ide-io.c revision 60be6b9a41cb0da0df7a9f11486da56baebf04cd
1/*
2 *	IDE I/O functions
3 *
4 *	Basic PIO and command management functionality.
5 *
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * General Public License for more details.
18 *
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
24 */
25
26
27#include <linux/module.h>
28#include <linux/types.h>
29#include <linux/string.h>
30#include <linux/kernel.h>
31#include <linux/timer.h>
32#include <linux/mm.h>
33#include <linux/interrupt.h>
34#include <linux/major.h>
35#include <linux/errno.h>
36#include <linux/genhd.h>
37#include <linux/blkpg.h>
38#include <linux/slab.h>
39#include <linux/init.h>
40#include <linux/pci.h>
41#include <linux/delay.h>
42#include <linux/ide.h>
43#include <linux/completion.h>
44#include <linux/reboot.h>
45#include <linux/cdrom.h>
46#include <linux/seq_file.h>
47#include <linux/device.h>
48#include <linux/kmod.h>
49#include <linux/scatterlist.h>
50
51#include <asm/byteorder.h>
52#include <asm/irq.h>
53#include <asm/uaccess.h>
54#include <asm/io.h>
55#include <asm/bitops.h>
56
57static int __ide_end_request(ide_drive_t *drive, struct request *rq,
58			     int uptodate, int nr_sectors)
59{
60	int ret = 1;
61
62	BUG_ON(!(rq->flags & REQ_STARTED));
63
64	/*
65	 * if failfast is set on a request, override number of sectors and
66	 * complete the whole request right now
67	 */
68	if (blk_noretry_request(rq) && end_io_error(uptodate))
69		nr_sectors = rq->hard_nr_sectors;
70
71	if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
72		rq->errors = -EIO;
73
74	/*
75	 * decide whether to reenable DMA -- 3 is a random magic for now,
76	 * if we DMA timeout more than 3 times, just stay in PIO
77	 */
78	if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
79		drive->state = 0;
80		HWGROUP(drive)->hwif->ide_dma_on(drive);
81	}
82
83	if (!end_that_request_first(rq, uptodate, nr_sectors)) {
84		add_disk_randomness(rq->rq_disk);
85		blkdev_dequeue_request(rq);
86		HWGROUP(drive)->rq = NULL;
87		end_that_request_last(rq, uptodate);
88		ret = 0;
89	}
90
91	return ret;
92}
93
94/**
95 *	ide_end_request		-	complete an IDE I/O
96 *	@drive: IDE device for the I/O
97 *	@uptodate:
98 *	@nr_sectors: number of sectors completed
99 *
100 *	This is our end_request wrapper function. We complete the I/O
101 *	update random number input and dequeue the request, which if
102 *	it was tagged may be out of order.
103 */
104
105int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
106{
107	struct request *rq;
108	unsigned long flags;
109	int ret = 1;
110
111	/*
112	 * room for locking improvements here, the calls below don't
113	 * need the queue lock held at all
114	 */
115	spin_lock_irqsave(&ide_lock, flags);
116	rq = HWGROUP(drive)->rq;
117
118	if (!nr_sectors)
119		nr_sectors = rq->hard_cur_sectors;
120
121	ret = __ide_end_request(drive, rq, uptodate, nr_sectors);
122
123	spin_unlock_irqrestore(&ide_lock, flags);
124	return ret;
125}
126EXPORT_SYMBOL(ide_end_request);
127
128/*
129 * Power Management state machine. This one is rather trivial for now,
130 * we should probably add more, like switching back to PIO on suspend
131 * to help some BIOSes, re-do the door locking on resume, etc...
132 */
133
134enum {
135	ide_pm_flush_cache	= ide_pm_state_start_suspend,
136	idedisk_pm_standby,
137
138	idedisk_pm_idle		= ide_pm_state_start_resume,
139	ide_pm_restore_dma,
140};
141
142static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
143{
144	struct request_pm_state *pm = rq->end_io_data;
145
146	if (drive->media != ide_disk)
147		return;
148
149	switch (pm->pm_step) {
150	case ide_pm_flush_cache:	/* Suspend step 1 (flush cache) complete */
151		if (pm->pm_state == PM_EVENT_FREEZE)
152			pm->pm_step = ide_pm_state_completed;
153		else
154			pm->pm_step = idedisk_pm_standby;
155		break;
156	case idedisk_pm_standby:	/* Suspend step 2 (standby) complete */
157		pm->pm_step = ide_pm_state_completed;
158		break;
159	case idedisk_pm_idle:		/* Resume step 1 (idle) complete */
160		pm->pm_step = ide_pm_restore_dma;
161		break;
162	}
163}
164
165static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
166{
167	struct request_pm_state *pm = rq->end_io_data;
168	ide_task_t *args = rq->special;
169
170	memset(args, 0, sizeof(*args));
171
172	if (drive->media != ide_disk) {
173		/* skip idedisk_pm_idle for ATAPI devices */
174		if (pm->pm_step == idedisk_pm_idle)
175			pm->pm_step = ide_pm_restore_dma;
176	}
177
178	switch (pm->pm_step) {
179	case ide_pm_flush_cache:	/* Suspend step 1 (flush cache) */
180		if (drive->media != ide_disk)
181			break;
182		/* Not supported? Switch to next step now. */
183		if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
184			ide_complete_power_step(drive, rq, 0, 0);
185			return ide_stopped;
186		}
187		if (ide_id_has_flush_cache_ext(drive->id))
188			args->tfRegister[IDE_COMMAND_OFFSET] = WIN_FLUSH_CACHE_EXT;
189		else
190			args->tfRegister[IDE_COMMAND_OFFSET] = WIN_FLUSH_CACHE;
191		args->command_type = IDE_DRIVE_TASK_NO_DATA;
192		args->handler	   = &task_no_data_intr;
193		return do_rw_taskfile(drive, args);
194
195	case idedisk_pm_standby:	/* Suspend step 2 (standby) */
196		args->tfRegister[IDE_COMMAND_OFFSET] = WIN_STANDBYNOW1;
197		args->command_type = IDE_DRIVE_TASK_NO_DATA;
198		args->handler	   = &task_no_data_intr;
199		return do_rw_taskfile(drive, args);
200
201	case idedisk_pm_idle:		/* Resume step 1 (idle) */
202		args->tfRegister[IDE_COMMAND_OFFSET] = WIN_IDLEIMMEDIATE;
203		args->command_type = IDE_DRIVE_TASK_NO_DATA;
204		args->handler = task_no_data_intr;
205		return do_rw_taskfile(drive, args);
206
207	case ide_pm_restore_dma:	/* Resume step 2 (restore DMA) */
208		/*
209		 * Right now, all we do is call hwif->ide_dma_check(drive),
210		 * we could be smarter and check for current xfer_speed
211		 * in struct drive etc...
212		 */
213		if ((drive->id->capability & 1) == 0)
214			break;
215		if (drive->hwif->ide_dma_check == NULL)
216			break;
217		drive->hwif->ide_dma_check(drive);
218		break;
219	}
220	pm->pm_step = ide_pm_state_completed;
221	return ide_stopped;
222}
223
224/**
225 *	ide_end_dequeued_request	-	complete an IDE I/O
226 *	@drive: IDE device for the I/O
227 *	@uptodate:
228 *	@nr_sectors: number of sectors completed
229 *
230 *	Complete an I/O that is no longer on the request queue. This
231 *	typically occurs when we pull the request and issue a REQUEST_SENSE.
232 *	We must still finish the old request but we must not tamper with the
233 *	queue in the meantime.
234 *
235 *	NOTE: This path does not handle barrier, but barrier is not supported
236 *	on ide-cd anyway.
