler_t	*handler;
1380	ide_expiry_t	*expiry;
1381	unsigned long	flags;
1382	unsigned long	wait = -1;
1383
1384	spin_lock_irqsave(&ide_lock, flags);
1385
1386	if (((handler = hwgroup->handler) == NULL) ||
1387	    (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1388		/*
1389		 * Either a marginal timeout occurred
1390		 * (got the interrupt just as timer expired),
1391		 * or we were "sleeping" to give other devices a chance.
1392		 * Either way, we don't really want to complain about anything.
1393		 */
1394		if (hwgroup->sleeping) {
1395			hwgroup->sleeping = 0;
1396			hwgroup->busy = 0;
1397		}
1398	} else {
1399		ide_drive_t *drive = hwgroup->drive;
1400		if (!drive) {
1401			printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1402			hwgroup->handler = NULL;
1403		} else {
1404			ide_hwif_t *hwif;
1405			ide_startstop_t startstop = ide_stopped;
1406			if (!hwgroup->busy) {
1407				hwgroup->busy = 1;	/* paranoia */
1408				printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1409			}
1410			if ((expiry = hwgroup->expiry) != NULL) {
1411				/* continue */
1412				if ((wait = expiry(drive)) > 0) {
1413					/* reset timer */
1414					hwgroup->timer.expires  = jiffies + wait;
1415					hwgroup->req_gen_timer = hwgroup->req_gen;
1416					add_timer(&hwgroup->timer);
1417					spin_unlock_irqrestore(&ide_lock, flags);
1418					return;
1419				}
1420			}
1421			hwgroup->handler = NULL;
1422			/*
1423			 * We need to simulate a real interrupt when invoking
1424			 * the handler() function, which means we need to
1425			 * globally mask the specific IRQ:
1426			 */
1427			spin_unlock(&ide_lock);
1428			hwif  = HWIF(drive);
1429			/* disable_irq_nosync ?? */
1430			disable_irq(hwif->irq);
1431			/* local CPU only,
1432			 * as if we were handling an interrupt */
1433			local_irq_disable();
1434			if (hwgroup->polling) {
1435				startstop = handler(drive);
1436			} else if (drive_is_ready(drive)) {
1437				if (drive->waiting_for_dma)
1438					hwgroup->hwif->dma_lost_irq(drive);
1439				(void)ide_ack_intr(hwif);
1440				printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1441				startstop = handler(drive);
1442			} else {
1443				if (drive->waiting_for_dma) {
1444					startstop = ide_dma_timeout_retry(drive, wait);
1445				} else
1446					startstop =
1447					ide_error(drive, "irq timeout", hwif->INB(IDE_STATUS_REG));
1448			}
1449			drive->service_time = jiffies - drive->service_start;
1450			spin_lock_irq(&ide_lock);
1451			enable_irq(hwif->irq);
1452			if (startstop == ide_stopped)
1453				hwgroup->busy = 0;
1454		}
1455	}
1456	ide_do_request(hwgroup, IDE_NO_IRQ);
1457	spin_unlock_irqrestore(&ide_lock, flags);
1458}
1459
1460/**
1461 *	unexpected_intr		-	handle an unexpected IDE interrupt
1462 *	@irq: interrupt line
1463 *	@hwgroup: hwgroup being processed
1464 *
1465 *	There's nothing really useful we can do with an unexpected interrupt,
1466 *	other than reading the status register (to clear it), and logging it.
1467 *	There should be no way that an irq can happen before we're ready for it,
1468 *	so we needn't worry much about losing an "important" interrupt here.
1469 *
1470 *	On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1471 *	the drive enters "idle", "standby", or "sleep" mode, so if the status
1472 *	looks "good", we just ignore the interrupt completely.
1473 *
1474 *	This routine assumes __cli() is in effect when called.
1475 *
1476 *	If an unexpected interrupt happens on irq15 while we are handling irq14
1477 *	and if the two interfaces are "serialized" (CMD640), then it looks like
1478 *	we could screw up by interfering with a new request being set up for
1479 *	irq15.
1480 *
1481 *	In reality, this is a non-issue.  The new command is not sent unless
1482 *	the drive is ready to accept one, in which case we know the drive is
1483 *	not trying to interrupt us.  And ide_set_handler() is always invoked
1484 *	before completing the issuance of any new drive command, so we will not
1485 *	be accidentally invoked as a result of any valid command completion
1486 *	interrupt.
1487 *
1488 *	Note that we must walk the entire hwgroup here. We know which hwif
1489 *	is doing the current command, but we don't know which hwif burped
1490 *	mysteriously.
