ide-io.c revision 60c0cd02b254805691cdc61101ada6af7bd56fde
1/*
2 *	IDE I/O functions
3 *
4 *	Basic PIO and command management functionality.
5 *
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * General Public License for more details.
18 *
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
24 */
25
26
27#include <linux/module.h>
28#include <linux/types.h>
29#include <linux/string.h>
30#include <linux/kernel.h>
31#include <linux/timer.h>
32#include <linux/mm.h>
33#include <linux/interrupt.h>
34#include <linux/major.h>
35#include <linux/errno.h>
36#include <linux/genhd.h>
37#include <linux/blkpg.h>
38#include <linux/slab.h>
39#include <linux/init.h>
40#include <linux/pci.h>
41#include <linux/delay.h>
42#include <linux/ide.h>
43#include <linux/completion.h>
44#include <linux/reboot.h>
45#include <linux/cdrom.h>
46#include <linux/seq_file.h>
47#include <linux/device.h>
48#include <linux/kmod.h>
49#include <linux/scatterlist.h>
50#include <linux/bitops.h>
51
52#include <asm/byteorder.h>
53#include <asm/irq.h>
54#include <asm/uaccess.h>
55#include <asm/io.h>
56
57int ide_end_rq(ide_drive_t *drive, struct request *rq, int error,
58	       unsigned int nr_bytes)
59{
60	/*
61	 * decide whether to reenable DMA -- 3 is a random magic for now,
62	 * if we DMA timeout more than 3 times, just stay in PIO
63	 */
64	if ((drive->dev_flags & IDE_DFLAG_DMA_PIO_RETRY) &&
65	    drive->retry_pio <= 3) {
66		drive->dev_flags &= ~IDE_DFLAG_DMA_PIO_RETRY;
67		ide_dma_on(drive);
68	}
69
70	return blk_end_request(rq, error, nr_bytes);
71}
72EXPORT_SYMBOL_GPL(ide_end_rq);
73
74void ide_complete_cmd(ide_drive_t *drive, struct ide_cmd *cmd, u8 stat, u8 err)
75{
76	struct ide_taskfile *tf = &cmd->tf;
77	struct request *rq = cmd->rq;
78	u8 tf_cmd = tf->command;
79
80	tf->error = err;
81	tf->status = stat;
82
83	drive->hwif->tp_ops->tf_read(drive, cmd);
84
85	if ((cmd->tf_flags & IDE_TFLAG_CUSTOM_HANDLER) &&
86	    tf_cmd == ATA_CMD_IDLEIMMEDIATE) {
87		if (tf->lbal != 0xc4) {
88			printk(KERN_ERR "%s: head unload failed!\n",
89			       drive->name);
90			ide_tf_dump(drive->name, tf);
91		} else
92			drive->dev_flags |= IDE_DFLAG_PARKED;
93	}
94
95	if (rq && rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
96		memcpy(rq->special, cmd, sizeof(*cmd));
97
98	if (cmd->tf_flags & IDE_TFLAG_DYN)
99		kfree(cmd);
100}
101
102/* obsolete, blk_rq_bytes() should be used instead */
103unsigned int ide_rq_bytes(struct request *rq)
104{
105	if (blk_pc_request(rq))
106		return rq->data_len;
107	else
108		return rq->hard_cur_sectors << 9;
109}
110EXPORT_SYMBOL_GPL(ide_rq_bytes);
111
112int ide_complete_rq(ide_drive_t *drive, int error, unsigned int nr_bytes)
113{
114	ide_hwif_t *hwif = drive->hwif;
115	struct request *rq = hwif->rq;
116	int rc;
117
118	/*
119	 * if failfast is set on a request, override number of sectors
120	 * and complete the whole request right now
121	 */
122	if (blk_noretry_request(rq) && error <= 0)
123		nr_bytes = rq->hard_nr_sectors << 9;
124
125	rc = ide_end_rq(drive, rq, error, nr_bytes);
126	if (rc == 0)
127		hwif->rq = NULL;
128
129	return rc;
130}
131EXPORT_SYMBOL(ide_complete_rq);
132
133void ide_kill_rq(ide_drive_t *drive, struct request *rq)
134{
135	u8 drv_req = blk_special_request(rq) && rq->rq_disk;
136	u8 media = drive->media;
137
138	drive->failed_pc = NULL;
139
140	if ((media == ide_floppy || media == ide_tape) && drv_req) {
141		rq->errors = 0;
142		ide_complete_rq(drive, 0, blk_rq_bytes(rq));
143	} else {
144		if (media == ide_tape)
145			rq->errors = IDE_DRV_ERROR_GENERAL;
146		else if (blk_fs_request(rq) == 0 && rq->errors == 0)
147			rq->errors = -EIO;
148		ide_complete_rq(drive, -EIO, ide_rq_bytes(rq));
149	}
150}
151
152static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
