ide-io.c revision 54688aa372cbc83c4361bfb9236f9bfe02168e19
1/* 2 * IDE I/O functions 3 * 4 * Basic PIO and command management functionality. 5 * 6 * This code was split off from ide.c. See ide.c for history and original 7 * copyrights. 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms of the GNU General Public License as published by the 11 * Free Software Foundation; either version 2, or (at your option) any 12 * later version. 13 * 14 * This program is distributed in the hope that it will be useful, but 15 * WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 17 * General Public License for more details. 18 * 19 * For the avoidance of doubt the "preferred form" of this code is one which 20 * is in an open non patent encumbered format. Where cryptographic key signing 21 * forms part of the process of creating an executable the information 22 * including keys needed to generate an equivalently functional executable 23 * are deemed to be part of the source code. 24 */ 25 26 27#include <linux/module.h> 28#include <linux/types.h> 29#include <linux/string.h> 30#include <linux/kernel.h> 31#include <linux/timer.h> 32#include <linux/mm.h> 33#include <linux/interrupt.h> 34#include <linux/major.h> 35#include <linux/errno.h> 36#include <linux/genhd.h> 37#include <linux/blkpg.h> 38#include <linux/slab.h> 39#include <linux/init.h> 40#include <linux/pci.h> 41#include <linux/delay.h> 42#include <linux/ide.h> 43#include <linux/completion.h> 44#include <linux/reboot.h> 45#include <linux/cdrom.h> 46#include <linux/seq_file.h> 47#include <linux/device.h> 48#include <linux/kmod.h> 49#include <linux/scatterlist.h> 50#include <linux/bitops.h> 51 52#include <asm/byteorder.h> 53#include <asm/irq.h> 54#include <asm/uaccess.h> 55#include <asm/io.h> 56 57static int __ide_end_request(ide_drive_t *drive, struct request *rq, 58 int uptodate, unsigned int nr_bytes, int dequeue) 59{ 60 int ret = 1; 61 62 /* 63 * if failfast is set on a request, override number of sectors and 64 * complete the whole request right now 65 */ 66 if (blk_noretry_request(rq) && end_io_error(uptodate)) 67 nr_bytes = rq->hard_nr_sectors << 9; 68 69 if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors) 70 rq->errors = -EIO; 71 72 /* 73 * decide whether to reenable DMA -- 3 is a random magic for now, 74 * if we DMA timeout more than 3 times, just stay in PIO 75 */ 76 if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) { 77 drive->state = 0; 78 HWGROUP(drive)->hwif->ide_dma_on(drive); 79 } 80 81 if (!end_that_request_chunk(rq, uptodate, nr_bytes)) { 82 add_disk_randomness(rq->rq_disk); 83 if (dequeue) { 84 if (!list_empty(&rq->queuelist)) 85 blkdev_dequeue_request(rq); 86 HWGROUP(drive)->rq = NULL; 87 } 88 end_that_request_last(rq, uptodate); 89 ret = 0; 90 } 91 92 return ret; 93} 94 95/** 96 * ide_end_request - complete an IDE I/O 97 * @drive: IDE device for the I/O 98 * @uptodate: 99 * @nr_sectors: number of sectors completed 100 * 101 * This is our end_request wrapper function. We complete the I/O 102 * update random number input and dequeue the request, which if 103 * it was tagged may be out of order. 104 */ 105 106int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors) 107{ 108 unsigned int nr_bytes = nr_sectors << 9; 109 struct request *rq; 110 unsigned long flags; 111 int ret = 1; 112 113 /* 114 * room for locking improvements here, the calls below don't 115 * need the queue lock held at all 116 */ 117 spin_lock_irqsave(&ide_lock, flags); 118 rq = HWGROUP(drive)->rq; 119 120 if (!nr_bytes) { 121 if (blk_pc_request(rq)) 122 nr_bytes = rq->data_len; 123 else 124 nr_bytes = rq->hard_cur_sectors << 9; 125 } 126 127 ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1); 128 129 spin_unlock_irqrestore(&ide_lock, flags); 130 return ret; 131} 132EXPORT_SYMBOL(ide_end_request); 133 134/* 135 * Power Management state machine. This one is rather trivial for now, 136 * we should probably add more, like switching back to PIO on suspend 137 * to help some BIOSes, re-do the door locking on resume, etc... 138 */ 139 140enum { 141 ide_pm_flush_cache = ide_pm_state_start_suspend, 142 idedisk_pm_standby, 143 144 idedisk_pm_restore_pio = ide_pm_state_start_resume, 145 idedisk_pm_idle, 146 ide_pm_restore_dma, 147}; 148 149static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error) 150{ 151 struct request_pm_state *pm = rq->data; 152 153 if (drive->media != ide_disk) 154 return; 155 156 switch (pm->pm_step) { 157 case ide_pm_flush_cache: /* Suspend step 1 (flush cache) complete */ 158 if (pm->pm_state == PM_EVENT_FREEZE) 159 pm->pm_step = ide_pm_state_completed; 160 else 161 pm->pm_step = idedisk_pm_standby; 162 break; 163 case idedisk_pm_standby: /* Suspend step 2 (standby) complete */ 164 pm->pm_step = ide_pm_state_completed; 165 break; 166 case idedisk_pm_restore_pio: /* Resume step 1 complete */ 167 pm->pm_step = idedisk_pm_idle; 168 break; 169 case idedisk_pm_idle: /* Resume step 2 (idle) complete */ 170 pm->pm_step = ide_pm_restore_dma; 171 break; 172 } 173} 174 175static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq) 176{ 177 struct request_pm_state *pm = rq->data; 178 ide_task_t *args = rq->special; 179 180 memset(args, 0, sizeof(*args)); 181 182 switch (pm->pm_step) { 183 case ide_pm_flush_cache: /* Suspend step 1 (flush cache) */ 184 if (drive->media != ide_disk) 185 break; 186 /* Not supported? Switch to next step now. */ 187 if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) { 188 ide_complete_power_step(drive, rq, 0, 0); 189 return ide_stopped; 190 } 191 if (ide_id_has_flush_cache_ext(drive->id)) 192 args->tf.command = WIN_FLUSH_CACHE_EXT; 193 else 194 args->tf.command = WIN_FLUSH_CACHE; 195 goto out_do_tf; 196 197 case idedisk_pm_standby: /* Suspend step 2 (standby) */ 198 args->tf.command = WIN_STANDBYNOW1; 199 goto out_do_tf; 200 201 case idedisk_pm_restore_pio: /* Resume step 1 (restore PIO) */ 202 ide_set_max_pio(drive); 203 /* 204 * skip idedisk_pm_idle for ATAPI devices 205 */ 206 if (drive->media != ide_disk) 207 pm->pm_step = ide_pm_restore_dma; 208 else 209 ide_complete_power_step(drive, rq, 0, 0); 210 return ide_stopped; 211 212 case idedisk_pm_idle: /* Resume step 2 (idle) */ 213 args->tf.command = WIN_IDLEIMMEDIATE; 214 goto out_do_tf; 215 216 case ide_pm_restore_dma: /* Resume step 3 (restore DMA) */ 217 /* 218 * Right now, all we do is call ide_set_dma(drive), 219 * we could be smarter and check for current xfer_speed 220 * in struct drive etc... 221 */ 222 if (drive->hwif->ide_dma_on == NULL) 223 break; 224 drive->hwif->dma_off_quietly(drive); 225 /* 226 * TODO: respect ->using_dma setting 227 */ 228 ide_set_dma(drive); 229 break; 230 } 231 pm->pm_step = ide_pm_state_completed; 232 return ide_stopped; 233 234out_do_tf: 235 args->tf_flags = IDE_TFLAG_OUT_TF; 236 if (drive->addressing == 1) 237 args->tf_flags |= (IDE_TFLAG_LBA48 | IDE_TFLAG_OUT_HOB); 238 args->command_type = IDE_DRIVE_TASK_NO_DATA; 239 args->handler = task_no_data_intr; 240 return do_rw_taskfile(drive, args); 241} 242 243/** 244 * ide_end_dequeued_request - complete an IDE I/O 245 * @drive: IDE device for the I/O 246 * @uptodate: 247 * @nr_sectors: number of sectors completed 248 * 249 * Complete an I/O that is no longer on the request queue. This 250 * typically occurs when we pull the request and issue a REQUEST_SENSE. 