ide-io.c revision 60be6b9a41cb0da0df7a9f11486da56baebf04cd
1/* 2 * IDE I/O functions 3 * 4 * Basic PIO and command management functionality. 5 * 6 * This code was split off from ide.c. See ide.c for history and original 7 * copyrights. 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms of the GNU General Public License as published by the 11 * Free Software Foundation; either version 2, or (at your option) any 12 * later version. 13 * 14 * This program is distributed in the hope that it will be useful, but 15 * WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 17 * General Public License for more details. 18 * 19 * For the avoidance of doubt the "preferred form" of this code is one which 20 * is in an open non patent encumbered format. Where cryptographic key signing 21 * forms part of the process of creating an executable the information 22 * including keys needed to generate an equivalently functional executable 23 * are deemed to be part of the source code. 24 */ 25 26 27#include <linux/module.h> 28#include <linux/types.h> 29#include <linux/string.h> 30#include <linux/kernel.h> 31#include <linux/timer.h> 32#include <linux/mm.h> 33#include <linux/interrupt.h> 34#include <linux/major.h> 35#include <linux/errno.h> 36#include <linux/genhd.h> 37#include <linux/blkpg.h> 38#include <linux/slab.h> 39#include <linux/init.h> 40#include <linux/pci.h> 41#include <linux/delay.h> 42#include <linux/ide.h> 43#include <linux/completion.h> 44#include <linux/reboot.h> 45#include <linux/cdrom.h> 46#include <linux/seq_file.h> 47#include <linux/device.h> 48#include <linux/kmod.h> 49#include <linux/scatterlist.h> 50 51#include <asm/byteorder.h> 52#include <asm/irq.h> 53#include <asm/uaccess.h> 54#include <asm/io.h> 55#include <asm/bitops.h> 56 57static int __ide_end_request(ide_drive_t *drive, struct request *rq, 58 int uptodate, int nr_sectors) 59{ 60 int ret = 1; 61 62 BUG_ON(!(rq->flags & REQ_STARTED)); 63 64 /* 65 * if failfast is set on a request, override number of sectors and 66 * complete the whole request right now 67 */ 68 if (blk_noretry_request(rq) && end_io_error(uptodate)) 69 nr_sectors = rq->hard_nr_sectors; 70 71 if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors) 72 rq->errors = -EIO; 73 74 /* 75 * decide whether to reenable DMA -- 3 is a random magic for now, 76 * if we DMA timeout more than 3 times, just stay in PIO 77 */ 78 if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) { 79 drive->state = 0; 80 HWGROUP(drive)->hwif->ide_dma_on(drive); 81 } 82 83 if (!end_that_request_first(rq, uptodate, nr_sectors)) { 84 add_disk_randomness(rq->rq_disk); 85 blkdev_dequeue_request(rq); 86 HWGROUP(drive)->rq = NULL; 87 end_that_request_last(rq, uptodate); 88 ret = 0; 89 } 90 91 return ret; 92} 93 94/** 95 * ide_end_request - complete an IDE I/O 96 * @drive: IDE device for the I/O 97 * @uptodate: 98 * @nr_sectors: number of sectors completed 99 * 100 * This is our end_request wrapper function. We complete the I/O 101 * update random number input and dequeue the request, which if 102 * it was tagged may be out of order. 103 */ 104 105int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors) 106{ 107 struct request *rq; 108 unsigned long flags; 109 int ret = 1; 110 111 /* 112 * room for locking improvements here, the calls below don't 113 * need the queue lock held at all 114 */ 115 spin_lock_irqsave(&ide_lock, flags); 116 rq = HWGROUP(drive)->rq; 117 118 if (!nr_sectors) 119 nr_sectors = rq->hard_cur_sectors; 120 121 ret = __ide_end_request(drive, rq, uptodate, nr_sectors); 122 123 spin_unlock_irqrestore(&ide_lock, flags); 124 return ret; 125} 126EXPORT_SYMBOL(ide_end_request); 127 128/* 129 * Power Management state machine. This one is rather trivial for now, 130 * we should probably add more, like switching back to PIO on suspend 131 * to help some BIOSes, re-do the door locking on resume, etc... 132 */ 133 134enum { 135 ide_pm_flush_cache = ide_pm_state_start_suspend, 136 idedisk_pm_standby, 137 138 idedisk_pm_idle = ide_pm_state_start_resume, 139 ide_pm_restore_dma, 140}; 141 142static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error) 143{ 144 struct request_pm_state *pm = rq->end_io_data; 145 146 if (drive->media != ide_disk) 147 return; 148 149 switch (pm->pm_step) { 150 case ide_pm_flush_cache: /* Suspend step 1 (flush cache) complete */ 151 if (pm->pm_state == PM_EVENT_FREEZE) 152 pm->pm_step = ide_pm_state_completed; 153 else 154 pm->pm_step = idedisk_pm_standby; 155 break; 156 case idedisk_pm_standby: /* Suspend step 2 (standby) complete */ 157 pm->pm_step = ide_pm_state_completed; 158 break; 159 case idedisk_pm_idle: /* Resume step 1 (idle) complete */ 160 pm->pm_step = ide_pm_restore_dma; 161 break; 162 } 163} 164 165static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq) 166{ 167 struct request_pm_state *pm = rq->end_io_data; 168 ide_task_t *args = rq->special; 169 170 memset(args, 0, sizeof(*args)); 171 172 if (drive->media != ide_disk) { 173 /* skip idedisk_pm_idle for ATAPI devices */ 174 if (pm->pm_step == idedisk_pm_idle) 175 pm->pm_step = ide_pm_restore_dma; 176 } 177 178 switch (pm->pm_step) { 179 case ide_pm_flush_cache: /* Suspend step 1 (flush cache) */ 180 if (drive->media != ide_disk) 181 break; 182 /* Not supported? Switch to next step now. */ 183 if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) { 184 ide_complete_power_step(drive, rq, 0, 0); 185 return ide_stopped; 186 } 187 if (ide_id_has_flush_cache_ext(drive->id)) 188 args->tfRegister[IDE_COMMAND_OFFSET] = WIN_FLUSH_CACHE_EXT; 189 else 190 args->tfRegister[IDE_COMMAND_OFFSET] = WIN_FLUSH_CACHE; 191 args->command_type = IDE_DRIVE_TASK_NO_DATA; 192 args->handler = &task_no_data_intr; 193 return do_rw_taskfile(drive, args); 194 195 case idedisk_pm_standby: /* Suspend step 2 (standby) */ 196 args->tfRegister[IDE_COMMAND_OFFSET] = WIN_STANDBYNOW1; 197 args->command_type = IDE_DRIVE_TASK_NO_DATA; 198 args->handler = &task_no_data_intr; 199 return do_rw_taskfile(drive, args); 200 201 case idedisk_pm_idle: /* Resume step 1 (idle) */ 202 args->tfRegister[IDE_COMMAND_OFFSET] = WIN_IDLEIMMEDIATE; 203 args->command_type = IDE_DRIVE_TASK_NO_DATA; 204 args->handler = task_no_data_intr; 205 return do_rw_taskfile(drive, args); 206 207 case ide_pm_restore_dma: /* Resume step 2 (restore DMA) */ 208 /* 209 * Right now, all we do is call hwif->ide_dma_check(drive), 210 * we could be smarter and check for current xfer_speed 211 * in struct drive etc... 212 */ 213 if ((drive->id->capability & 1) == 0) 214 break; 215 if (drive->hwif->ide_dma_check == NULL) 216 break; 217 drive->hwif->ide_dma_check(drive); 218 break; 219 } 220 pm->pm_step = ide_pm_state_completed; 221 return ide_stopped; 222} 223 224/** 225 * ide_end_dequeued_request - complete an IDE I/O 226 * @drive: IDE device for the I/O 227 * @uptodate: 228 * @nr_sectors: number of sectors completed 229 * 230 * Complete an I/O that is no longer on the request queue. This 231 * typically occurs when we pull the request and issue a REQUEST_SENSE. 