237 */
238
239int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
240			     int uptodate, int nr_sectors)
241{
242	unsigned long flags;
243	int ret = 1;
244
245	spin_lock_irqsave(&ide_lock, flags);
246
247	BUG_ON(!(rq->flags & REQ_STARTED));
248
249	/*
250	 * if failfast is set on a request, override number of sectors and
251	 * complete the whole request right now
252	 */
253	if (blk_noretry_request(rq) && end_io_error(uptodate))
254		nr_sectors = rq->hard_nr_sectors;
255
256	if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
257		rq->errors = -EIO;
258
259	/*
260	 * decide whether to reenable DMA -- 3 is a random magic for now,
261	 * if we DMA timeout more than 3 times, just stay in PIO
262	 */
263	if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
264		drive->state = 0;
265		HWGROUP(drive)->hwif->ide_dma_on(drive);
266	}
267
268	if (!end_that_request_first(rq, uptodate, nr_sectors)) {
269		add_disk_randomness(rq->rq_disk);
270		if (blk_rq_tagged(rq))
271			blk_queue_end_tag(drive->queue, rq);
272		end_that_request_last(rq, uptodate);
273		ret = 0;
274	}
275	spin_unlock_irqrestore(&ide_lock, flags);
276	return ret;
277}
278EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
279
280
281/**
282 *	ide_complete_pm_request - end the current Power Management request
283 *	@drive: target drive
284 *	@rq: request
285 *
286 *	This function cleans up the current PM request and stops the queue
287 *	if necessary.
288 */
289static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
290{
291	unsigned long flags;
292
293#ifdef DEBUG_PM
294	printk("%s: completing PM request, %s\n", drive->name,
295	       blk_pm_suspend_request(rq) ? "suspend" : "resume");
296#endif
297	spin_lock_irqsave(&ide_lock, flags);
298	if (blk_pm_suspend_request(rq)) {
299		blk_stop_queue(drive->queue);
300	} else {
301		drive->blocked = 0;
302		blk_start_queue(drive->queue);
303	}
304	blkdev_dequeue_request(rq);
305	HWGROUP(drive)->rq = NULL;
306	end_that_request_last(rq, 1);
307	spin_unlock_irqrestore(&ide_lock, flags);
308}
309
310/*
311 * FIXME: probably move this somewhere else, name is bad too :)
312 */
313u64 ide_get_error_location(ide_drive_t *drive, char *args)
314{
315	u32 high, low;
316	u8 hcyl, lcyl, sect;
317	u64 sector;
318
319	high = 0;
320	hcyl = args[5];
321	lcyl = args[4];
322	sect = args[3];
323
324	if (ide_id_has_flush_cache_ext(drive->id)) {
325		low = (hcyl << 16) | (lcyl << 8) | sect;
326		HWIF(drive)->OUTB(drive->ctl|0x80, IDE_CONTROL_REG);
327		high = ide_read_24(drive);
328	} else {
329		u8 cur = HWIF(drive)->INB(IDE_SELECT_REG);
330		if (cur & 0x40) {
331			high = cur & 0xf;
332			low = (hcyl << 16) | (lcyl << 8) | sect;
333		} else {
334			low = hcyl * drive->head * drive->sect;
335			low += lcyl * drive->sect;
336			low += sect - 1;
337		}
338	}
339
340	sector = ((u64) high << 24) | low;
341	return sector;
342}
343EXPORT_SYMBOL(ide_get_error_location);
344
345/**
346 *	ide_end_drive_cmd	-	end an explicit drive command
347 *	@drive: command
348 *	@stat: status bits
349 *	@err: error bits
350 *
351 *	Clean up after success/failure of an explicit drive command.
352 *	These get thrown onto the queue so they are synchronized with
353 *	real I/O operations on the drive.
354 *
355 *	In LBA48 mode we have to read the register set twice to get
356 *	all the extra information out.
357 */
358
359void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
360{
361	ide_hwif_t *hwif = HWIF(drive);
362	unsigned long flags;
363	struct request *rq;
364
365	spin_lock_irqsave(&ide_lock, flags);
366	rq = HWGROUP(drive)->rq;
367	spin_unlock_irqrestore(&ide_lock, flags);
368
369	if (rq->flags & REQ_DRIVE_CMD) {
370		u8 *args = (u8 *) rq->buffer;
371		if (rq->errors == 0)
372			rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
373
374		if (args) {
375			args[0] = stat;
376			args[1] = err;
377			args[2] = hwif->INB(IDE_NSECTOR_REG);
378		}
379	} else if (rq->flags & REQ_DRIVE_TASK) {
380		u8 *args = (u8 *) rq->buffer;
381		if (rq->errors == 0)
382			rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
383
384		if (args) {
385			args[0] = stat;
386			args[1] = err;
387			args[2] = hwif->INB(IDE_NSECTOR_REG);
388			args[3] = hwif->INB(IDE_SECTOR_REG);
389			args[4] = hwif->INB(IDE_LCYL_REG);
390			args[5] = hwif->INB(IDE_HCYL_REG);
391			args[6] = hwif->INB(IDE_SELECT_REG);
392		}
393	} else if (rq->flags & REQ_DRIVE_TASKFILE) {
394		ide_task_t *args = (ide_task_t *) rq->special;
395		if (rq->errors == 0)
396			rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
397
398		if (args) {
399			if (args->tf_in_flags.b.data) {
400				u16 data				= hwif->INW(IDE_DATA_REG);
401				args->tfRegister[IDE_DATA_OFFSET]	= (data) & 0xFF;
402				args->hobRegister[IDE_DATA_OFFSET]	= (data >> 8) & 0xFF;
403			}
404			args->tfRegister[IDE_ERROR_OFFSET]   = err;
405			/* be sure we're looking at the low order bits */
406			hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
407			args->tfRegister[IDE_NSECTOR_OFFSET] = hwif->INB(IDE_NSECTOR_REG);
408			args->tfRegister[IDE_SECTOR_OFFSET]  = hwif->INB(IDE_SECTOR_REG);
409			args->tfRegister[IDE_LCYL_OFFSET]    = hwif->INB(IDE_LCYL_REG);
410			args->tfRegister[IDE_HCYL_OFFSET]    = hwif->INB(IDE_HCYL_REG);
411			args->tfRegister[IDE_SELECT_OFFSET]  = hwif->INB(IDE_SELECT_REG);
412			args->tfRegister[IDE_STATUS_OFFSET]  = stat;
413
414			if (drive->addressing == 1) {
415				hwif->OUTB(drive->ctl|0x80, IDE_CONTROL_REG);
416				args->hobRegister[IDE_FEATURE_OFFSET]	= hwif->INB(IDE_FEATURE_REG);
417				args->hobRegister[IDE_NSECTOR_OFFSET]	= hwif->INB(IDE_NSECTOR_REG);
418				args->hobRegister[IDE_SECTOR_OFFSET]	= hwif->INB(IDE_SECTOR_REG);
419				args->hobRegister[IDE_LCYL_OFFSET]	= hwif->INB(IDE_LCYL_REG);
420				args->hobRegister[IDE_HCYL_OFFSET]	= hwif->INB(IDE_HCYL_REG);
421			}
422		}
423	} else if (blk_pm_request(rq)) {
424		struct request_pm_state *pm = rq->end_io_data;
425#ifdef DEBUG_PM
426		printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
427			drive->name, rq->pm->pm_step, stat, err);
428#endif
429		ide_complete_power_step(drive, rq, stat, err);
430		if (pm->pm_step == ide_pm_state_completed)
431			ide_complete_pm_request(drive, rq);
432		return;
433	}
434
435	spin_lock_irqsave(&ide_lock, flags);
436	blkdev_dequeue_request(rq);
437	HWGROUP(drive)->rq = NULL;
438	rq->errors = err;
439	end_that_request_last(rq, !rq->errors);
440	spin_unlock_irqrestore(&ide_lock, flags);
441}
442
443EXPORT_SYMBOL(ide_end_drive_cmd);
444
445/**
446 *	try_to_flush_leftover_data	-	flush junk
447 *	@drive: drive to flush
448 *
449 *	try_to_flush_leftover_data() is invoked in response to a drive
450 *	unexpectedly having its DRQ_STAT bit set.  As an alternative to
451 *	resetting the drive, this routine tries to clear the condition
452 *	by read a sector's worth of data from the drive.  Of course,
453 *	this may not help if the drive is *waiting* for data from *us*.
