ide-io.c revision 60c0cd02b254805691cdc61101ada6af7bd56fde
1/* 2 * IDE I/O functions 3 * 4 * Basic PIO and command management functionality. 5 * 6 * This code was split off from ide.c. See ide.c for history and original 7 * copyrights. 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms of the GNU General Public License as published by the 11 * Free Software Foundation; either version 2, or (at your option) any 12 * later version. 13 * 14 * This program is distributed in the hope that it will be useful, but 15 * WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 17 * General Public License for more details. 18 * 19 * For the avoidance of doubt the "preferred form" of this code is one which 20 * is in an open non patent encumbered format. Where cryptographic key signing 21 * forms part of the process of creating an executable the information 22 * including keys needed to generate an equivalently functional executable 23 * are deemed to be part of the source code. 24 */ 25 26 27#include <linux/module.h> 28#include <linux/types.h> 29#include <linux/string.h> 30#include <linux/kernel.h> 31#include <linux/timer.h> 32#include <linux/mm.h> 33#include <linux/interrupt.h> 34#include <linux/major.h> 35#include <linux/errno.h> 36#include <linux/genhd.h> 37#include <linux/blkpg.h> 38#include <linux/slab.h> 39#include <linux/init.h> 40#include <linux/pci.h> 41#include <linux/delay.h> 42#include <linux/ide.h> 43#include <linux/completion.h> 44#include <linux/reboot.h> 45#include <linux/cdrom.h> 46#include <linux/seq_file.h> 47#include <linux/device.h> 48#include <linux/kmod.h> 49#include <linux/scatterlist.h> 50#include <linux/bitops.h> 51 52#include <asm/byteorder.h> 53#include <asm/irq.h> 54#include <asm/uaccess.h> 55#include <asm/io.h> 56 57int ide_end_rq(ide_drive_t *drive, struct request *rq, int error, 58 unsigned int nr_bytes) 59{ 60 /* 61 * decide whether to reenable DMA -- 3 is a random magic for now, 62 * if we DMA timeout more than 3 times, just stay in PIO 63 */ 64 if ((drive->dev_flags & IDE_DFLAG_DMA_PIO_RETRY) && 65 drive->retry_pio <= 3) { 66 drive->dev_flags &= ~IDE_DFLAG_DMA_PIO_RETRY; 67 ide_dma_on(drive); 68 } 69 70 return blk_end_request(rq, error, nr_bytes); 71} 72EXPORT_SYMBOL_GPL(ide_end_rq); 73 74void ide_complete_cmd(ide_drive_t *drive, struct ide_cmd *cmd, u8 stat, u8 err) 75{ 76 struct ide_taskfile *tf = &cmd->tf; 77 struct request *rq = cmd->rq; 78 u8 tf_cmd = tf->command; 79 80 tf->error = err; 81 tf->status = stat; 82 83 drive->hwif->tp_ops->tf_read(drive, cmd); 84 85 if ((cmd->tf_flags & IDE_TFLAG_CUSTOM_HANDLER) && 86 tf_cmd == ATA_CMD_IDLEIMMEDIATE) { 87 if (tf->lbal != 0xc4) { 88 printk(KERN_ERR "%s: head unload failed!\n", 89 drive->name); 90 ide_tf_dump(drive->name, tf); 91 } else 92 drive->dev_flags |= IDE_DFLAG_PARKED; 93 } 94 95 if (rq && rq->cmd_type == REQ_TYPE_ATA_TASKFILE) 96 memcpy(rq->special, cmd, sizeof(*cmd)); 97 98 if (cmd->tf_flags & IDE_TFLAG_DYN) 99 kfree(cmd); 100} 101 102/* obsolete, blk_rq_bytes() should be used instead */ 103unsigned int ide_rq_bytes(struct request *rq) 104{ 105 if (blk_pc_request(rq)) 106 return rq->data_len; 107 else 108 return rq->hard_cur_sectors << 9; 109} 110EXPORT_SYMBOL_GPL(ide_rq_bytes); 111 112int ide_complete_rq(ide_drive_t *drive, int error, unsigned int nr_bytes) 113{ 114 ide_hwif_t *hwif = drive->hwif; 115 struct request *rq = hwif->rq; 116 int rc; 117 118 /* 119 * if failfast is set on a request, override number of sectors 120 * and complete the whole request right now 121 */ 122 if (blk_noretry_request(rq) && error <= 0) 123 nr_bytes = rq->hard_nr_sectors << 9; 124 125 rc = ide_end_rq(drive, rq, error, nr_bytes); 126 if (rc == 0) 127 hwif->rq = NULL; 128 129 return rc; 130} 131EXPORT_SYMBOL(ide_complete_rq); 132 133void ide_kill_rq(ide_drive_t *drive, struct request *rq) 134{ 135 u8 drv_req = blk_special_request(rq) && rq->rq_disk; 136 u8 media = drive->media; 137 138 drive->failed_pc = NULL; 139 140 if ((media == ide_floppy || media == ide_tape) && drv_req) { 141 rq->errors = 0; 142 ide_complete_rq(drive, 0, blk_rq_bytes(rq)); 143 } else { 144 if (media == ide_tape) 145 rq->errors = IDE_DRV_ERROR_GENERAL; 146 else if (blk_fs_request(rq) == 0 && rq->errors == 0) 147 rq->errors = -EIO; 148 ide_complete_rq(drive, -EIO, ide_rq_bytes(rq)); 149 } 150} 151 152static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf) 153{ 154 tf->nsect = drive->sect; 155 tf->lbal = drive->sect; 156 tf->lbam = drive->cyl; 157 tf->lbah = drive->cyl >> 8; 158 tf->device = (drive->head - 1) | drive->select; 159 tf->command = ATA_CMD_INIT_DEV_PARAMS; 160} 161 162static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf) 163{ 164 tf->nsect = drive->sect; 165 tf->command = ATA_CMD_RESTORE; 166} 167 168static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf) 169{ 170 tf->nsect = drive->mult_req; 171 tf->command = ATA_CMD_SET_MULTI; 172} 173 174static ide_startstop_t ide_disk_special(ide_drive_t *drive) 175{ 176 special_t *s = &drive->special; 177 struct ide_cmd cmd; 178 179 memset(&cmd, 0, sizeof(cmd)); 180 cmd.protocol = ATA_PROT_NODATA; 181 182 if (s->b.set_geometry) { 183 s->b.set_geometry = 0; 184 ide_tf_set_specify_cmd(drive, &cmd.tf); 185 } else if (s->b.recalibrate) { 186 s->b.recalibrate = 0; 187 ide_tf_set_restore_cmd(drive, &cmd.tf); 188 } else if (s->b.set_multmode) { 189 s->b.set_multmode = 0; 190 ide_tf_set_setmult_cmd(drive, &cmd.tf); 191 } else if (s->all) { 192 int special = s->all; 193 s->all = 0; 194 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special); 195 return ide_stopped; 196 } 197 198 cmd.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE | 199 IDE_TFLAG_CUSTOM_HANDLER; 200 201 do_rw_taskfile(drive, &cmd); 202 203 return ide_started; 204} 205 206/** 207 * do_special - issue some special commands 208 * @drive: drive the command is for 209 * 210 * do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS, 211 * ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive. 212 * 213 * It used to do much more, but has been scaled back. 214 */ 215 216static ide_startstop_t do_special (ide_drive_t *drive) 217{ 218 special_t *s = &drive->special; 219 220#ifdef DEBUG 221 printk("%s: do_special: 0x%02x\n", drive->name, s->all); 222#endif 223 if (drive->media == ide_disk) 224 return ide_disk_special(drive); 225 226 s->all = 0; 227 drive->mult_req = 0; 228 return ide_stopped; 229} 230 231void ide_map_sg(ide_drive_t *drive, struct ide_cmd *cmd) 232{ 233 ide_hwif_t *hwif = drive->hwif; 234 struct scatterlist *sg = hwif->sg_table; 235 struct request *rq = cmd->rq; 236 237 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) { 238 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE); 239 cmd->sg_nents = 1; 240 } else if (!rq->bio) { 241 sg_init_one(sg, rq->data, rq->data_len); 242 cmd->sg_nents = 1; 243 } else 244 cmd->sg_nents = blk_rq_map_sg(drive->queue, rq, sg); 245} 246EXPORT_SYMBOL_GPL(ide_map_sg); 247 248void ide_init_sg_cmd(struct ide_cmd *cmd, int nsect) 249{ 250 cmd->nsect = cmd->nleft = nsect; 251 cmd->cursg_ofs = 0; 252 cmd->cursg = NULL; 253} 254EXPORT_SYMBOL_GPL(ide_init_sg_cmd); 255 256/** 257 * execute_drive_command - issue special drive command 258 * @drive: the drive to issue the command on 259 * @rq: the request structure holding the command 260 * 261 * execute_drive_cmd() issues a special drive command, usually 