232 * We must still finish the old request but we must not tamper with the 233 * queue in the meantime. 234 * 235 * NOTE: This path does not handle barrier, but barrier is not supported 236 * on ide-cd anyway. 237 */ 238 239int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq, 240 int uptodate, int nr_sectors) 241{ 242 unsigned long flags; 243 int ret = 1; 244 245 spin_lock_irqsave(&ide_lock, flags); 246 247 BUG_ON(!(rq->flags & REQ_STARTED)); 248 249 /* 250 * if failfast is set on a request, override number of sectors and 251 * complete the whole request right now 252 */ 253 if (blk_noretry_request(rq) && end_io_error(uptodate)) 254 nr_sectors = rq->hard_nr_sectors; 255 256 if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors) 257 rq->errors = -EIO; 258 259 /* 260 * decide whether to reenable DMA -- 3 is a random magic for now, 261 * if we DMA timeout more than 3 times, just stay in PIO 262 */ 263 if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) { 264 drive->state = 0; 265 HWGROUP(drive)->hwif->ide_dma_on(drive); 266 } 267 268 if (!end_that_request_first(rq, uptodate, nr_sectors)) { 269 add_disk_randomness(rq->rq_disk); 270 if (blk_rq_tagged(rq)) 271 blk_queue_end_tag(drive->queue, rq); 272 end_that_request_last(rq, uptodate); 273 ret = 0; 274 } 275 spin_unlock_irqrestore(&ide_lock, flags); 276 return ret; 277} 278EXPORT_SYMBOL_GPL(ide_end_dequeued_request); 279 280 281/** 282 * ide_complete_pm_request - end the current Power Management request 283 * @drive: target drive 284 * @rq: request 285 * 286 * This function cleans up the current PM request and stops the queue 287 * if necessary. 288 */ 289static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq) 290{ 291 unsigned long flags; 292 293#ifdef DEBUG_PM 294 printk("%s: completing PM request, %s\n", drive->name, 295 blk_pm_suspend_request(rq) ? "suspend" : "resume"); 296#endif 297 spin_lock_irqsave(&ide_lock, flags); 298 if (blk_pm_suspend_request(rq)) { 299 blk_stop_queue(drive->queue); 300 } else { 301 drive->blocked = 0; 302 blk_start_queue(drive->queue); 303 } 304 blkdev_dequeue_request(rq); 305 HWGROUP(drive)->rq = NULL; 306 end_that_request_last(rq, 1); 307 spin_unlock_irqrestore(&ide_lock, flags); 308} 309 310/* 311 * FIXME: probably move this somewhere else, name is bad too :) 312 */ 313u64 ide_get_error_location(ide_drive_t *drive, char *args) 314{ 315 u32 high, low; 316 u8 hcyl, lcyl, sect; 317 u64 sector; 318 319 high = 0; 320 hcyl = args[5]; 321 lcyl = args[4]; 322 sect = args[3]; 323 324 if (ide_id_has_flush_cache_ext(drive->id)) { 325 low = (hcyl << 16) | (lcyl << 8) | sect; 326 HWIF(drive)->OUTB(drive->ctl|0x80, IDE_CONTROL_REG); 327 high = ide_read_24(drive); 328 } else { 329 u8 cur = HWIF(drive)->INB(IDE_SELECT_REG); 330 if (cur & 0x40) { 331 high = cur & 0xf; 332 low = (hcyl << 16) | (lcyl << 8) | sect; 333 } else { 334 low = hcyl * drive->head * drive->sect; 335 low += lcyl * drive->sect; 336 low += sect - 1; 337 } 338 } 339 340 sector = ((u64) high << 24) | low; 341 return sector; 342} 343EXPORT_SYMBOL(ide_get_error_location); 344 345/** 346 * ide_end_drive_cmd - end an explicit drive command 347 * @drive: command 348 * @stat: status bits 349 * @err: error bits 350 * 351 * Clean up after success/failure of an explicit drive command. 352 * These get thrown onto the queue so they are synchronized with 353 * real I/O operations on the drive. 354 * 355 * In LBA48 mode we have to read the register set twice to get 356 * all the extra information out. 357 */ 358 359void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err) 360{ 361 ide_hwif_t *hwif = HWIF(drive); 362 unsigned long flags; 363 struct request *rq; 364 365 spin_lock_irqsave(&ide_lock, flags); 366 rq = HWGROUP(drive)->rq; 367 spin_unlock_irqrestore(&ide_lock, flags); 368 369 if (rq->flags & REQ_DRIVE_CMD) { 370 u8 *args = (u8 *) rq->buffer; 371 if (rq->errors == 0) 372 rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT); 373 374 if (args) { 375 args[0] = stat; 376 args[1] = err; 377 args[2] = hwif->INB(IDE_NSECTOR_REG); 378 } 379 } else if (rq->flags & REQ_DRIVE_TASK) { 380 u8 *args = (u8 *) rq->buffer; 381 if (rq->errors == 0) 382 rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT); 383 384 if (args) { 385 args[0] = stat; 386 args[1] = err; 387 args[2] = hwif->INB(IDE_NSECTOR_REG); 388 args[3] = hwif->INB(IDE_SECTOR_REG); 389 args[4] = hwif->INB(IDE_LCYL_REG); 390 args[5] = hwif->INB(IDE_HCYL_REG); 391 args[6] = hwif->INB(IDE_SELECT_REG); 392 } 393 } else if (rq->flags & REQ_DRIVE_TASKFILE) { 394 ide_task_t *args = (ide_task_t *) rq->special; 395 if (rq->errors == 0) 396 rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT); 397 398 if (args) { 399 if (args->tf_in_flags.b.data) { 400 u16 data = hwif->INW(IDE_DATA_REG); 401 args->tfRegister[IDE_DATA_OFFSET] = (data) & 0xFF; 402 args->hobRegister[IDE_DATA_OFFSET] = (data >> 8) & 0xFF; 403 } 404 args->tfRegister[IDE_ERROR_OFFSET] = err; 405 /* be sure we're looking at the low order bits */ 406 hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG); 407 args->tfRegister[IDE_NSECTOR_OFFSET] = hwif->INB(IDE_NSECTOR_REG); 408 args->tfRegister[IDE_SECTOR_OFFSET] = hwif->INB(IDE_SECTOR_REG); 409 args->tfRegister[IDE_LCYL_OFFSET] = hwif->INB(IDE_LCYL_REG); 410 args->tfRegister[IDE_HCYL_OFFSET] = hwif->INB(IDE_HCYL_REG); 411 args->tfRegister[IDE_SELECT_OFFSET] = hwif->INB(IDE_SELECT_REG); 412 args->tfRegister[IDE_STATUS_OFFSET] = stat; 413 414 if (drive->addressing == 1) { 415 hwif->OUTB(drive->ctl|0x80, IDE_CONTROL_REG); 416 args->hobRegister[IDE_FEATURE_OFFSET] = hwif->INB(IDE_FEATURE_REG); 417 args->hobRegister[IDE_NSECTOR_OFFSET] = hwif->INB(IDE_NSECTOR_REG); 418 args->hobRegister[IDE_SECTOR_OFFSET] = hwif->INB(IDE_SECTOR_REG); 419 args->hobRegister[IDE_LCYL_OFFSET] = hwif->INB(IDE_LCYL_REG); 420 args->hobRegister[IDE_HCYL_OFFSET] = hwif->INB(IDE_HCYL_REG); 421 } 422 } 423 } else if (blk_pm_request(rq)) { 424 struct request_pm_state *pm = rq->end_io_data; 425#ifdef DEBUG_PM 426 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n", 427 drive->name, rq->pm->pm_step, stat, err); 428#endif 429 ide_complete_power_step(drive, rq, stat, err); 430 if (pm->pm_step == ide_pm_state_completed) 431 ide_complete_pm_request(drive, rq); 432 return; 433 } 434 435 spin_lock_irqsave(&ide_lock, flags); 436 blkdev_dequeue_request(rq); 437 HWGROUP(drive)->rq = NULL; 438 rq->errors = err; 439 end_that_request_last(rq, !rq->errors); 440 spin_unlock_irqrestore(&ide_lock, flags); 441} 442 443EXPORT_SYMBOL(ide_end_drive_cmd); 444 445/** 446 * try_to_flush_leftover_data - flush junk 447 * @drive: drive to flush 448 * 449 * try_to_flush_leftover_data() is invoked in response to a drive 450 * unexpectedly having its DRQ_STAT bit set. As an alternative to 451 * resetting the drive, this routine tries to clear the condition 452 * by read a sector's worth of data from the drive. Of course, 453 * this may not help if the drive is *waiting* for data from *us*. 