454 */
455static void try_to_flush_leftover_data (ide_drive_t *drive)
456{
457	int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS;
458
459	if (drive->media != ide_disk)
460		return;
461	while (i > 0) {
462		u32 buffer[16];
463		u32 wcount = (i > 16) ? 16 : i;
464
465		i -= wcount;
466		HWIF(drive)->ata_input_data(drive, buffer, wcount);
467	}
468}
469
470static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
471{
472	if (rq->rq_disk) {
473		ide_driver_t *drv;
474
475		drv = *(ide_driver_t **)rq->rq_disk->private_data;
476		drv->end_request(drive, 0, 0);
477	} else
478		ide_end_request(drive, 0, 0);
479}
480
481static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
482{
483	ide_hwif_t *hwif = drive->hwif;
484
485	if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
486		/* other bits are useless when BUSY */
487		rq->errors |= ERROR_RESET;
488	} else if (stat & ERR_STAT) {
489		/* err has different meaning on cdrom and tape */
490		if (err == ABRT_ERR) {
491			if (drive->select.b.lba &&
492			    /* some newer drives don't support WIN_SPECIFY */
493			    hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY)
494				return ide_stopped;
495		} else if ((err & BAD_CRC) == BAD_CRC) {
496			/* UDMA crc error, just retry the operation */
497			drive->crc_count++;
498		} else if (err & (BBD_ERR | ECC_ERR)) {
499			/* retries won't help these */
500			rq->errors = ERROR_MAX;
501		} else if (err & TRK0_ERR) {
502			/* help it find track zero */
503			rq->errors |= ERROR_RECAL;
504		}
505	}
506
507	if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ && hwif->err_stops_fifo == 0)
508		try_to_flush_leftover_data(drive);
509
510	if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
511		/* force an abort */
512		hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG);
513
514	if (rq->errors >= ERROR_MAX || blk_noretry_request(rq))
515		ide_kill_rq(drive, rq);
516	else {
517		if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
518			++rq->errors;
519			return ide_do_reset(drive);
520		}
521		if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
522			drive->special.b.recalibrate = 1;
523		++rq->errors;
524	}
525	return ide_stopped;
526}
527
528static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
529{
530	ide_hwif_t *hwif = drive->hwif;
531
532	if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
533		/* other bits are useless when BUSY */
534		rq->errors |= ERROR_RESET;
535	} else {
536		/* add decoding error stuff */
537	}
538
539	if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
540		/* force an abort */
541		hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG);
542
543	if (rq->errors >= ERROR_MAX) {
544		ide_kill_rq(drive, rq);
545	} else {
546		if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
547			++rq->errors;
548			return ide_do_reset(drive);
549		}
550		++rq->errors;
551	}
552
553	return ide_stopped;
554}
555
556ide_startstop_t
557__ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
558{
559	if (drive->media == ide_disk)
560		return ide_ata_error(drive, rq, stat, err);
561	return ide_atapi_error(drive, rq, stat, err);
562}
563
564EXPORT_SYMBOL_GPL(__ide_error);
565
566/**
567 *	ide_error	-	handle an error on the IDE
568 *	@drive: drive the error occurred on
569 *	@msg: message to report
570 *	@stat: status bits
571 *
572 *	ide_error() takes action based on the error returned by the drive.
573 *	For normal I/O that may well include retries. We deal with
574 *	both new-style (taskfile) and old style command handling here.
575 *	In the case of taskfile command handling there is work left to
576 *	do
577 */
578
579ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
580{
581	struct request *rq;
582	u8 err;
583
584	err = ide_dump_status(drive, msg, stat);
585
586	if ((rq = HWGROUP(drive)->rq) == NULL)
587		return ide_stopped;
588
589	/* retry only "normal" I/O: */
590	if (rq->flags & (REQ_DRIVE_CMD | REQ_DRIVE_TASK | REQ_DRIVE_TASKFILE)) {
591		rq->errors = 1;
592		ide_end_drive_cmd(drive, stat, err);
593		return ide_stopped;
594	}
595
596	if (rq->rq_disk) {
597		ide_driver_t *drv;
598
599		drv = *(ide_driver_t **)rq->rq_disk->private_data;
600		return drv->error(drive, rq, stat, err);
601	} else
602		return __ide_error(drive, rq, stat, err);
603}
604
605EXPORT_SYMBOL_GPL(ide_error);
606
607ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq)
608{
609	if (drive->media != ide_disk)
610		rq->errors |= ERROR_RESET;
611
612	ide_kill_rq(drive, rq);
613
614	return ide_stopped;
615}
616
617EXPORT_SYMBOL_GPL(__ide_abort);
618
619/**
620 *	ide_abort	-	abort pending IDE operations
621 *	@drive: drive the error occurred on
622 *	@msg: message to report
623 *
624 *	ide_abort kills and cleans up when we are about to do a
625 *	host initiated reset on active commands. Longer term we
626 *	want handlers to have sensible abort handling themselves
627 *
628 *	This differs fundamentally from ide_error because in
629 *	this case the command is doing just fine when we
630 *	blow it away.
631 */
632
633ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
634{
635	struct request *rq;
636
637	if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
638		return ide_stopped;
639
640	/* retry only "normal" I/O: */
641	if (rq->flags & (REQ_DRIVE_CMD | REQ_DRIVE_TASK | REQ_DRIVE_TASKFILE)) {
642		rq->errors = 1;
643		ide_end_drive_cmd(drive, BUSY_STAT, 0);
644		return ide_stopped;
645	}
646
647	if (rq->rq_disk) {
648		ide_driver_t *drv;
649
650		drv = *(ide_driver_t **)rq->rq_disk->private_data;
651		return drv->abort(drive, rq);
652	} else
653		return __ide_abort(drive, rq);
654}
655
656/**
657 *	ide_cmd		-	issue a simple drive command
658 *	@drive: drive the command is for
659 *	@cmd: command byte
660 *	@nsect: sector byte
661 *	@handler: handler for the command completion
662 *
663 *	Issue a simple drive command with interrupts.
664 *	The drive must be selected beforehand.
665 */
666
667static void ide_cmd (ide_drive_t *drive, u8 cmd, u8 nsect,
668		ide_handler_t *handler)
669{
670	ide_hwif_t *hwif = HWIF(drive);
671	if (IDE_CONTROL_REG)
672		hwif->OUTB(drive->ctl,IDE_CONTROL_REG);	/* clear nIEN */
673	SELECT_MASK(drive,0);
674	hwif->OUTB(nsect,IDE_NSECTOR_REG);
675	ide_execute_command(drive, cmd, handler, WAIT_CMD, NULL);
676}
677
678/**
679 *	drive_cmd_intr		- 	drive command completion interrupt
680 *	@drive: drive the completion interrupt occurred on
681 *
682 *	drive_cmd_intr() is invoked on completion of a special DRIVE_CMD.
