ide-io.c revision 9600dcf1347d304cf4dff34ef50569d6584b6968
1/*
2 *	IDE I/O functions
3 *
4 *	Basic PIO and command management functionality.
5 *
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * General Public License for more details.
18 *
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
24 */
25
26
27#include <linux/module.h>
28#include <linux/types.h>
29#include <linux/string.h>
30#include <linux/kernel.h>
31#include <linux/timer.h>
32#include <linux/mm.h>
33#include <linux/interrupt.h>
34#include <linux/major.h>
35#include <linux/errno.h>
36#include <linux/genhd.h>
37#include <linux/blkpg.h>
38#include <linux/slab.h>
39#include <linux/init.h>
40#include <linux/pci.h>
41#include <linux/delay.h>
42#include <linux/ide.h>
43#include <linux/hdreg.h>
44#include <linux/completion.h>
45#include <linux/reboot.h>
46#include <linux/cdrom.h>
47#include <linux/seq_file.h>
48#include <linux/device.h>
49#include <linux/kmod.h>
50#include <linux/scatterlist.h>
51#include <linux/bitops.h>
52
53#include <asm/byteorder.h>
54#include <asm/irq.h>
55#include <asm/uaccess.h>
56#include <asm/io.h>
57
58static int __ide_end_request(ide_drive_t *drive, struct request *rq,
59			     int uptodate, unsigned int nr_bytes, int dequeue)
60{
61	int ret = 1;
62	int error = 0;
63
64	if (uptodate <= 0)
65		error = uptodate ? uptodate : -EIO;
66
67	/*
68	 * if failfast is set on a request, override number of sectors and
69	 * complete the whole request right now
70	 */
71	if (blk_noretry_request(rq) && error)
72		nr_bytes = rq->hard_nr_sectors << 9;
73
74	if (!blk_fs_request(rq) && error && !rq->errors)
75		rq->errors = -EIO;
76
77	/*
78	 * decide whether to reenable DMA -- 3 is a random magic for now,
79	 * if we DMA timeout more than 3 times, just stay in PIO
80	 */
81	if ((drive->dev_flags & IDE_DFLAG_DMA_PIO_RETRY) &&
82	    drive->retry_pio <= 3) {
83		drive->dev_flags &= ~IDE_DFLAG_DMA_PIO_RETRY;
84		ide_dma_on(drive);
85	}
86
87	if (!blk_end_request(rq, error, nr_bytes))
88		ret = 0;
89
90	if (ret == 0 && dequeue)
91		drive->hwif->rq = NULL;
92
93	return ret;
94}
95
96/**
97 *	ide_end_request		-	complete an IDE I/O
98 *	@drive: IDE device for the I/O
99 *	@uptodate:
100 *	@nr_sectors: number of sectors completed
101 *
102 *	This is our end_request wrapper function. We complete the I/O
103 *	update random number input and dequeue the request, which if
104 *	it was tagged may be out of order.
105 */
106
107int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
108{
109	unsigned int nr_bytes = nr_sectors << 9;
110	struct request *rq = drive->hwif->rq;
111
112	if (!nr_bytes) {
113		if (blk_pc_request(rq))
114			nr_bytes = rq->data_len;
115		else
116			nr_bytes = rq->hard_cur_sectors << 9;
117	}
118
119	return __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
120}
121EXPORT_SYMBOL(ide_end_request);
122
123/**
124 *	ide_end_dequeued_request	-	complete an IDE I/O
125 *	@drive: IDE device for the I/O
126 *	@uptodate:
127 *	@nr_sectors: number of sectors completed
128 *
129 *	Complete an I/O that is no longer on the request queue. This
130 *	typically occurs when we pull the request and issue a REQUEST_SENSE.
131 *	We must still finish the old request but we must not tamper with the
132 *	queue in the meantime.
133 *
134 *	NOTE: This path does not handle barrier, but barrier is not supported
135 *	on ide-cd anyway.
136 */
137
138int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
139			     int uptodate, int nr_sectors)
140{
141	BUG_ON(!blk_rq_started(rq));
142
143	return __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
144}
145EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
146
147/**
148 *	ide_end_drive_cmd	-	end an explicit drive command
149 *	@drive: command
150 *	@stat: status bits
151 *	@err: error bits
152 *
153 *	Clean up after success/failure of an explicit drive command.
154 *	These get thrown onto the queue so they are synchronized with
155 *	real I/O operations on the drive.
156 *
157 *	In LBA48 mode we have to read the register set twice to get
158 *	all the extra information out.