454 */ 455static void try_to_flush_leftover_data (ide_drive_t *drive) 456{ 457 int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS; 458 459 if (drive->media != ide_disk) 460 return; 461 while (i > 0) { 462 u32 buffer[16]; 463 u32 wcount = (i > 16) ? 16 : i; 464 465 i -= wcount; 466 HWIF(drive)->ata_input_data(drive, buffer, wcount); 467 } 468} 469 470static void ide_kill_rq(ide_drive_t *drive, struct request *rq) 471{ 472 if (rq->rq_disk) { 473 ide_driver_t *drv; 474 475 drv = *(ide_driver_t **)rq->rq_disk->private_data; 476 drv->end_request(drive, 0, 0); 477 } else 478 ide_end_request(drive, 0, 0); 479} 480 481static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err) 482{ 483 ide_hwif_t *hwif = drive->hwif; 484 485 if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) { 486 /* other bits are useless when BUSY */ 487 rq->errors |= ERROR_RESET; 488 } else if (stat & ERR_STAT) { 489 /* err has different meaning on cdrom and tape */ 490 if (err == ABRT_ERR) { 491 if (drive->select.b.lba && 492 /* some newer drives don't support WIN_SPECIFY */ 493 hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY) 494 return ide_stopped; 495 } else if ((err & BAD_CRC) == BAD_CRC) { 496 /* UDMA crc error, just retry the operation */ 497 drive->crc_count++; 498 } else if (err & (BBD_ERR | ECC_ERR)) { 499 /* retries won't help these */ 500 rq->errors = ERROR_MAX; 501 } else if (err & TRK0_ERR) { 502 /* help it find track zero */ 503 rq->errors |= ERROR_RECAL; 504 } 505 } 506 507 if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ && hwif->err_stops_fifo == 0) 508 try_to_flush_leftover_data(drive); 509 510 if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT)) 511 /* force an abort */ 512 hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG); 513 514 if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) 515 ide_kill_rq(drive, rq); 516 else { 517 if ((rq->errors & ERROR_RESET) == ERROR_RESET) { 518 ++rq->errors; 519 return ide_do_reset(drive); 520 } 521 if ((rq->errors & ERROR_RECAL) == ERROR_RECAL) 522 drive->special.b.recalibrate = 1; 523 ++rq->errors; 524 } 525 return ide_stopped; 526} 527 528static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err) 529{ 530 ide_hwif_t *hwif = drive->hwif; 531 532 if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) { 533 /* other bits are useless when BUSY */ 534 rq->errors |= ERROR_RESET; 535 } else { 536 /* add decoding error stuff */ 537 } 538 539 if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT)) 540 /* force an abort */ 541 hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG); 542 543 if (rq->errors >= ERROR_MAX) { 544 ide_kill_rq(drive, rq); 545 } else { 546 if ((rq->errors & ERROR_RESET) == ERROR_RESET) { 547 ++rq->errors; 548 return ide_do_reset(drive); 549 } 550 ++rq->errors; 551 } 552 553 return ide_stopped; 554} 555 556ide_startstop_t 557__ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err) 558{ 559 if (drive->media == ide_disk) 560 return ide_ata_error(drive, rq, stat, err); 561 return ide_atapi_error(drive, rq, stat, err); 562} 563 564EXPORT_SYMBOL_GPL(__ide_error); 565 566/** 567 * ide_error - handle an error on the IDE 568 * @drive: drive the error occurred on 569 * @msg: message to report 570 * @stat: status bits 571 * 572 * ide_error() takes action based on the error returned by the drive. 573 * For normal I/O that may well include retries. We deal with 574 * both new-style (taskfile) and old style command handling here. 575 * In the case of taskfile command handling there is work left to 576 * do 577 */ 578 579ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat) 580{ 581 struct request *rq; 582 u8 err; 583 584 err = ide_dump_status(drive, msg, stat); 585 586 if ((rq = HWGROUP(drive)->rq) == NULL) 587 return ide_stopped; 588 589 /* retry only "normal" I/O: */ 590 if (rq->flags & (REQ_DRIVE_CMD | REQ_DRIVE_TASK | REQ_DRIVE_TASKFILE)) { 591 rq->errors = 1; 592 ide_end_drive_cmd(drive, stat, err); 593 return ide_stopped; 594 } 595 596 if (rq->rq_disk) { 597 ide_driver_t *drv; 598 599 drv = *(ide_driver_t **)rq->rq_disk->private_data; 600 return drv->error(drive, rq, stat, err); 601 } else 602 return __ide_error(drive, rq, stat, err); 603} 604 605EXPORT_SYMBOL_GPL(ide_error); 606 607ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq) 608{ 609 if (drive->media != ide_disk) 610 rq->errors |= ERROR_RESET; 611 612 ide_kill_rq(drive, rq); 613 614 return ide_stopped; 615} 616 617EXPORT_SYMBOL_GPL(__ide_abort); 618 619/** 620 * ide_abort - abort pending IDE operations 621 * @drive: drive the error occurred on 622 * @msg: message to report 623 * 624 * ide_abort kills and cleans up when we are about to do a 625 * host initiated reset on active commands. Longer term we 626 * want handlers to have sensible abort handling themselves 627 * 628 * This differs fundamentally from ide_error because in 629 * this case the command is doing just fine when we 630 * blow it away. 631 */ 632 633ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg) 634{ 635 struct request *rq; 636 637 if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL) 638 return ide_stopped; 639 640 /* retry only "normal" I/O: */ 641 if (rq->flags & (REQ_DRIVE_CMD | REQ_DRIVE_TASK | REQ_DRIVE_TASKFILE)) { 642 rq->errors = 1; 643 ide_end_drive_cmd(drive, BUSY_STAT, 0); 644 return ide_stopped; 645 } 646 647 if (rq->rq_disk) { 648 ide_driver_t *drv; 649 650 drv = *(ide_driver_t **)rq->rq_disk->private_data; 651 return drv->abort(drive, rq); 652 } else 653 return __ide_abort(drive, rq); 654} 655 656/** 657 * ide_cmd - issue a simple drive command 658 * @drive: drive the command is for 659 * @cmd: command byte 660 * @nsect: sector byte 661 * @handler: handler for the command completion 662 * 663 * Issue a simple drive command with interrupts. 664 * The drive must be selected beforehand. 