262 * initiated by ioctl() from the external hdparm program. The 263 * command can be a drive command, drive task or taskfile 264 * operation. Weirdly you can call it with NULL to wait for 265 * all commands to finish. Don't do this as that is due to change 266 */ 267 268static ide_startstop_t execute_drive_cmd (ide_drive_t *drive, 269 struct request *rq) 270{ 271 struct ide_cmd *cmd = rq->special; 272 273 if (cmd) { 274 if (cmd->protocol == ATA_PROT_PIO) { 275 ide_init_sg_cmd(cmd, rq->nr_sectors); 276 ide_map_sg(drive, cmd); 277 } 278 279 return do_rw_taskfile(drive, cmd); 280 } 281 282 /* 283 * NULL is actually a valid way of waiting for 284 * all current requests to be flushed from the queue. 285 */ 286#ifdef DEBUG 287 printk("%s: DRIVE_CMD (null)\n", drive->name); 288#endif 289 rq->errors = 0; 290 ide_complete_rq(drive, 0, blk_rq_bytes(rq)); 291 292 return ide_stopped; 293} 294 295static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq) 296{ 297 u8 cmd = rq->cmd[0]; 298 299 switch (cmd) { 300 case REQ_PARK_HEADS: 301 case REQ_UNPARK_HEADS: 302 return ide_do_park_unpark(drive, rq); 303 case REQ_DEVSET_EXEC: 304 return ide_do_devset(drive, rq); 305 case REQ_DRIVE_RESET: 306 return ide_do_reset(drive); 307 default: 308 BUG(); 309 } 310} 311 312/** 313 * start_request - start of I/O and command issuing for IDE 314 * 315 * start_request() initiates handling of a new I/O request. It 316 * accepts commands and I/O (read/write) requests. 317 * 318 * FIXME: this function needs a rename 319 */ 320 321static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq) 322{ 323 ide_startstop_t startstop; 324 325 BUG_ON(!blk_rq_started(rq)); 326 327#ifdef DEBUG 328 printk("%s: start_request: current=0x%08lx\n", 329 drive->hwif->name, (unsigned long) rq); 330#endif 331 332 /* bail early if we've exceeded max_failures */ 333 if (drive->max_failures && (drive->failures > drive->max_failures)) { 334 rq->cmd_flags |= REQ_FAILED; 335 goto kill_rq; 336 } 337 338 if (blk_pm_request(rq)) 339 ide_check_pm_state(drive, rq); 340 341 SELECT_DRIVE(drive); 342 if (ide_wait_stat(&startstop, drive, drive->ready_stat, 343 ATA_BUSY | ATA_DRQ, WAIT_READY)) { 344 printk(KERN_ERR "%s: drive not ready for command\n", drive->name); 345 return startstop; 346 } 347 if (!drive->special.all) { 348 struct ide_driver *drv; 349 350 /* 351 * We reset the drive so we need to issue a SETFEATURES. 352 * Do it _after_ do_special() restored device parameters. 353 */ 354 if (drive->current_speed == 0xff) 355 ide_config_drive_speed(drive, drive->desired_speed); 356 357 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) 358 return execute_drive_cmd(drive, rq); 359 else if (blk_pm_request(rq)) { 360 struct request_pm_state *pm = rq->data; 361#ifdef DEBUG_PM 362 printk("%s: start_power_step(step: %d)\n", 363 drive->name, pm->pm_step); 364#endif 365 startstop = ide_start_power_step(drive, rq); 366 if (startstop == ide_stopped && 367 pm->pm_step == IDE_PM_COMPLETED) 368 ide_complete_pm_rq(drive, rq); 369 return startstop; 370 } else if (!rq->rq_disk && blk_special_request(rq)) 371 /* 372 * TODO: Once all ULDs have been modified to 373 * check for specific op codes rather than 374 * blindly accepting any special request, the 375 * check for ->rq_disk above may be replaced 376 * by a more suitable mechanism or even 377 * dropped entirely. 378 */ 379 return ide_special_rq(drive, rq); 380 381 drv = *(struct ide_driver **)rq->rq_disk->private_data; 382 383 return drv->do_request(drive, rq, rq->sector); 384 } 385 return do_special(drive); 386kill_rq: 387 ide_kill_rq(drive, rq); 388 return ide_stopped; 389} 390 391/** 392 * ide_stall_queue - pause an IDE device 393 * @drive: drive to stall 394 * @timeout: time to stall for (jiffies) 395 * 396 * ide_stall_queue() can be used by a drive to give excess bandwidth back 397 * to the port by sleeping for timeout jiffies. 