ide-io.c revision 49c746ee6cc791202172483277a249c12ba437d8
1/* 2 * IDE I/O functions 3 * 4 * Basic PIO and command management functionality. 5 * 6 * This code was split off from ide.c. See ide.c for history and original 7 * copyrights. 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms of the GNU General Public License as published by the 11 * Free Software Foundation; either version 2, or (at your option) any 12 * later version. 13 * 14 * This program is distributed in the hope that it will be useful, but 15 * WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 17 * General Public License for more details. 18 * 19 * For the avoidance of doubt the "preferred form" of this code is one which 20 * is in an open non patent encumbered format. Where cryptographic key signing 21 * forms part of the process of creating an executable the information 22 * including keys needed to generate an equivalently functional executable 23 * are deemed to be part of the source code. 24 */ 25 26 27#include <linux/module.h> 28#include <linux/types.h> 29#include <linux/string.h> 30#include <linux/kernel.h> 31#include <linux/timer.h> 32#include <linux/mm.h> 33#include <linux/interrupt.h> 34#include <linux/major.h> 35#include <linux/errno.h> 36#include <linux/genhd.h> 37#include <linux/blkpg.h> 38#include <linux/slab.h> 39#include <linux/init.h> 40#include <linux/pci.h> 41#include <linux/delay.h> 42#include <linux/ide.h> 43#include <linux/completion.h> 44#include <linux/reboot.h> 45#include <linux/cdrom.h> 46#include <linux/seq_file.h> 47#include <linux/device.h> 48#include <linux/kmod.h> 49#include <linux/scatterlist.h> 50#include <linux/bitops.h> 51 52#include <asm/byteorder.h> 53#include <asm/irq.h> 54#include <asm/uaccess.h> 55#include <asm/io.h> 56 57static int __ide_end_request(ide_drive_t *drive, struct request *rq, 58 int uptodate, unsigned int nr_bytes, int dequeue) 59{ 60 int ret = 1; 61 62 /* 63 * if failfast is set on a request, override number of sectors and 64 * complete the whole request right now 65 */ 66 if (blk_noretry_request(rq) && end_io_error(uptodate)) 67 nr_bytes = rq->hard_nr_sectors << 9; 68 69 if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors) 70 rq->errors = -EIO; 71 72 /* 73 * decide whether to reenable DMA -- 3 is a random magic for now, 74 * if we DMA timeout more than 3 times, just stay in PIO 75 */ 76 if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) { 77 drive->state = 0; 78 ide_dma_on(drive); 79 } 80 81 if (!end_that_request_chunk(rq, uptodate, nr_bytes)) { 82 add_disk_randomness(rq->rq_disk); 83 if (dequeue) { 84 if (!list_empty(&rq->queuelist)) 85 blkdev_dequeue_request(rq); 86 HWGROUP(drive)->rq = NULL; 87 } 88 end_that_request_last(rq, uptodate); 89 ret = 0; 90 } 91 92 return ret; 93} 94 95/** 96 * ide_end_request - complete an IDE I/O 97 * @drive: IDE device for the I/O 98 * @uptodate: 99 * @nr_sectors: number of sectors completed 100 * 101 * This is our end_request wrapper function. We complete the I/O 102 * update random number input and dequeue the request, which if 103 * it was tagged may be out of order. 104 */ 105 106int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors) 107{ 108 unsigned int nr_bytes = nr_sectors << 9; 109 struct request *rq; 110 unsigned long flags; 111 int ret = 1; 112 113 /* 114 * room for locking improvements here, the calls below don't 115 * need the queue lock held at all 116 */ 117 spin_lock_irqsave(&ide_lock, flags); 118 rq = HWGROUP(drive)->rq; 119 120 if (!nr_bytes) { 121 if (blk_pc_request(rq)) 122 nr_bytes = rq->data_len; 123 else 124 nr_bytes = rq->hard_cur_sectors << 9; 125 } 126 127 ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1); 128 129 spin_unlock_irqrestore(&ide_lock, flags); 130 return ret; 131} 132EXPORT_SYMBOL(ide_end_request); 133 134/* 135 * Power Management state machine. This one is rather trivial for now, 136 * we should probably add more, like switching back to PIO on suspend 137 * to help some BIOSes, re-do the door locking on resume, etc... 138 */ 139 140enum { 141 ide_pm_flush_cache = ide_pm_state_start_suspend, 142 idedisk_pm_standby, 143 144 idedisk_pm_restore_pio = ide_pm_state_start_resume, 145 idedisk_pm_idle, 146 ide_pm_restore_dma, 147}; 148 149static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error) 150{ 151 struct request_pm_state *pm = rq->data; 152 153 if (drive->media != ide_disk) 154 return; 155 156 switch (pm->pm_step) { 157 case ide_pm_flush_cache: /* Suspend step 1 (flush cache) complete */ 158 if (pm->pm_state == PM_EVENT_FREEZE) 159 pm->pm_step = ide_pm_state_completed; 160 else 161 pm->pm_step = idedisk_pm_standby; 162 break; 163 case idedisk_pm_standby: /* Suspend step 2 (standby) complete */ 164 pm->pm_step = ide_pm_state_completed; 165 break; 166 case idedisk_pm_restore_pio: /* Resume step 1 complete */ 167 pm->pm_step = idedisk_pm_idle; 168 break; 169 case idedisk_pm_idle: /* Resume step 2 (idle) complete */ 170 pm->pm_step = ide_pm_restore_dma; 171 break; 172 } 173} 174 175static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq) 176{ 177 struct request_pm_state *pm = rq->data; 178 ide_task_t *args = rq->special; 179 180 memset(args, 0, sizeof(*args)); 181 182 switch (pm->pm_step) { 183 case ide_pm_flush_cache: /* Suspend step 1 (flush cache) */ 184 if (drive->media != ide_disk) 185 break; 186 /* Not supported? Switch to next step now. */ 187 if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) { 188 ide_complete_power_step(drive, rq, 0, 0); 189 return ide_stopped; 190 } 191 if (ide_id_has_flush_cache_ext(drive->id)) 192 args->tf.command = WIN_FLUSH_CACHE_EXT; 193 else 194 args->tf.command = WIN_FLUSH_CACHE; 195 goto out_do_tf; 196 197 case idedisk_pm_standby: /* Suspend step 2 (standby) */ 198 args->tf.command = WIN_STANDBYNOW1; 199 goto out_do_tf; 200 201 case idedisk_pm_restore_pio: /* Resume step 1 (restore PIO) */ 202 ide_set_max_pio(drive); 203 /* 204 * skip idedisk_pm_idle for ATAPI devices 205 */ 206 if (drive->media != ide_disk) 207 pm->pm_step = ide_pm_restore_dma; 208 else 209 ide_complete_power_step(drive, rq, 0, 0); 210 return ide_stopped; 211 212 case idedisk_pm_idle: /* Resume step 2 (idle) */ 213 args->tf.command = WIN_IDLEIMMEDIATE; 214 goto out_do_tf; 215 216 case ide_pm_restore_dma: /* Resume step 3 (restore DMA) */ 217 /* 218 * Right now, all we do is call ide_set_dma(drive), 219 * we could be smarter and check for current xfer_speed 220 * in struct drive etc... 221 */ 222 if (drive->hwif->dma_host_set == NULL) 223 break; 224 /* 225 * TODO: respect ->using_dma setting 226 */ 227 ide_set_dma(drive); 228 break; 229 } 230 pm->pm_step = ide_pm_state_completed; 231 return ide_stopped; 232 233out_do_tf: 234 args->tf_flags = IDE_TFLAG_OUT_TF | IDE_TFLAG_OUT_DEVICE; 235 args->data_phase = TASKFILE_NO_DATA; 236 return do_rw_taskfile(drive, args); 237} 238 239/** 240 * ide_end_dequeued_request - complete an IDE I/O 241 * @drive: IDE device for the I/O 242 * @uptodate: 243 * @nr_sectors: number of sectors completed 244 * 245 * Complete an I/O that is no longer on the request queue. This 246 * typically occurs when we pull the request and issue a REQUEST_SENSE. 