153{
154	tf->nsect   = drive->sect;
155	tf->lbal    = drive->sect;
156	tf->lbam    = drive->cyl;
157	tf->lbah    = drive->cyl >> 8;
158	tf->device  = (drive->head - 1) | drive->select;
159	tf->command = ATA_CMD_INIT_DEV_PARAMS;
160}
161
162static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
163{
164	tf->nsect   = drive->sect;
165	tf->command = ATA_CMD_RESTORE;
166}
167
168static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
169{
170	tf->nsect   = drive->mult_req;
171	tf->command = ATA_CMD_SET_MULTI;
172}
173
174static ide_startstop_t ide_disk_special(ide_drive_t *drive)
175{
176	special_t *s = &drive->special;
177	struct ide_cmd cmd;
178
179	memset(&cmd, 0, sizeof(cmd));
180	cmd.protocol = ATA_PROT_NODATA;
181
182	if (s->b.set_geometry) {
183		s->b.set_geometry = 0;
184		ide_tf_set_specify_cmd(drive, &cmd.tf);
185	} else if (s->b.recalibrate) {
186		s->b.recalibrate = 0;
187		ide_tf_set_restore_cmd(drive, &cmd.tf);
188	} else if (s->b.set_multmode) {
189		s->b.set_multmode = 0;
190		ide_tf_set_setmult_cmd(drive, &cmd.tf);
191	} else if (s->all) {
192		int special = s->all;
193		s->all = 0;
194		printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
195		return ide_stopped;
196	}
197
198	cmd.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
199		       IDE_TFLAG_CUSTOM_HANDLER;
200
201	do_rw_taskfile(drive, &cmd);
202
203	return ide_started;
204}
205
206/**
207 *	do_special		-	issue some special commands
208 *	@drive: drive the command is for
209 *
210 *	do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
211 *	ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
212 *
213 *	It used to do much more, but has been scaled back.
214 */
215
216static ide_startstop_t do_special (ide_drive_t *drive)
217{
218	special_t *s = &drive->special;
219
220#ifdef DEBUG
221	printk("%s: do_special: 0x%02x\n", drive->name, s->all);
222#endif
223	if (drive->media == ide_disk)
224		return ide_disk_special(drive);
225
226	s->all = 0;
227	drive->mult_req = 0;
228	return ide_stopped;
229}
230
231void ide_map_sg(ide_drive_t *drive, struct ide_cmd *cmd)
232{
233	ide_hwif_t *hwif = drive->hwif;
234	struct scatterlist *sg = hwif->sg_table;
235	struct request *rq = cmd->rq;
236
237	if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
238		sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
239		cmd->sg_nents = 1;
240	} else if (!rq->bio) {
241		sg_init_one(sg, rq->data, rq->data_len);
242		cmd->sg_nents = 1;
243	} else
244		cmd->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
245}
246EXPORT_SYMBOL_GPL(ide_map_sg);
247
248void ide_init_sg_cmd(struct ide_cmd *cmd, int nsect)
249{
250	cmd->nsect = cmd->nleft = nsect;
251	cmd->cursg_ofs = 0;
252	cmd->cursg = NULL;
253}
254EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
255
256/**
257 *	execute_drive_command	-	issue special drive command
258 *	@drive: the drive to issue the command on
259 *	@rq: the request structure holding the command
260 *
261 *	execute_drive_cmd() issues a special drive command,  usually
262 *	initiated by ioctl() from the external hdparm program. The
263 *	command can be a drive command, drive task or taskfile
264 *	operation. Weirdly you can call it with NULL to wait for
265 *	all commands to finish. Don't do this as that is due to change
266 */
267
268static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
269		struct request *rq)
270{
271	struct ide_cmd *cmd = rq->special;
272
273	if (cmd) {
274		if (cmd->protocol == ATA_PROT_PIO) {
275			ide_init_sg_cmd(cmd, rq->nr_sectors);
276			ide_map_sg(drive, cmd);
277		}
278
279		return do_rw_taskfile(drive, cmd);
280	}
281
282 	/*
283 	 * NULL is actually a valid way of waiting for
284 	 * all current requests to be flushed from the queue.