683 *	We do any necessary data reading and then wait for the drive to
684 *	go non busy. At that point we may read the error data and complete
685 *	the request
686 */
687
688static ide_startstop_t drive_cmd_intr (ide_drive_t *drive)
689{
690	struct request *rq = HWGROUP(drive)->rq;
691	ide_hwif_t *hwif = HWIF(drive);
692	u8 *args = (u8 *) rq->buffer;
693	u8 stat = hwif->INB(IDE_STATUS_REG);
694	int retries = 10;
695
696	local_irq_enable_in_hardirq();
697	if ((stat & DRQ_STAT) && args && args[3]) {
698		u8 io_32bit = drive->io_32bit;
699		drive->io_32bit = 0;
700		hwif->ata_input_data(drive, &args[4], args[3] * SECTOR_WORDS);
701		drive->io_32bit = io_32bit;
702		while (((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) && retries--)
703			udelay(100);
704	}
705
706	if (!OK_STAT(stat, READY_STAT, BAD_STAT))
707		return ide_error(drive, "drive_cmd", stat);
708		/* calls ide_end_drive_cmd */
709	ide_end_drive_cmd(drive, stat, hwif->INB(IDE_ERROR_REG));
710	return ide_stopped;
711}
712
713static void ide_init_specify_cmd(ide_drive_t *drive, ide_task_t *task)
714{
715	task->tfRegister[IDE_NSECTOR_OFFSET] = drive->sect;
716	task->tfRegister[IDE_SECTOR_OFFSET]  = drive->sect;
717	task->tfRegister[IDE_LCYL_OFFSET]    = drive->cyl;
718	task->tfRegister[IDE_HCYL_OFFSET]    = drive->cyl>>8;
719	task->tfRegister[IDE_SELECT_OFFSET]  = ((drive->head-1)|drive->select.all)&0xBF;
720	task->tfRegister[IDE_COMMAND_OFFSET] = WIN_SPECIFY;
721
722	task->handler = &set_geometry_intr;
723}
724
725static void ide_init_restore_cmd(ide_drive_t *drive, ide_task_t *task)
726{
727	task->tfRegister[IDE_NSECTOR_OFFSET] = drive->sect;
728	task->tfRegister[IDE_COMMAND_OFFSET] = WIN_RESTORE;
729
730	task->handler = &recal_intr;
731}
732
733static void ide_init_setmult_cmd(ide_drive_t *drive, ide_task_t *task)
734{
735	task->tfRegister[IDE_NSECTOR_OFFSET] = drive->mult_req;
736	task->tfRegister[IDE_COMMAND_OFFSET] = WIN_SETMULT;
737
738	task->handler = &set_multmode_intr;
739}
740
741static ide_startstop_t ide_disk_special(ide_drive_t *drive)
742{
743	special_t *s = &drive->special;
744	ide_task_t args;
745
746	memset(&args, 0, sizeof(ide_task_t));
747	args.command_type = IDE_DRIVE_TASK_NO_DATA;
748
749	if (s->b.set_geometry) {
750		s->b.set_geometry = 0;
751		ide_init_specify_cmd(drive, &args);
752	} else if (s->b.recalibrate) {
753		s->b.recalibrate = 0;
754		ide_init_restore_cmd(drive, &args);
755	} else if (s->b.set_multmode) {
756		s->b.set_multmode = 0;
757		if (drive->mult_req > drive->id->max_multsect)
758			drive->mult_req = drive->id->max_multsect;
759		ide_init_setmult_cmd(drive, &args);
760	} else if (s->all) {
761		int special = s->all;
762		s->all = 0;
763		printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
764		return ide_stopped;
765	}
766
767	do_rw_taskfile(drive, &args);
768
769	return ide_started;
770}
771
772/**
773 *	do_special		-	issue some special commands
774 *	@drive: drive the command is for
775 *
776 *	do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
777 *	commands to a drive.  It used to do much more, but has been scaled
778 *	back.
779 */
780
781static ide_startstop_t do_special (ide_drive_t *drive)
782{
783	special_t *s = &drive->special;
784
785#ifdef DEBUG
786	printk("%s: do_special: 0x%02x\n", drive->name, s->all);
787#endif
788	if (s->b.set_tune) {
789		s->b.set_tune = 0;
790		if (HWIF(drive)->tuneproc != NULL)
791			HWIF(drive)->tuneproc(drive, drive->tune_req);
792		return ide_stopped;
793	} else {
794		if (drive->media == ide_disk)
795			return ide_disk_special(drive);
796
797		s->all = 0;
798		drive->mult_req = 0;
799		return ide_stopped;
800	}
801}
802
803void ide_map_sg(ide_drive_t *drive, struct request *rq)
804{
805	ide_hwif_t *hwif = drive->hwif;
806	struct scatterlist *sg = hwif->sg_table;
807
808	if (hwif->sg_mapped)	/* needed by ide-scsi */
809		return;
810
811	if ((rq->flags & REQ_DRIVE_TASKFILE) == 0) {
812		hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
813	} else {
814		sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
815		hwif->sg_nents = 1;
816	}
817}
818
819EXPORT_SYMBOL_GPL(ide_map_sg);
820
821void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
822{
823	ide_hwif_t *hwif = drive->hwif;
824
825	hwif->nsect = hwif->nleft = rq->nr_sectors;
826	hwif->cursg = hwif->cursg_ofs = 0;
827}
828
829EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
830
831/**
832 *	execute_drive_command	-	issue special drive command
833 *	@drive: the drive to issue the command on
834 *	@rq: the request structure holding the command
835 *
836 *	execute_drive_cmd() issues a special drive command,  usually
837 *	initiated by ioctl() from the external hdparm program. The
838 *	command can be a drive command, drive task or taskfile
839 *	operation. Weirdly you can call it with NULL to wait for
840 *	all commands to finish. Don't do this as that is due to change
841 */
842
843static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
844		struct request *rq)
845{
846	ide_hwif_t *hwif = HWIF(drive);
847	if (rq->flags & REQ_DRIVE_TASKFILE) {
848 		ide_task_t *args = rq->special;
849
850		if (!args)
851			goto done;
852
853		hwif->data_phase = args->data_phase;
854
855		switch (hwif->data_phase) {
856		case TASKFILE_MULTI_OUT:
857		case TASKFILE_OUT:
858		case TASKFILE_MULTI_IN:
859		case TASKFILE_IN:
860			ide_init_sg_cmd(drive, rq);
861			ide_map_sg(drive, rq);
862		default:
863			break;
864		}
865
866		if (args->tf_out_flags.all != 0)
867			return flagged_taskfile(drive, args);
868		return do_rw_taskfile(drive, args);
869	} else if (rq->flags & REQ_DRIVE_TASK) {
870		u8 *args = rq->buffer;
871		u8 sel;
872
873		if (!args)
874			goto done;
875#ifdef DEBUG
876 		printk("%s: DRIVE_TASK_CMD ", drive->name);
877 		printk("cmd=0x%02x ", args[0]);
878 		printk("fr=0x%02x ", args[1]);
879 		printk("ns=0x%02x ", args[2]);
880 		printk("sc=0x%02x ", args[3]);
881 		printk("lcyl=0x%02x ", args[4]);
882 		printk("hcyl=0x%02x ", args[5]);
883 		printk("sel=0x%02x\n", args[6]);
884#endif
885 		hwif->OUTB(args[1], IDE_FEATURE_REG);
886 		hwif->OUTB(args[3], IDE_SECTOR_REG);
887 		hwif->OUTB(args[4], IDE_LCYL_REG);
888 		hwif->OUTB(args[5], IDE_HCYL_REG);
889 		sel = (args[6] & ~0x10);
890 		if (drive->select.b.unit)
891 			sel |= 0x10;
892 		hwif->OUTB(sel, IDE_SELECT_REG);
893 		ide_cmd(drive, args[0], args[2], &drive_cmd_intr);
894 		return ide_started;
895 	} else if (rq->flags & REQ_DRIVE_CMD) {
896 		u8 *args = rq->buffer;
897
898		if (!args)
899			goto done;
900#ifdef DEBUG
901 		printk("%s: DRIVE_CMD ", drive->name);
902 		printk("cmd=0x%02x ", args[0]);
903 		printk("sc=0x%02x ", args[1]);
904 		printk("fr=0x%02x ", args[2]);
905 		printk("xx=0x%02x\n", args[3]);
906#endif
907 		if (args[0] == WIN_SMART) {
908 			hwif->OUTB(0x4f, IDE_LCYL_REG);
909 			hwif->OUTB(0xc2, IDE_HCYL_REG);
910 			hwif->OUTB(args[2],IDE_FEATURE_REG);
911 			hwif->OUTB(args[1],IDE_SECTOR_REG);
912 			ide_cmd(drive, args[0], args[3], &drive_cmd_intr);
913 			return ide_started;
914 		}
915 		hwif->OUTB(args[2],IDE_FEATURE_REG);
916 		ide_cmd(drive, args[0], args[1], &drive_cmd_intr);
917 		return ide_started;
918 	}
919
920done:
921 	/*
922 	 * NULL is actually a valid way of waiting for
923 	 * all current requests to be flushed from the queue.