251 * We must still finish the old request but we must not tamper with the 252 * queue in the meantime. 253 * 254 * NOTE: This path does not handle barrier, but barrier is not supported 255 * on ide-cd anyway. 256 */ 257 258int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq, 259 int uptodate, int nr_sectors) 260{ 261 unsigned long flags; 262 int ret; 263 264 spin_lock_irqsave(&ide_lock, flags); 265 BUG_ON(!blk_rq_started(rq)); 266 ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0); 267 spin_unlock_irqrestore(&ide_lock, flags); 268 269 return ret; 270} 271EXPORT_SYMBOL_GPL(ide_end_dequeued_request); 272 273 274/** 275 * ide_complete_pm_request - end the current Power Management request 276 * @drive: target drive 277 * @rq: request 278 * 279 * This function cleans up the current PM request and stops the queue 280 * if necessary. 281 */ 282static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq) 283{ 284 unsigned long flags; 285 286#ifdef DEBUG_PM 287 printk("%s: completing PM request, %s\n", drive->name, 288 blk_pm_suspend_request(rq) ? "suspend" : "resume"); 289#endif 290 spin_lock_irqsave(&ide_lock, flags); 291 if (blk_pm_suspend_request(rq)) { 292 blk_stop_queue(drive->queue); 293 } else { 294 drive->blocked = 0; 295 blk_start_queue(drive->queue); 296 } 297 blkdev_dequeue_request(rq); 298 HWGROUP(drive)->rq = NULL; 299 end_that_request_last(rq, 1); 300 spin_unlock_irqrestore(&ide_lock, flags); 301} 302 303/** 304 * ide_end_drive_cmd - end an explicit drive command 305 * @drive: command 306 * @stat: status bits 307 * @err: error bits 308 * 309 * Clean up after success/failure of an explicit drive command. 310 * These get thrown onto the queue so they are synchronized with 311 * real I/O operations on the drive. 312 * 313 * In LBA48 mode we have to read the register set twice to get 314 * all the extra information out. 315 */ 316 317void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err) 318{ 319 ide_hwif_t *hwif = HWIF(drive); 320 unsigned long flags; 321 struct request *rq; 322 323 spin_lock_irqsave(&ide_lock, flags); 324 rq = HWGROUP(drive)->rq; 325 spin_unlock_irqrestore(&ide_lock, flags); 326 327 if (rq->cmd_type == REQ_TYPE_ATA_CMD) { 328 u8 *args = (u8 *) rq->buffer; 329 if (rq->errors == 0) 330 rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT); 331 332 if (args) { 333 args[0] = stat; 334 args[1] = err; 335 args[2] = hwif->INB(IDE_NSECTOR_REG); 336 } 337 } else if (rq->cmd_type == REQ_TYPE_ATA_TASK) { 338 u8 *args = (u8 *) rq->buffer; 339 if (rq->errors == 0) 340 rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT); 341 342 if (args) { 343 args[0] = stat; 344 args[1] = err; 345 /* be sure we're looking at the low order bits */ 346 hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG); 347 args[2] = hwif->INB(IDE_NSECTOR_REG); 348 args[3] = hwif->INB(IDE_SECTOR_REG); 349 args[4] = hwif->INB(IDE_LCYL_REG); 350 args[5] = hwif->INB(IDE_HCYL_REG); 351 args[6] = hwif->INB(IDE_SELECT_REG); 352 } 353 } else if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) { 354 ide_task_t *args = (ide_task_t *) rq->special; 355 if (rq->errors == 0) 356 rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT); 357 358 if (args) { 359 struct ide_taskfile *tf = &args->tf; 360 361 if (args->tf_in_flags.b.data) { 362 u16 data = hwif->INW(IDE_DATA_REG); 363 364 tf->data = data & 0xff; 365 tf->hob_data = (data >> 8) & 0xff; 366 } 367 tf->error = err; 368 /* be sure we're looking at the low order bits */ 369 hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG); 370 tf->nsect = hwif->INB(IDE_NSECTOR_REG); 371 tf->lbal = hwif->INB(IDE_SECTOR_REG); 372 tf->lbam = hwif->INB(IDE_LCYL_REG); 373 tf->lbah = hwif->INB(IDE_HCYL_REG); 374 tf->device = hwif->INB(IDE_SELECT_REG); 375 tf->status = stat; 376 377 if (drive->addressing == 1) { 378 hwif->OUTB(drive->ctl|0x80, IDE_CONTROL_REG); 379 tf->hob_feature = hwif->INB(IDE_FEATURE_REG); 380 tf->hob_nsect = hwif->INB(IDE_NSECTOR_REG); 381 tf->hob_lbal = hwif->INB(IDE_SECTOR_REG); 382 tf->hob_lbam = hwif->INB(IDE_LCYL_REG); 383 tf->hob_lbah = hwif->INB(IDE_HCYL_REG); 384 } 385 } 386 } else if (blk_pm_request(rq)) { 387 struct request_pm_state *pm = rq->data; 388#ifdef DEBUG_PM 389 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n", 390 drive->name, rq->pm->pm_step, stat, err); 391#endif 392 ide_complete_power_step(drive, rq, stat, err); 393 if (pm->pm_step == ide_pm_state_completed) 394 ide_complete_pm_request(drive, rq); 395 return; 396 } 397 398 spin_lock_irqsave(&ide_lock, flags); 399 blkdev_dequeue_request(rq); 400 HWGROUP(drive)->rq = NULL; 401 rq->errors = err; 402 end_that_request_last(rq, !rq->errors); 403 spin_unlock_irqrestore(&ide_lock, flags); 404} 405 406EXPORT_SYMBOL(ide_end_drive_cmd); 407 408/** 409 * try_to_flush_leftover_data - flush junk 410 * @drive: drive to flush 411 * 412 * try_to_flush_leftover_data() is invoked in response to a drive 413 * unexpectedly having its DRQ_STAT bit set. As an alternative to 414 * resetting the drive, this routine tries to clear the condition 415 * by read a sector's worth of data from the drive. Of course, 416 * this may not help if the drive is *waiting* for data from *us*. 417 */ 418static void try_to_flush_leftover_data (ide_drive_t *drive) 419{ 420 int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS; 421 422 if (drive->media != ide_disk) 423 return; 424 while (i > 0) { 425 u32 buffer[16]; 426 u32 wcount = (i > 16) ? 16 : i; 427 428 i -= wcount; 429 HWIF(drive)->ata_input_data(drive, buffer, wcount); 430 } 431} 432 433static void ide_kill_rq(ide_drive_t *drive, struct request *rq) 434{ 435 if (rq->rq_disk) { 436 ide_driver_t *drv; 437 438 drv = *(ide_driver_t **)rq->rq_disk->private_data; 439 drv->end_request(drive, 0, 0); 440 } else 441 ide_end_request(drive, 0, 0); 442} 443 444static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err) 445{ 446 ide_hwif_t *hwif = drive->hwif; 447 448 if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) { 449 /* other bits are useless when BUSY */ 450 rq->errors |= ERROR_RESET; 451 } else if (stat & ERR_STAT) { 452 /* err has different meaning on cdrom and tape */ 453 if (err == ABRT_ERR) { 454 if (drive->select.b.lba && 455 /* some newer drives don't support WIN_SPECIFY */ 456 hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY) 457 return ide_stopped; 458 } else if ((err & BAD_CRC) == BAD_CRC) { 459 /* UDMA crc error, just retry the operation */ 460 drive->crc_count++; 461 } else if (err & (BBD_ERR | ECC_ERR)) { 462 /* retries won't help these */ 463 rq->errors = ERROR_MAX; 464 } else if (err & TRK0_ERR) { 465 /* help it find track zero */ 466 rq->errors |= ERROR_RECAL; 467 } 468 } 469 470 if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ && 471 (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0) 472 try_to_flush_leftover_data(drive); 473 474 if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) { 475 ide_kill_rq(drive, rq); 476 return ide_stopped; 477 } 478 479 if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT)) 480 rq->errors |= ERROR_RESET; 481 482 if ((rq->errors & ERROR_RESET) == ERROR_RESET) { 483 ++rq->errors; 484 return ide_do_reset(drive); 485 } 486 487 if ((rq->errors & ERROR_RECAL) == ERROR_RECAL) 488 drive->special.b.recalibrate = 1; 489 490 ++rq->errors; 491 492 return ide_stopped; 493} 494 495static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err) 496{ 497 ide_hwif_t *hwif = drive->hwif; 498 499 if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) { 500 /* other bits are useless when BUSY */ 501 rq->errors |= ERROR_RESET; 502 } else { 503 /* add decoding error stuff */ 504 } 505 506 if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT)) 507 /* force an abort */ 508 hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG); 509 510 if (rq->errors >= ERROR_MAX) { 511 ide_kill_rq(drive, rq); 512 } else { 513 if ((rq->errors & ERROR_RESET) == ERROR_RESET) { 514 ++rq->errors; 515 return ide_do_reset(drive); 516 } 517 ++rq->errors; 518 } 519 520 return ide_stopped; 521} 522 523ide_startstop_t 524__ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err) 525{ 526 if (drive->media == ide_disk) 527 return ide_ata_error(drive, rq, stat, err); 528 return ide_atapi_error(drive, rq, stat, err); 529} 530 531EXPORT_SYMBOL_GPL(__ide_error); 532 533/** 534 * ide_error - handle an error on the IDE 535 * @drive: drive the error occurred on 536 * @msg: message to report 537 * @stat: status bits 538 * 539 * ide_error() takes action based on the error returned by the drive. 540 * For normal I/O that may well include retries. We deal with 541 * both new-style (taskfile) and old style command handling here. 542 * In the case of taskfile command handling there is work left to 543 * do 544 */ 545 546ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat) 547{ 548 struct request *rq; 549 u8 err; 550 551 err = ide_dump_status(drive, msg, stat); 552 553 if ((rq = HWGROUP(drive)->rq) == NULL) 554 return ide_stopped; 555 556 /* retry only "normal" I/O: */ 557 if (!blk_fs_request(rq)) { 558 rq->errors = 1; 559 ide_end_drive_cmd(drive, stat, err); 560 return ide_stopped; 561 } 562 563 if (rq->rq_disk) { 564 ide_driver_t *drv; 565 566 drv = *(ide_driver_t **)rq->rq_disk->private_data; 567 return drv->error(drive, rq, stat, err); 568 } else 569 return __ide_error(drive, rq, stat, err); 570} 571 572EXPORT_SYMBOL_GPL(ide_error); 573 574ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq) 575{ 576 if (drive->media != ide_disk) 577 rq->errors |= ERROR_RESET; 578 579 ide_kill_rq(drive, rq); 580 581 return ide_stopped; 582} 583 584EXPORT_SYMBOL_GPL(__ide_abort); 585 586/** 587 * ide_abort - abort pending IDE operations 588 * @drive: drive the error occurred on 589 * @msg: message to report 590 * 591 * ide_abort kills and cleans up when we are about to do a 592 * host initiated reset on active commands. Longer term we 593 * want handlers to have sensible abort handling themselves 594 * 595 * This differs fundamentally from ide_error because in 596 * this case the command is doing just fine when we 597 * blow it away. 598 */ 599 600ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg) 601{ 602 struct request *rq; 603 604 if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL) 605 return ide_stopped; 606 607 /* retry only "normal" I/O: */ 608 if (!blk_fs_request(rq)) { 609 rq->errors = 1; 610 ide_end_drive_cmd(drive, BUSY_STAT, 0); 611 return ide_stopped; 612 } 613 614 if (rq->rq_disk) { 615 ide_driver_t *drv; 616 617 drv = *(ide_driver_t **)rq->rq_disk->private_data; 618 return drv->abort(drive, rq); 619 } else 620 return __ide_abort(drive, rq); 621} 622 623/** 624 * drive_cmd_intr - drive command completion interrupt 625 * @drive: drive the completion interrupt occurred on 626 * 627 * drive_cmd_intr() is invoked on completion of a special DRIVE_CMD. 628 * We do any necessary data reading and then wait for the drive to 629 * go non busy. At that point we may read the error data and complete 630 * the request 631 */ 632 633static ide_startstop_t drive_cmd_intr (ide_drive_t *drive) 634{ 635 struct request *rq = HWGROUP(drive)->rq; 636 ide_hwif_t *hwif = HWIF(drive); 637 u8 *args = (u8 *) rq->buffer; 638 u8 stat = hwif->INB(IDE_STATUS_REG); 639 int retries = 10; 640 641 local_irq_enable_in_hardirq(); 642 if (rq->cmd_type == REQ_TYPE_ATA_CMD && 643 (stat & DRQ_STAT) && args && args[3]) { 644 u8 io_32bit = drive->io_32bit; 645 drive->io_32bit = 0; 646 hwif->ata_input_data(drive, &args[4], args[3] * SECTOR_WORDS); 647 drive->io_32bit = io_32bit; 648 while (((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) && retries--) 649 udelay(100); 650 } 651 652 if (!OK_STAT(stat, READY_STAT, BAD_STAT)) 653 return ide_error(drive, "drive_cmd", stat); 654 /* calls ide_end_drive_cmd */ 655 ide_end_drive_cmd(drive, stat, hwif->INB(IDE_ERROR_REG)); 656 return ide_stopped; 657} 658 659static void ide_init_specify_cmd(ide_drive_t *drive, ide_task_t *task) 660{ 661 task->tf.nsect = drive->sect; 662 task->tf.lbal = drive->sect; 663 task->tf.lbam = drive->cyl; 664 task->tf.lbah = drive->cyl >> 8; 665 task->tf.device = ((drive->head - 1) | drive->select.all) & ~ATA_LBA; 666 task->tf.command = WIN_SPECIFY; 667 668 task->handler = &set_geometry_intr; 669} 670 671static void ide_init_restore_cmd(ide_drive_t *drive, ide_task_t *task) 672{ 673 task->tf.nsect = drive->sect; 674 task->tf.command = WIN_RESTORE; 675 676 task->handler = &recal_intr; 677} 678 679static void ide_init_setmult_cmd(ide_drive_t *drive, ide_task_t *task) 680{ 681 task->tf.nsect = drive->mult_req; 682 task->tf.command = WIN_SETMULT; 683 684 task->handler = &set_multmode_intr; 685} 686 687static ide_startstop_t ide_disk_special(ide_drive_t *drive) 688{ 689 special_t *s = &drive->special; 690 ide_task_t args; 691 692 memset(&args, 0, sizeof(ide_task_t)); 693 args.command_type = IDE_DRIVE_TASK_NO_DATA; 694 695 if (s->b.set_geometry) { 696 s->b.set_geometry = 0; 697 ide_init_specify_cmd(drive, &args); 698 } else if (s->b.recalibrate) { 699 s->b.recalibrate = 0; 700 ide_init_restore_cmd(drive, &args); 701 } else if (s->b.set_multmode) { 702 s->b.set_multmode = 0; 703 if (drive->mult_req > drive->id->max_multsect) 704 drive->mult_req = drive->id->max_multsect; 705 ide_init_setmult_cmd(drive, &args); 706 } else if (s->all) { 707 int special = s->all; 708 s->all = 0; 709 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special); 710 return ide_stopped; 711 } 712 713 args.tf_flags = IDE_TFLAG_OUT_TF; 714 if (drive->addressing == 1) 715 args.tf_flags |= (IDE_TFLAG_LBA48 | IDE_TFLAG_OUT_HOB); 716 717 do_rw_taskfile(drive, &args); 718 719 return ide_started; 720} 721 722/* 723 * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away 724 */ 725static int set_pio_mode_abuse(ide_hwif_t *hwif, u8 req_pio) 726{ 727 switch (req_pio) { 728 case 202: 729 case 201: 730 case 200: 731 case 102: 732 case 101: 733 case 100: 734 return (hwif->host_flags & IDE_HFLAG_ABUSE_DMA_MODES) ? 