1491 */
1492
1493static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1494{
1495	u8 stat;
1496	ide_hwif_t *hwif = hwgroup->hwif;
1497
1498	/*
1499	 * handle the unexpected interrupt
1500	 */
1501	do {
1502		if (hwif->irq == irq) {
1503			stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1504			if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1505				/* Try to not flood the console with msgs */
1506				static unsigned long last_msgtime, count;
1507				++count;
1508				if (time_after(jiffies, last_msgtime + HZ)) {
1509					last_msgtime = jiffies;
1510					printk(KERN_ERR "%s%s: unexpected interrupt, "
1511						"status=0x%02x, count=%ld\n",
1512						hwif->name,
1513						(hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1514				}
1515			}
1516		}
1517	} while ((hwif = hwif->next) != hwgroup->hwif);
1518}
1519
1520/**
1521 *	ide_intr	-	default IDE interrupt handler
1522 *	@irq: interrupt number
1523 *	@dev_id: hwif group
1524 *	@regs: unused weirdness from the kernel irq layer
1525 *
1526 *	This is the default IRQ handler for the IDE layer. You should
1527 *	not need to override it. If you do be aware it is subtle in
1528 *	places
1529 *
1530 *	hwgroup->hwif is the interface in the group currently performing
1531 *	a command. hwgroup->drive is the drive and hwgroup->handler is
1532 *	the IRQ handler to call. As we issue a command the handlers
1533 *	step through multiple states, reassigning the handler to the
1534 *	next step in the process. Unlike a smart SCSI controller IDE
1535 *	expects the main processor to sequence the various transfer
1536 *	stages. We also manage a poll timer to catch up with most
1537 *	timeout situations. There are still a few where the handlers
1538 *	don't ever decide to give up.
1539 *
1540 *	The handler eventually returns ide_stopped to indicate the
1541 *	request completed. At this point we issue the next request
1542 *	on the hwgroup and the process begins again.
1543 */
1544
1545irqreturn_t ide_intr (int irq, void *dev_id)
1546{
1547	unsigned long flags;
1548	ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1549	ide_hwif_t *hwif;
1550	ide_drive_t *drive;
1551	ide_handler_t *handler;
1552	ide_startstop_t startstop;
1553
1554	spin_lock_irqsave(&ide_lock, flags);
1555	hwif = hwgroup->hwif;
1556
1557	if (!ide_ack_intr(hwif)) {
1558		spin_unlock_irqrestore(&ide_lock, flags);
1559		return IRQ_NONE;
1560	}
1561
1562	if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1563		/*
1564		 * Not expecting an interrupt from this drive.
1565		 * That means this could be:
1566		 *	(1) an interrupt from another PCI device
1567		 *	sharing the same PCI INT# as us.
1568		 * or	(2) a drive just entered sleep or standby mode,
1569		 *	and is interrupting to let us know.
1570		 * or	(3) a spurious interrupt of unknown origin.
1571		 *
1572		 * For PCI, we cannot tell the difference,
1573		 * so in that case we just ignore it and hope it goes away.
1574		 *
1575		 * FIXME: unexpected_intr should be hwif-> then we can
1576		 * remove all the ifdef PCI crap
1577		 */
1578#ifdef CONFIG_BLK_DEV_IDEPCI
1579		if (hwif->pci_dev && !hwif->pci_dev->vendor)
1580#endif	/* CONFIG_BLK_DEV_IDEPCI */
1581		{
1582			/*
1583			 * Probably not a shared PCI interrupt,
1584			 * so we can safely try to do something about it:
1585			 */
1586			unexpected_intr(irq, hwgroup);
1587#ifdef CONFIG_BLK_DEV_IDEPCI
1588		} else {
1589			/*
1590			 * Whack the status register, just in case
1591			 * we have a leftover pending IRQ.
1592			 */
1593			(void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1594#endif /* CONFIG_BLK_DEV_IDEPCI */
1595		}
1596		spin_unlock_irqrestore(&ide_lock, flags);
1597		return IRQ_NONE;
1598	}
1599	drive = hwgroup->drive;
1600	if (!drive) {
1601		/*
1602		 * This should NEVER happen, and there isn't much
1603		 * we could do about it here.
1604		 *
1605		 * [Note - this can occur if the drive is hot unplugged]
1606		 */
1607		spin_unlock_irqrestore(&ide_lock, flags);
1608		return IRQ_HANDLED;
1609	}
1610	if (!drive_is_ready(drive)) {
1611		/*
1612		 * This happens regularly when we share a PCI IRQ with
1613		 * another device.  Unfortunately, it can also happen
1614		 * with some buggy drives that trigger the IRQ before
1615		 * their status register is up to date.  Hopefully we have
1616		 * enough advance overhead that the latter isn't a problem.
1617		 */
1618		spin_unlock_irqrestore(&ide_lock, flags);
1619		return IRQ_NONE;
1620	}
1621	if (!hwgroup->busy) {
1622		hwgroup->busy = 1;	/* paranoia */
1623		printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1624	}
1625	hwgroup->handler = NULL;
1626	hwgroup->req_gen++;
1627	del_timer(&hwgroup->timer);
1628	spin_unlock(&ide_lock);
1629
1630	/* Some controllers might set DMA INTR no matter DMA or PIO;
1631	 * bmdma status might need to be cleared even for
1632	 * PIO interrupts to prevent spurious/lost irq.
1633	 */
1634	if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
1635		/* ide_dma_end() needs bmdma status for error checking.