665 */ 666 667static void ide_cmd (ide_drive_t *drive, u8 cmd, u8 nsect, 668 ide_handler_t *handler) 669{ 670 ide_hwif_t *hwif = HWIF(drive); 671 if (IDE_CONTROL_REG) 672 hwif->OUTB(drive->ctl,IDE_CONTROL_REG); /* clear nIEN */ 673 SELECT_MASK(drive,0); 674 hwif->OUTB(nsect,IDE_NSECTOR_REG); 675 ide_execute_command(drive, cmd, handler, WAIT_CMD, NULL); 676} 677 678/** 679 * drive_cmd_intr - drive command completion interrupt 680 * @drive: drive the completion interrupt occurred on 681 * 682 * drive_cmd_intr() is invoked on completion of a special DRIVE_CMD. 683 * We do any necessary data reading and then wait for the drive to 684 * go non busy. At that point we may read the error data and complete 685 * the request 686 */ 687 688static ide_startstop_t drive_cmd_intr (ide_drive_t *drive) 689{ 690 struct request *rq = HWGROUP(drive)->rq; 691 ide_hwif_t *hwif = HWIF(drive); 692 u8 *args = (u8 *) rq->buffer; 693 u8 stat = hwif->INB(IDE_STATUS_REG); 694 int retries = 10; 695 696 local_irq_enable_in_hardirq(); 697 if ((stat & DRQ_STAT) && args && args[3]) { 698 u8 io_32bit = drive->io_32bit; 699 drive->io_32bit = 0; 700 hwif->ata_input_data(drive, &args[4], args[3] * SECTOR_WORDS); 701 drive->io_32bit = io_32bit; 702 while (((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) && retries--) 703 udelay(100); 704 } 705 706 if (!OK_STAT(stat, READY_STAT, BAD_STAT)) 707 return ide_error(drive, "drive_cmd", stat); 708 /* calls ide_end_drive_cmd */ 709 ide_end_drive_cmd(drive, stat, hwif->INB(IDE_ERROR_REG)); 710 return ide_stopped; 711} 712 713static void ide_init_specify_cmd(ide_drive_t *drive, ide_task_t *task) 714{ 715 task->tfRegister[IDE_NSECTOR_OFFSET] = drive->sect; 716 task->tfRegister[IDE_SECTOR_OFFSET] = drive->sect; 717 task->tfRegister[IDE_LCYL_OFFSET] = drive->cyl; 718 task->tfRegister[IDE_HCYL_OFFSET] = drive->cyl>>8; 719 task->tfRegister[IDE_SELECT_OFFSET] = ((drive->head-1)|drive->select.all)&0xBF; 720 task->tfRegister[IDE_COMMAND_OFFSET] = WIN_SPECIFY; 721 722 task->handler = &set_geometry_intr; 723} 724 725static void ide_init_restore_cmd(ide_drive_t *drive, ide_task_t *task) 726{ 727 task->tfRegister[IDE_NSECTOR_OFFSET] = drive->sect; 728 task->tfRegister[IDE_COMMAND_OFFSET] = WIN_RESTORE; 729 730 task->handler = &recal_intr; 731} 732 733static void ide_init_setmult_cmd(ide_drive_t *drive, ide_task_t *task) 734{ 735 task->tfRegister[IDE_NSECTOR_OFFSET] = drive->mult_req; 736 task->tfRegister[IDE_COMMAND_OFFSET] = WIN_SETMULT; 737 738 task->handler = &set_multmode_intr; 739} 740 741static ide_startstop_t ide_disk_special(ide_drive_t *drive) 742{ 743 special_t *s = &drive->special; 744 ide_task_t args; 745 746 memset(&args, 0, sizeof(ide_task_t)); 747 args.command_type = IDE_DRIVE_TASK_NO_DATA; 748 749 if (s->b.set_geometry) { 750 s->b.set_geometry = 0; 751 ide_init_specify_cmd(drive, &args); 752 } else if (s->b.recalibrate) { 753 s->b.recalibrate = 0; 754 ide_init_restore_cmd(drive, &args); 755 } else if (s->b.set_multmode) { 756 s->b.set_multmode = 0; 757 if (drive->mult_req > drive->id->max_multsect) 758 drive->mult_req = drive->id->max_multsect; 759 ide_init_setmult_cmd(drive, &args); 760 } else if (s->all) { 761 int special = s->all; 762 s->all = 0; 763 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special); 764 return ide_stopped; 765 } 766 767 do_rw_taskfile(drive, &args); 768 769 return ide_started; 770} 771 772/** 773 * do_special - issue some special commands 774 * @drive: drive the command is for 775 * 776 * do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT 777 * commands to a drive. It used to do much more, but has been scaled 778 * back. 779 */ 780 781static ide_startstop_t do_special (ide_drive_t *drive) 782{ 783 special_t *s = &drive->special; 784 785#ifdef DEBUG 786 printk("%s: do_special: 0x%02x\n", drive->name, s->all); 787#endif 788 if (s->b.set_tune) { 789 s->b.set_tune = 0; 790 if (HWIF(drive)->tuneproc != NULL) 791 HWIF(drive)->tuneproc(drive, drive->tune_req); 792 return ide_stopped; 793 } else { 794 if (drive->media == ide_disk) 795 return ide_disk_special(drive); 796 797 s->all = 0; 798 drive->mult_req = 0; 799 return ide_stopped; 800 } 801} 802 803void ide_map_sg(ide_drive_t *drive, struct request *rq) 804{ 805 ide_hwif_t *hwif = drive->hwif; 806 struct scatterlist *sg = hwif->sg_table; 807 808 if (hwif->sg_mapped) /* needed by ide-scsi */ 809 return; 810 811 if ((rq->flags & REQ_DRIVE_TASKFILE) == 0) { 812 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg); 813 } else { 814 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE); 815 hwif->sg_nents = 1; 816 } 817} 818 819EXPORT_SYMBOL_GPL(ide_map_sg); 820 821void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq) 822{ 823 ide_hwif_t *hwif = drive->hwif; 824 825 hwif->nsect = hwif->nleft = rq->nr_sectors; 826 hwif->cursg = hwif->cursg_ofs = 0; 827} 828 829EXPORT_SYMBOL_GPL(ide_init_sg_cmd); 830 831/** 832 * execute_drive_command - issue special drive command 833 * @drive: the drive to issue the command on 834 * @rq: the request structure holding the command 835 * 836 * execute_drive_cmd() issues a special drive command, usually 837 * initiated by ioctl() from the external hdparm program. The 838 * command can be a drive command, drive task or taskfile 839 * operation. Weirdly you can call it with NULL to wait for 840 * all commands to finish. Don't do this as that is due to change 841 */ 842 843static ide_startstop_t execute_drive_cmd (ide_drive_t *drive, 844 struct request *rq) 845{ 846 ide_hwif_t *hwif = HWIF(drive); 847 if (rq->flags & REQ_DRIVE_TASKFILE) { 848 ide_task_t *args = rq->special; 849 850 if (!args) 851 goto done; 852 853 hwif->data_phase = args->data_phase; 854 855 switch (hwif->data_phase) { 856 case TASKFILE_MULTI_OUT: 857 case TASKFILE_OUT: 858 case TASKFILE_MULTI_IN: 859 case TASKFILE_IN: 860 ide_init_sg_cmd(drive, rq); 861 ide_map_sg(drive, rq); 862 default: 863 break; 864 } 865 866 if (args->tf_out_flags.all != 0) 867 return flagged_taskfile(drive, args); 868 return do_rw_taskfile(drive, args); 869 } else if (rq->flags & REQ_DRIVE_TASK) { 870 u8 *args = rq->buffer; 871 u8 sel; 872 873 if (!args) 874 goto done; 875#ifdef DEBUG 876 printk("%s: DRIVE_TASK_CMD ", drive->name); 877 printk("cmd=0x%02x ", args[0]); 878 printk("fr=0x%02x ", args[1]); 879 printk("ns=0x%02x ", args[2]); 880 printk("sc=0x%02x ", args[3]); 881 printk("lcyl=0x%02x ", args[4]); 882 printk("hcyl=0x%02x ", args[5]); 883 printk("sel=0x%02x\n", args[6]); 884#endif 885 hwif->OUTB(args[1], IDE_FEATURE_REG); 886 hwif->OUTB(args[3], IDE_SECTOR_REG); 887 hwif->OUTB(args[4], IDE_LCYL_REG); 888 hwif->OUTB(args[5], IDE_HCYL_REG); 889 sel = (args[6] & ~0x10); 890 if (drive->select.b.unit) 891 sel |= 0x10; 892 hwif->OUTB(sel, IDE_SELECT_REG); 893 ide_cmd(drive, args[0], args[2], &drive_cmd_intr); 894 return ide_started; 895 } else if (rq->flags & REQ_DRIVE_CMD) { 896 u8 *args = rq->buffer; 897 898 if (!args) 899 goto done; 900#ifdef DEBUG 901 printk("%s: DRIVE_CMD ", drive->name); 902 printk("cmd=0x%02x ", args[0]); 903 printk("sc=0x%02x ", args[1]); 904 printk("fr=0x%02x ", args[2]); 905 printk("xx=0x%02x\n", args[3]); 906#endif 907 if (args[0] == WIN_SMART) { 908 hwif->OUTB(0x4f, IDE_LCYL_REG); 909 hwif->OUTB(0xc2, IDE_HCYL_REG); 910 hwif->OUTB(args[2],IDE_FEATURE_REG); 911 hwif->OUTB(args[1],IDE_SECTOR_REG); 912 ide_cmd(drive, args[0], args[3], &drive_cmd_intr); 913 return ide_started; 914 } 915 hwif->OUTB(args[2],IDE_FEATURE_REG); 916 ide_cmd(drive, args[0], args[1], &drive_cmd_intr); 917 return ide_started; 918 } 919 920done: 921 /* 922 * NULL is actually a valid way of waiting for 923 * all current requests to be flushed from the queue. 