247 * We must still finish the old request but we must not tamper with the 248 * queue in the meantime. 249 * 250 * NOTE: This path does not handle barrier, but barrier is not supported 251 * on ide-cd anyway. 252 */ 253 254int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq, 255 int uptodate, int nr_sectors) 256{ 257 unsigned long flags; 258 int ret; 259 260 spin_lock_irqsave(&ide_lock, flags); 261 BUG_ON(!blk_rq_started(rq)); 262 ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0); 263 spin_unlock_irqrestore(&ide_lock, flags); 264 265 return ret; 266} 267EXPORT_SYMBOL_GPL(ide_end_dequeued_request); 268 269 270/** 271 * ide_complete_pm_request - end the current Power Management request 272 * @drive: target drive 273 * @rq: request 274 * 275 * This function cleans up the current PM request and stops the queue 276 * if necessary. 277 */ 278static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq) 279{ 280 unsigned long flags; 281 282#ifdef DEBUG_PM 283 printk("%s: completing PM request, %s\n", drive->name, 284 blk_pm_suspend_request(rq) ? "suspend" : "resume"); 285#endif 286 spin_lock_irqsave(&ide_lock, flags); 287 if (blk_pm_suspend_request(rq)) { 288 blk_stop_queue(drive->queue); 289 } else { 290 drive->blocked = 0; 291 blk_start_queue(drive->queue); 292 } 293 blkdev_dequeue_request(rq); 294 HWGROUP(drive)->rq = NULL; 295 end_that_request_last(rq, 1); 296 spin_unlock_irqrestore(&ide_lock, flags); 297} 298 299void ide_tf_read(ide_drive_t *drive, ide_task_t *task) 300{ 301 ide_hwif_t *hwif = drive->hwif; 302 struct ide_taskfile *tf = &task->tf; 303 304 if (task->tf_flags & IDE_TFLAG_IN_DATA) { 305 u16 data = hwif->INW(IDE_DATA_REG); 306 307 tf->data = data & 0xff; 308 tf->hob_data = (data >> 8) & 0xff; 309 } 310 311 /* be sure we're looking at the low order bits */ 312 hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG); 313 314 if (task->tf_flags & IDE_TFLAG_IN_NSECT) 315 tf->nsect = hwif->INB(IDE_NSECTOR_REG); 316 if (task->tf_flags & IDE_TFLAG_IN_LBAL) 317 tf->lbal = hwif->INB(IDE_SECTOR_REG); 318 if (task->tf_flags & IDE_TFLAG_IN_LBAM) 319 tf->lbam = hwif->INB(IDE_LCYL_REG); 320 if (task->tf_flags & IDE_TFLAG_IN_LBAH) 321 tf->lbah = hwif->INB(IDE_HCYL_REG); 322 if (task->tf_flags & IDE_TFLAG_IN_DEVICE) 323 tf->device = hwif->INB(IDE_SELECT_REG); 324 325 if (task->tf_flags & IDE_TFLAG_LBA48) { 326 hwif->OUTB(drive->ctl | 0x80, IDE_CONTROL_REG); 327 328 if (task->tf_flags & IDE_TFLAG_IN_HOB_FEATURE) 329 tf->hob_feature = hwif->INB(IDE_FEATURE_REG); 330 if (task->tf_flags & IDE_TFLAG_IN_HOB_NSECT) 331 tf->hob_nsect = hwif->INB(IDE_NSECTOR_REG); 332 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAL) 333 tf->hob_lbal = hwif->INB(IDE_SECTOR_REG); 334 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAM) 335 tf->hob_lbam = hwif->INB(IDE_LCYL_REG); 336 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAH) 337 tf->hob_lbah = hwif->INB(IDE_HCYL_REG); 338 } 339} 340 341/** 342 * ide_end_drive_cmd - end an explicit drive command 343 * @drive: command 344 * @stat: status bits 345 * @err: error bits 346 * 347 * Clean up after success/failure of an explicit drive command. 348 * These get thrown onto the queue so they are synchronized with 349 * real I/O operations on the drive. 350 * 351 * In LBA48 mode we have to read the register set twice to get 352 * all the extra information out. 353 */ 354 355void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err) 356{ 357 ide_hwif_t *hwif = HWIF(drive); 358 unsigned long flags; 359 struct request *rq; 360 361 spin_lock_irqsave(&ide_lock, flags); 362 rq = HWGROUP(drive)->rq; 363 spin_unlock_irqrestore(&ide_lock, flags); 364 365 if (rq->cmd_type == REQ_TYPE_ATA_CMD) { 366 u8 *args = (u8 *) rq->buffer; 367 if (rq->errors == 0) 368 rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT); 369 370 if (args) { 371 args[0] = stat; 372 args[1] = err; 373 /* be sure we're looking at the low order bits */ 374 hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG); 375 args[2] = hwif->INB(IDE_NSECTOR_REG); 376 } 377 } else if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) { 378 ide_task_t *args = (ide_task_t *) rq->special; 379 if (rq->errors == 0) 380 rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT); 381 382 if (args) { 383 struct ide_taskfile *tf = &args->tf; 384 385 tf->error = err; 386 tf->status = stat; 387 388 args->tf_flags |= (IDE_TFLAG_IN_TF|IDE_TFLAG_IN_DEVICE); 389 if (args->tf_flags & IDE_TFLAG_LBA48) 390 args->tf_flags |= IDE_TFLAG_IN_HOB; 391 392 ide_tf_read(drive, args); 393 } 394 } else if (blk_pm_request(rq)) { 395 struct request_pm_state *pm = rq->data; 396#ifdef DEBUG_PM 397 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n", 398 drive->name, rq->pm->pm_step, stat, err); 399#endif 400 ide_complete_power_step(drive, rq, stat, err); 401 if (pm->pm_step == ide_pm_state_completed) 402 ide_complete_pm_request(drive, rq); 403 return; 404 } 405 406 spin_lock_irqsave(&ide_lock, flags); 407 blkdev_dequeue_request(rq); 408 HWGROUP(drive)->rq = NULL; 409 rq->errors = err; 410 end_that_request_last(rq, !rq->errors); 411 spin_unlock_irqrestore(&ide_lock, flags); 412} 413 414EXPORT_SYMBOL(ide_end_drive_cmd); 415 416/** 417 * try_to_flush_leftover_data - flush junk 418 * @drive: drive to flush 419 * 420 * try_to_flush_leftover_data() is invoked in response to a drive 421 * unexpectedly having its DRQ_STAT bit set. As an alternative to 422 * resetting the drive, this routine tries to clear the condition 423 * by read a sector's worth of data from the drive. Of course, 424 * this may not help if the drive is *waiting* for data from *us*. 425 */ 426static void try_to_flush_leftover_data (ide_drive_t *drive) 427{ 428 int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS; 429 430 if (drive->media != ide_disk) 431 return; 432 while (i > 0) { 433 u32 buffer[16]; 434 u32 wcount = (i > 16) ? 