398 */ 399 400void ide_stall_queue (ide_drive_t *drive, unsigned long timeout) 401{ 402 if (timeout > WAIT_WORSTCASE) 403 timeout = WAIT_WORSTCASE; 404 drive->sleep = timeout + jiffies; 405 drive->dev_flags |= IDE_DFLAG_SLEEPING; 406} 407EXPORT_SYMBOL(ide_stall_queue); 408 409static inline int ide_lock_port(ide_hwif_t *hwif) 410{ 411 if (hwif->busy) 412 return 1; 413 414 hwif->busy = 1; 415 416 return 0; 417} 418 419static inline void ide_unlock_port(ide_hwif_t *hwif) 420{ 421 hwif->busy = 0; 422} 423 424static inline int ide_lock_host(struct ide_host *host, ide_hwif_t *hwif) 425{ 426 int rc = 0; 427 428 if (host->host_flags & IDE_HFLAG_SERIALIZE) { 429 rc = test_and_set_bit_lock(IDE_HOST_BUSY, &host->host_busy); 430 if (rc == 0) { 431 if (host->get_lock) 432 host->get_lock(ide_intr, hwif); 433 } 434 } 435 return rc; 436} 437 438static inline void ide_unlock_host(struct ide_host *host) 439{ 440 if (host->host_flags & IDE_HFLAG_SERIALIZE) { 441 if (host->release_lock) 442 host->release_lock(); 443 clear_bit_unlock(IDE_HOST_BUSY, &host->host_busy); 444 } 445} 446 447/* 448 * Issue a new request to a device. 449 */ 450void do_ide_request(struct request_queue *q) 451{ 452 ide_drive_t *drive = q->queuedata; 453 ide_hwif_t *hwif = drive->hwif; 454 struct ide_host *host = hwif->host; 455 struct request *rq = NULL; 456 ide_startstop_t startstop; 457 458 /* 459 * drive is doing pre-flush, ordered write, post-flush sequence. even 460 * though that is 3 requests, it must be seen as a single transaction. 461 * we must not preempt this drive until that is complete 462 */ 463 if (blk_queue_flushing(q)) 464 /* 465 * small race where queue could get replugged during 466 * the 3-request flush cycle, just yank the plug since 467 * we want it to finish asap 468 */ 469 blk_remove_plug(q); 470 471 spin_unlock_irq(q->queue_lock); 472 473 if (ide_lock_host(host, hwif)) 474 goto plug_device_2; 475 476 spin_lock_irq(&hwif->lock); 477 478 if (!ide_lock_port(hwif)) { 479 ide_hwif_t *prev_port; 480repeat: 481 prev_port = hwif->host->cur_port; 482 hwif->rq = NULL; 483 484 if (drive->dev_flags & IDE_DFLAG_SLEEPING) { 485 if (time_before(drive->sleep, jiffies)) { 486 ide_unlock_port(hwif); 487 goto plug_device; 488 } 489 } 490 491 if ((hwif->host->host_flags & IDE_HFLAG_SERIALIZE) && 492 hwif != prev_port) { 493 /* 494 * set nIEN for previous port, drives in the 495 * quirk_list may not like intr setups/cleanups 496 */ 497 if (prev_port && prev_port->cur_dev->quirk_list == 0) 498 prev_port->tp_ops->set_irq(prev_port, 0); 499 500 hwif->host->cur_port = hwif; 501 } 502 hwif->cur_dev = drive; 503 drive->dev_flags &= ~(IDE_DFLAG_SLEEPING | IDE_DFLAG_PARKED); 504 505 spin_unlock_irq(&hwif->lock); 506 spin_lock_irq(q->queue_lock); 507 /* 508 * we know that the queue isn't empty, but this can happen 509 * if the q->prep_rq_fn() decides to kill a request 510 */ 511 rq = elv_next_request(drive->queue); 512 spin_unlock_irq(q->queue_lock); 513 spin_lock_irq(&hwif->lock); 514 515 if (!rq) { 516 ide_unlock_port(hwif); 517 goto out; 518 } 519 520 /* 521 * Sanity: don't accept a request that isn't a PM request 522 * if we are currently power managed. This is very important as 523 * blk_stop_queue() doesn't prevent the elv_next_request() 524 * above to return us whatever is in the queue. Since we call 525 * ide_do_request() ourselves, we end up taking requests while 526 * the queue is blocked... 