924 */ 925#ifdef DEBUG 926 printk("%s: DRIVE_CMD (null)\n", drive->name); 927#endif 928 ide_end_drive_cmd(drive, 929 hwif->INB(IDE_STATUS_REG), 930 hwif->INB(IDE_ERROR_REG)); 931 return ide_stopped; 932} 933 934static void ide_check_pm_state(ide_drive_t *drive, struct request *rq) 935{ 936 struct request_pm_state *pm = rq->end_io_data; 937 938 if (blk_pm_suspend_request(rq) && 939 pm->pm_step == ide_pm_state_start_suspend) 940 /* Mark drive blocked when starting the suspend sequence. */ 941 drive->blocked = 1; 942 else if (blk_pm_resume_request(rq) && 943 pm->pm_step == ide_pm_state_start_resume) { 944 /* 945 * The first thing we do on wakeup is to wait for BSY bit to 946 * go away (with a looong timeout) as a drive on this hwif may 947 * just be POSTing itself. 948 * We do that before even selecting as the "other" device on 949 * the bus may be broken enough to walk on our toes at this 950 * point. 951 */ 952 int rc; 953#ifdef DEBUG_PM 954 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name); 955#endif 956 rc = ide_wait_not_busy(HWIF(drive), 35000); 957 if (rc) 958 printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name); 959 SELECT_DRIVE(drive); 960 HWIF(drive)->OUTB(8, HWIF(drive)->io_ports[IDE_CONTROL_OFFSET]); 961 rc = ide_wait_not_busy(HWIF(drive), 100000); 962 if (rc) 963 printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name); 964 } 965} 966 967/** 968 * start_request - start of I/O and command issuing for IDE 969 * 970 * start_request() initiates handling of a new I/O request. It 971 * accepts commands and I/O (read/write) requests. It also does 972 * the final remapping for weird stuff like EZDrive. Once 973 * device mapper can work sector level the EZDrive stuff can go away 974 * 975 * FIXME: this function needs a rename 976 */ 977 978static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq) 979{ 980 ide_startstop_t startstop; 981 sector_t block; 982 983 BUG_ON(!(rq->flags & REQ_STARTED)); 984 985#ifdef DEBUG 986 printk("%s: start_request: current=0x%08lx\n", 987 HWIF(drive)->name, (unsigned long) rq); 988#endif 989 990 /* bail early if we've exceeded max_failures */ 991 if (drive->max_failures && (drive->failures > drive->max_failures)) { 992 goto kill_rq; 993 } 994 995 block = rq->sector; 996 if (blk_fs_request(rq) && 997 (drive->media == ide_disk || drive->media == ide_floppy)) { 998 block += drive->sect0; 999 } 1000 /* Yecch - this will shift the entire interval, 1001 possibly killing some innocent following sector */ 1002 if (block == 0 && drive->remap_0_to_1 == 1) 1003 block = 1; /* redirect MBR access to EZ-Drive partn table */ 1004 1005 if (blk_pm_request(rq)) 1006 ide_check_pm_state(drive, rq); 1007 1008 SELECT_DRIVE(drive); 1009 if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) { 1010 printk(KERN_ERR "%s: drive not ready for command\n", drive->name); 1011 return startstop; 1012 } 1013 if (!drive->special.all) { 1014 ide_driver_t *drv; 1015 1016 if (rq->flags & (REQ_DRIVE_CMD | REQ_DRIVE_TASK)) 1017 return execute_drive_cmd(drive, rq); 1018 else if (rq->flags & REQ_DRIVE_TASKFILE) 1019 return execute_drive_cmd(drive, rq); 1020 else if (blk_pm_request(rq)) { 1021 struct request_pm_state *pm = rq->end_io_data; 1022#ifdef DEBUG_PM 1023 printk("%s: start_power_step(step: %d)\n", 1024 drive->name, rq->pm->pm_step); 1025#endif 1026 startstop = ide_start_power_step(drive, rq); 1027 if (startstop == ide_stopped && 1028 pm->pm_step == ide_pm_state_completed) 1029 ide_complete_pm_request(drive, rq); 1030 return startstop; 1031 } 1032 1033 drv = *(ide_driver_t **)rq->rq_disk->private_data; 1034 return drv->do_request(drive, rq, block); 1035 } 1036 return do_special(drive); 1037kill_rq: 1038 ide_kill_rq(drive, rq); 1039 return ide_stopped; 1040} 1041 1042/** 1043 * ide_stall_queue - pause an IDE device 1044 * @drive: drive to stall 1045 * @timeout: time to stall for (jiffies) 1046 * 1047 * ide_stall_queue() can be used by a drive to give excess bandwidth back 1048 * to the hwgroup by sleeping for timeout jiffies. 1049 */ 1050 1051void ide_stall_queue (ide_drive_t *drive, unsigned long timeout) 1052{ 1053 if (timeout > WAIT_WORSTCASE) 1054 timeout = WAIT_WORSTCASE; 1055 drive->sleep = timeout + jiffies; 1056 drive->sleeping = 1; 1057} 1058 1059EXPORT_SYMBOL(ide_stall_queue); 1060 1061#define WAKEUP(drive) ((drive)->service_start + 2 * (drive)->service_time) 1062 1063/** 1064 * choose_drive - select a drive to service 1065 * @hwgroup: hardware group to select on 1066 * 1067 * choose_drive() selects the next drive which will be serviced. 1068 * This is necessary because the IDE layer can't issue commands 1069 * to both drives on the same cable, unlike SCSI. 1070 */ 1071 1072static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup) 1073{ 1074 ide_drive_t *drive, *best; 1075 1076repeat: 1077 best = NULL; 1078 drive = hwgroup->drive; 1079 1080 /* 1081 * drive is doing pre-flush, ordered write, post-flush sequence. even 1082 * though that is 3 requests, it must be seen as a single transaction. 1083 * we must not preempt this drive until that is complete 1084 */ 1085 if (blk_queue_flushing(drive->queue)) { 1086 /* 1087 * small race where queue could get replugged during 1088 * the 3-request flush cycle, just yank the plug since 1089 * we want it to finish asap 1090 */ 1091 blk_remove_plug(drive->queue); 1092 return drive; 1093 } 1094 1095 do { 1096 if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep)) 1097 && !elv_queue_empty(drive->queue)) { 1098 if (!best 1099 || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep))) 1100 || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best)))) 1101 { 1102 if (!blk_queue_plugged(drive->queue)) 1103 best = drive; 1104 } 1105 } 1106 } while ((drive = drive->next) != hwgroup->drive); 1107 if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) { 1108 long t = (signed long)(WAKEUP(best) - jiffies); 1109 if (t >= WAIT_MIN_SLEEP) { 1110 /* 1111 * We *may* have some time to spare, but first let's see if 1112 * someone can potentially benefit from our nice mood today.. 1113 */ 1114 drive = best->next; 1115 do { 1116 if (!drive->sleeping 1117 && time_before(jiffies - best->service_time, WAKEUP(drive)) 1118 && time_before(WAKEUP(drive), jiffies + t)) 1119 { 1120 ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP)); 1121 goto repeat; 1122 } 1123 } while ((drive = drive->next) != best); 1124 } 1125 } 1126 return best; 1127} 1128 1129/* 1130 * Issue a new request to a drive from hwgroup 1131 * Caller must have already done spin_lock_irqsave(&ide_lock, ..); 1132 * 1133 * A hwgroup is a serialized group of IDE interfaces. Usually there is 1134 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640) 1135 * may have both interfaces in a single hwgroup to "serialize" access. 1136 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped 1137 * together into one hwgroup for serialized access. 1138 * 1139 * Note also that several hwgroups can end up sharing a single IRQ, 1140 * possibly along with many other devices. This is especially common in 1141 * PCI-based systems with off-board IDE controller cards. 