16 : i; 435 436 i -= wcount; 437 HWIF(drive)->ata_input_data(drive, buffer, wcount); 438 } 439} 440 441static void ide_kill_rq(ide_drive_t *drive, struct request *rq) 442{ 443 if (rq->rq_disk) { 444 ide_driver_t *drv; 445 446 drv = *(ide_driver_t **)rq->rq_disk->private_data; 447 drv->end_request(drive, 0, 0); 448 } else 449 ide_end_request(drive, 0, 0); 450} 451 452static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err) 453{ 454 ide_hwif_t *hwif = drive->hwif; 455 456 if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) { 457 /* other bits are useless when BUSY */ 458 rq->errors |= ERROR_RESET; 459 } else if (stat & ERR_STAT) { 460 /* err has different meaning on cdrom and tape */ 461 if (err == ABRT_ERR) { 462 if (drive->select.b.lba && 463 /* some newer drives don't support WIN_SPECIFY */ 464 hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY) 465 return ide_stopped; 466 } else if ((err & BAD_CRC) == BAD_CRC) { 467 /* UDMA crc error, just retry the operation */ 468 drive->crc_count++; 469 } else if (err & (BBD_ERR | ECC_ERR)) { 470 /* retries won't help these */ 471 rq->errors = ERROR_MAX; 472 } else if (err & TRK0_ERR) { 473 /* help it find track zero */ 474 rq->errors |= ERROR_RECAL; 475 } 476 } 477 478 if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ && 479 (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0) 480 try_to_flush_leftover_data(drive); 481 482 if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) { 483 ide_kill_rq(drive, rq); 484 return ide_stopped; 485 } 486 487 if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT)) 488 rq->errors |= ERROR_RESET; 489 490 if ((rq->errors & ERROR_RESET) == ERROR_RESET) { 491 ++rq->errors; 492 return ide_do_reset(drive); 493 } 494 495 if ((rq->errors & ERROR_RECAL) == ERROR_RECAL) 496 drive->special.b.recalibrate = 1; 497 498 ++rq->errors; 499 500 return ide_stopped; 501} 502 503static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err) 504{ 505 ide_hwif_t *hwif = drive->hwif; 506 507 if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) { 508 /* other bits are useless when BUSY */ 509 rq->errors |= ERROR_RESET; 510 } else { 511 /* add decoding error stuff */ 512 } 513 514 if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT)) 515 /* force an abort */ 516 hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG); 517 518 if (rq->errors >= ERROR_MAX) { 519 ide_kill_rq(drive, rq); 520 } else { 521 if ((rq->errors & ERROR_RESET) == ERROR_RESET) { 522 ++rq->errors; 523 return ide_do_reset(drive); 524 } 525 ++rq->errors; 526 } 527 528 return ide_stopped; 529} 530 531ide_startstop_t 532__ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err) 533{ 534 if (drive->media == ide_disk) 535 return ide_ata_error(drive, rq, stat, err); 536 return ide_atapi_error(drive, rq, stat, err); 537} 538 539EXPORT_SYMBOL_GPL(__ide_error); 540 541/** 542 * ide_error - handle an error on the IDE 543 * @drive: drive the error occurred on 544 * @msg: message to report 545 * @stat: status bits 546 * 547 * ide_error() takes action based on the error returned by the drive. 548 * For normal I/O that may well include retries. We deal with 549 * both new-style (taskfile) and old style command handling here. 550 * In the case of taskfile command handling there is work left to 551 * do 552 */ 553 554ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat) 555{ 556 struct request *rq; 557 u8 err; 558 559 err = ide_dump_status(drive, msg, stat); 560 561 if ((rq = HWGROUP(drive)->rq) == NULL) 562 return ide_stopped; 563 564 /* retry only "normal" I/O: */ 565 if (!blk_fs_request(rq)) { 566 rq->errors = 1; 567 ide_end_drive_cmd(drive, stat, err); 568 return ide_stopped; 569 } 570 571 if (rq->rq_disk) { 572 ide_driver_t *drv; 573 574 drv = *(ide_driver_t **)rq->rq_disk->private_data; 575 return drv->error(drive, rq, stat, err); 576 } else 577 return __ide_error(drive, rq, stat, err); 578} 579 580EXPORT_SYMBOL_GPL(ide_error); 581 582ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq) 583{ 584 if (drive->media != ide_disk) 585 rq->errors |= ERROR_RESET; 586 587 ide_kill_rq(drive, rq); 588 589 return ide_stopped; 590} 591 592EXPORT_SYMBOL_GPL(__ide_abort); 593 594/** 595 * ide_abort - abort pending IDE operations 596 * @drive: drive the error occurred on 597 * @msg: message to report 598 * 599 * ide_abort kills and cleans up when we are about to do a 600 * host initiated reset on active commands. Longer term we 601 * want handlers to have sensible abort handling themselves 602 * 603 * This differs fundamentally from ide_error because in 604 * this case the command is doing just fine when we 605 * blow it away. 606 */ 607 608ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg) 609{ 610 struct request *rq; 611 612 if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL) 613 return ide_stopped; 614 615 /* retry only "normal" I/O: */ 616 if (!blk_fs_request(rq)) { 617 rq->errors = 1; 618 ide_end_drive_cmd(drive, BUSY_STAT, 0); 619 return ide_stopped; 620 } 621 622 if (rq->rq_disk) { 623 ide_driver_t *drv; 624 625 drv = *(ide_driver_t **)rq->rq_disk->private_data; 626 return drv->abort(drive, rq); 627 } else 628 return __ide_abort(drive, rq); 629} 630 631/** 632 * drive_cmd_intr - drive command completion interrupt 633 * @drive: drive the completion interrupt occurred on 634 * 635 * drive_cmd_intr() is invoked on completion of a special DRIVE_CMD. 636 * We do any necessary data reading and then wait for the drive to 637 * go non busy. At that point we may read the error data and complete 638 * the request 639 */ 640 641static ide_startstop_t drive_cmd_intr (ide_drive_t *drive) 642{ 643 struct request *rq = HWGROUP(drive)->rq; 644 ide_hwif_t *hwif = HWIF(drive); 645 u8 *args = (u8 *) rq->buffer; 646 u8 stat = hwif->INB(IDE_STATUS_REG); 647 int retries = 10; 648 649 local_irq_enable_in_hardirq(); 650 if (rq->cmd_type == REQ_TYPE_ATA_CMD && 651 (stat & DRQ_STAT) && args && args[3]) { 652 u8 io_32bit = drive->io_32bit; 653 drive->io_32bit = 0; 654 hwif->ata_input_data(drive, &args[4], args[3] * SECTOR_WORDS); 655 drive->io_32bit = io_32bit; 656 while (((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) && retries--) 657 udelay(100); 658 } 659 660 if (!OK_STAT(stat, READY_STAT, BAD_STAT)) 661 return ide_error(drive, "drive_cmd", stat); 662 /* calls ide_end_drive_cmd */ 663 ide_end_drive_cmd(drive, stat, hwif->INB(IDE_ERROR_REG)); 664 return ide_stopped; 665} 666 667static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf) 668{ 669 tf->nsect = drive->sect; 670 tf->lbal = drive->sect; 671 tf->lbam = drive->cyl; 672 tf->lbah = drive->cyl >> 8; 673 tf->device = ((drive->head - 1) | drive->select.all) & ~ATA_LBA; 674 tf->command = WIN_SPECIFY; 675} 676 677static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf) 678{ 679 tf->nsect = drive->sect; 680 tf->command = WIN_RESTORE; 681} 682 683static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf) 684{ 685 tf->nsect = drive->mult_req; 686 tf->command = WIN_SETMULT; 687} 688 689static ide_startstop_t ide_disk_special(ide_drive_t *drive) 690{ 691 special_t *s = &drive->special; 692 ide_task_t args; 693 694 memset(&args, 0, sizeof(ide_task_t)); 695 args.data_phase = TASKFILE_NO_DATA; 696 697 if (s->b.set_geometry) { 698 s->b.set_geometry = 0; 699 ide_tf_set_specify_cmd(drive, &args.tf); 700 } else if (s->b.recalibrate) { 701 s->b.recalibrate = 0; 702 ide_tf_set_restore_cmd(drive, &args.tf); 703 } else if (s->b.set_multmode) { 704 s->b.set_multmode = 0; 705 if (drive->mult_req > drive->id->max_multsect) 706 drive->mult_req = drive->id->max_multsect; 707 ide_tf_set_setmult_cmd(drive, &args.tf); 708 } else if (s->all) { 709 int special = s->all; 710 s->all = 0; 711 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special); 712 return ide_stopped; 713 } 714 715 args.tf_flags = IDE_TFLAG_OUT_TF | IDE_TFLAG_OUT_DEVICE | 716 IDE_TFLAG_CUSTOM_HANDLER; 717 718 do_rw_taskfile(drive, &args); 719 720 return ide_started; 721} 722 723/* 724 * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away 725 */ 726static int set_pio_mode_abuse(ide_hwif_t *hwif, u8 req_pio) 727{ 728 switch (req_pio) { 729 case 202: 730 case 201: 731 case 200: 732 case 102: 733 case 101: 734 case 100: 735 return (hwif->host_flags & IDE_HFLAG_ABUSE_DMA_MODES) ? 