527 * 528 * We let requests forced at head of queue with ide-preempt 529 * though. I hope that doesn't happen too much, hopefully not 530 * unless the subdriver triggers such a thing in its own PM 531 * state machine. 532 */ 533 if ((drive->dev_flags & IDE_DFLAG_BLOCKED) && 534 blk_pm_request(rq) == 0 && 535 (rq->cmd_flags & REQ_PREEMPT) == 0) { 536 /* there should be no pending command at this point */ 537 ide_unlock_port(hwif); 538 goto plug_device; 539 } 540 541 hwif->rq = rq; 542 543 spin_unlock_irq(&hwif->lock); 544 startstop = start_request(drive, rq); 545 spin_lock_irq(&hwif->lock); 546 547 if (startstop == ide_stopped) 548 goto repeat; 549 } else 550 goto plug_device; 551out: 552 spin_unlock_irq(&hwif->lock); 553 if (rq == NULL) 554 ide_unlock_host(host); 555 spin_lock_irq(q->queue_lock); 556 return; 557 558plug_device: 559 spin_unlock_irq(&hwif->lock); 560 ide_unlock_host(host); 561plug_device_2: 562 spin_lock_irq(q->queue_lock); 563 564 if (!elv_queue_empty(q)) 565 blk_plug_device(q); 566} 567 568static void ide_plug_device(ide_drive_t *drive) 569{ 570 struct request_queue *q = drive->queue; 571 unsigned long flags; 572 573 spin_lock_irqsave(q->queue_lock, flags); 574 if (!elv_queue_empty(q)) 575 blk_plug_device(q); 576 spin_unlock_irqrestore(q->queue_lock, flags); 577} 578 579static int drive_is_ready(ide_drive_t *drive) 580{ 581 ide_hwif_t *hwif = drive->hwif; 582 u8 stat = 0; 583 584 if (drive->waiting_for_dma) 585 return hwif->dma_ops->dma_test_irq(drive); 586 587 if (hwif->io_ports.ctl_addr && 588 (hwif->host_flags & IDE_HFLAG_BROKEN_ALTSTATUS) == 0) 589 stat = hwif->tp_ops->read_altstatus(hwif); 590 else 591 /* Note: this may clear a pending IRQ!! */ 592 stat = hwif->tp_ops->read_status(hwif); 593 594 if (stat & ATA_BUSY) 595 /* drive busy: definitely not interrupting */ 596 return 0; 597 598 /* drive ready: *might* be interrupting */ 599 return 1; 600} 601 602/** 603 * ide_timer_expiry - handle lack of an IDE interrupt 604 * @data: timer callback magic (hwif) 605 * 606 * An IDE command has timed out before the expected drive return 607 * occurred. At this point we attempt to clean up the current 608 * mess. If the current handler includes an expiry handler then 609 * we invoke the expiry handler, and providing it is happy the 610 * work is done. If that fails we apply generic recovery rules 611 * invoking the handler and checking the drive DMA status. We 612 * have an excessively incestuous relationship with the DMA 613 * logic that wants cleaning up. 614 */ 615 616void ide_timer_expiry (unsigned long data) 617{ 618 ide_hwif_t *hwif = (ide_hwif_t *)data; 619 ide_drive_t *uninitialized_var(drive); 620 ide_handler_t *handler; 621 unsigned long flags; 622 int wait = -1; 623 int plug_device = 0; 624 625 spin_lock_irqsave(&hwif->lock, flags); 626 627 handler = hwif->handler; 628 629 if (handler == NULL || hwif->req_gen != hwif->req_gen_timer) { 630 /* 631 * Either a marginal timeout occurred 632 * (got the interrupt just as timer expired), 633 * or we were "sleeping" to give other devices a chance. 634 * Either way, we don't really want to complain about anything. 635 */ 636 } else { 637 ide_expiry_t *expiry = hwif->expiry; 638 ide_startstop_t startstop = ide_stopped; 639 640 drive = hwif->cur_dev; 641 642 if (expiry) { 643 wait = expiry(drive); 644 if (wait > 0) { /* continue */ 645 /* reset timer */ 646 hwif->timer.expires = jiffies + wait; 647 hwif->req_gen_timer = hwif->req_gen; 648 add_timer(&hwif->timer); 649 spin_unlock_irqrestore(&hwif->lock, flags); 650 return; 651 } 652 } 653 hwif->handler = NULL; 654 hwif->expiry = NULL; 655 /* 656 * We need to simulate a real interrupt when invoking 657 * the handler() function, which means we need