1142 * 1143 * The IDE driver uses the single global ide_lock spinlock to protect 1144 * access to the request queues, and to protect the hwgroup->busy flag. 1145 * 1146 * The first thread into the driver for a particular hwgroup sets the 1147 * hwgroup->busy flag to indicate that this hwgroup is now active, 1148 * and then initiates processing of the top request from the request queue. 1149 * 1150 * Other threads attempting entry notice the busy setting, and will simply 1151 * queue their new requests and exit immediately. Note that hwgroup->busy 1152 * remains set even when the driver is merely awaiting the next interrupt. 1153 * Thus, the meaning is "this hwgroup is busy processing a request". 1154 * 1155 * When processing of a request completes, the completing thread or IRQ-handler 1156 * will start the next request from the queue. If no more work remains, 1157 * the driver will clear the hwgroup->busy flag and exit. 1158 * 1159 * The ide_lock (spinlock) is used to protect all access to the 1160 * hwgroup->busy flag, but is otherwise not needed for most processing in 1161 * the driver. This makes the driver much more friendlier to shared IRQs 1162 * than previous designs, while remaining 100% (?) SMP safe and capable. 1163 */ 1164static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq) 1165{ 1166 ide_drive_t *drive; 1167 ide_hwif_t *hwif; 1168 struct request *rq; 1169 ide_startstop_t startstop; 1170 int loops = 0; 1171 1172 /* for atari only: POSSIBLY BROKEN HERE(?) */ 1173 ide_get_lock(ide_intr, hwgroup); 1174 1175 /* caller must own ide_lock */ 1176 BUG_ON(!irqs_disabled()); 1177 1178 while (!hwgroup->busy) { 1179 hwgroup->busy = 1; 1180 drive = choose_drive(hwgroup); 1181 if (drive == NULL) { 1182 int sleeping = 0; 1183 unsigned long sleep = 0; /* shut up, gcc */ 1184 hwgroup->rq = NULL; 1185 drive = hwgroup->drive; 1186 do { 1187 if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) { 1188 sleeping = 1; 1189 sleep = drive->sleep; 1190 } 1191 } while ((drive = drive->next) != hwgroup->drive); 1192 if (sleeping) { 1193 /* 1194 * Take a short snooze, and then wake up this hwgroup again. 1195 * This gives other hwgroups on the same a chance to 1196 * play fairly with us, just in case there are big differences 1197 * in relative throughputs.. don't want to hog the cpu too much. 1198 */ 1199 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP)) 1200 sleep = jiffies + WAIT_MIN_SLEEP; 1201#if 1 1202 if (timer_pending(&hwgroup->timer)) 1203 printk(KERN_CRIT "ide_set_handler: timer already active\n"); 1204#endif 1205 /* so that ide_timer_expiry knows what to do */ 1206 hwgroup->sleeping = 1; 1207 mod_timer(&hwgroup->timer, sleep); 1208 /* we purposely leave hwgroup->busy==1 1209 * while sleeping */ 1210 } else { 1211 /* Ugly, but how can we sleep for the lock 1212 * otherwise? perhaps from tq_disk? 1213 */ 1214 1215 /* for atari only */ 1216 ide_release_lock(); 1217 hwgroup->busy = 0; 1218 } 1219 1220 /* no more work for this hwgroup (for now) */ 1221 return; 1222 } 1223 again: 1224 hwif = HWIF(drive); 1225 if (hwgroup->hwif->sharing_irq && 1226 hwif != hwgroup->hwif && 1227 hwif->io_ports[IDE_CONTROL_OFFSET]) { 1228 /* set nIEN for previous hwif */ 1229 SELECT_INTERRUPT(drive); 1230 } 1231 hwgroup->hwif = hwif; 1232 hwgroup->drive = drive; 1233 drive->sleeping = 0; 1234 drive->service_start = jiffies; 1235 1236 if (blk_queue_plugged(drive->queue)) { 1237 printk(KERN_ERR "ide: huh? queue was plugged!\n"); 1238 break; 1239 } 1240 1241 /* 1242 * we know that the queue isn't empty, but this can happen 1243 * if the q->prep_rq_fn() decides to kill a request 1244 */ 1245 rq = elv_next_request(drive->queue); 1246 if (!rq) { 1247 hwgroup->busy = 0; 1248 break; 1249 } 1250 1251 /* 1252 * Sanity: don't accept a request that isn't a PM request 1253 * if we are currently power managed. This is very important as 1254 * blk_stop_queue() doesn't prevent the elv_next_request() 1255 * above to return us whatever is in the queue. Since we call 1256 * ide_do_request() ourselves, we end up taking requests while 1257 * the queue is blocked... 1258 * 1259 * We let requests forced at head of queue with ide-preempt 1260 * though. I hope that doesn't happen too much, hopefully not 1261 * unless the subdriver triggers such a thing in its own PM 1262 * state machine. 1263 * 1264 * We count how many times we loop here to make sure we service 1265 * all drives in the hwgroup without looping for ever 1266 */ 1267 if (drive->blocked && !blk_pm_request(rq) && !(rq->flags & REQ_PREEMPT)) { 1268 drive = drive->next ? drive->next : hwgroup->drive; 1269 if (loops++ < 4 && !blk_queue_plugged(drive->queue)) 1270 goto again; 1271 /* We clear busy, there should be no pending ATA command at this point. */ 1272 hwgroup->busy = 0; 1273 break; 1274 } 1275 1276 hwgroup->rq = rq; 1277 1278 /* 1279 * Some systems have trouble with IDE IRQs arriving while 1280 * the driver is still setting things up. So, here we disable 1281 * the IRQ used by this interface while the request is being started. 1282 * This may look bad at first, but pretty much the same thing 1283 * happens anyway when any interrupt comes in, IDE or otherwise 1284 * -- the kernel masks the IRQ while it is being handled. 1285 */ 1286 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq) 1287 disable_irq_nosync(hwif->irq); 1288 spin_unlock(&ide_lock); 1289 local_irq_enable_in_hardirq(); 1290 /* allow other IRQs while we start this request */ 1291 startstop = start_request(drive, rq); 1292 spin_lock_irq(&ide_lock); 1293 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq) 1294 enable_irq(hwif->irq); 1295 if (startstop == ide_stopped) 1296 hwgroup->busy = 0; 1297 } 1298} 1299 1300/* 1301 * Passes the stuff to ide_do_request 1302 */ 1303void do_ide_request(request_queue_t *q) 1304{ 1305 ide_drive_t *drive = q->queuedata; 1306 1307 ide_do_request(HWGROUP(drive), IDE_NO_IRQ); 1308} 1309 1310/* 1311 * un-busy the hwgroup etc, and clear any pending DMA status. we want to 1312 * retry the current request in pio mode instead of risking tossing it 1313 * all away 1314 */ 1315static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error) 1316{ 1317 ide_hwif_t *hwif = HWIF(drive); 1318 struct request *rq; 1319 ide_startstop_t ret = ide_stopped; 1320 1321 /* 1322 * end current dma transaction 1323 */ 1324 1325 if (error < 0) { 1326 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name); 1327 (void)HWIF(drive)->ide_dma_end(drive); 1328 ret = ide_error(drive, "dma timeout error", 1329 hwif->INB(IDE_STATUS_REG)); 1330 } else { 1331 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name); 1332 (void) hwif->ide_dma_timeout(drive); 1333 } 1334 1335 /* 1336 * disable dma for now, but remember that we did so because of 1337 * a timeout -- we'll reenable after we finish this next request 1338 * (or rather the first chunk of it) in pio. 1339 */ 1340 drive->retry_pio++; 