924 	 */
925#ifdef DEBUG
926 	printk("%s: DRIVE_CMD (null)\n", drive->name);
927#endif
928 	ide_end_drive_cmd(drive,
929			hwif->INB(IDE_STATUS_REG),
930			hwif->INB(IDE_ERROR_REG));
931 	return ide_stopped;
932}
933
934static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
935{
936	struct request_pm_state *pm = rq->end_io_data;
937
938	if (blk_pm_suspend_request(rq) &&
939	    pm->pm_step == ide_pm_state_start_suspend)
940		/* Mark drive blocked when starting the suspend sequence. */
941		drive->blocked = 1;
942	else if (blk_pm_resume_request(rq) &&
943		 pm->pm_step == ide_pm_state_start_resume) {
944		/*
945		 * The first thing we do on wakeup is to wait for BSY bit to
946		 * go away (with a looong timeout) as a drive on this hwif may
947		 * just be POSTing itself.
948		 * We do that before even selecting as the "other" device on
949		 * the bus may be broken enough to walk on our toes at this
950		 * point.
951		 */
952		int rc;
953#ifdef DEBUG_PM
954		printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
955#endif
956		rc = ide_wait_not_busy(HWIF(drive), 35000);
957		if (rc)
958			printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
959		SELECT_DRIVE(drive);
960		HWIF(drive)->OUTB(8, HWIF(drive)->io_ports[IDE_CONTROL_OFFSET]);
961		rc = ide_wait_not_busy(HWIF(drive), 100000);
962		if (rc)
963			printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
964	}
965}
966
967/**
968 *	start_request	-	start of I/O and command issuing for IDE
969 *
970 *	start_request() initiates handling of a new I/O request. It
971 *	accepts commands and I/O (read/write) requests. It also does
972 *	the final remapping for weird stuff like EZDrive. Once
973 *	device mapper can work sector level the EZDrive stuff can go away
974 *
975 *	FIXME: this function needs a rename
976 */
977
978static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
979{
980	ide_startstop_t startstop;
981	sector_t block;
982
983	BUG_ON(!(rq->flags & REQ_STARTED));
984
985#ifdef DEBUG
986	printk("%s: start_request: current=0x%08lx\n",
987		HWIF(drive)->name, (unsigned long) rq);
988#endif
989
990	/* bail early if we've exceeded max_failures */
991	if (drive->max_failures && (drive->failures > drive->max_failures)) {
992		goto kill_rq;
993	}
994
995	block    = rq->sector;
996	if (blk_fs_request(rq) &&
997	    (drive->media == ide_disk || drive->media == ide_floppy)) {
998		block += drive->sect0;
999	}
1000	/* Yecch - this will shift the entire interval,
1001	   possibly killing some innocent following sector */
1002	if (block == 0 && drive->remap_0_to_1 == 1)
1003		block = 1;  /* redirect MBR access to EZ-Drive partn table */
1004
1005	if (blk_pm_request(rq))
1006		ide_check_pm_state(drive, rq);
1007
1008	SELECT_DRIVE(drive);
1009	if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
1010		printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
1011		return startstop;
1012	}
1013	if (!drive->special.all) {
1014		ide_driver_t *drv;
1015
1016		if (rq->flags & (REQ_DRIVE_CMD | REQ_DRIVE_TASK))
1017			return execute_drive_cmd(drive, rq);
1018		else if (rq->flags & REQ_DRIVE_TASKFILE)
1019			return execute_drive_cmd(drive, rq);
1020		else if (blk_pm_request(rq)) {
1021			struct request_pm_state *pm = rq->end_io_data;
1022#ifdef DEBUG_PM
1023			printk("%s: start_power_step(step: %d)\n",
1024				drive->name, rq->pm->pm_step);
1025#endif
1026			startstop = ide_start_power_step(drive, rq);
1027			if (startstop == ide_stopped &&
1028			    pm->pm_step == ide_pm_state_completed)
1029				ide_complete_pm_request(drive, rq);
1030			return startstop;
1031		}
1032
1033		drv = *(ide_driver_t **)rq->rq_disk->private_data;
1034		return drv->do_request(drive, rq, block);
1035	}
1036	return do_special(drive);
1037kill_rq:
1038	ide_kill_rq(drive, rq);
1039	return ide_stopped;
1040}
1041
1042/**
1043 *	ide_stall_queue		-	pause an IDE device
1044 *	@drive: drive to stall
1045 *	@timeout: time to stall for (jiffies)
1046 *
1047 *	ide_stall_queue() can be used by a drive to give excess bandwidth back
1048 *	to the hwgroup by sleeping for timeout jiffies.
1049 */
1050
1051void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
1052{
1053	if (timeout > WAIT_WORSTCASE)
1054		timeout = WAIT_WORSTCASE;
1055	drive->sleep = timeout + jiffies;
1056	drive->sleeping = 1;
1057}
1058
1059EXPORT_SYMBOL(ide_stall_queue);
1060
1061#define WAKEUP(drive)	((drive)->service_start + 2 * (drive)->service_time)
1062
1063/**
1064 *	choose_drive		-	select a drive to service
1065 *	@hwgroup: hardware group to select on
1066 *
1067 *	choose_drive() selects the next drive which will be serviced.
1068 *	This is necessary because the IDE layer can't issue commands
1069 *	to both drives on the same cable, unlike SCSI.
1070 */
1071
1072static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
1073{
1074	ide_drive_t *drive, *best;
1075
1076repeat:
1077	best = NULL;
1078	drive = hwgroup->drive;
1079
1080	/*
1081	 * drive is doing pre-flush, ordered write, post-flush sequence. even
1082	 * though that is 3 requests, it must be seen as a single transaction.
1083	 * we must not preempt this drive until that is complete
1084	 */
1085	if (blk_queue_flushing(drive->queue)) {
1086		/*
1087		 * small race where queue could get replugged during
1088		 * the 3-request flush cycle, just yank the plug since
1089		 * we want it to finish asap
1090		 */
1091		blk_remove_plug(drive->queue);
1092		return drive;
1093	}
1094
1095	do {
1096		if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
1097		    && !elv_queue_empty(drive->queue)) {
1098			if (!best
1099			 || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
1100			 || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
1101			{
1102				if (!blk_queue_plugged(drive->queue))
1103					best = drive;
1104			}
1105		}
1106	} while ((drive = drive->next) != hwgroup->drive);
1107	if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
1108		long t = (signed long)(WAKEUP(best) - jiffies);
1109		if (t >= WAIT_MIN_SLEEP) {
1110		/*
1111		 * We *may* have some time to spare, but first let's see if
1112		 * someone can potentially benefit from our nice mood today..
1113		 */
1114			drive = best->next;
1115			do {
1116				if (!drive->sleeping
1117				 && time_before(jiffies - best->service_time, WAKEUP(drive))
1118				 && time_before(WAKEUP(drive), jiffies + t))
1119				{
1120					ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
1121					goto repeat;
1122				}
1123			} while ((drive = drive->next) != best);
1124		}
1125	}
1126	return best;
1127}
1128
1129/*
1130 * Issue a new request to a drive from hwgroup
1131 * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
1132 *
1133 * A hwgroup is a serialized group of IDE interfaces.  Usually there is
1134 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
1135 * may have both interfaces in a single hwgroup to "serialize" access.