159 */
160
161void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
162{
163	ide_hwif_t *hwif = drive->hwif;
164	struct request *rq = hwif->rq;
165
166	if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
167		ide_task_t *task = (ide_task_t *)rq->special;
168
169		if (task) {
170			struct ide_taskfile *tf = &task->tf;
171
172			tf->error = err;
173			tf->status = stat;
174
175			drive->hwif->tp_ops->tf_read(drive, task);
176
177			if (task->tf_flags & IDE_TFLAG_DYN)
178				kfree(task);
179		}
180	} else if (blk_pm_request(rq)) {
181		struct request_pm_state *pm = rq->data;
182
183		ide_complete_power_step(drive, rq);
184		if (pm->pm_step == IDE_PM_COMPLETED)
185			ide_complete_pm_request(drive, rq);
186		return;
187	}
188
189	hwif->rq = NULL;
190
191	rq->errors = err;
192
193	if (unlikely(blk_end_request(rq, (rq->errors ? -EIO : 0),
194				     blk_rq_bytes(rq))))
195		BUG();
196}
197EXPORT_SYMBOL(ide_end_drive_cmd);
198
199static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
200{
201	if (rq->rq_disk) {
202		struct ide_driver *drv;
203
204		drv = *(struct ide_driver **)rq->rq_disk->private_data;
205		drv->end_request(drive, 0, 0);
206	} else
207		ide_end_request(drive, 0, 0);
208}
209
210static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
211{
212	ide_hwif_t *hwif = drive->hwif;
213
214	if ((stat & ATA_BUSY) ||
215	    ((stat & ATA_DF) && (drive->dev_flags & IDE_DFLAG_NOWERR) == 0)) {
216		/* other bits are useless when BUSY */
217		rq->errors |= ERROR_RESET;
218	} else if (stat & ATA_ERR) {
219		/* err has different meaning on cdrom and tape */
220		if (err == ATA_ABORTED) {
221			if ((drive->dev_flags & IDE_DFLAG_LBA) &&
222			    /* some newer drives don't support ATA_CMD_INIT_DEV_PARAMS */
223			    hwif->tp_ops->read_status(hwif) == ATA_CMD_INIT_DEV_PARAMS)
224				return ide_stopped;
225		} else if ((err & BAD_CRC) == BAD_CRC) {
226			/* UDMA crc error, just retry the operation */
227			drive->crc_count++;
228		} else if (err & (ATA_BBK | ATA_UNC)) {
229			/* retries won't help these */
230			rq->errors = ERROR_MAX;
231		} else if (err & ATA_TRK0NF) {
232			/* help it find track zero */
233			rq->errors |= ERROR_RECAL;
234		}
235	}
236
237	if ((stat & ATA_DRQ) && rq_data_dir(rq) == READ &&
238	    (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0) {
239		int nsect = drive->mult_count ? drive->mult_count : 1;
240
241		ide_pad_transfer(drive, READ, nsect * SECTOR_SIZE);
242	}
243
244	if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
245		ide_kill_rq(drive, rq);
246		return ide_stopped;
247	}
248
249	if (hwif->tp_ops->read_status(hwif) & (ATA_BUSY | ATA_DRQ))
250		rq->errors |= ERROR_RESET;
251
252	if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
253		++rq->errors;
254		return ide_do_reset(drive);
255	}
256
257	if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
258		drive->special.b.recalibrate = 1;
259
260	++rq->errors;
261
262	return ide_stopped;
263}
264
265static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
266{
267	ide_hwif_t *hwif = drive->hwif;
268
269	if ((stat & ATA_BUSY) ||
270	    ((stat & ATA_DF) && (drive->dev_flags & IDE_DFLAG_NOWERR) == 0)) {
271		/* other bits are useless when BUSY */
272		rq->errors |= ERROR_RESET;
273	} else {
274		/* add decoding error stuff */
275	}
276
277	if (hwif->tp_ops->read_status(hwif) & (ATA_BUSY | ATA_DRQ))
278		/* force an abort */
279		hwif->tp_ops->exec_command(hwif, ATA_CMD_IDLEIMMEDIATE);
280
281	if (rq->errors >= ERROR_MAX) {
282		ide_kill_rq(drive, rq);
283	} else {
284		if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
285			++rq->errors;
286			return ide_do_reset(drive);
287		}
288		++rq->errors;
289	}
290
291	return ide_stopped;
292}
293
294static ide_startstop_t
295__ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
296{
297	if (drive->media == ide_disk)
298		return ide_ata_error(drive, rq, stat, err);
299	return ide_atapi_error(drive, rq, stat, err);
300}
301
302/**
303 *	ide_error	-	handle an error on the IDE
304 *	@drive: drive the error occurred on
305 *	@msg: message to report
306 *	@stat: status bits
307 *
308 *	ide_error() takes action based on the error returned by the drive.
309 *	For normal I/O that may well include retries. We deal with
310 *	both new-style (taskfile) and old style command handling here.