1341 drive->state = DMA_PIO_RETRY; 1342 (void) hwif->ide_dma_off_quietly(drive); 1343 1344 /* 1345 * un-busy drive etc (hwgroup->busy is cleared on return) and 1346 * make sure request is sane 1347 */ 1348 rq = HWGROUP(drive)->rq; 1349 HWGROUP(drive)->rq = NULL; 1350 1351 rq->errors = 0; 1352 1353 if (!rq->bio) 1354 goto out; 1355 1356 rq->sector = rq->bio->bi_sector; 1357 rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9; 1358 rq->hard_cur_sectors = rq->current_nr_sectors; 1359 rq->buffer = bio_data(rq->bio); 1360out: 1361 return ret; 1362} 1363 1364/** 1365 * ide_timer_expiry - handle lack of an IDE interrupt 1366 * @data: timer callback magic (hwgroup) 1367 * 1368 * An IDE command has timed out before the expected drive return 1369 * occurred. At this point we attempt to clean up the current 1370 * mess. If the current handler includes an expiry handler then 1371 * we invoke the expiry handler, and providing it is happy the 1372 * work is done. If that fails we apply generic recovery rules 1373 * invoking the handler and checking the drive DMA status. We 1374 * have an excessively incestuous relationship with the DMA 1375 * logic that wants cleaning up. 1376 */ 1377 1378void ide_timer_expiry (unsigned long data) 1379{ 1380 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *) data; 1381 ide_handler_t *handler; 1382 ide_expiry_t *expiry; 1383 unsigned long flags; 1384 unsigned long wait = -1; 1385 1386 spin_lock_irqsave(&ide_lock, flags); 1387 1388 if ((handler = hwgroup->handler) == NULL) { 1389 /* 1390 * Either a marginal timeout occurred 1391 * (got the interrupt just as timer expired), 1392 * or we were "sleeping" to give other devices a chance. 1393 * Either way, we don't really want to complain about anything. 1394 */ 1395 if (hwgroup->sleeping) { 1396 hwgroup->sleeping = 0; 1397 hwgroup->busy = 0; 1398 } 1399 } else { 1400 ide_drive_t *drive = hwgroup->drive; 1401 if (!drive) { 1402 printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n"); 1403 hwgroup->handler = NULL; 1404 } else { 1405 ide_hwif_t *hwif; 1406 ide_startstop_t startstop = ide_stopped; 1407 if (!hwgroup->busy) { 1408 hwgroup->busy = 1; /* paranoia */ 1409 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name); 1410 } 1411 if ((expiry = hwgroup->expiry) != NULL) { 1412 /* continue */ 1413 if ((wait = expiry(drive)) > 0) { 1414 /* reset timer */ 1415 hwgroup->timer.expires = jiffies + wait; 1416 add_timer(&hwgroup->timer); 1417 spin_unlock_irqrestore(&ide_lock, flags); 1418 return; 1419 } 1420 } 1421 hwgroup->handler = NULL; 1422 /* 1423 * We need to simulate a real interrupt when invoking 1424 * the handler() function, which means we need to 1425 * globally mask the specific IRQ: 1426 */ 1427 spin_unlock(&ide_lock); 1428 hwif = HWIF(drive); 1429#if DISABLE_IRQ_NOSYNC 1430 disable_irq_nosync(hwif->irq); 1431#else 1432 /* disable_irq_nosync ?? */ 1433 disable_irq(hwif->irq); 1434#endif /* DISABLE_IRQ_NOSYNC */ 1435 /* local CPU only, 1436 * as if we were handling an interrupt */ 1437 local_irq_disable(); 1438 if (hwgroup->polling) { 1439 startstop = handler(drive); 1440 } else if (drive_is_ready(drive)) { 1441 if (drive->waiting_for_dma) 1442 (void) hwgroup->hwif->ide_dma_lostirq(drive); 1443 (void)ide_ack_intr(hwif); 1444 printk(KERN_WARNING "%s: lost interrupt\n", drive->name); 1445 startstop = handler(drive); 1446 } else { 1447 if (drive->waiting_for_dma) { 1448 startstop = ide_dma_timeout_retry(drive, wait); 1449 } else 1450 startstop = 1451 ide_error(drive, "irq timeout", hwif->INB(IDE_STATUS_REG)); 1452 } 1453 drive->service_time = jiffies - drive->service_start; 1454 spin_lock_irq(&ide_lock); 1455 enable_irq(hwif->irq); 1456 if (startstop == ide_stopped) 1457 hwgroup->busy = 0; 1458 } 1459 } 1460 ide_do_request(hwgroup, IDE_NO_IRQ); 1461 spin_unlock_irqrestore(&ide_lock, flags); 1462} 1463 1464/** 1465 * unexpected_intr - handle an unexpected IDE interrupt 1466 * @irq: interrupt line 1467 * @hwgroup: hwgroup being processed 1468 * 1469 * There's nothing really useful we can do with an unexpected interrupt, 1470 * other than reading the status register (to clear it), and logging it. 1471 * There should be no way that an irq can happen before we're ready for it, 1472 * so we needn't worry much about losing an "important" interrupt here. 1473 * 1474 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever 1475 * the drive enters "idle", "standby", or "sleep" mode, so if the status 1476 * looks "good", we just ignore the interrupt completely. 1477 * 1478 * This routine assumes __cli() is in effect when called. 1479 * 1480 * If an unexpected interrupt happens on irq15 while we are handling irq14 1481 * and if the two interfaces are "serialized" (CMD640), then it looks like 1482 * we could screw up by interfering with a new request being set up for 1483 * irq15. 1484 * 1485 * In reality, this is a non-issue. The new command is not sent unless 1486 * the drive is ready to accept one, in which case we know the drive is 1487 * not trying to interrupt us. And ide_set_handler() is always invoked 1488 * before completing the issuance of any new drive command, so we will not 1489 * be accidentally invoked as a result of any valid command completion 1490 * interrupt. 1491 * 1492 * Note that we must walk the entire hwgroup here. We know which hwif 1493 * is doing the current command, but we don't know which hwif burped 1494 * mysteriously. 1495 */ 1496 1497static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup) 1498{ 1499 u8 stat; 1500 ide_hwif_t *hwif = hwgroup->hwif; 1501 1502 /* 1503 * handle the unexpected interrupt 1504 */ 1505 do { 1506 if (hwif->irq == irq) { 1507 stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]); 1508 if (!OK_STAT(stat, READY_STAT, BAD_STAT)) { 1509 /* Try to not flood the console with msgs */ 1510 static unsigned long last_msgtime, count; 1511 ++count; 1512 if (time_after(jiffies, last_msgtime + HZ)) { 1513 last_msgtime = jiffies; 1514 printk(KERN_ERR "%s%s: unexpected interrupt, " 1515 "status=0x%02x, count=%ld\n", 1516 hwif->name, 1517 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count); 1518 } 1519 } 1520 } 1521 } while ((hwif = hwif->next) != hwgroup->hwif); 1522} 1523 1524/** 1525 * ide_intr - default IDE interrupt handler 1526 * @irq: interrupt number 1527 * @dev_id: hwif group 1528 * @regs: unused weirdness from the kernel irq layer 1529 * 1530 * This is the default IRQ handler for the IDE layer. You should 1531 * not need to override it. If you do be aware it is subtle in 1532 * places 1533 * 1534 * hwgroup->hwif is the interface in the group currently performing 1535 * a command. hwgroup->drive is the drive and hwgroup->handler is 1536 * the IRQ handler to call. As we issue a command the handlers 1537 * step through multiple states, reassigning the handler to the 1538 * next step in the process. Unlike a smart SCSI controller IDE 1539 * expects the main processor to sequence the various transfer 1540 * stages. We also manage a poll timer to catch up with most 1541 * timeout situations. There are still a few where the handlers 1542 * don't ever decide to give up. 1543 * 1544 * The handler eventually returns ide_stopped to indicate the 1545 * request completed. At this point we issue the next request 1546 * on the hwgroup and the process begins again. 