1 : 0; 736 case 9: 737 case 8: 738 return (hwif->host_flags & IDE_HFLAG_ABUSE_PREFETCH) ? 1 : 0; 739 case 7: 740 case 6: 741 return (hwif->host_flags & IDE_HFLAG_ABUSE_FAST_DEVSEL) ? 1 : 0; 742 default: 743 return 0; 744 } 745} 746 747/** 748 * do_special - issue some special commands 749 * @drive: drive the command is for 750 * 751 * do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT 752 * commands to a drive. It used to do much more, but has been scaled 753 * back. 754 */ 755 756static ide_startstop_t do_special (ide_drive_t *drive) 757{ 758 special_t *s = &drive->special; 759 760#ifdef DEBUG 761 printk("%s: do_special: 0x%02x\n", drive->name, s->all); 762#endif 763 if (s->b.set_tune) { 764 ide_hwif_t *hwif = drive->hwif; 765 u8 req_pio = drive->tune_req; 766 767 s->b.set_tune = 0; 768 769 if (set_pio_mode_abuse(drive->hwif, req_pio)) { 770 771 if (hwif->set_pio_mode == NULL) 772 return ide_stopped; 773 774 /* 775 * take ide_lock for drive->[no_]unmask/[no_]io_32bit 776 */ 777 if (req_pio == 8 || req_pio == 9) { 778 unsigned long flags; 779 780 spin_lock_irqsave(&ide_lock, flags); 781 hwif->set_pio_mode(drive, req_pio); 782 spin_unlock_irqrestore(&ide_lock, flags); 783 } else 784 hwif->set_pio_mode(drive, req_pio); 785 } else { 786 int keep_dma = drive->using_dma; 787 788 ide_set_pio(drive, req_pio); 789 790 if (hwif->host_flags & IDE_HFLAG_SET_PIO_MODE_KEEP_DMA) { 791 if (keep_dma) 792 ide_dma_on(drive); 793 } 794 } 795 796 return ide_stopped; 797 } else { 798 if (drive->media == ide_disk) 799 return ide_disk_special(drive); 800 801 s->all = 0; 802 drive->mult_req = 0; 803 return ide_stopped; 804 } 805} 806 807void ide_map_sg(ide_drive_t *drive, struct request *rq) 808{ 809 ide_hwif_t *hwif = drive->hwif; 810 struct scatterlist *sg = hwif->sg_table; 811 812 if (hwif->sg_mapped) /* needed by ide-scsi */ 813 return; 814 815 if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) { 816 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg); 817 } else { 818 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE); 819 hwif->sg_nents = 1; 820 } 821} 822 823EXPORT_SYMBOL_GPL(ide_map_sg); 824 825void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq) 826{ 827 ide_hwif_t *hwif = drive->hwif; 828 829 hwif->nsect = hwif->nleft = rq->nr_sectors; 830 hwif->cursg_ofs = 0; 831 hwif->cursg = NULL; 832} 833 834EXPORT_SYMBOL_GPL(ide_init_sg_cmd); 835 836/** 837 * execute_drive_command - issue special drive command 838 * @drive: the drive to issue the command on 839 * @rq: the request structure holding the command 840 * 841 * execute_drive_cmd() issues a special drive command, usually 842 * initiated by ioctl() from the external hdparm program. The 843 * command can be a drive command, drive task or taskfile 844 * operation. Weirdly you can call it with NULL to wait for 845 * all commands to finish. Don't do this as that is due to change 846 */ 847 848static ide_startstop_t execute_drive_cmd (ide_drive_t *drive, 849 struct request *rq) 850{ 851 ide_hwif_t *hwif = HWIF(drive); 852 u8 *args = rq->buffer; 853 ide_task_t ltask; 854 struct ide_taskfile *tf = <ask.tf; 855 856 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) { 857 ide_task_t *task = rq->special; 858 859 if (task == NULL) 860 goto done; 861 862 hwif->data_phase = task->data_phase; 863 864 switch (hwif->data_phase) { 865 case TASKFILE_MULTI_OUT: 866 case TASKFILE_OUT: 867 case TASKFILE_MULTI_IN: 868 case TASKFILE_IN: 869 ide_init_sg_cmd(drive, rq); 870 ide_map_sg(drive, rq); 871 default: 872 break; 873 } 874 875 return do_rw_taskfile(drive, task); 876 } 877 878 if (args == NULL) 879 goto done; 880 881 memset(<ask, 0, sizeof(ltask)); 882 if (rq->cmd_type == REQ_TYPE_ATA_CMD) { 883#ifdef DEBUG 884 printk("%s: DRIVE_CMD\n", drive->name); 885#endif 886 tf->feature = args[2]; 887 if (args[0] == WIN_SMART) { 888 tf->nsect = args[3]; 889 tf->lbal = args[1]; 890 tf->lbam = 0x4f; 891 tf->lbah = 0xc2; 892 ltask.tf_flags = IDE_TFLAG_OUT_TF; 893 } else { 894 tf->nsect = args[1]; 895 ltask.tf_flags = IDE_TFLAG_OUT_FEATURE | 896 IDE_TFLAG_OUT_NSECT; 897 } 898 } 899 tf->command = args[0]; 900 ide_tf_load(drive, <ask); 901 ide_execute_command(drive, args[0], &drive_cmd_intr, WAIT_WORSTCASE, NULL); 902 return ide_started; 903 904done: 905 /* 906 * NULL is actually a valid way of waiting for 907 * all current requests to be flushed from the queue. 908 */ 909#ifdef DEBUG 910 printk("%s: DRIVE_CMD (null)\n", drive->name); 911#endif 912 ide_end_drive_cmd(drive, 913 hwif->INB(IDE_STATUS_REG), 914 hwif->INB(IDE_ERROR_REG)); 915 return ide_stopped; 916} 917 918static void ide_check_pm_state(ide_drive_t *drive, struct request *rq) 919{ 920 struct request_pm_state *pm = rq->data; 921 922 if (blk_pm_suspend_request(rq) && 923 pm->pm_step == ide_pm_state_start_suspend) 924 /* Mark drive blocked when starting the suspend sequence. */ 925 drive->blocked = 1; 926 else if (blk_pm_resume_request(rq) && 927 pm->pm_step == ide_pm_state_start_resume) { 928 /* 929 * The first thing we do on wakeup is to wait for BSY bit to 930 * go away (with a looong timeout) as a drive on this hwif may 931 * just be POSTing itself. 932 * We do that before even selecting as the "other" device on 933 * the bus may be broken enough to walk on our toes at this 934 * point. 