285 	 */
286#ifdef DEBUG
287 	printk("%s: DRIVE_CMD (null)\n", drive->name);
288#endif
289	rq->errors = 0;
290	ide_complete_rq(drive, 0, blk_rq_bytes(rq));
291
292 	return ide_stopped;
293}
294
295static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
296{
297	u8 cmd = rq->cmd[0];
298
299	switch (cmd) {
300	case REQ_PARK_HEADS:
301	case REQ_UNPARK_HEADS:
302		return ide_do_park_unpark(drive, rq);
303	case REQ_DEVSET_EXEC:
304		return ide_do_devset(drive, rq);
305	case REQ_DRIVE_RESET:
306		return ide_do_reset(drive);
307	default:
308		BUG();
309	}
310}
311
312/**
313 *	start_request	-	start of I/O and command issuing for IDE
314 *
315 *	start_request() initiates handling of a new I/O request. It
316 *	accepts commands and I/O (read/write) requests.
317 *
318 *	FIXME: this function needs a rename
319 */
320
321static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
322{
323	ide_startstop_t startstop;
324
325	BUG_ON(!blk_rq_started(rq));
326
327#ifdef DEBUG
328	printk("%s: start_request: current=0x%08lx\n",
329		drive->hwif->name, (unsigned long) rq);
330#endif
331
332	/* bail early if we've exceeded max_failures */
333	if (drive->max_failures && (drive->failures > drive->max_failures)) {
334		rq->cmd_flags |= REQ_FAILED;
335		goto kill_rq;
336	}
337
338	if (blk_pm_request(rq))
339		ide_check_pm_state(drive, rq);
340
341	SELECT_DRIVE(drive);
342	if (ide_wait_stat(&startstop, drive, drive->ready_stat,
343			  ATA_BUSY | ATA_DRQ, WAIT_READY)) {
344		printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
345		return startstop;
346	}
347	if (!drive->special.all) {
348		struct ide_driver *drv;
349
350		/*
351		 * We reset the drive so we need to issue a SETFEATURES.
352		 * Do it _after_ do_special() restored device parameters.
353		 */
354		if (drive->current_speed == 0xff)
355			ide_config_drive_speed(drive, drive->desired_speed);
356
357		if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
358			return execute_drive_cmd(drive, rq);
359		else if (blk_pm_request(rq)) {
360			struct request_pm_state *pm = rq->data;
361#ifdef DEBUG_PM
362			printk("%s: start_power_step(step: %d)\n",
363				drive->name, pm->pm_step);
364#endif
365			startstop = ide_start_power_step(drive, rq);
366			if (startstop == ide_stopped &&
367			    pm->pm_step == IDE_PM_COMPLETED)
368				ide_complete_pm_rq(drive, rq);
369			return startstop;
370		} else if (!rq->rq_disk && blk_special_request(rq))
371			/*
372			 * TODO: Once all ULDs have been modified to
373			 * check for specific op codes rather than
374			 * blindly accepting any special request, the
375			 * check for ->rq_disk above may be replaced
376			 * by a more suitable mechanism or even
377			 * dropped entirely.
378			 */
379			return ide_special_rq(drive, rq);
380
381		drv = *(struct ide_driver **)rq->rq_disk->private_data;
382
383		return drv->do_request(drive, rq, rq->sector);
384	}
385	return do_special(drive);
386kill_rq:
387	ide_kill_rq(drive, rq);
388	return ide_stopped;
389}
390
391/**
392 *	ide_stall_queue		-	pause an IDE device
393 *	@drive: drive to stall
394 *	@timeout: time to stall for (jiffies)
395 *
396 *	ide_stall_queue() can be used by a drive to give excess bandwidth back
397 *	to the port by sleeping for timeout jiffies.