1 : 0; 735 case 9: 736 case 8: 737 return (hwif->host_flags & IDE_HFLAG_ABUSE_PREFETCH) ? 1 : 0; 738 case 7: 739 case 6: 740 return (hwif->host_flags & IDE_HFLAG_ABUSE_FAST_DEVSEL) ? 1 : 0; 741 default: 742 return 0; 743 } 744} 745 746/** 747 * do_special - issue some special commands 748 * @drive: drive the command is for 749 * 750 * do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT 751 * commands to a drive. It used to do much more, but has been scaled 752 * back. 753 */ 754 755static ide_startstop_t do_special (ide_drive_t *drive) 756{ 757 special_t *s = &drive->special; 758 759#ifdef DEBUG 760 printk("%s: do_special: 0x%02x\n", drive->name, s->all); 761#endif 762 if (s->b.set_tune) { 763 ide_hwif_t *hwif = drive->hwif; 764 u8 req_pio = drive->tune_req; 765 766 s->b.set_tune = 0; 767 768 if (set_pio_mode_abuse(drive->hwif, req_pio)) { 769 770 if (hwif->set_pio_mode == NULL) 771 return ide_stopped; 772 773 /* 774 * take ide_lock for drive->[no_]unmask/[no_]io_32bit 775 */ 776 if (req_pio == 8 || req_pio == 9) { 777 unsigned long flags; 778 779 spin_lock_irqsave(&ide_lock, flags); 780 hwif->set_pio_mode(drive, req_pio); 781 spin_unlock_irqrestore(&ide_lock, flags); 782 } else 783 hwif->set_pio_mode(drive, req_pio); 784 } else { 785 int keep_dma = drive->using_dma; 786 787 ide_set_pio(drive, req_pio); 788 789 if (hwif->host_flags & IDE_HFLAG_SET_PIO_MODE_KEEP_DMA) { 790 if (keep_dma) 791 hwif->ide_dma_on(drive); 792 } 793 } 794 795 return ide_stopped; 796 } else { 797 if (drive->media == ide_disk) 798 return ide_disk_special(drive); 799 800 s->all = 0; 801 drive->mult_req = 0; 802 return ide_stopped; 803 } 804} 805 806void ide_map_sg(ide_drive_t *drive, struct request *rq) 807{ 808 ide_hwif_t *hwif = drive->hwif; 809 struct scatterlist *sg = hwif->sg_table; 810 811 if (hwif->sg_mapped) /* needed by ide-scsi */ 812 return; 813 814 if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) { 815 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg); 816 } else { 817 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE); 818 hwif->sg_nents = 1; 819 } 820} 821 822EXPORT_SYMBOL_GPL(ide_map_sg); 823 824void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq) 825{ 826 ide_hwif_t *hwif = drive->hwif; 827 828 hwif->nsect = hwif->nleft = rq->nr_sectors; 829 hwif->cursg_ofs = 0; 830 hwif->cursg = NULL; 831} 832 833EXPORT_SYMBOL_GPL(ide_init_sg_cmd); 834 835/** 836 * execute_drive_command - issue special drive command 837 * @drive: the drive to issue the command on 838 * @rq: the request structure holding the command 839 * 840 * execute_drive_cmd() issues a special drive command, usually 841 * initiated by ioctl() from the external hdparm program. The 842 * command can be a drive command, drive task or taskfile 843 * operation. Weirdly you can call it with NULL to wait for 844 * all commands to finish. Don't do this as that is due to change 845 */ 846 847static ide_startstop_t execute_drive_cmd (ide_drive_t *drive, 848 struct request *rq) 849{ 850 ide_hwif_t *hwif = HWIF(drive); 851 u8 *args = rq->buffer; 852 853 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) { 854 ide_task_t *task = rq->special; 855 856 if (task == NULL) 857 goto done; 858 859 hwif->data_phase = task->data_phase; 860 861 switch (hwif->data_phase) { 862 case TASKFILE_MULTI_OUT: 863 case TASKFILE_OUT: 864 case TASKFILE_MULTI_IN: 865 case TASKFILE_IN: 866 ide_init_sg_cmd(drive, rq); 867 ide_map_sg(drive, rq); 868 default: 869 break; 870 } 871 872 if (task->tf_flags & IDE_TFLAG_FLAGGED) 873 return flagged_taskfile(drive, task); 874 875 task->tf_flags |= IDE_TFLAG_OUT_TF; 876 if (drive->addressing == 1) 877 task->tf_flags |= (IDE_TFLAG_LBA48 | IDE_TFLAG_OUT_HOB); 878 879 return do_rw_taskfile(drive, task); 880 } 881 882 if (args == NULL) 883 goto done; 884 885 if (IDE_CONTROL_REG) 886 hwif->OUTB(drive->ctl, IDE_CONTROL_REG); /* clear nIEN */ 887 888 SELECT_MASK(drive, 0); 889 890 if (rq->cmd_type == REQ_TYPE_ATA_TASK) { 891#ifdef DEBUG 892 printk("%s: DRIVE_TASK_CMD ", drive->name); 893 printk("cmd=0x%02x ", args[0]); 894 printk("fr=0x%02x ", args[1]); 895 printk("ns=0x%02x ", args[2]); 896 printk("sc=0x%02x ", args[3]); 897 printk("lcyl=0x%02x ", args[4]); 898 printk("hcyl=0x%02x ", args[5]); 899 printk("sel=0x%02x\n", args[6]); 900#endif 901 hwif->OUTB(args[1], IDE_FEATURE_REG); 902 hwif->OUTB(args[2], IDE_NSECTOR_REG); 903 hwif->OUTB(args[3], IDE_SECTOR_REG); 904 hwif->OUTB(args[4], IDE_LCYL_REG); 905 hwif->OUTB(args[5], IDE_HCYL_REG); 906 hwif->OUTB((args[6] & 0xEF)|drive->select.all, IDE_SELECT_REG); 907 } else { /* rq->cmd_type == REQ_TYPE_ATA_CMD */ 908#ifdef DEBUG 909 printk("%s: DRIVE_CMD ", drive->name); 910 printk("cmd=0x%02x ", args[0]); 911 printk("sc=0x%02x ", args[1]); 912 printk("fr=0x%02x ", args[2]); 913 printk("xx=0x%02x\n", args[3]); 914#endif 915 hwif->OUTB(args[2], IDE_FEATURE_REG); 916 if (args[0] == WIN_SMART) { 917 hwif->OUTB(args[3],IDE_NSECTOR_REG); 918 hwif->OUTB(args[1],IDE_SECTOR_REG); 919 hwif->OUTB(0x4f, IDE_LCYL_REG); 920 hwif->OUTB(0xc2, IDE_HCYL_REG); 921 } else 922 hwif->OUTB(args[1], IDE_NSECTOR_REG); 923 } 924 925 ide_execute_command(drive, args[0], &drive_cmd_intr, WAIT_CMD, NULL); 926 return ide_started; 927 928done: 929 /* 930 * NULL is actually a valid way of waiting for 931 * all current requests to be flushed from the queue. 932 */ 933#ifdef DEBUG 934 printk("%s: DRIVE_CMD (null)\n", drive->name); 935#endif 936 ide_end_drive_cmd(drive, 937 hwif->INB(IDE_STATUS_REG), 938 hwif->INB(IDE_ERROR_REG)); 939 return ide_stopped; 940} 941 942static void ide_check_pm_state(ide_drive_t *drive, struct request *rq) 943{ 944 struct request_pm_state *pm = rq->data; 945 946 if (blk_pm_suspend_request(rq) && 947 pm->pm_step == ide_pm_state_start_suspend) 948 /* Mark drive blocked when starting the suspend sequence. */ 949 drive->blocked = 1; 950 else if (blk_pm_resume_request(rq) && 951 pm->pm_step == ide_pm_state_start_resume) { 952 /* 953 * The first thing we do on wakeup is to wait for BSY bit to 954 * go away (with a looong timeout) as a drive on this hwif may 955 * just be POSTing itself. 956 * We do that before even selecting as the "other" device on 957 * the bus may be broken enough to walk on our toes at this 958 * point. 