935 */ 936 int rc; 937#ifdef DEBUG_PM 938 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name); 939#endif 940 rc = ide_wait_not_busy(HWIF(drive), 35000); 941 if (rc) 942 printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name); 943 SELECT_DRIVE(drive); 944 ide_set_irq(drive, 1); 945 rc = ide_wait_not_busy(HWIF(drive), 100000); 946 if (rc) 947 printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name); 948 } 949} 950 951/** 952 * start_request - start of I/O and command issuing for IDE 953 * 954 * start_request() initiates handling of a new I/O request. It 955 * accepts commands and I/O (read/write) requests. It also does 956 * the final remapping for weird stuff like EZDrive. Once 957 * device mapper can work sector level the EZDrive stuff can go away 958 * 959 * FIXME: this function needs a rename 960 */ 961 962static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq) 963{ 964 ide_startstop_t startstop; 965 sector_t block; 966 967 BUG_ON(!blk_rq_started(rq)); 968 969#ifdef DEBUG 970 printk("%s: start_request: current=0x%08lx\n", 971 HWIF(drive)->name, (unsigned long) rq); 972#endif 973 974 /* bail early if we've exceeded max_failures */ 975 if (drive->max_failures && (drive->failures > drive->max_failures)) { 976 rq->cmd_flags |= REQ_FAILED; 977 goto kill_rq; 978 } 979 980 block = rq->sector; 981 if (blk_fs_request(rq) && 982 (drive->media == ide_disk || drive->media == ide_floppy)) { 983 block += drive->sect0; 984 } 985 /* Yecch - this will shift the entire interval, 986 possibly killing some innocent following sector */ 987 if (block == 0 && drive->remap_0_to_1 == 1) 988 block = 1; /* redirect MBR access to EZ-Drive partn table */ 989 990 if (blk_pm_request(rq)) 991 ide_check_pm_state(drive, rq); 992 993 SELECT_DRIVE(drive); 994 if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) { 995 printk(KERN_ERR "%s: drive not ready for command\n", drive->name); 996 return startstop; 997 } 998 if (!drive->special.all) { 999 ide_driver_t *drv; 1000 1001 /* 1002 * We reset the drive so we need to issue a SETFEATURES. 1003 * Do it _after_ do_special() restored device parameters. 1004 */ 1005 if (drive->current_speed == 0xff) 1006 ide_config_drive_speed(drive, drive->desired_speed); 1007 1008 if (rq->cmd_type == REQ_TYPE_ATA_CMD || 1009 rq->cmd_type == REQ_TYPE_ATA_TASKFILE) 1010 return execute_drive_cmd(drive, rq); 1011 else if (blk_pm_request(rq)) { 1012 struct request_pm_state *pm = rq->data; 1013#ifdef DEBUG_PM 1014 printk("%s: start_power_step(step: %d)\n", 1015 drive->name, rq->pm->pm_step); 1016#endif 1017 startstop = ide_start_power_step(drive, rq); 1018 if (startstop == ide_stopped && 1019 pm->pm_step == ide_pm_state_completed) 1020 ide_complete_pm_request(drive, rq); 1021 return startstop; 1022 } 1023 1024 drv = *(ide_driver_t **)rq->rq_disk->private_data; 1025 return drv->do_request(drive, rq, block); 1026 } 1027 return do_special(drive); 1028kill_rq: 1029 ide_kill_rq(drive, rq); 1030 return ide_stopped; 1031} 1032 1033/** 1034 * ide_stall_queue - pause an IDE device 1035 * @drive: drive to stall 1036 * @timeout: time to stall for (jiffies) 1037 * 1038 * ide_stall_queue() can be used by a drive to give excess bandwidth back 1039 * to the hwgroup by sleeping for timeout jiffies. 1040 */ 1041 1042void ide_stall_queue (ide_drive_t *drive, unsigned long timeout) 1043{ 1044 if (timeout > WAIT_WORSTCASE) 1045 timeout = WAIT_WORSTCASE; 1046 drive->sleep = timeout + jiffies; 1047 drive->sleeping = 1; 1048} 1049 1050EXPORT_SYMBOL(ide_stall_queue); 1051 1052#define WAKEUP(drive) ((drive)->service_start + 2 * (drive)->service_time) 1053 1054/** 1055 * choose_drive - select a drive to service 1056 * @hwgroup: hardware group to select on 1057 * 1058 * choose_drive() selects the next drive which will be serviced. 1059 * This is necessary because the IDE layer can't issue commands 1060 * to both drives on the same cable, unlike SCSI. 1061 */ 1062 1063static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup) 1064{ 1065 ide_drive_t *drive, *best; 1066 1067repeat: 1068 best = NULL; 1069 drive = hwgroup->drive; 1070 1071 /* 1072 * drive is doing pre-flush, ordered write, post-flush sequence. even 1073 * though that is 3 requests, it must be seen as a single transaction. 1074 * we must not preempt this drive until that is complete 1075 */ 1076 if (blk_queue_flushing(drive->queue)) { 1077 /* 1078 * small race where queue could get replugged during 1079 * the 3-request flush cycle, just yank the plug since 1080 * we want it to finish asap 1081 */ 1082 blk_remove_plug(drive->queue); 1083 return drive; 1084 } 1085 1086 do { 1087 if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep)) 1088 && !elv_queue_empty(drive->queue)) { 1089 if (!best 1090 || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep))) 1091 || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best)))) 1092 { 1093 if (!blk_queue_plugged(drive->queue)) 1094 best = drive; 1095 } 1096 } 1097 } while ((drive = drive->next) != hwgroup->drive); 1098 if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) { 1099 long t = (signed long)(WAKEUP(best) - jiffies); 1100 if (t >= WAIT_MIN_SLEEP) { 1101 /* 1102 * We *may* have some time to spare, but first let's see if 1103 * someone can potentially benefit from our nice mood today.. 1104 */ 1105 drive = best->next; 1106 do { 1107 if (!drive->sleeping 1108 && time_before(jiffies - best->service_time, WAKEUP(drive)) 1109 && time_before(WAKEUP(drive), jiffies + t)) 1110 { 1111 ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP)); 1112 goto repeat; 1113 } 1114 } while ((drive = drive->next) != best); 1115 } 1116 } 1117 return best; 1118} 1119 1120/* 1121 * Issue a new request to a drive from hwgroup 1122 * Caller must have already done spin_lock_irqsave(&ide_lock, ..); 1123 * 1124 * A hwgroup is a serialized group of IDE interfaces. Usually there is 1125 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640) 1126 * may have both interfaces in a single hwgroup to "serialize" access. 1127 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped 1128 * together into one hwgroup for serialized access. 1129 * 1130 * Note also that several hwgroups can end up sharing a single IRQ, 1131 * possibly along with many other devices. This is especially common in 1132 * PCI-based systems with off-board IDE controller cards. 1133 * 1134 * The IDE driver uses the single global ide_lock spinlock to protect 1135 * access to the request queues, and to protect the hwgroup->busy flag. 1136 * 1137 * The first thread into the driver for a particular hwgroup sets the 1138 * hwgroup->busy flag to indicate that this hwgroup is now active, 1139 * and then initiates processing of the top request from the request queue. 1140 * 1141 * Other threads attempting entry notice the busy setting, and will simply 1142 * queue their new requests and exit immediately. Note that hwgroup->busy 1143 * remains set even when the driver is merely awaiting the next interrupt. 1144 * Thus, the meaning is "this hwgroup is busy processing a request". 1145 * 1146 * When processing of a request completes, the completing thread or IRQ-handler 1147 * will start the next request from the queue. If no more work remains, 1148 * the driver will clear the hwgroup->busy flag and exit. 1149 * 1150 * The ide_lock (spinlock) is used to protect all access to the 1151 * hwgroup->busy flag, but is otherwise not needed for most processing in 1152 * the driver. This makes the driver much more friendlier to shared IRQs 1153 * than previous designs, while remaining 100% (?) SMP safe and capable. 