398 */
399
400void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
401{
402	if (timeout > WAIT_WORSTCASE)
403		timeout = WAIT_WORSTCASE;
404	drive->sleep = timeout + jiffies;
405	drive->dev_flags |= IDE_DFLAG_SLEEPING;
406}
407EXPORT_SYMBOL(ide_stall_queue);
408
409static inline int ide_lock_port(ide_hwif_t *hwif)
410{
411	if (hwif->busy)
412		return 1;
413
414	hwif->busy = 1;
415
416	return 0;
417}
418
419static inline void ide_unlock_port(ide_hwif_t *hwif)
420{
421	hwif->busy = 0;
422}
423
424static inline int ide_lock_host(struct ide_host *host, ide_hwif_t *hwif)
425{
426	int rc = 0;
427
428	if (host->host_flags & IDE_HFLAG_SERIALIZE) {
429		rc = test_and_set_bit_lock(IDE_HOST_BUSY, &host->host_busy);
430		if (rc == 0) {
431			if (host->get_lock)
432				host->get_lock(ide_intr, hwif);
433		}
434	}
435	return rc;
436}
437
438static inline void ide_unlock_host(struct ide_host *host)
439{
440	if (host->host_flags & IDE_HFLAG_SERIALIZE) {
441		if (host->release_lock)
442			host->release_lock();
443		clear_bit_unlock(IDE_HOST_BUSY, &host->host_busy);
444	}
445}
446
447/*
448 * Issue a new request to a device.
449 */
450void do_ide_request(struct request_queue *q)
451{
452	ide_drive_t	*drive = q->queuedata;
453	ide_hwif_t	*hwif = drive->hwif;
454	struct ide_host *host = hwif->host;
455	struct request	*rq = NULL;
456	ide_startstop_t	startstop;
457
458	/*
459	 * drive is doing pre-flush, ordered write, post-flush sequence. even
460	 * though that is 3 requests, it must be seen as a single transaction.
461	 * we must not preempt this drive until that is complete
462	 */
463	if (blk_queue_flushing(q))
464		/*
465		 * small race where queue could get replugged during
466		 * the 3-request flush cycle, just yank the plug since
467		 * we want it to finish asap
468		 */
469		blk_remove_plug(q);
470
471	spin_unlock_irq(q->queue_lock);
472
473	if (ide_lock_host(host, hwif))
474		goto plug_device_2;
475
476	spin_lock_irq(&hwif->lock);
477
478	if (!ide_lock_port(hwif)) {
479		ide_hwif_t *prev_port;
480repeat:
481		prev_port = hwif->host->cur_port;
482		hwif->rq = NULL;
483
484		if (drive->dev_flags & IDE_DFLAG_SLEEPING) {
485			if (time_before(drive->sleep, jiffies)) {
486				ide_unlock_port(hwif);
487				goto plug_device;
488			}
489		}
490
491		if ((hwif->host->host_flags & IDE_HFLAG_SERIALIZE) &&
492		    hwif != prev_port) {
493			/*
494			 * set nIEN for previous port, drives in the
495			 * quirk_list may not like intr setups/cleanups
496			 */
497			if (prev_port && prev_port->cur_dev->quirk_list == 0)
498				prev_port->tp_ops->set_irq(prev_port, 0);
499
500			hwif->host->cur_port = hwif;
501		}
502		hwif->cur_dev = drive;
503		drive->dev_flags &= ~(IDE_DFLAG_SLEEPING | IDE_DFLAG_PARKED);
504
505		spin_unlock_irq(&hwif->lock);
506		spin_lock_irq(q->queue_lock);
507		/*
508		 * we know that the queue isn't empty, but this can happen
509		 * if the q->prep_rq_fn() decides to kill a request
510		 */
511		rq = elv_next_request(drive->queue);
512		spin_unlock_irq(q->queue_lock);
513		spin_lock_irq(&hwif->lock);
514
515		if (!rq) {
516			ide_unlock_port(hwif);
517			goto out;
518		}
519
520		/*
521		 * Sanity: don't accept a request that isn't a PM request
522		 * if we are currently power managed. This is very important as
523		 * blk_stop_queue() doesn't prevent the elv_next_request()
524		 * above to return us whatever is in the queue. Since we call
525		 * ide_do_request() ourselves, we end up taking requests while
526		 * the queue is blocked...