1136 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
1137 * together into one hwgroup for serialized access.
1138 *
1139 * Note also that several hwgroups can end up sharing a single IRQ,
1140 * possibly along with many other devices.  This is especially common in
1141 * PCI-based systems with off-board IDE controller cards.
1142 *
1143 * The IDE driver uses the single global ide_lock spinlock to protect
1144 * access to the request queues, and to protect the hwgroup->busy flag.
1145 *
1146 * The first thread into the driver for a particular hwgroup sets the
1147 * hwgroup->busy flag to indicate that this hwgroup is now active,
1148 * and then initiates processing of the top request from the request queue.
1149 *
1150 * Other threads attempting entry notice the busy setting, and will simply
1151 * queue their new requests and exit immediately.  Note that hwgroup->busy
1152 * remains set even when the driver is merely awaiting the next interrupt.
1153 * Thus, the meaning is "this hwgroup is busy processing a request".
1154 *
1155 * When processing of a request completes, the completing thread or IRQ-handler
1156 * will start the next request from the queue.  If no more work remains,
1157 * the driver will clear the hwgroup->busy flag and exit.
1158 *
1159 * The ide_lock (spinlock) is used to protect all access to the
1160 * hwgroup->busy flag, but is otherwise not needed for most processing in
1161 * the driver.  This makes the driver much more friendlier to shared IRQs
1162 * than previous designs, while remaining 100% (?) SMP safe and capable.
1163 */
1164static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
1165{
1166	ide_drive_t	*drive;
1167	ide_hwif_t	*hwif;
1168	struct request	*rq;
1169	ide_startstop_t	startstop;
1170	int             loops = 0;
1171
1172	/* for atari only: POSSIBLY BROKEN HERE(?) */
1173	ide_get_lock(ide_intr, hwgroup);
1174
1175	/* caller must own ide_lock */
1176	BUG_ON(!irqs_disabled());
1177
1178	while (!hwgroup->busy) {
1179		hwgroup->busy = 1;
1180		drive = choose_drive(hwgroup);
1181		if (drive == NULL) {
1182			int sleeping = 0;
1183			unsigned long sleep = 0; /* shut up, gcc */
1184			hwgroup->rq = NULL;
1185			drive = hwgroup->drive;
1186			do {
1187				if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
1188					sleeping = 1;
1189					sleep = drive->sleep;
1190				}
1191			} while ((drive = drive->next) != hwgroup->drive);
1192			if (sleeping) {
1193		/*
1194		 * Take a short snooze, and then wake up this hwgroup again.
1195		 * This gives other hwgroups on the same a chance to
1196		 * play fairly with us, just in case there are big differences
1197		 * in relative throughputs.. don't want to hog the cpu too much.
1198		 */
1199				if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1200					sleep = jiffies + WAIT_MIN_SLEEP;
1201#if 1
1202				if (timer_pending(&hwgroup->timer))
1203					printk(KERN_CRIT "ide_set_handler: timer already active\n");
1204#endif
1205				/* so that ide_timer_expiry knows what to do */
1206				hwgroup->sleeping = 1;
1207				mod_timer(&hwgroup->timer, sleep);
1208				/* we purposely leave hwgroup->busy==1
1209				 * while sleeping */
1210			} else {
1211				/* Ugly, but how can we sleep for the lock
1212				 * otherwise? perhaps from tq_disk?
1213				 */
1214
1215				/* for atari only */
1216				ide_release_lock();
1217				hwgroup->busy = 0;
1218			}
1219
1220			/* no more work for this hwgroup (for now) */
1221			return;
1222		}
1223	again:
1224		hwif = HWIF(drive);
1225		if (hwgroup->hwif->sharing_irq &&
1226		    hwif != hwgroup->hwif &&
1227		    hwif->io_ports[IDE_CONTROL_OFFSET]) {
1228			/* set nIEN for previous hwif */
1229			SELECT_INTERRUPT(drive);
1230		}
1231		hwgroup->hwif = hwif;
1232		hwgroup->drive = drive;
1233		drive->sleeping = 0;
1234		drive->service_start = jiffies;
1235
1236		if (blk_queue_plugged(drive->queue)) {
1237			printk(KERN_ERR "ide: huh? queue was plugged!\n");
1238			break;
1239		}
1240
1241		/*
1242		 * we know that the queue isn't empty, but this can happen
1243		 * if the q->prep_rq_fn() decides to kill a request
1244		 */
1245		rq = elv_next_request(drive->queue);
1246		if (!rq) {
1247			hwgroup->busy = 0;
1248			break;
1249		}
1250
1251		/*
1252		 * Sanity: don't accept a request that isn't a PM request
1253		 * if we are currently power managed. This is very important as
1254		 * blk_stop_queue() doesn't prevent the elv_next_request()
1255		 * above to return us whatever is in the queue. Since we call
1256		 * ide_do_request() ourselves, we end up taking requests while
1257		 * the queue is blocked...
1258		 *
1259		 * We let requests forced at head of queue with ide-preempt
1260		 * though. I hope that doesn't happen too much, hopefully not
1261		 * unless the subdriver triggers such a thing in its own PM
1262		 * state machine.
1263		 *
1264		 * We count how many times we loop here to make sure we service
1265		 * all drives in the hwgroup without looping for ever
1266		 */
1267		if (drive->blocked && !blk_pm_request(rq) && !(rq->flags & REQ_PREEMPT)) {
1268			drive = drive->next ? drive->next : hwgroup->drive;
1269			if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1270				goto again;
1271			/* We clear busy, there should be no pending ATA command at this point. */
1272			hwgroup->busy = 0;
1273			break;
1274		}
1275
1276		hwgroup->rq = rq;
1277
1278		/*
1279		 * Some systems have trouble with IDE IRQs arriving while
1280		 * the driver is still setting things up.  So, here we disable
1281		 * the IRQ used by this interface while the request is being started.
1282		 * This may look bad at first, but pretty much the same thing
1283		 * happens anyway when any interrupt comes in, IDE or otherwise
1284		 *  -- the kernel masks the IRQ while it is being handled.
1285		 */
1286		if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1287			disable_irq_nosync(hwif->irq);
1288		spin_unlock(&ide_lock);
1289		local_irq_enable_in_hardirq();
1290			/* allow other IRQs while we start this request */
1291		startstop = start_request(drive, rq);
1292		spin_lock_irq(&ide_lock);
1293		if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1294			enable_irq(hwif->irq);
1295		if (startstop == ide_stopped)
1296			hwgroup->busy = 0;
1297	}
1298}
1299
1300/*
1301 * Passes the stuff to ide_do_request
1302 */
1303void do_ide_request(request_queue_t *q)
1304{
1305	ide_drive_t *drive = q->queuedata;
1306
1307	ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1308}
1309
1310/*
1311 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1312 * retry the current request in pio mode instead of risking tossing it
1313 * all away
1314 */
1315static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1316{
1317	ide_hwif_t *hwif = HWIF(drive);
1318	struct request *rq;
1319	ide_startstop_t ret = ide_stopped;
1320
1321	/*
1322	 * end current dma transaction
1323	 */
1324
1325	if (error < 0) {
1326		printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1327		(void)HWIF(drive)->ide_dma_end(drive);
1328		ret = ide_error(drive, "dma timeout error",
1329						hwif->INB(IDE_STATUS_REG));
1330	} else {
1331		printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1332		(void) hwif->ide_dma_timeout(drive);
1333	}
1334
1335	/*
1336	 * disable dma for now, but remember that we did so because of
1337	 * a timeout -- we'll reenable after we finish this next request
1338	 * (or rather the first chunk of it) in pio.