1154 */ 1155static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq) 1156{ 1157 ide_drive_t *drive; 1158 ide_hwif_t *hwif; 1159 struct request *rq; 1160 ide_startstop_t startstop; 1161 int loops = 0; 1162 1163 /* for atari only: POSSIBLY BROKEN HERE(?) */ 1164 ide_get_lock(ide_intr, hwgroup); 1165 1166 /* caller must own ide_lock */ 1167 BUG_ON(!irqs_disabled()); 1168 1169 while (!hwgroup->busy) { 1170 hwgroup->busy = 1; 1171 drive = choose_drive(hwgroup); 1172 if (drive == NULL) { 1173 int sleeping = 0; 1174 unsigned long sleep = 0; /* shut up, gcc */ 1175 hwgroup->rq = NULL; 1176 drive = hwgroup->drive; 1177 do { 1178 if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) { 1179 sleeping = 1; 1180 sleep = drive->sleep; 1181 } 1182 } while ((drive = drive->next) != hwgroup->drive); 1183 if (sleeping) { 1184 /* 1185 * Take a short snooze, and then wake up this hwgroup again. 1186 * This gives other hwgroups on the same a chance to 1187 * play fairly with us, just in case there are big differences 1188 * in relative throughputs.. don't want to hog the cpu too much. 1189 */ 1190 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP)) 1191 sleep = jiffies + WAIT_MIN_SLEEP; 1192#if 1 1193 if (timer_pending(&hwgroup->timer)) 1194 printk(KERN_CRIT "ide_set_handler: timer already active\n"); 1195#endif 1196 /* so that ide_timer_expiry knows what to do */ 1197 hwgroup->sleeping = 1; 1198 hwgroup->req_gen_timer = hwgroup->req_gen; 1199 mod_timer(&hwgroup->timer, sleep); 1200 /* we purposely leave hwgroup->busy==1 1201 * while sleeping */ 1202 } else { 1203 /* Ugly, but how can we sleep for the lock 1204 * otherwise? perhaps from tq_disk? 1205 */ 1206 1207 /* for atari only */ 1208 ide_release_lock(); 1209 hwgroup->busy = 0; 1210 } 1211 1212 /* no more work for this hwgroup (for now) */ 1213 return; 1214 } 1215 again: 1216 hwif = HWIF(drive); 1217 if (hwgroup->hwif->sharing_irq && hwif != hwgroup->hwif) { 1218 /* 1219 * set nIEN for previous hwif, drives in the 1220 * quirk_list may not like intr setups/cleanups 1221 */ 1222 if (drive->quirk_list != 1) 1223 ide_set_irq(drive, 0); 1224 } 1225 hwgroup->hwif = hwif; 1226 hwgroup->drive = drive; 1227 drive->sleeping = 0; 1228 drive->service_start = jiffies; 1229 1230 if (blk_queue_plugged(drive->queue)) { 1231 printk(KERN_ERR "ide: huh? queue was plugged!\n"); 1232 break; 1233 } 1234 1235 /* 1236 * we know that the queue isn't empty, but this can happen 1237 * if the q->prep_rq_fn() decides to kill a request 1238 */ 1239 rq = elv_next_request(drive->queue); 1240 if (!rq) { 1241 hwgroup->busy = 0; 1242 break; 1243 } 1244 1245 /* 1246 * Sanity: don't accept a request that isn't a PM request 1247 * if we are currently power managed. This is very important as 1248 * blk_stop_queue() doesn't prevent the elv_next_request() 1249 * above to return us whatever is in the queue. Since we call 1250 * ide_do_request() ourselves, we end up taking requests while 1251 * the queue is blocked... 1252 * 1253 * We let requests forced at head of queue with ide-preempt 1254 * though. I hope that doesn't happen too much, hopefully not 1255 * unless the subdriver triggers such a thing in its own PM 1256 * state machine. 1257 * 1258 * We count how many times we loop here to make sure we service 1259 * all drives in the hwgroup without looping for ever 1260 */ 1261 if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) { 1262 drive = drive->next ? drive->next : hwgroup->drive; 1263 if (loops++ < 4 && !blk_queue_plugged(drive->queue)) 1264 goto again; 1265 /* We clear busy, there should be no pending ATA command at this point. */ 1266 hwgroup->busy = 0; 1267 break; 1268 } 1269 1270 hwgroup->rq = rq; 1271 1272 /* 1273 * Some systems have trouble with IDE IRQs arriving while 1274 * the driver is still setting things up. So, here we disable 1275 * the IRQ used by this interface while the request is being started. 1276 * This may look bad at first, but pretty much the same thing 1277 * happens anyway when any interrupt comes in, IDE or otherwise 1278 * -- the kernel masks the IRQ while it is being handled. 1279 */ 1280 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq) 1281 disable_irq_nosync(hwif->irq); 1282 spin_unlock(&ide_lock); 1283 local_irq_enable_in_hardirq(); 1284 /* allow other IRQs while we start this request */ 1285 startstop = start_request(drive, rq); 1286 spin_lock_irq(&ide_lock); 1287 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq) 1288 enable_irq(hwif->irq); 1289 if (startstop == ide_stopped) 1290 hwgroup->busy = 0; 1291 } 1292} 1293 1294/* 1295 * Passes the stuff to ide_do_request 1296 */ 1297void do_ide_request(struct request_queue *q) 1298{ 1299 ide_drive_t *drive = q->queuedata; 1300 1301 ide_do_request(HWGROUP(drive), IDE_NO_IRQ); 1302} 1303 1304/* 1305 * un-busy the hwgroup etc, and clear any pending DMA status. we want to 1306 * retry the current request in pio mode instead of risking tossing it 1307 * all away 1308 */ 1309static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error) 1310{ 1311 ide_hwif_t *hwif = HWIF(drive); 1312 struct request *rq; 1313 ide_startstop_t ret = ide_stopped; 1314 1315 /* 1316 * end current dma transaction 1317 */ 1318 1319 if (error < 0) { 1320 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name); 1321 (void)HWIF(drive)->ide_dma_end(drive); 1322 ret = ide_error(drive, "dma timeout error", 1323 hwif->INB(IDE_STATUS_REG)); 1324 } else { 1325 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name); 1326 hwif->dma_timeout(drive); 1327 } 1328 1329 /* 1330 * disable dma for now, but remember that we did so because of 1331 * a timeout -- we'll reenable after we finish this next request 1332 * (or rather the first chunk of it) in pio. 1333 */ 1334 drive->retry_pio++; 1335 drive->state = DMA_PIO_RETRY; 1336 ide_dma_off_quietly(drive); 1337 1338 /* 1339 * un-busy drive etc (hwgroup->busy is cleared on return) and 1340 * make sure request is sane 1341 */ 1342 rq = HWGROUP(drive)->rq; 1343 1344 if (!rq) 1345 goto out; 1346 1347 HWGROUP(drive)->rq = NULL; 1348 1349 rq->errors = 0; 1350 1351 if (!rq->bio) 1352 goto out; 1353 1354 rq->sector = rq->bio->bi_sector; 1355 rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9; 1356 rq->hard_cur_sectors = rq->current_nr_sectors; 1357 rq->buffer = bio_data(rq->bio); 1358out: 1359 return ret; 1360} 1361 1362/** 1363 * ide_timer_expiry - handle lack of an IDE interrupt 1364 * @data: timer callback magic (hwgroup) 1365 * 1366 * An IDE command has timed out before the expected drive return 1367 * occurred. At this point we attempt to clean up the current 1368 * mess. If the current handler includes an expiry handler then 1369 * we invoke the expiry handler, and providing it is happy the 1370 * work is done. If that fails we apply generic recovery rules 1371 * invoking the handler and checking the drive DMA status. We 1372 * have an excessively incestuous relationship with the DMA 1373 * logic that wants cleaning up. 1374 */ 1375 1376void ide_timer_expiry (unsigned long data) 1377{ 1378 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *) data; 1379 ide_handler_t *handler; 1380 ide_expiry_t *expiry; 1381 unsigned long flags; 1382 unsigned long wait = -1; 1383 1384 spin_lock_irqsave(&ide_lock, flags); 1385 1386 if (((handler = hwgroup->handler) == NULL) || 1387 (hwgroup->req_gen != hwgroup->req_gen_timer)) { 1388 /* 1389 * Either a marginal timeout occurred 1390 * (got the interrupt just as timer expired), 1391 * or we were "sleeping" to give other devices a chance. 