1636		 * So, skip clearing bmdma status here and leave it
1637		 * to ide_dma_end() if this is dma interrupt.
1638		 */
1639		hwif->ide_dma_clear_irq(drive);
1640
1641	if (drive->unmask)
1642		local_irq_enable_in_hardirq();
1643	/* service this interrupt, may set handler for next interrupt */
1644	startstop = handler(drive);
1645	spin_lock_irq(&ide_lock);
1646
1647	/*
1648	 * Note that handler() may have set things up for another
1649	 * interrupt to occur soon, but it cannot happen until
1650	 * we exit from this routine, because it will be the
1651	 * same irq as is currently being serviced here, and Linux
1652	 * won't allow another of the same (on any CPU) until we return.
1653	 */
1654	drive->service_time = jiffies - drive->service_start;
1655	if (startstop == ide_stopped) {
1656		if (hwgroup->handler == NULL) {	/* paranoia */
1657			hwgroup->busy = 0;
1658			ide_do_request(hwgroup, hwif->irq);
1659		} else {
1660			printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1661				"on exit\n", drive->name);
1662		}
1663	}
1664	spin_unlock_irqrestore(&ide_lock, flags);
1665	return IRQ_HANDLED;
1666}
1667
1668/**
1669 *	ide_init_drive_cmd	-	initialize a drive command request
1670 *	@rq: request object
1671 *
1672 *	Initialize a request before we fill it in and send it down to
1673 *	ide_do_drive_cmd. Commands must be set up by this function. Right
1674 *	now it doesn't do a lot, but if that changes abusers will have a
1675 *	nasty surprise.
1676 */
1677
1678void ide_init_drive_cmd (struct request *rq)
1679{
1680	memset(rq, 0, sizeof(*rq));
1681	rq->cmd_type = REQ_TYPE_ATA_CMD;
1682	rq->ref_count = 1;
1683}
1684
1685EXPORT_SYMBOL(ide_init_drive_cmd);
1686
1687/**
1688 *	ide_do_drive_cmd	-	issue IDE special command
1689 *	@drive: device to issue command
1690 *	@rq: request to issue
1691 *	@action: action for processing
1692 *
1693 *	This function issues a special IDE device request
1694 *	onto the request queue.
1695 *
1696 *	If action is ide_wait, then the rq is queued at the end of the
1697 *	request queue, and the function sleeps until it has been processed.
1698 *	This is for use when invoked from an ioctl handler.
1699 *
1700 *	If action is ide_preempt, then the rq is queued at the head of
1701 *	the request queue, displacing the currently-being-processed
1702 *	request and this function returns immediately without waiting
1703 *	for the new rq to be completed.  This is VERY DANGEROUS, and is
1704 *	intended for careful use by the ATAPI tape/cdrom driver code.
1705 *
1706 *	If action is ide_end, then the rq is queued at the end of the
1707 *	request queue, and the function returns immediately without waiting
1708 *	for the new rq to be completed. This is again intended for careful
1709 *	use by the ATAPI tape/cdrom driver code.
1710 */
1711
1712int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
1713{
1714	unsigned long flags;
1715	ide_hwgroup_t *hwgroup = HWGROUP(drive);
1716	DECLARE_COMPLETION_ONSTACK(wait);
1717	int where = ELEVATOR_INSERT_BACK, err;
1718	int must_wait = (action == ide_wait || action == ide_head_wait);
1719
1720	rq->errors = 0;
1721
1722	/*
1723	 * we need to hold an extra reference to request for safe inspection
1724	 * after completion
1725	 */
1726	if (must_wait) {
1727		rq->ref_count++;
1728		rq->end_io_data = &wait;
1729		rq->end_io = blk_end_sync_rq;
1730	}
1731
1732	spin_lock_irqsave(&ide_lock, flags);
1733	if (action == ide_preempt)
1734		hwgroup->rq = NULL;
1735	if (action == ide_preempt || action == ide_head_wait) {
1736		where = ELEVATOR_INSERT_FRONT;
1737		rq->cmd_flags |= REQ_PREEMPT;
1738	}
1739	__elv_add_request(drive->queue, rq, where, 0);
1740	ide_do_request(hwgroup, IDE_NO_IRQ);
1741	spin_unlock_irqrestore(&ide_lock, flags);
1742
1743	err = 0;
1744	if (must_wait) {
1745		wait_for_completion(&wait);
1746		if (rq->errors)
1747			err = -EIO;
1748
1749		blk_put_request(rq);
1750	}
1751
1752	return err;
1753}
1754
1755EXPORT_SYMBOL(ide_do_drive_cmd);
1756
1757void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma)
1758{
1759	ide_task_t task;
1760
1761	memset(&task, 0, sizeof(task));
1762	task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM |
1763			IDE_TFLAG_OUT_FEATURE | tf_flags;
1764	task.tf.feature = dma;		/* Use PIO/DMA */
1765	task.tf.lbam    = bcount & 0xff;
1766	task.tf.lbah    = (bcount >> 8) & 0xff;
1767
1768	ide_tf_load(drive, &task);
1769}
1770
1771EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load);
1772