1547 */ 1548 1549irqreturn_t ide_intr (int irq, void *dev_id, struct pt_regs *regs) 1550{ 1551 unsigned long flags; 1552 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id; 1553 ide_hwif_t *hwif; 1554 ide_drive_t *drive; 1555 ide_handler_t *handler; 1556 ide_startstop_t startstop; 1557 1558 spin_lock_irqsave(&ide_lock, flags); 1559 hwif = hwgroup->hwif; 1560 1561 if (!ide_ack_intr(hwif)) { 1562 spin_unlock_irqrestore(&ide_lock, flags); 1563 return IRQ_NONE; 1564 } 1565 1566 if ((handler = hwgroup->handler) == NULL || hwgroup->polling) { 1567 /* 1568 * Not expecting an interrupt from this drive. 1569 * That means this could be: 1570 * (1) an interrupt from another PCI device 1571 * sharing the same PCI INT# as us. 1572 * or (2) a drive just entered sleep or standby mode, 1573 * and is interrupting to let us know. 1574 * or (3) a spurious interrupt of unknown origin. 1575 * 1576 * For PCI, we cannot tell the difference, 1577 * so in that case we just ignore it and hope it goes away. 1578 * 1579 * FIXME: unexpected_intr should be hwif-> then we can 1580 * remove all the ifdef PCI crap 1581 */ 1582#ifdef CONFIG_BLK_DEV_IDEPCI 1583 if (hwif->pci_dev && !hwif->pci_dev->vendor) 1584#endif /* CONFIG_BLK_DEV_IDEPCI */ 1585 { 1586 /* 1587 * Probably not a shared PCI interrupt, 1588 * so we can safely try to do something about it: 1589 */ 1590 unexpected_intr(irq, hwgroup); 1591#ifdef CONFIG_BLK_DEV_IDEPCI 1592 } else { 1593 /* 1594 * Whack the status register, just in case 1595 * we have a leftover pending IRQ. 1596 */ 1597 (void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]); 1598#endif /* CONFIG_BLK_DEV_IDEPCI */ 1599 } 1600 spin_unlock_irqrestore(&ide_lock, flags); 1601 return IRQ_NONE; 1602 } 1603 drive = hwgroup->drive; 1604 if (!drive) { 1605 /* 1606 * This should NEVER happen, and there isn't much 1607 * we could do about it here. 1608 * 1609 * [Note - this can occur if the drive is hot unplugged] 1610 */ 1611 spin_unlock_irqrestore(&ide_lock, flags); 1612 return IRQ_HANDLED; 1613 } 1614 if (!drive_is_ready(drive)) { 1615 /* 1616 * This happens regularly when we share a PCI IRQ with 1617 * another device. Unfortunately, it can also happen 1618 * with some buggy drives that trigger the IRQ before 1619 * their status register is up to date. Hopefully we have 1620 * enough advance overhead that the latter isn't a problem. 1621 */ 1622 spin_unlock_irqrestore(&ide_lock, flags); 1623 return IRQ_NONE; 1624 } 1625 if (!hwgroup->busy) { 1626 hwgroup->busy = 1; /* paranoia */ 1627 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name); 1628 } 1629 hwgroup->handler = NULL; 1630 del_timer(&hwgroup->timer); 1631 spin_unlock(&ide_lock); 1632 1633 if (drive->unmask) 1634 local_irq_enable_in_hardirq(); 1635 /* service this interrupt, may set handler for next interrupt */ 1636 startstop = handler(drive); 1637 spin_lock_irq(&ide_lock); 1638 1639 /* 1640 * Note that handler() may have set things up for another 1641 * interrupt to occur soon, but it cannot happen until 1642 * we exit from this routine, because it will be the 1643 * same irq as is currently being serviced here, and Linux 1644 * won't allow another of the same (on any CPU) until we return. 1645 */ 1646 drive->service_time = jiffies - drive->service_start; 1647 if (startstop == ide_stopped) { 1648 if (hwgroup->handler == NULL) { /* paranoia */ 1649 hwgroup->busy = 0; 1650 ide_do_request(hwgroup, hwif->irq); 1651 } else { 1652 printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler " 1653 "on exit\n", drive->name); 1654 } 1655 } 1656 spin_unlock_irqrestore(&ide_lock, flags); 1657 return IRQ_HANDLED; 1658} 1659 1660/** 1661 * ide_init_drive_cmd - initialize a drive command request 1662 * @rq: request object 1663 * 1664 * Initialize a request before we fill it in and send it down to 1665 * ide_do_drive_cmd. Commands must be set up by this function. Right 1666 * now it doesn't do a lot, but if that changes abusers will have a 1667 * nasty surprise. 1668 */ 1669 1670void ide_init_drive_cmd (struct request *rq) 1671{ 1672 memset(rq, 0, sizeof(*rq)); 1673 rq->flags = REQ_DRIVE_CMD; 1674 rq->ref_count = 1; 1675} 1676 1677EXPORT_SYMBOL(ide_init_drive_cmd); 1678 1679/** 1680 * ide_do_drive_cmd - issue IDE special command 1681 * @drive: device to issue command 1682 * @rq: request to issue 1683 * @action: action for processing 1684 * 1685 * This function issues a special IDE device request 1686 * onto the request queue. 1687 * 1688 * If action is ide_wait, then the rq is queued at the end of the 1689 * request queue, and the function sleeps until it has been processed. 1690 * This is for use when invoked from an ioctl handler. 1691 * 1692 * If action is ide_preempt, then the rq is queued at the head of 1693 * the request queue, displacing the currently-being-processed 1694 * request and this function returns immediately without waiting 1695 * for the new rq to be completed. This is VERY DANGEROUS, and is 1696 * intended for careful use by the ATAPI tape/cdrom driver code. 1697 * 1698 * If action is ide_end, then the rq is queued at the end of the 1699 * request queue, and the function returns immediately without waiting 1700 * for the new rq to be completed. This is again intended for careful 1701 * use by the ATAPI tape/cdrom driver code. 1702 */ 1703 1704int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action) 1705{ 1706 unsigned long flags; 1707 ide_hwgroup_t *hwgroup = HWGROUP(drive); 1708 DECLARE_COMPLETION_ONSTACK(wait); 1709 int where = ELEVATOR_INSERT_BACK, err; 1710 int must_wait = (action == ide_wait || action == ide_head_wait); 1711 1712 rq->errors = 0; 1713 rq->rq_status = RQ_ACTIVE; 1714 1715 /* 1716 * we need to hold an extra reference to request for safe inspection 1717 * after completion 1718 */ 1719 if (must_wait) { 1720 rq->ref_count++; 1721 rq->waiting = &wait; 1722 rq->end_io = blk_end_sync_rq; 1723 } 1724 1725 spin_lock_irqsave(&ide_lock, flags); 1726 if (action == ide_preempt) 1727 hwgroup->rq = NULL; 1728 if (action == ide_preempt || action == ide_head_wait) { 1729 where = ELEVATOR_INSERT_FRONT; 1730 rq->flags |= REQ_PREEMPT; 1731 } 1732 __elv_add_request(drive->queue, rq, where, 0); 1733 ide_do_request(hwgroup, IDE_NO_IRQ); 1734 spin_unlock_irqrestore(&ide_lock, flags); 1735 1736 err = 0; 1737 if (must_wait) { 1738 wait_for_completion(&wait); 1739 rq->waiting = NULL; 1740 if (rq->errors) 1741 err = -EIO; 1742 1743 blk_put_request(rq); 1744 } 1745 1746 return err; 1747} 1748 1749EXPORT_SYMBOL(ide_do_drive_cmd); 1750