527		 *
528		 * We let requests forced at head of queue with ide-preempt
529		 * though. I hope that doesn't happen too much, hopefully not
530		 * unless the subdriver triggers such a thing in its own PM
531		 * state machine.
532		 */
533		if ((drive->dev_flags & IDE_DFLAG_BLOCKED) &&
534		    blk_pm_request(rq) == 0 &&
535		    (rq->cmd_flags & REQ_PREEMPT) == 0) {
536			/* there should be no pending command at this point */
537			ide_unlock_port(hwif);
538			goto plug_device;
539		}
540
541		hwif->rq = rq;
542
543		spin_unlock_irq(&hwif->lock);
544		startstop = start_request(drive, rq);
545		spin_lock_irq(&hwif->lock);
546
547		if (startstop == ide_stopped)
548			goto repeat;
549	} else
550		goto plug_device;
551out:
552	spin_unlock_irq(&hwif->lock);
553	if (rq == NULL)
554		ide_unlock_host(host);
555	spin_lock_irq(q->queue_lock);
556	return;
557
558plug_device:
559	spin_unlock_irq(&hwif->lock);
560	ide_unlock_host(host);
561plug_device_2:
562	spin_lock_irq(q->queue_lock);
563
564	if (!elv_queue_empty(q))
565		blk_plug_device(q);
566}
567
568static void ide_plug_device(ide_drive_t *drive)
569{
570	struct request_queue *q = drive->queue;
571	unsigned long flags;
572
573	spin_lock_irqsave(q->queue_lock, flags);
574	if (!elv_queue_empty(q))
575		blk_plug_device(q);
576	spin_unlock_irqrestore(q->queue_lock, flags);
577}
578
579static int drive_is_ready(ide_drive_t *drive)
580{
581	ide_hwif_t *hwif = drive->hwif;
582	u8 stat = 0;
583
584	if (drive->waiting_for_dma)
585		return hwif->dma_ops->dma_test_irq(drive);
586
587	if (hwif->io_ports.ctl_addr &&
588	    (hwif->host_flags & IDE_HFLAG_BROKEN_ALTSTATUS) == 0)
589		stat = hwif->tp_ops->read_altstatus(hwif);
590	else
591		/* Note: this may clear a pending IRQ!! */
592		stat = hwif->tp_ops->read_status(hwif);
593
594	if (stat & ATA_BUSY)
595		/* drive busy: definitely not interrupting */
596		return 0;
597
598	/* drive ready: *might* be interrupting */
599	return 1;
600}
601
602/**
603 *	ide_timer_expiry	-	handle lack of an IDE interrupt
604 *	@data: timer callback magic (hwif)
605 *
606 *	An IDE command has timed out before the expected drive return
607 *	occurred. At this point we attempt to clean up the current
608 *	mess. If the current handler includes an expiry handler then
609 *	we invoke the expiry handler, and providing it is happy the
610 *	work is done. If that fails we apply generic recovery rules
611 *	invoking the handler and checking the drive DMA status. We
612 *	have an excessively incestuous relationship with the DMA
613 *	logic that wants cleaning up.
614 */
615
616void ide_timer_expiry (unsigned long data)
617{
618	ide_hwif_t	*hwif = (ide_hwif_t *)data;
619	ide_drive_t	*uninitialized_var(drive);
620	ide_handler_t	*handler;
621	unsigned long	flags;
622	int		wait = -1;
623	int		plug_device = 0;
624
625	spin_lock_irqsave(&hwif->lock, flags);
626
627	handler = hwif->handler;
628
629	if (handler == NULL || hwif->req_gen != hwif->req_gen_timer) {
630		/*
631		 * Either a marginal timeout occurred
632		 * (got the interrupt just as timer expired),
633		 * or we were "sleeping" to give other devices a chance.
634		 * Either way, we don't really want to complain about anything.