to 658 * globally mask the specific IRQ: 659 */ 660 spin_unlock(&hwif->lock); 661 /* disable_irq_nosync ?? */ 662 disable_irq(hwif->irq); 663 /* local CPU only, as if we were handling an interrupt */ 664 local_irq_disable(); 665 if (hwif->polling) { 666 startstop = handler(drive); 667 } else if (drive_is_ready(drive)) { 668 if (drive->waiting_for_dma) 669 hwif->dma_ops->dma_lost_irq(drive); 670 if (hwif->ack_intr) 671 hwif->ack_intr(hwif); 672 printk(KERN_WARNING "%s: lost interrupt\n", 673 drive->name); 674 startstop = handler(drive); 675 } else { 676 if (drive->waiting_for_dma) 677 startstop = ide_dma_timeout_retry(drive, wait); 678 else 679 startstop = ide_error(drive, "irq timeout", 680 hwif->tp_ops->read_status(hwif)); 681 } 682 spin_lock_irq(&hwif->lock); 683 enable_irq(hwif->irq); 684 if (startstop == ide_stopped) { 685 ide_unlock_port(hwif); 686 plug_device = 1; 687 } 688 } 689 spin_unlock_irqrestore(&hwif->lock, flags); 690 691 if (plug_device) { 692 ide_unlock_host(hwif->host); 693 ide_plug_device(drive); 694 } 695} 696 697/** 698 * unexpected_intr - handle an unexpected IDE interrupt 699 * @irq: interrupt line 700 * @hwif: port being processed 701 * 702 * There's nothing really useful we can do with an unexpected interrupt, 703 * other than reading the status register (to clear it), and logging it. 704 * There should be no way that an irq can happen before we're ready for it, 705 * so we needn't worry much about losing an "important" interrupt here. 706 * 707 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever 708 * the drive enters "idle", "standby", or "sleep" mode, so if the status 709 * looks "good", we just ignore the interrupt completely. 710 * 711 * This routine assumes __cli() is in effect when called. 712 * 713 * If an unexpected interrupt happens on irq15 while we are handling irq14 714 * and if the two interfaces are "serialized" (CMD640), then it looks like 715 * we could screw up by interfering with a new request being set up for 716 * irq15. 717 * 718 * In reality, this is a non-issue. The new command is not sent unless 719 * the drive is ready to accept one, in which case we know the drive is 720 * not trying to interrupt us. And ide_set_handler() is always invoked 721 * before completing the issuance of any new drive command, so we will not 722 * be accidentally invoked as a result of any valid command completion 723 * interrupt. 724 */ 725 726static void unexpected_intr(int irq, ide_hwif_t *hwif) 727{ 728 u8 stat = hwif->tp_ops->read_status(hwif); 729 730 if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) { 731 /* Try to not flood the console with msgs */ 732 static unsigned long last_msgtime, count; 733 ++count; 734 735 if (time_after(jiffies, last_msgtime + HZ)) { 736 last_msgtime = jiffies; 737 printk(KERN_ERR "%s: unexpected interrupt, " 738 "status=0x%02x, count=%ld\n", 739 hwif->name, stat, count); 740 } 741 } 742} 743 744/** 745 * ide_intr - default IDE interrupt handler 746 * @irq: interrupt number 747 * @dev_id: hwif 748 * @regs: unused weirdness from the kernel irq layer 749 * 750 * This is the default IRQ handler for the IDE layer. You should 751 * not need to override it. If you do be aware it is subtle in 752 * places 753 * 754 * hwif is the interface in the group currently performing 755 * a command. hwif->cur_dev is the drive and hwif->handler is 756 * the IRQ handler to call. As we issue a command the handlers 757 * step through multiple states, reassigning the handler to the 758 * next step in the process. Unlike a smart SCSI controller IDE 759 * expects the main processor to sequence the various transfer 760 * stages. We also manage a poll timer to catch up with most 761 * timeout situations. There are still a few where the handlers 762 * don't ever decide to give up. 763 * 764 * The handler eventually returns ide_stopped to indicate the 765 * request completed. At this point we issue the next request 766 * on the port and the process begins again. 