959 */ 960 int rc; 961#ifdef DEBUG_PM 962 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name); 963#endif 964 rc = ide_wait_not_busy(HWIF(drive), 35000); 965 if (rc) 966 printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name); 967 SELECT_DRIVE(drive); 968 if (IDE_CONTROL_REG) 969 HWIF(drive)->OUTB(drive->ctl, IDE_CONTROL_REG); 970 rc = ide_wait_not_busy(HWIF(drive), 100000); 971 if (rc) 972 printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name); 973 } 974} 975 976/** 977 * start_request - start of I/O and command issuing for IDE 978 * 979 * start_request() initiates handling of a new I/O request. It 980 * accepts commands and I/O (read/write) requests. It also does 981 * the final remapping for weird stuff like EZDrive. Once 982 * device mapper can work sector level the EZDrive stuff can go away 983 * 984 * FIXME: this function needs a rename 985 */ 986 987static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq) 988{ 989 ide_startstop_t startstop; 990 sector_t block; 991 992 BUG_ON(!blk_rq_started(rq)); 993 994#ifdef DEBUG 995 printk("%s: start_request: current=0x%08lx\n", 996 HWIF(drive)->name, (unsigned long) rq); 997#endif 998 999 /* bail early if we've exceeded max_failures */ 1000 if (drive->max_failures && (drive->failures > drive->max_failures)) { 1001 rq->cmd_flags |= REQ_FAILED; 1002 goto kill_rq; 1003 } 1004 1005 block = rq->sector; 1006 if (blk_fs_request(rq) && 1007 (drive->media == ide_disk || drive->media == ide_floppy)) { 1008 block += drive->sect0; 1009 } 1010 /* Yecch - this will shift the entire interval, 1011 possibly killing some innocent following sector */ 1012 if (block == 0 && drive->remap_0_to_1 == 1) 1013 block = 1; /* redirect MBR access to EZ-Drive partn table */ 1014 1015 if (blk_pm_request(rq)) 1016 ide_check_pm_state(drive, rq); 1017 1018 SELECT_DRIVE(drive); 1019 if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) { 1020 printk(KERN_ERR "%s: drive not ready for command\n", drive->name); 1021 return startstop; 1022 } 1023 if (!drive->special.all) { 1024 ide_driver_t *drv; 1025 1026 /* 1027 * We reset the drive so we need to issue a SETFEATURES. 1028 * Do it _after_ do_special() restored device parameters. 1029 */ 1030 if (drive->current_speed == 0xff) 1031 ide_config_drive_speed(drive, drive->desired_speed); 1032 1033 if (rq->cmd_type == REQ_TYPE_ATA_CMD || 1034 rq->cmd_type == REQ_TYPE_ATA_TASK || 1035 rq->cmd_type == REQ_TYPE_ATA_TASKFILE) 1036 return execute_drive_cmd(drive, rq); 1037 else if (blk_pm_request(rq)) { 1038 struct request_pm_state *pm = rq->data; 1039#ifdef DEBUG_PM 1040 printk("%s: start_power_step(step: %d)\n", 1041 drive->name, rq->pm->pm_step); 1042#endif 1043 startstop = ide_start_power_step(drive, rq); 1044 if (startstop == ide_stopped && 1045 pm->pm_step == ide_pm_state_completed) 1046 ide_complete_pm_request(drive, rq); 1047 return startstop; 1048 } 1049 1050 drv = *(ide_driver_t **)rq->rq_disk->private_data; 1051 return drv->do_request(drive, rq, block); 1052 } 1053 return do_special(drive); 1054kill_rq: 1055 ide_kill_rq(drive, rq); 1056 return ide_stopped; 1057} 1058 1059/** 1060 * ide_stall_queue - pause an IDE device 1061 * @drive: drive to stall 1062 * @timeout: time to stall for (jiffies) 1063 * 1064 * ide_stall_queue() can be used by a drive to give excess bandwidth back 1065 * to the hwgroup by sleeping for timeout jiffies. 1066 */ 1067 1068void ide_stall_queue (ide_drive_t *drive, unsigned long timeout) 1069{ 1070 if (timeout > WAIT_WORSTCASE) 1071 timeout = WAIT_WORSTCASE; 1072 drive->sleep = timeout + jiffies; 1073 drive->sleeping = 1; 1074} 1075 1076EXPORT_SYMBOL(ide_stall_queue); 1077 1078#define WAKEUP(drive) ((drive)->service_start + 2 * (drive)->service_time) 1079 1080/** 1081 * choose_drive - select a drive to service 1082 * @hwgroup: hardware group to select on 1083 * 1084 * choose_drive() selects the next drive which will be serviced. 1085 * This is necessary because the IDE layer can't issue commands 1086 * to both drives on the same cable, unlike SCSI. 1087 */ 1088 1089static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup) 1090{ 1091 ide_drive_t *drive, *best; 1092 1093repeat: 1094 best = NULL; 1095 drive = hwgroup->drive; 1096 1097 /* 1098 * drive is doing pre-flush, ordered write, post-flush sequence. even 1099 * though that is 3 requests, it must be seen as a single transaction. 1100 * we must not preempt this drive until that is complete 1101 */ 1102 if (blk_queue_flushing(drive->queue)) { 1103 /* 1104 * small race where queue could get replugged during 1105 * the 3-request flush cycle, just yank the plug since 1106 * we want it to finish asap 1107 */ 1108 blk_remove_plug(drive->queue); 1109 return drive; 1110 } 1111 1112 do { 1113 if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep)) 1114 && !elv_queue_empty(drive->queue)) { 1115 if (!best 1116 || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep))) 1117 || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best)))) 1118 { 1119 if (!blk_queue_plugged(drive->queue)) 1120 best = drive; 1121 } 1122 } 1123 } while ((drive = drive->next) != hwgroup->drive); 1124 if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) { 1125 long t = (signed long)(WAKEUP(best) - jiffies); 1126 if (t >= WAIT_MIN_SLEEP) { 1127 /* 1128 * We *may* have some time to spare, but first let's see if 1129 * someone can potentially benefit from our nice mood today.. 1130 */ 1131 drive = best->next; 1132 do { 1133 if (!drive->sleeping 1134 && time_before(jiffies - best->service_time, WAKEUP(drive)) 1135 && time_before(WAKEUP(drive), jiffies + t)) 1136 { 1137 ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP)); 1138 goto repeat; 1139 } 1140 } while ((drive = drive->next) != best); 1141 } 1142 } 1143 return best; 1144} 1145 1146/* 1147 * Issue a new request to a drive from hwgroup 1148 * Caller must have already done spin_lock_irqsave(&ide_lock, ..); 1149 * 1150 * A hwgroup is a serialized group of IDE interfaces. Usually there is 1151 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640) 1152 * may have both interfaces in a single hwgroup to "serialize" access. 1153 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped 1154 * together into one hwgroup for serialized access. 1155 * 1156 * Note also that several hwgroups can end up sharing a single IRQ, 1157 * possibly along with many other devices. This is especially common in 1158 * PCI-based systems with off-board IDE controller cards. 1159 * 1160 * The IDE driver uses the single global ide_lock spinlock to protect 1161 * access to the request queues, and to protect the hwgroup->busy flag. 1162 * 1163 * The first thread into the driver for a particular hwgroup sets the 1164 * hwgroup->busy flag to indicate that this hwgroup is now active, 1165 * and then initiates processing of the top request from the request queue. 1166 * 1167 * Other threads attempting entry notice the busy setting, and will simply 1168 * queue their new requests and exit immediately. Note that hwgroup->busy 1169 * remains set even when the driver is merely awaiting the next interrupt. 