635		 */
636	} else {
637		ide_expiry_t *expiry = hwif->expiry;
638		ide_startstop_t startstop = ide_stopped;
639
640		drive = hwif->cur_dev;
641
642		if (expiry) {
643			wait = expiry(drive);
644			if (wait > 0) { /* continue */
645				/* reset timer */
646				hwif->timer.expires = jiffies + wait;
647				hwif->req_gen_timer = hwif->req_gen;
648				add_timer(&hwif->timer);
649				spin_unlock_irqrestore(&hwif->lock, flags);
650				return;
651			}
652		}
653		hwif->handler = NULL;
654		hwif->expiry = NULL;
655		/*
656		 * We need to simulate a real interrupt when invoking
657		 * the handler() function, which means we need to
658		 * globally mask the specific IRQ:
659		 */
660		spin_unlock(&hwif->lock);
661		/* disable_irq_nosync ?? */
662		disable_irq(hwif->irq);
663		/* local CPU only, as if we were handling an interrupt */
664		local_irq_disable();
665		if (hwif->polling) {
666			startstop = handler(drive);
667		} else if (drive_is_ready(drive)) {
668			if (drive->waiting_for_dma)
669				hwif->dma_ops->dma_lost_irq(drive);
670			if (hwif->ack_intr)
671				hwif->ack_intr(hwif);
672			printk(KERN_WARNING "%s: lost interrupt\n",
673				drive->name);
674			startstop = handler(drive);
675		} else {
676			if (drive->waiting_for_dma)
677				startstop = ide_dma_timeout_retry(drive, wait);
678			else
679				startstop = ide_error(drive, "irq timeout",
680					hwif->tp_ops->read_status(hwif));
681		}
682		spin_lock_irq(&hwif->lock);
683		enable_irq(hwif->irq);
684		if (startstop == ide_stopped) {
685			ide_unlock_port(hwif);
686			plug_device = 1;
687		}
688	}
689	spin_unlock_irqrestore(&hwif->lock, flags);
690
691	if (plug_device) {
692		ide_unlock_host(hwif->host);
693		ide_plug_device(drive);
694	}
695}
696
697/**
698 *	unexpected_intr		-	handle an unexpected IDE interrupt
699 *	@irq: interrupt line
700 *	@hwif: port being processed
701 *
702 *	There's nothing really useful we can do with an unexpected interrupt,
703 *	other than reading the status register (to clear it), and logging it.
704 *	There should be no way that an irq can happen before we're ready for it,
705 *	so we needn't worry much about losing an "important" interrupt here.
706 *
707 *	On laptops (and "green" PCs), an unexpected interrupt occurs whenever
708 *	the drive enters "idle", "standby", or "sleep" mode, so if the status
709 *	looks "good", we just ignore the interrupt completely.
710 *
711 *	This routine assumes __cli() is in effect when called.
712 *
713 *	If an unexpected interrupt happens on irq15 while we are handling irq14
714 *	and if the two interfaces are "serialized" (CMD640), then it looks like
715 *	we could screw up by interfering with a new request being set up for
716 *	irq15.
717 *
718 *	In reality, this is a non-issue.  The new command is not sent unless
719 *	the drive is ready to accept one, in which case we know the drive is
720 *	not trying to interrupt us.  And ide_set_handler() is always invoked
721 *	before completing the issuance of any new drive command, so we will not
722 *	be accidentally invoked as a result of any valid command completion
723 *	interrupt.
724 */
725
726static void unexpected_intr(int irq, ide_hwif_t *hwif)
727{
728	u8 stat = hwif->tp_ops->read_status(hwif);
729
730	if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) {
731		/* Try to not flood the console with msgs */
732		static unsigned long last_msgtime, count;
733		++count;
734
735		if (time_after(jiffies, last_msgtime + HZ)) {
736			last_msgtime = jiffies;
737			printk(KERN_ERR "%s: unexpected interrupt, "
738				"status=0x%02x, count=%ld\n",
739				hwif->name, stat, count);
740		}
741	}
742}
743
744/**
745 *	ide_intr	-	default IDE interrupt handler
746 *	@irq: interrupt number
747 *	@dev_id: hwif
748 *	@regs: unused weirdness from the kernel irq layer
749 *
750 *	This is the default IRQ handler for the IDE layer. You should
751 *	not need to override it. If you do be aware it is subtle in
752 *	places
753 *
754 *	hwif is the interface in the group currently performing
755 *	a command. hwif->cur_dev is the drive and hwif->handler is
756 *	the IRQ handler to call. As we issue a command the handlers
757 *	step through multiple states, reassigning the handler to the
758 *	next step in the process. Unlike a smart SCSI controller IDE
759 *	expects the main processor to sequence the various transfer
760 *	stages. We also manage a poll timer to catch up with most
761 *	timeout situations. There are still a few where the handlers
762 *	don't ever decide to give up.