1392 * Either way, we don't really want to complain about anything. 1393 */ 1394 if (hwgroup->sleeping) { 1395 hwgroup->sleeping = 0; 1396 hwgroup->busy = 0; 1397 } 1398 } else { 1399 ide_drive_t *drive = hwgroup->drive; 1400 if (!drive) { 1401 printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n"); 1402 hwgroup->handler = NULL; 1403 } else { 1404 ide_hwif_t *hwif; 1405 ide_startstop_t startstop = ide_stopped; 1406 if (!hwgroup->busy) { 1407 hwgroup->busy = 1; /* paranoia */ 1408 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name); 1409 } 1410 if ((expiry = hwgroup->expiry) != NULL) { 1411 /* continue */ 1412 if ((wait = expiry(drive)) > 0) { 1413 /* reset timer */ 1414 hwgroup->timer.expires = jiffies + wait; 1415 hwgroup->req_gen_timer = hwgroup->req_gen; 1416 add_timer(&hwgroup->timer); 1417 spin_unlock_irqrestore(&ide_lock, flags); 1418 return; 1419 } 1420 } 1421 hwgroup->handler = NULL; 1422 /* 1423 * We need to simulate a real interrupt when invoking 1424 * the handler() function, which means we need to 1425 * globally mask the specific IRQ: 1426 */ 1427 spin_unlock(&ide_lock); 1428 hwif = HWIF(drive); 1429 /* disable_irq_nosync ?? */ 1430 disable_irq(hwif->irq); 1431 /* local CPU only, 1432 * as if we were handling an interrupt */ 1433 local_irq_disable(); 1434 if (hwgroup->polling) { 1435 startstop = handler(drive); 1436 } else if (drive_is_ready(drive)) { 1437 if (drive->waiting_for_dma) 1438 hwgroup->hwif->dma_lost_irq(drive); 1439 (void)ide_ack_intr(hwif); 1440 printk(KERN_WARNING "%s: lost interrupt\n", drive->name); 1441 startstop = handler(drive); 1442 } else { 1443 if (drive->waiting_for_dma) { 1444 startstop = ide_dma_timeout_retry(drive, wait); 1445 } else 1446 startstop = 1447 ide_error(drive, "irq timeout", hwif->INB(IDE_STATUS_REG)); 1448 } 1449 drive->service_time = jiffies - drive->service_start; 1450 spin_lock_irq(&ide_lock); 1451 enable_irq(hwif->irq); 1452 if (startstop == ide_stopped) 1453 hwgroup->busy = 0; 1454 } 1455 } 1456 ide_do_request(hwgroup, IDE_NO_IRQ); 1457 spin_unlock_irqrestore(&ide_lock, flags); 1458} 1459 1460/** 1461 * unexpected_intr - handle an unexpected IDE interrupt 1462 * @irq: interrupt line 1463 * @hwgroup: hwgroup being processed 1464 * 1465 * There's nothing really useful we can do with an unexpected interrupt, 1466 * other than reading the status register (to clear it), and logging it. 1467 * There should be no way that an irq can happen before we're ready for it, 1468 * so we needn't worry much about losing an "important" interrupt here. 1469 * 1470 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever 1471 * the drive enters "idle", "standby", or "sleep" mode, so if the status 1472 * looks "good", we just ignore the interrupt completely. 1473 * 1474 * This routine assumes __cli() is in effect when called. 1475 * 1476 * If an unexpected interrupt happens on irq15 while we are handling irq14 1477 * and if the two interfaces are "serialized" (CMD640), then it looks like 1478 * we could screw up by interfering with a new request being set up for 1479 * irq15. 1480 * 1481 * In reality, this is a non-issue. The new command is not sent unless 1482 * the drive is ready to accept one, in which case we know the drive is 1483 * not trying to interrupt us. And ide_set_handler() is always invoked 1484 * before completing the issuance of any new drive command, so we will not 1485 * be accidentally invoked as a result of any valid command completion 1486 * interrupt. 1487 * 1488 * Note that we must walk the entire hwgroup here. We know which hwif 1489 * is doing the current command, but we don't know which hwif burped 1490 * mysteriously. 1491 */ 1492 1493static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup) 1494{ 1495 u8 stat; 1496 ide_hwif_t *hwif = hwgroup->hwif; 1497 1498 /* 1499 * handle the unexpected interrupt 1500 */ 1501 do { 1502 if (hwif->irq == irq) { 1503 stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]); 1504 if (!OK_STAT(stat, READY_STAT, BAD_STAT)) { 1505 /* Try to not flood the console with msgs */ 1506 static unsigned long last_msgtime, count; 1507 ++count; 1508 if (time_after(jiffies, last_msgtime + HZ)) { 1509 last_msgtime = jiffies; 1510 printk(KERN_ERR "%s%s: unexpected interrupt, " 1511 "status=0x%02x, count=%ld\n", 1512 hwif->name, 1513 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count); 1514 } 1515 } 1516 } 1517 } while ((hwif = hwif->next) != hwgroup->hwif); 1518} 1519 1520/** 1521 * ide_intr - default IDE interrupt handler 1522 * @irq: interrupt number 1523 * @dev_id: hwif group 1524 * @regs: unused weirdness from the kernel irq layer 1525 * 1526 * This is the default IRQ handler for the IDE layer. You should 1527 * not need to override it. If you do be aware it is subtle in 1528 * places 1529 * 1530 * hwgroup->hwif is the interface in the group currently performing 1531 * a command. hwgroup->drive is the drive and hwgroup->handler is 1532 * the IRQ handler to call. As we issue a command the handlers 1533 * step through multiple states, reassigning the handler to the 1534 * next step in the process. Unlike a smart SCSI controller IDE 1535 * expects the main processor to sequence the various transfer 1536 * stages. We also manage a poll timer to catch up with most 1537 * timeout situations. There are still a few where the handlers 1538 * don't ever decide to give up. 1539 * 1540 * The handler eventually returns ide_stopped to indicate the 1541 * request completed. At this point we issue the next request 1542 * on the hwgroup and the process begins again. 1543 */ 1544 1545irqreturn_t ide_intr (int irq, void *dev_id) 1546{ 1547 unsigned long flags; 1548 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id; 1549 ide_hwif_t *hwif; 1550 ide_drive_t *drive; 1551 ide_handler_t *handler; 1552 ide_startstop_t startstop; 1553 1554 spin_lock_irqsave(&ide_lock, flags); 1555 hwif = hwgroup->hwif; 1556 1557 if (!ide_ack_intr(hwif)) { 1558 spin_unlock_irqrestore(&ide_lock, flags); 1559 return IRQ_NONE; 1560 } 1561 1562 if ((handler = hwgroup->handler) == NULL || hwgroup->polling) { 1563 /* 1564 * Not expecting an interrupt from this drive. 