1170 * Thus, the meaning is "this hwgroup is busy processing a request". 1171 * 1172 * When processing of a request completes, the completing thread or IRQ-handler 1173 * will start the next request from the queue. If no more work remains, 1174 * the driver will clear the hwgroup->busy flag and exit. 1175 * 1176 * The ide_lock (spinlock) is used to protect all access to the 1177 * hwgroup->busy flag, but is otherwise not needed for most processing in 1178 * the driver. This makes the driver much more friendlier to shared IRQs 1179 * than previous designs, while remaining 100% (?) SMP safe and capable. 1180 */ 1181static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq) 1182{ 1183 ide_drive_t *drive; 1184 ide_hwif_t *hwif; 1185 struct request *rq; 1186 ide_startstop_t startstop; 1187 int loops = 0; 1188 1189 /* for atari only: POSSIBLY BROKEN HERE(?) */ 1190 ide_get_lock(ide_intr, hwgroup); 1191 1192 /* caller must own ide_lock */ 1193 BUG_ON(!irqs_disabled()); 1194 1195 while (!hwgroup->busy) { 1196 hwgroup->busy = 1; 1197 drive = choose_drive(hwgroup); 1198 if (drive == NULL) { 1199 int sleeping = 0; 1200 unsigned long sleep = 0; /* shut up, gcc */ 1201 hwgroup->rq = NULL; 1202 drive = hwgroup->drive; 1203 do { 1204 if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) { 1205 sleeping = 1; 1206 sleep = drive->sleep; 1207 } 1208 } while ((drive = drive->next) != hwgroup->drive); 1209 if (sleeping) { 1210 /* 1211 * Take a short snooze, and then wake up this hwgroup again. 1212 * This gives other hwgroups on the same a chance to 1213 * play fairly with us, just in case there are big differences 1214 * in relative throughputs.. don't want to hog the cpu too much. 1215 */ 1216 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP)) 1217 sleep = jiffies + WAIT_MIN_SLEEP; 1218#if 1 1219 if (timer_pending(&hwgroup->timer)) 1220 printk(KERN_CRIT "ide_set_handler: timer already active\n"); 1221#endif 1222 /* so that ide_timer_expiry knows what to do */ 1223 hwgroup->sleeping = 1; 1224 hwgroup->req_gen_timer = hwgroup->req_gen; 1225 mod_timer(&hwgroup->timer, sleep); 1226 /* we purposely leave hwgroup->busy==1 1227 * while sleeping */ 1228 } else { 1229 /* Ugly, but how can we sleep for the lock 1230 * otherwise? perhaps from tq_disk? 1231 */ 1232 1233 /* for atari only */ 1234 ide_release_lock(); 1235 hwgroup->busy = 0; 1236 } 1237 1238 /* no more work for this hwgroup (for now) */ 1239 return; 1240 } 1241 again: 1242 hwif = HWIF(drive); 1243 if (hwgroup->hwif->sharing_irq && 1244 hwif != hwgroup->hwif && 1245 hwif->io_ports[IDE_CONTROL_OFFSET]) { 1246 /* set nIEN for previous hwif */ 1247 SELECT_INTERRUPT(drive); 1248 } 1249 hwgroup->hwif = hwif; 1250 hwgroup->drive = drive; 1251 drive->sleeping = 0; 1252 drive->service_start = jiffies; 1253 1254 if (blk_queue_plugged(drive->queue)) { 1255 printk(KERN_ERR "ide: huh? queue was plugged!\n"); 1256 break; 1257 } 1258 1259 /* 1260 * we know that the queue isn't empty, but this can happen 1261 * if the q->prep_rq_fn() decides to kill a request 1262 */ 1263 rq = elv_next_request(drive->queue); 1264 if (!rq) { 1265 hwgroup->busy = 0; 1266 break; 1267 } 1268 1269 /* 1270 * Sanity: don't accept a request that isn't a PM request 1271 * if we are currently power managed. This is very important as 1272 * blk_stop_queue() doesn't prevent the elv_next_request() 1273 * above to return us whatever is in the queue. Since we call 1274 * ide_do_request() ourselves, we end up taking requests while 1275 * the queue is blocked... 1276 * 1277 * We let requests forced at head of queue with ide-preempt 1278 * though. I hope that doesn't happen too much, hopefully not 1279 * unless the subdriver triggers such a thing in its own PM 1280 * state machine. 1281 * 1282 * We count how many times we loop here to make sure we service 1283 * all drives in the hwgroup without looping for ever 1284 */ 1285 if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) { 1286 drive = drive->next ? drive->next : hwgroup->drive; 1287 if (loops++ < 4 && !blk_queue_plugged(drive->queue)) 1288 goto again; 1289 /* We clear busy, there should be no pending ATA command at this point. */ 1290 hwgroup->busy = 0; 1291 break; 1292 } 1293 1294 hwgroup->rq = rq; 1295 1296 /* 1297 * Some systems have trouble with IDE IRQs arriving while 1298 * the driver is still setting things up. So, here we disable 1299 * the IRQ used by this interface while the request is being started. 1300 * This may look bad at first, but pretty much the same thing 1301 * happens anyway when any interrupt comes in, IDE or otherwise 1302 * -- the kernel masks the IRQ while it is being handled. 1303 */ 1304 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq) 1305 disable_irq_nosync(hwif->irq); 1306 spin_unlock(&ide_lock); 1307 local_irq_enable_in_hardirq(); 1308 /* allow other IRQs while we start this request */ 1309 startstop = start_request(drive, rq); 1310 spin_lock_irq(&ide_lock); 1311 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq) 1312 enable_irq(hwif->irq); 1313 if (startstop == ide_stopped) 1314 hwgroup->busy = 0; 1315 } 1316} 1317 1318/* 1319 * Passes the stuff to ide_do_request 1320 */ 1321void do_ide_request(struct request_queue *q) 1322{ 1323 ide_drive_t *drive = q->queuedata; 1324 1325 ide_do_request(HWGROUP(drive), IDE_NO_IRQ); 1326} 1327 1328/* 1329 * un-busy the hwgroup etc, and clear any pending DMA status. we want to 1330 * retry the current request in pio mode instead of risking tossing it 1331 * all away 1332 */ 1333static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error) 1334{ 1335 ide_hwif_t *hwif = HWIF(drive); 1336 struct request *rq; 1337 ide_startstop_t ret = ide_stopped; 1338 1339 /* 1340 * end current dma transaction 1341 */ 1342 1343 if (error < 0) { 1344 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name); 1345 (void)HWIF(drive)->ide_dma_end(drive); 1346 ret = ide_error(drive, "dma timeout error", 1347 hwif->INB(IDE_STATUS_REG)); 1348 } else { 1349 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name); 1350 hwif->dma_timeout(drive); 1351 } 1352 1353 /* 1354 * disable dma for now, but remember that we did so because of 1355 * a timeout -- we'll reenable after we finish this next request 1356 * (or rather the first chunk of it) in pio. 1357 */ 1358 drive->retry_pio++; 1359 drive->state = DMA_PIO_RETRY; 1360 hwif->dma_off_quietly(drive); 1361 1362 /* 1363 * un-busy drive etc (hwgroup->busy is cleared on return) and 1364 * make sure request is sane 1365 */ 1366 rq = HWGROUP(drive)->rq; 1367 1368 if (!rq) 1369 goto out; 1370 1371 HWGROUP(drive)->rq = NULL; 1372 1373 rq->errors = 0; 1374 1375 if (!rq->bio) 1376 goto out; 1377 1378 rq->sector = rq->bio->bi_sector; 1379 rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9; 1380 