763 *
764 *	The handler eventually returns ide_stopped to indicate the
765 *	request completed. At this point we issue the next request
766 *	on the port and the process begins again.
767 */
768
769irqreturn_t ide_intr (int irq, void *dev_id)
770{
771	ide_hwif_t *hwif = (ide_hwif_t *)dev_id;
772	struct ide_host *host = hwif->host;
773	ide_drive_t *uninitialized_var(drive);
774	ide_handler_t *handler;
775	unsigned long flags;
776	ide_startstop_t startstop;
777	irqreturn_t irq_ret = IRQ_NONE;
778	int plug_device = 0;
779
780	if (host->host_flags & IDE_HFLAG_SERIALIZE) {
781		if (hwif != host->cur_port)
782			goto out_early;
783	}
784
785	spin_lock_irqsave(&hwif->lock, flags);
786
787	if (hwif->ack_intr && hwif->ack_intr(hwif) == 0)
788		goto out;
789
790	handler = hwif->handler;
791
792	if (handler == NULL || hwif->polling) {
793		/*
794		 * Not expecting an interrupt from this drive.
795		 * That means this could be:
796		 *	(1) an interrupt from another PCI device
797		 *	sharing the same PCI INT# as us.
798		 * or	(2) a drive just entered sleep or standby mode,
799		 *	and is interrupting to let us know.
800		 * or	(3) a spurious interrupt of unknown origin.
801		 *
802		 * For PCI, we cannot tell the difference,
803		 * so in that case we just ignore it and hope it goes away.
804		 */
805		if ((host->irq_flags & IRQF_SHARED) == 0) {
806			/*
807			 * Probably not a shared PCI interrupt,
808			 * so we can safely try to do something about it:
809			 */
810			unexpected_intr(irq, hwif);
811		} else {
812			/*
813			 * Whack the status register, just in case
814			 * we have a leftover pending IRQ.
815			 */
816			(void)hwif->tp_ops->read_status(hwif);
817		}
818		goto out;
819	}
820
821	drive = hwif->cur_dev;
822
823	if (!drive_is_ready(drive))
824		/*
825		 * This happens regularly when we share a PCI IRQ with
826		 * another device.  Unfortunately, it can also happen
827		 * with some buggy drives that trigger the IRQ before
828		 * their status register is up to date.  Hopefully we have
829		 * enough advance overhead that the latter isn't a problem.
830		 */
831		goto out;
832
833	hwif->handler = NULL;
834	hwif->expiry = NULL;
835	hwif->req_gen++;
836	del_timer(&hwif->timer);
837	spin_unlock(&hwif->lock);
838
839	if (hwif->port_ops && hwif->port_ops->clear_irq)
840		hwif->port_ops->clear_irq(drive);
841
842	if (drive->dev_flags & IDE_DFLAG_UNMASK)
843		local_irq_enable_in_hardirq();
844
845	/* service this interrupt, may set handler for next interrupt */
846	startstop = handler(drive);
847
848	spin_lock_irq(&hwif->lock);
849	/*
850	 * Note that handler() may have set things up for another
851	 * interrupt to occur soon, but it cannot happen until
852	 * we exit from this routine, because it will be the
853	 * same irq as is currently being serviced here, and Linux
854	 * won't allow another of the same (on any CPU) until we return.
855	 */
856	if (startstop == ide_stopped) {
857		BUG_ON(hwif->handler);
858		ide_unlock_port(hwif);
859		plug_device = 1;
860	}
861	irq_ret = IRQ_HANDLED;
862out:
863	spin_unlock_irqrestore(&hwif->lock, flags);
864out_early:
865	if (plug_device) {
866		ide_unlock_host(hwif->host);
867		ide_plug_device(drive);
868	}
869
870	return irq_ret;
871}
872EXPORT_SYMBOL_GPL(ide_intr);
873
874void ide_pad_transfer(ide_drive_t *drive, int write, int len)
875{
876	ide_hwif_t *hwif = drive->hwif;
877	u8 buf[4] = { 0 };
878
879	while (len > 0) {
880		if (write)
881			hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
882		else
883			hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
884		len -= 4;
885	}
886}
887EXPORT_SYMBOL_GPL(ide_pad_transfer);
888