1565 * That means this could be: 1566 * (1) an interrupt from another PCI device 1567 * sharing the same PCI INT# as us. 1568 * or (2) a drive just entered sleep or standby mode, 1569 * and is interrupting to let us know. 1570 * or (3) a spurious interrupt of unknown origin. 1571 * 1572 * For PCI, we cannot tell the difference, 1573 * so in that case we just ignore it and hope it goes away. 1574 * 1575 * FIXME: unexpected_intr should be hwif-> then we can 1576 * remove all the ifdef PCI crap 1577 */ 1578#ifdef CONFIG_BLK_DEV_IDEPCI 1579 if (hwif->pci_dev && !hwif->pci_dev->vendor) 1580#endif /* CONFIG_BLK_DEV_IDEPCI */ 1581 { 1582 /* 1583 * Probably not a shared PCI interrupt, 1584 * so we can safely try to do something about it: 1585 */ 1586 unexpected_intr(irq, hwgroup); 1587#ifdef CONFIG_BLK_DEV_IDEPCI 1588 } else { 1589 /* 1590 * Whack the status register, just in case 1591 * we have a leftover pending IRQ. 1592 */ 1593 (void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]); 1594#endif /* CONFIG_BLK_DEV_IDEPCI */ 1595 } 1596 spin_unlock_irqrestore(&ide_lock, flags); 1597 return IRQ_NONE; 1598 } 1599 drive = hwgroup->drive; 1600 if (!drive) { 1601 /* 1602 * This should NEVER happen, and there isn't much 1603 * we could do about it here. 1604 * 1605 * [Note - this can occur if the drive is hot unplugged] 1606 */ 1607 spin_unlock_irqrestore(&ide_lock, flags); 1608 return IRQ_HANDLED; 1609 } 1610 if (!drive_is_ready(drive)) { 1611 /* 1612 * This happens regularly when we share a PCI IRQ with 1613 * another device. Unfortunately, it can also happen 1614 * with some buggy drives that trigger the IRQ before 1615 * their status register is up to date. Hopefully we have 1616 * enough advance overhead that the latter isn't a problem. 1617 */ 1618 spin_unlock_irqrestore(&ide_lock, flags); 1619 return IRQ_NONE; 1620 } 1621 if (!hwgroup->busy) { 1622 hwgroup->busy = 1; /* paranoia */ 1623 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name); 1624 } 1625 hwgroup->handler = NULL; 1626 hwgroup->req_gen++; 1627 del_timer(&hwgroup->timer); 1628 spin_unlock(&ide_lock); 1629 1630 /* Some controllers might set DMA INTR no matter DMA or PIO; 1631 * bmdma status might need to be cleared even for 1632 * PIO interrupts to prevent spurious/lost irq. 1633 */ 1634 if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma)) 1635 /* ide_dma_end() needs bmdma status for error checking. 1636 * So, skip clearing bmdma status here and leave it 1637 * to ide_dma_end() if this is dma interrupt. 1638 */ 1639 hwif->ide_dma_clear_irq(drive); 1640 1641 if (drive->unmask) 1642 local_irq_enable_in_hardirq(); 1643 /* service this interrupt, may set handler for next interrupt */ 1644 startstop = handler(drive); 1645 spin_lock_irq(&ide_lock); 1646 1647 /* 1648 * Note that handler() may have set things up for another 1649 * interrupt to occur soon, but it cannot happen until 1650 * we exit from this routine, because it will be the 1651 * same irq as is currently being serviced here, and Linux 1652 * won't allow another of the same (on any CPU) until we return. 1653 */ 1654 drive->service_time = jiffies - drive->service_start; 1655 if (startstop == ide_stopped) { 1656 if (hwgroup->handler == NULL) { /* paranoia */ 1657 hwgroup->busy = 0; 1658 ide_do_request(hwgroup, hwif->irq); 1659 } else { 1660 printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler " 1661 "on exit\n", drive->name); 1662 } 1663 } 1664 spin_unlock_irqrestore(&ide_lock, flags); 1665 return IRQ_HANDLED; 1666} 1667 1668/** 1669 * ide_init_drive_cmd - initialize a drive command request 1670 * @rq: request object 1671 * 1672 * Initialize a request before we fill it in and send it down to 1673 * ide_do_drive_cmd. Commands must be set up by this function. Right 1674 * now it doesn't do a lot, but if that changes abusers will have a 1675 * nasty surprise. 1676 */ 1677 1678void ide_init_drive_cmd (struct request *rq) 1679{ 1680 memset(rq, 0, sizeof(*rq)); 1681 rq->cmd_type = REQ_TYPE_ATA_CMD; 1682 rq->ref_count = 1; 1683} 1684 1685EXPORT_SYMBOL(ide_init_drive_cmd); 1686 1687/** 1688 * ide_do_drive_cmd - issue IDE special command 1689 * @drive: device to issue command 1690 * @rq: request to issue 1691 * @action: action for processing 1692 * 1693 * This function issues a special IDE device request 1694 * onto the request queue. 1695 * 1696 * If action is ide_wait, then the rq is queued at the end of the 1697 * request queue, and the function sleeps until it has been processed. 1698 * This is for use when invoked from an ioctl handler. 1699 * 1700 * If action is ide_preempt, then the rq is queued at the head of 1701 * the request queue, displacing the currently-being-processed 1702 * request and this function returns immediately without waiting 1703 * for the new rq to be completed. This is VERY DANGEROUS, and is 1704 * intended for careful use by the ATAPI tape/cdrom driver code. 1705 * 1706 * If action is ide_end, then the rq is queued at the end of the 1707 * request queue, and the function returns immediately without waiting 1708 * for the new rq to be completed. This is again intended for careful 1709 * use by the ATAPI tape/cdrom driver code. 1710 */ 1711 1712int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action) 1713{ 1714 unsigned long flags; 1715 ide_hwgroup_t *hwgroup = HWGROUP(drive); 1716 DECLARE_COMPLETION_ONSTACK(wait); 1717 int where = ELEVATOR_INSERT_BACK, err; 1718 int must_wait = (action == ide_wait || action == ide_head_wait); 1719 1720 rq->errors = 0; 1721 1722 /* 1723 * we need to hold an extra reference to request for safe inspection 1724 * after completion 1725 */ 1726 if (must_wait) { 1727 rq->ref_count++; 1728 rq->end_io_data = &wait; 1729 rq->end_io = blk_end_sync_rq; 1730 } 1731 1732 spin_lock_irqsave(&ide_lock, flags); 1733 if (action == ide_preempt) 1734 hwgroup->rq = NULL; 1735 if (action == ide_preempt || action == ide_head_wait) { 1736 where = ELEVATOR_INSERT_FRONT; 1737 rq->cmd_flags |= REQ_PREEMPT; 1738 } 1739 __elv_add_request(drive->queue, rq, where, 0); 1740 ide_do_request(hwgroup, IDE_NO_IRQ); 1741 spin_unlock_irqrestore(&ide_lock, flags); 1742 1743 err = 0; 1744 if (must_wait) { 1745 wait_for_completion(&wait); 1746 if (rq->errors) 1747 err = -EIO; 1748 1749 blk_put_request(rq); 1750 } 1751 1752 return err; 1753} 1754 1755EXPORT_SYMBOL(ide_do_drive_cmd); 1756 1757void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma) 1758{ 1759 ide_task_t task; 1760 1761 memset(&task, 0, sizeof(task)); 1762 task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM | 1763 IDE_TFLAG_OUT_FEATURE | tf_flags; 1764 task.tf.feature = dma; /* Use PIO/DMA */ 1765 task.tf.lbam = bcount & 0xff; 1766 task.tf.lbah = (bcount >> 8) & 0xff; 1767 1768 ide_tf_load(drive, &task); 1769} 1770 1771EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load); 1772