rq->hard_cur_sectors = rq->current_nr_sectors; 1381 rq->buffer = bio_data(rq->bio); 1382out: 1383 return ret; 1384} 1385 1386/** 1387 * ide_timer_expiry - handle lack of an IDE interrupt 1388 * @data: timer callback magic (hwgroup) 1389 * 1390 * An IDE command has timed out before the expected drive return 1391 * occurred. At this point we attempt to clean up the current 1392 * mess. If the current handler includes an expiry handler then 1393 * we invoke the expiry handler, and providing it is happy the 1394 * work is done. If that fails we apply generic recovery rules 1395 * invoking the handler and checking the drive DMA status. We 1396 * have an excessively incestuous relationship with the DMA 1397 * logic that wants cleaning up. 1398 */ 1399 1400void ide_timer_expiry (unsigned long data) 1401{ 1402 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *) data; 1403 ide_handler_t *handler; 1404 ide_expiry_t *expiry; 1405 unsigned long flags; 1406 unsigned long wait = -1; 1407 1408 spin_lock_irqsave(&ide_lock, flags); 1409 1410 if (((handler = hwgroup->handler) == NULL) || 1411 (hwgroup->req_gen != hwgroup->req_gen_timer)) { 1412 /* 1413 * Either a marginal timeout occurred 1414 * (got the interrupt just as timer expired), 1415 * or we were "sleeping" to give other devices a chance. 1416 * Either way, we don't really want to complain about anything. 1417 */ 1418 if (hwgroup->sleeping) { 1419 hwgroup->sleeping = 0; 1420 hwgroup->busy = 0; 1421 } 1422 } else { 1423 ide_drive_t *drive = hwgroup->drive; 1424 if (!drive) { 1425 printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n"); 1426 hwgroup->handler = NULL; 1427 } else { 1428 ide_hwif_t *hwif; 1429 ide_startstop_t startstop = ide_stopped; 1430 if (!hwgroup->busy) { 1431 hwgroup->busy = 1; /* paranoia */ 1432 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name); 1433 } 1434 if ((expiry = hwgroup->expiry) != NULL) { 1435 /* continue */ 1436 if ((wait = expiry(drive)) > 0) { 1437 /* reset timer */ 1438 hwgroup->timer.expires = jiffies + wait; 1439 hwgroup->req_gen_timer = hwgroup->req_gen; 1440 add_timer(&hwgroup->timer); 1441 spin_unlock_irqrestore(&ide_lock, flags); 1442 return; 1443 } 1444 } 1445 hwgroup->handler = NULL; 1446 /* 1447 * We need to simulate a real interrupt when invoking 1448 * the handler() function, which means we need to 1449 * globally mask the specific IRQ: 1450 */ 1451 spin_unlock(&ide_lock); 1452 hwif = HWIF(drive); 1453 /* disable_irq_nosync ?? */ 1454 disable_irq(hwif->irq); 1455 /* local CPU only, 1456 * as if we were handling an interrupt */ 1457 local_irq_disable(); 1458 if (hwgroup->polling) { 1459 startstop = handler(drive); 1460 } else if (drive_is_ready(drive)) { 1461 if (drive->waiting_for_dma) 1462 hwgroup->hwif->dma_lost_irq(drive); 1463 (void)ide_ack_intr(hwif); 1464 printk(KERN_WARNING "%s: lost interrupt\n", drive->name); 1465 startstop = handler(drive); 1466 } else { 1467 if (drive->waiting_for_dma) { 1468 startstop = ide_dma_timeout_retry(drive, wait); 1469 } else 1470 startstop = 1471 ide_error(drive, "irq timeout", hwif->INB(IDE_STATUS_REG)); 1472 } 1473 drive->service_time = jiffies - drive->service_start; 1474 spin_lock_irq(&ide_lock); 1475 enable_irq(hwif->irq); 1476 if (startstop == ide_stopped) 1477 hwgroup->busy = 0; 1478 } 1479 } 1480 ide_do_request(hwgroup, IDE_NO_IRQ); 1481 spin_unlock_irqrestore(&ide_lock, flags); 1482} 1483 1484/** 1485 * unexpected_intr - handle an unexpected IDE interrupt 1486 * @irq: interrupt line 1487 * @hwgroup: hwgroup being processed 1488 * 1489 * There's nothing really useful we can do with an unexpected interrupt, 1490 * other than reading the status register (to clear it), and logging it. 1491 * There should be no way that an irq can happen before we're ready for it, 1492 * so we needn't worry much about losing an "important" interrupt here. 1493 * 1494 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever 1495 * the drive enters "idle", "standby", or "sleep" mode, so if the status 1496 * looks "good", we just ignore the interrupt completely. 1497 * 1498 * This routine assumes __cli() is in effect when called. 1499 * 1500 * If an unexpected interrupt happens on irq15 while we are handling irq14 1501 * and if the two interfaces are "serialized" (CMD640), then it looks like 1502 * we could screw up by interfering with a new request being set up for 1503 * irq15. 1504 * 1505 * In reality, this is a non-issue. The new command is not sent unless 1506 * the drive is ready to accept one, in which case we know the drive is 1507 * not trying to interrupt us. And ide_set_handler() is always invoked 1508 * before completing the issuance of any new drive command, so we will not 1509 * be accidentally invoked as a result of any valid command completion 1510 * interrupt. 1511 * 1512 * Note that we must walk the entire hwgroup here. We know which hwif 1513 * is doing the current command, but we don't know which hwif burped 1514 * mysteriously. 1515 */ 1516 1517static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup) 1518{ 1519 u8 stat; 1520 ide_hwif_t *hwif = hwgroup->hwif; 1521 1522 /* 1523 * handle the unexpected interrupt 1524 */ 1525 do { 1526 if (hwif->irq == irq) { 1527 stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]); 1528 if (!OK_STAT(stat, READY_STAT, BAD_STAT)) { 1529 /* Try to not flood the console with msgs */ 1530 static unsigned long last_msgtime, count; 1531 ++count; 1532 if (time_after(jiffies, last_msgtime + HZ)) { 1533 last_msgtime = jiffies; 1534 printk(KERN_ERR "%s%s: unexpected interrupt, " 1535 "status=0x%02x, count=%ld\n", 1536 hwif->name, 1537 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count); 1538 } 1539 } 1540 } 1541 } while ((hwif = hwif->next) != hwgroup->hwif); 1542} 1543 1544/** 1545 * ide_intr - default IDE interrupt handler 1546 * @irq: interrupt number 1547 * @dev_id: hwif group 1548 * @regs: unused weirdness from the kernel irq layer 1549 * 1550 * This is the default IRQ handler for the IDE layer. You should 1551 * not need to override it. If you do be aware it is subtle in 1552 * places 1553 * 1554 * hwgroup->hwif is the interface in the group currently performing 1555 * a command. hwgroup->drive is the drive and hwgroup->handler is 1556 * the IRQ handler to call. As we issue a command the handlers 1557 * step through multiple states, reassigning the handler to the 1558 * next step in the process. Unlike a smart SCSI controller IDE 1559 * expects the main processor to sequence the various transfer 1560 * stages. We also manage a poll timer to catch up with most 1561 * timeout situations. There are still a few where the handlers 1562 * don't ever decide to give up. 1563 * 1564 * The handler eventually returns ide_stopped to indicate the 1565 * request completed. At this point we issue the next request 1566 * on the hwgroup and the process begins again. 