1339	 */
1340	drive->retry_pio++;
1341	drive->state = DMA_PIO_RETRY;
1342	(void) hwif->ide_dma_off_quietly(drive);
1343
1344	/*
1345	 * un-busy drive etc (hwgroup->busy is cleared on return) and
1346	 * make sure request is sane
1347	 */
1348	rq = HWGROUP(drive)->rq;
1349	HWGROUP(drive)->rq = NULL;
1350
1351	rq->errors = 0;
1352
1353	if (!rq->bio)
1354		goto out;
1355
1356	rq->sector = rq->bio->bi_sector;
1357	rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1358	rq->hard_cur_sectors = rq->current_nr_sectors;
1359	rq->buffer = bio_data(rq->bio);
1360out:
1361	return ret;
1362}
1363
1364/**
1365 *	ide_timer_expiry	-	handle lack of an IDE interrupt
1366 *	@data: timer callback magic (hwgroup)
1367 *
1368 *	An IDE command has timed out before the expected drive return
1369 *	occurred. At this point we attempt to clean up the current
1370 *	mess. If the current handler includes an expiry handler then
1371 *	we invoke the expiry handler, and providing it is happy the
1372 *	work is done. If that fails we apply generic recovery rules
1373 *	invoking the handler and checking the drive DMA status. We
1374 *	have an excessively incestuous relationship with the DMA
1375 *	logic that wants cleaning up.
1376 */
1377
1378void ide_timer_expiry (unsigned long data)
1379{
1380	ide_hwgroup_t	*hwgroup = (ide_hwgroup_t *) data;
1381	ide_handler_t	*handler;
1382	ide_expiry_t	*expiry;
1383	unsigned long	flags;
1384	unsigned long	wait = -1;
1385
1386	spin_lock_irqsave(&ide_lock, flags);
1387
1388	if ((handler = hwgroup->handler) == NULL) {
1389		/*
1390		 * Either a marginal timeout occurred
1391		 * (got the interrupt just as timer expired),
1392		 * or we were "sleeping" to give other devices a chance.
1393		 * Either way, we don't really want to complain about anything.
1394		 */
1395		if (hwgroup->sleeping) {
1396			hwgroup->sleeping = 0;
1397			hwgroup->busy = 0;
1398		}
1399	} else {
1400		ide_drive_t *drive = hwgroup->drive;
1401		if (!drive) {
1402			printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1403			hwgroup->handler = NULL;
1404		} else {
1405			ide_hwif_t *hwif;
1406			ide_startstop_t startstop = ide_stopped;
1407			if (!hwgroup->busy) {
1408				hwgroup->busy = 1;	/* paranoia */
1409				printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1410			}
1411			if ((expiry = hwgroup->expiry) != NULL) {
1412				/* continue */
1413				if ((wait = expiry(drive)) > 0) {
1414					/* reset timer */
1415					hwgroup->timer.expires  = jiffies + wait;
1416					add_timer(&hwgroup->timer);
1417					spin_unlock_irqrestore(&ide_lock, flags);
1418					return;
1419				}
1420			}
1421			hwgroup->handler = NULL;
1422			/*
1423			 * We need to simulate a real interrupt when invoking
1424			 * the handler() function, which means we need to
1425			 * globally mask the specific IRQ:
1426			 */
1427			spin_unlock(&ide_lock);
1428			hwif  = HWIF(drive);
1429#if DISABLE_IRQ_NOSYNC
1430			disable_irq_nosync(hwif->irq);
1431#else
1432			/* disable_irq_nosync ?? */
1433			disable_irq(hwif->irq);
1434#endif /* DISABLE_IRQ_NOSYNC */
1435			/* local CPU only,
1436			 * as if we were handling an interrupt */
1437			local_irq_disable();
1438			if (hwgroup->polling) {
1439				startstop = handler(drive);
1440			} else if (drive_is_ready(drive)) {
1441				if (drive->waiting_for_dma)
1442					(void) hwgroup->hwif->ide_dma_lostirq(drive);
1443				(void)ide_ack_intr(hwif);
1444				printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1445				startstop = handler(drive);
1446			} else {
1447				if (drive->waiting_for_dma) {
1448					startstop = ide_dma_timeout_retry(drive, wait);
1449				} else
1450					startstop =
1451					ide_error(drive, "irq timeout", hwif->INB(IDE_STATUS_REG));
1452			}
1453			drive->service_time = jiffies - drive->service_start;
1454			spin_lock_irq(&ide_lock);
1455			enable_irq(hwif->irq);
1456			if (startstop == ide_stopped)
1457				hwgroup->busy = 0;
1458		}
1459	}
1460	ide_do_request(hwgroup, IDE_NO_IRQ);
1461	spin_unlock_irqrestore(&ide_lock, flags);
1462}
1463
1464/**
1465 *	unexpected_intr		-	handle an unexpected IDE interrupt
1466 *	@irq: interrupt line
1467 *	@hwgroup: hwgroup being processed
1468 *
1469 *	There's nothing really useful we can do with an unexpected interrupt,
1470 *	other than reading the status register (to clear it), and logging it.
1471 *	There should be no way that an irq can happen before we're ready for it,
1472 *	so we needn't worry much about losing an "important" interrupt here.
1473 *
1474 *	On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1475 *	the drive enters "idle", "standby", or "sleep" mode, so if the status
1476 *	looks "good", we just ignore the interrupt completely.
1477 *
1478 *	This routine assumes __cli() is in effect when called.
1479 *
1480 *	If an unexpected interrupt happens on irq15 while we are handling irq14
1481 *	and if the two interfaces are "serialized" (CMD640), then it looks like
1482 *	we could screw up by interfering with a new request being set up for
1483 *	irq15.
1484 *
1485 *	In reality, this is a non-issue.  The new command is not sent unless
1486 *	the drive is ready to accept one, in which case we know the drive is
1487 *	not trying to interrupt us.  And ide_set_handler() is always invoked
1488 *	before completing the issuance of any new drive command, so we will not
1489 *	be accidentally invoked as a result of any valid command completion
1490 *	interrupt.
1491 *
1492 *	Note that we must walk the entire hwgroup here. We know which hwif
1493 *	is doing the current command, but we don't know which hwif burped
1494 *	mysteriously.
1495 */
1496
1497static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1498{
1499	u8 stat;
1500	ide_hwif_t *hwif = hwgroup->hwif;
1501
1502	/*
1503	 * handle the unexpected interrupt
1504	 */
1505	do {
1506		if (hwif->irq == irq) {
1507			stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1508			if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1509				/* Try to not flood the console with msgs */
1510				static unsigned long last_msgtime, count;
1511				++count;
1512				if (time_after(jiffies, last_msgtime + HZ)) {
1513					last_msgtime = jiffies;
1514					printk(KERN_ERR "%s%s: unexpected interrupt, "
1515						"status=0x%02x, count=%ld\n",
1516						hwif->name,
1517						(hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1518				}
1519			}
1520		}
1521	} while ((hwif = hwif->next) != hwgroup->hwif);
1522}
1523
1524/**
1525 *	ide_intr	-	default IDE interrupt handler
1526 *	@irq: interrupt number
1527 *	@dev_id: hwif group
1528 *	@regs: unused weirdness from the kernel irq layer
1529 *
1530 *	This is the default IRQ handler for the IDE layer. You should
1531 *	not need to override it. If you do be aware it is subtle in
1532 *	places
1533 *
1534 *	hwgroup->hwif is the interface in the group currently performing
1535 *	a command. hwgroup->drive is the drive and hwgroup->handler is
1536 *	the IRQ handler to call. As we issue a command the handlers
1537 *	step through multiple states, reassigning the handler to the
1538 *	next step in the process. Unlike a smart SCSI controller IDE
1539 *	expects the main processor to sequence the various transfer
1540 *	stages. We also manage a poll timer to catch up with most
1541 *	timeout situations. There are still a few where the handlers
1542 *	don't ever decide to give up.