767 */ 768 769irqreturn_t ide_intr (int irq, void *dev_id) 770{ 771 ide_hwif_t *hwif = (ide_hwif_t *)dev_id; 772 struct ide_host *host = hwif->host; 773 ide_drive_t *uninitialized_var(drive); 774 ide_handler_t *handler; 775 unsigned long flags; 776 ide_startstop_t startstop; 777 irqreturn_t irq_ret = IRQ_NONE; 778 int plug_device = 0; 779 780 if (host->host_flags & IDE_HFLAG_SERIALIZE) { 781 if (hwif != host->cur_port) 782 goto out_early; 783 } 784 785 spin_lock_irqsave(&hwif->lock, flags); 786 787 if (hwif->ack_intr && hwif->ack_intr(hwif) == 0) 788 goto out; 789 790 handler = hwif->handler; 791 792 if (handler == NULL || hwif->polling) { 793 /* 794 * Not expecting an interrupt from this drive. 795 * That means this could be: 796 * (1) an interrupt from another PCI device 797 * sharing the same PCI INT# as us. 798 * or (2) a drive just entered sleep or standby mode, 799 * and is interrupting to let us know. 800 * or (3) a spurious interrupt of unknown origin. 801 * 802 * For PCI, we cannot tell the difference, 803 * so in that case we just ignore it and hope it goes away. 804 */ 805 if ((host->irq_flags & IRQF_SHARED) == 0) { 806 /* 807 * Probably not a shared PCI interrupt, 808 * so we can safely try to do something about it: 809 */ 810 unexpected_intr(irq, hwif); 811 } else { 812 /* 813 * Whack the status register, just in case 814 * we have a leftover pending IRQ. 815 */ 816 (void)hwif->tp_ops->read_status(hwif); 817 } 818 goto out; 819 } 820 821 drive = hwif->cur_dev; 822 823 if (!drive_is_ready(drive)) 824 /* 825 * This happens regularly when we share a PCI IRQ with 826 * another device. Unfortunately, it can also happen 827 * with some buggy drives that trigger the IRQ before 828 * their status register is up to date. Hopefully we have 829 * enough advance overhead that the latter isn't a problem. 830 */ 831 goto out; 832 833 hwif->handler = NULL; 834 hwif->expiry = NULL; 835 hwif->req_gen++; 836 del_timer(&hwif->timer); 837 spin_unlock(&hwif->lock); 838 839 if (hwif->port_ops && hwif->port_ops->clear_irq) 840 hwif->port_ops->clear_irq(drive); 841 842 if (drive->dev_flags & IDE_DFLAG_UNMASK) 843 local_irq_enable_in_hardirq(); 844 845 /* service this interrupt, may set handler for next interrupt */ 846 startstop = handler(drive); 847 848 spin_lock_irq(&hwif->lock); 849 /* 850 * Note that handler() may have set things up for another 851 * interrupt to occur soon, but it cannot happen until 852 * we exit from this routine, because it will be the 853 * same irq as is currently being serviced here, and Linux 854 * won't allow another of the same (on any CPU) until we return. 855 */ 856 if (startstop == ide_stopped) { 857 BUG_ON(hwif->handler); 858 ide_unlock_port(hwif); 859 plug_device = 1; 860 } 861 irq_ret = IRQ_HANDLED; 862out: 863 spin_unlock_irqrestore(&hwif->lock, flags); 864out_early: 865 if (plug_device) { 866 ide_unlock_host(hwif->host); 867 ide_plug_device(drive); 868 } 869 870 return irq_ret; 871} 872EXPORT_SYMBOL_GPL(ide_intr); 873 874void ide_pad_transfer(ide_drive_t *drive, int write, int len) 875{ 876 ide_hwif_t *hwif = drive->hwif; 877 u8 buf[4] = { 0 }; 878 879 while (len > 0) { 880 if (write) 881 hwif->tp_ops->output_data(drive, NULL, buf, min(4, len)); 882 else 883 hwif->tp_ops->input_data(drive, NULL, buf, min(4, len)); 884 len -= 4; 885 } 886} 887EXPORT_SYMBOL_GPL(ide_pad_transfer); 888