1567 */ 1568 1569irqreturn_t ide_intr (int irq, void *dev_id) 1570{ 1571 unsigned long flags; 1572 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id; 1573 ide_hwif_t *hwif; 1574 ide_drive_t *drive; 1575 ide_handler_t *handler; 1576 ide_startstop_t startstop; 1577 1578 spin_lock_irqsave(&ide_lock, flags); 1579 hwif = hwgroup->hwif; 1580 1581 if (!ide_ack_intr(hwif)) { 1582 spin_unlock_irqrestore(&ide_lock, flags); 1583 return IRQ_NONE; 1584 } 1585 1586 if ((handler = hwgroup->handler) == NULL || hwgroup->polling) { 1587 /* 1588 * Not expecting an interrupt from this drive. 1589 * That means this could be: 1590 * (1) an interrupt from another PCI device 1591 * sharing the same PCI INT# as us. 1592 * or (2) a drive just entered sleep or standby mode, 1593 * and is interrupting to let us know. 1594 * or (3) a spurious interrupt of unknown origin. 1595 * 1596 * For PCI, we cannot tell the difference, 1597 * so in that case we just ignore it and hope it goes away. 1598 * 1599 * FIXME: unexpected_intr should be hwif-> then we can 1600 * remove all the ifdef PCI crap 1601 */ 1602#ifdef CONFIG_BLK_DEV_IDEPCI 1603 if (hwif->pci_dev && !hwif->pci_dev->vendor) 1604#endif /* CONFIG_BLK_DEV_IDEPCI */ 1605 { 1606 /* 1607 * Probably not a shared PCI interrupt, 1608 * so we can safely try to do something about it: 1609 */ 1610 unexpected_intr(irq, hwgroup); 1611#ifdef CONFIG_BLK_DEV_IDEPCI 1612 } else { 1613 /* 1614 * Whack the status register, just in case 1615 * we have a leftover pending IRQ. 1616 */ 1617 (void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]); 1618#endif /* CONFIG_BLK_DEV_IDEPCI */ 1619 } 1620 spin_unlock_irqrestore(&ide_lock, flags); 1621 return IRQ_NONE; 1622 } 1623 drive = hwgroup->drive; 1624 if (!drive) { 1625 /* 1626 * This should NEVER happen, and there isn't much 1627 * we could do about it here. 1628 * 1629 * [Note - this can occur if the drive is hot unplugged] 1630 */ 1631 spin_unlock_irqrestore(&ide_lock, flags); 1632 return IRQ_HANDLED; 1633 } 1634 if (!drive_is_ready(drive)) { 1635 /* 1636 * This happens regularly when we share a PCI IRQ with 1637 * another device. Unfortunately, it can also happen 1638 * with some buggy drives that trigger the IRQ before 1639 * their status register is up to date. Hopefully we have 1640 * enough advance overhead that the latter isn't a problem. 1641 */ 1642 spin_unlock_irqrestore(&ide_lock, flags); 1643 return IRQ_NONE; 1644 } 1645 if (!hwgroup->busy) { 1646 hwgroup->busy = 1; /* paranoia */ 1647 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name); 1648 } 1649 hwgroup->handler = NULL; 1650 hwgroup->req_gen++; 1651 del_timer(&hwgroup->timer); 1652 spin_unlock(&ide_lock); 1653 1654 /* Some controllers might set DMA INTR no matter DMA or PIO; 1655 * bmdma status might need to be cleared even for 1656 * PIO interrupts to prevent spurious/lost irq. 1657 */ 1658 if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma)) 1659 /* ide_dma_end() needs bmdma status for error checking. 1660 * So, skip clearing bmdma status here and leave it 1661 * to ide_dma_end() if this is dma interrupt. 1662 */ 1663 hwif->ide_dma_clear_irq(drive); 1664 1665 if (drive->unmask) 1666 local_irq_enable_in_hardirq(); 1667 /* service this interrupt, may set handler for next interrupt */ 1668 startstop = handler(drive); 1669 spin_lock_irq(&ide_lock); 1670 1671 /* 1672 * Note that handler() may have set things up for another 1673 * interrupt to occur soon, but it cannot happen until 1674 * we exit from this routine, because it will be the 1675 * same irq as is currently being serviced here, and Linux 1676 * won't allow another of the same (on any CPU) until we return. 1677 */ 1678 drive->service_time = jiffies - drive->service_start; 1679 if (startstop == ide_stopped) { 1680 if (hwgroup->handler == NULL) { /* paranoia */ 1681 hwgroup->busy = 0; 1682 ide_do_request(hwgroup, hwif->irq); 1683 } else { 1684 printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler " 1685 "on exit\n", drive->name); 1686 } 1687 } 1688 spin_unlock_irqrestore(&ide_lock, flags); 1689 return IRQ_HANDLED; 1690} 1691 1692/** 1693 * ide_init_drive_cmd - initialize a drive command request 1694 * @rq: request object 1695 * 1696 * Initialize a request before we fill it in and send it down to 1697 * ide_do_drive_cmd. Commands must be set up by this function. Right 1698 * now it doesn't do a lot, but if that changes abusers will have a 1699 * nasty surprise. 1700 */ 1701 1702void ide_init_drive_cmd (struct request *rq) 1703{ 1704 memset(rq, 0, sizeof(*rq)); 1705 rq->cmd_type = REQ_TYPE_ATA_CMD; 1706 rq->ref_count = 1; 1707} 1708 1709EXPORT_SYMBOL(ide_init_drive_cmd); 1710 1711/** 1712 * ide_do_drive_cmd - issue IDE special command 1713 * @drive: device to issue command 1714 * @rq: request to issue 1715 * @action: action for processing 1716 * 1717 * This function issues a special IDE device request 1718 * onto the request queue. 1719 * 1720 * If action is ide_wait, then the rq is queued at the end of the 1721 * request queue, and the function sleeps until it has been processed. 1722 * This is for use when invoked from an ioctl handler. 1723 * 1724 * If action is ide_preempt, then the rq is queued at the head of 1725 * the request queue, displacing the currently-being-processed 1726 * request and this function returns immediately without waiting 1727 * for the new rq to be completed. This is VERY DANGEROUS, and is 1728 * intended for careful use by the ATAPI tape/cdrom driver code. 1729 * 1730 * If action is ide_end, then the rq is queued at the end of the 1731 * request queue, and the function returns immediately without waiting 1732 * for the new rq to be completed. This is again intended for careful 1733 * use by the ATAPI tape/cdrom driver code. 1734 */ 1735 1736int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action) 1737{ 1738 unsigned long flags; 1739 ide_hwgroup_t *hwgroup = HWGROUP(drive); 1740 DECLARE_COMPLETION_ONSTACK(wait); 1741 int where = ELEVATOR_INSERT_BACK, err; 1742 int must_wait = (action == ide_wait || action == ide_head_wait); 1743 1744 rq->errors = 0; 1745 1746 /* 1747 * we need to hold an extra reference to request for safe inspection 1748 * after completion 1749 */ 1750 if (must_wait) { 1751 rq->ref_count++; 1752 rq->end_io_data = &wait; 1753 rq->end_io = blk_end_sync_rq; 1754 } 1755 1756 spin_lock_irqsave(&ide_lock, flags); 1757 if (action == ide_preempt) 1758 hwgroup->rq = NULL; 1759 if (action == ide_preempt || action == ide_head_wait) { 1760 where = ELEVATOR_INSERT_FRONT; 1761 rq->cmd_flags |= REQ_PREEMPT; 1762 } 1763 __elv_add_request(drive->queue, rq, where, 0); 1764 ide_do_request(hwgroup, IDE_NO_IRQ); 1765 spin_unlock_irqrestore(&ide_lock, flags); 1766 1767 err = 0; 1768 if (must_wait) { 1769 wait_for_completion(&wait); 1770 if (rq->errors) 1771 err = -EIO; 1772 1773 blk_put_request(rq); 1774 } 1775 1776 return err; 1777} 1778 1779EXPORT_SYMBOL(ide_do_drive_cmd); 1780