1543 *
1544 *	The handler eventually returns ide_stopped to indicate the
1545 *	request completed. At this point we issue the next request
1546 *	on the hwgroup and the process begins again.
1547 */
1548
1549irqreturn_t ide_intr (int irq, void *dev_id, struct pt_regs *regs)
1550{
1551	unsigned long flags;
1552	ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1553	ide_hwif_t *hwif;
1554	ide_drive_t *drive;
1555	ide_handler_t *handler;
1556	ide_startstop_t startstop;
1557
1558	spin_lock_irqsave(&ide_lock, flags);
1559	hwif = hwgroup->hwif;
1560
1561	if (!ide_ack_intr(hwif)) {
1562		spin_unlock_irqrestore(&ide_lock, flags);
1563		return IRQ_NONE;
1564	}
1565
1566	if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1567		/*
1568		 * Not expecting an interrupt from this drive.
1569		 * That means this could be:
1570		 *	(1) an interrupt from another PCI device
1571		 *	sharing the same PCI INT# as us.
1572		 * or	(2) a drive just entered sleep or standby mode,
1573		 *	and is interrupting to let us know.
1574		 * or	(3) a spurious interrupt of unknown origin.
1575		 *
1576		 * For PCI, we cannot tell the difference,
1577		 * so in that case we just ignore it and hope it goes away.
1578		 *
1579		 * FIXME: unexpected_intr should be hwif-> then we can
1580		 * remove all the ifdef PCI crap
1581		 */
1582#ifdef CONFIG_BLK_DEV_IDEPCI
1583		if (hwif->pci_dev && !hwif->pci_dev->vendor)
1584#endif	/* CONFIG_BLK_DEV_IDEPCI */
1585		{
1586			/*
1587			 * Probably not a shared PCI interrupt,
1588			 * so we can safely try to do something about it:
1589			 */
1590			unexpected_intr(irq, hwgroup);
1591#ifdef CONFIG_BLK_DEV_IDEPCI
1592		} else {
1593			/*
1594			 * Whack the status register, just in case
1595			 * we have a leftover pending IRQ.
1596			 */
1597			(void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1598#endif /* CONFIG_BLK_DEV_IDEPCI */
1599		}
1600		spin_unlock_irqrestore(&ide_lock, flags);
1601		return IRQ_NONE;
1602	}
1603	drive = hwgroup->drive;
1604	if (!drive) {
1605		/*
1606		 * This should NEVER happen, and there isn't much
1607		 * we could do about it here.
1608		 *
1609		 * [Note - this can occur if the drive is hot unplugged]
1610		 */
1611		spin_unlock_irqrestore(&ide_lock, flags);
1612		return IRQ_HANDLED;
1613	}
1614	if (!drive_is_ready(drive)) {
1615		/*
1616		 * This happens regularly when we share a PCI IRQ with
1617		 * another device.  Unfortunately, it can also happen
1618		 * with some buggy drives that trigger the IRQ before
1619		 * their status register is up to date.  Hopefully we have
1620		 * enough advance overhead that the latter isn't a problem.
1621		 */
1622		spin_unlock_irqrestore(&ide_lock, flags);
1623		return IRQ_NONE;
1624	}
1625	if (!hwgroup->busy) {
1626		hwgroup->busy = 1;	/* paranoia */
1627		printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1628	}
1629	hwgroup->handler = NULL;
1630	del_timer(&hwgroup->timer);
1631	spin_unlock(&ide_lock);
1632
1633	if (drive->unmask)
1634		local_irq_enable_in_hardirq();
1635	/* service this interrupt, may set handler for next interrupt */
1636	startstop = handler(drive);
1637	spin_lock_irq(&ide_lock);
1638
1639	/*
1640	 * Note that handler() may have set things up for another
1641	 * interrupt to occur soon, but it cannot happen until
1642	 * we exit from this routine, because it will be the
1643	 * same irq as is currently being serviced here, and Linux
1644	 * won't allow another of the same (on any CPU) until we return.
1645	 */
1646	drive->service_time = jiffies - drive->service_start;
1647	if (startstop == ide_stopped) {
1648		if (hwgroup->handler == NULL) {	/* paranoia */
1649			hwgroup->busy = 0;
1650			ide_do_request(hwgroup, hwif->irq);
1651		} else {
1652			printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1653				"on exit\n", drive->name);
1654		}
1655	}
1656	spin_unlock_irqrestore(&ide_lock, flags);
1657	return IRQ_HANDLED;
1658}
1659
1660/**
1661 *	ide_init_drive_cmd	-	initialize a drive command request
1662 *	@rq: request object
1663 *
1664 *	Initialize a request before we fill it in and send it down to
1665 *	ide_do_drive_cmd. Commands must be set up by this function. Right
1666 *	now it doesn't do a lot, but if that changes abusers will have a
1667 *	nasty surprise.
1668 */
1669
1670void ide_init_drive_cmd (struct request *rq)
1671{
1672	memset(rq, 0, sizeof(*rq));
1673	rq->flags = REQ_DRIVE_CMD;
1674	rq->ref_count = 1;
1675}
1676
1677EXPORT_SYMBOL(ide_init_drive_cmd);
1678
1679/**
1680 *	ide_do_drive_cmd	-	issue IDE special command
1681 *	@drive: device to issue command
1682 *	@rq: request to issue
1683 *	@action: action for processing
1684 *
1685 *	This function issues a special IDE device request
1686 *	onto the request queue.
1687 *
1688 *	If action is ide_wait, then the rq is queued at the end of the
1689 *	request queue, and the function sleeps until it has been processed.
1690 *	This is for use when invoked from an ioctl handler.
1691 *
1692 *	If action is ide_preempt, then the rq is queued at the head of
1693 *	the request queue, displacing the currently-being-processed
1694 *	request and this function returns immediately without waiting
1695 *	for the new rq to be completed.  This is VERY DANGEROUS, and is
1696 *	intended for careful use by the ATAPI tape/cdrom driver code.
1697 *
1698 *	If action is ide_end, then the rq is queued at the end of the
1699 *	request queue, and the function returns immediately without waiting
1700 *	for the new rq to be completed. This is again intended for careful
1701 *	use by the ATAPI tape/cdrom driver code.
1702 */
1703
1704int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
1705{
1706	unsigned long flags;
1707	ide_hwgroup_t *hwgroup = HWGROUP(drive);
1708	DECLARE_COMPLETION_ONSTACK(wait);
1709	int where = ELEVATOR_INSERT_BACK, err;
1710	int must_wait = (action == ide_wait || action == ide_head_wait);
1711
1712	rq->errors = 0;
1713	rq->rq_status = RQ_ACTIVE;
1714
1715	/*
1716	 * we need to hold an extra reference to request for safe inspection
1717	 * after completion
1718	 */
1719	if (must_wait) {
1720		rq->ref_count++;
1721		rq->waiting = &wait;
1722		rq->end_io = blk_end_sync_rq;
1723	}
1724
1725	spin_lock_irqsave(&ide_lock, flags);
1726	if (action == ide_preempt)
1727		hwgroup->rq = NULL;
1728	if (action == ide_preempt || action == ide_head_wait) {
1729		where = ELEVATOR_INSERT_FRONT;
1730		rq->flags |= REQ_PREEMPT;
1731	}
1732	__elv_add_request(drive->queue, rq, where, 0);
1733	ide_do_request(hwgroup, IDE_NO_IRQ);
1734	spin_unlock_irqrestore(&ide_lock, flags);
1735
1736	err = 0;
1737	if (must_wait) {
1738		wait_for_completion(&wait);
1739		rq->waiting = NULL;
1740		if (rq->errors)
1741			err = -EIO;
1742
1743		blk_put_request(rq);
1744	}
1745
1746	return err;
1747}
1748
1749EXPORT_SYMBOL(ide_do_drive_cmd);
1750