311 *	In the case of taskfile command handling there is work left to
312 *	do
313 */
314
315ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
316{
317	struct request *rq;
318	u8 err;
319
320	err = ide_dump_status(drive, msg, stat);
321
322	rq = drive->hwif->rq;
323	if (rq == NULL)
324		return ide_stopped;
325
326	/* retry only "normal" I/O: */
327	if (!blk_fs_request(rq)) {
328		rq->errors = 1;
329		ide_end_drive_cmd(drive, stat, err);
330		return ide_stopped;
331	}
332
333	return __ide_error(drive, rq, stat, err);
334}
335EXPORT_SYMBOL_GPL(ide_error);
336
337static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
338{
339	tf->nsect   = drive->sect;
340	tf->lbal    = drive->sect;
341	tf->lbam    = drive->cyl;
342	tf->lbah    = drive->cyl >> 8;
343	tf->device  = (drive->head - 1) | drive->select;
344	tf->command = ATA_CMD_INIT_DEV_PARAMS;
345}
346
347static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
348{
349	tf->nsect   = drive->sect;
350	tf->command = ATA_CMD_RESTORE;
351}
352
353static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
354{
355	tf->nsect   = drive->mult_req;
356	tf->command = ATA_CMD_SET_MULTI;
357}
358
359static ide_startstop_t ide_disk_special(ide_drive_t *drive)
360{
361	special_t *s = &drive->special;
362	ide_task_t args;
363
364	memset(&args, 0, sizeof(ide_task_t));
365	args.data_phase = TASKFILE_NO_DATA;
366
367	if (s->b.set_geometry) {
368		s->b.set_geometry = 0;
369		ide_tf_set_specify_cmd(drive, &args.tf);
370	} else if (s->b.recalibrate) {
371		s->b.recalibrate = 0;
372		ide_tf_set_restore_cmd(drive, &args.tf);
373	} else if (s->b.set_multmode) {
374		s->b.set_multmode = 0;
375		ide_tf_set_setmult_cmd(drive, &args.tf);
376	} else if (s->all) {
377		int special = s->all;
378		s->all = 0;
379		printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
380		return ide_stopped;
381	}
382
383	args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
384			IDE_TFLAG_CUSTOM_HANDLER;
385
386	do_rw_taskfile(drive, &args);
387
388	return ide_started;
389}
390
391/**
392 *	do_special		-	issue some special commands
393 *	@drive: drive the command is for
394 *
395 *	do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
396 *	ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
397 *
398 *	It used to do much more, but has been scaled back.
399 */
400
401static ide_startstop_t do_special (ide_drive_t *drive)
402{
403	special_t *s = &drive->special;
404
405#ifdef DEBUG
406	printk("%s: do_special: 0x%02x\n", drive->name, s->all);
407#endif
408	if (drive->media == ide_disk)
409		return ide_disk_special(drive);
410
411	s->all = 0;
412	drive->mult_req = 0;
413	return ide_stopped;
414}
415
416void ide_map_sg(ide_drive_t *drive, struct request *rq)
417{
418	ide_hwif_t *hwif = drive->hwif;
419	struct scatterlist *sg = hwif->sg_table;
420
421	if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
422		hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
423	} else {
424		sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
425		hwif->sg_nents = 1;
426	}
427}
428
429EXPORT_SYMBOL_GPL(ide_map_sg);
430
431void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
432{
433	ide_hwif_t *hwif = drive->hwif;
434
435	hwif->nsect = hwif->nleft = rq->nr_sectors;
436	hwif->cursg_ofs = 0;
437	hwif->cursg = NULL;
438}
439
440EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
441
442/**
443 *	execute_drive_command	-	issue special drive command
444 *	@drive: the drive to issue the command on
445 *	@rq: the request structure holding the command
446 *
447 *	execute_drive_cmd() issues a special drive command,  usually
448 *	initiated by ioctl() from the external hdparm program. The
449 *	command can be a drive command, drive task or taskfile
450 *	operation. Weirdly you can call it with NULL to wait for
451 *	all commands to finish. Don't do this as that is due to change
452 */
453
454static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
455		struct request *rq)
456{
457	ide_hwif_t *hwif = drive->hwif;
458	ide_task_t *task = rq->special;
459
460	if (task) {
461		hwif->data_phase = task->data_phase;
462
463		switch (hwif->data_phase) {
464		case TASKFILE_MULTI_OUT:
465		case TASKFILE_OUT:
466		case TASKFILE_MULTI_IN:
467		case TASKFILE_IN:
468			ide_init_sg_cmd(drive, rq);
469			ide_map_sg(drive, rq);
470		default:
471			break;
472		}
473
474		return do_rw_taskfile(drive, task);
475	}
476
477 	/*
478 	 * NULL is actually a valid way of waiting for
479 	 * all current requests to be flushed from the queue.
480 	 */
481#ifdef DEBUG
482 	printk("%s: DRIVE_CMD (null)\n", drive->name);
483#endif
484	ide_end_drive_cmd(drive, hwif->tp_ops->read_status(hwif),
485			  ide_read_error(drive));
486
487 	return ide_stopped;
488}
489
490int ide_devset_execute(ide_drive_t *drive, const struct ide_devset *setting,
491		       int arg)
492{
493	struct request_queue *q = drive->queue;
494	struct request *rq;
495	int ret = 0;
496
497	if (!(setting->flags & DS_SYNC))
498		return setting->set(drive, arg);
499
500	rq = blk_get_request(q, READ, __GFP_WAIT);
501	rq->cmd_type = REQ_TYPE_SPECIAL;
502	rq->cmd_len = 5;
503	rq->cmd[0] = REQ_DEVSET_EXEC;
504	*(int *)&rq->cmd[1] = arg;
505	rq->special = setting->set;
506
507	if (blk_execute_rq(q, NULL, rq, 0))
508		ret = rq->errors;
509	blk_put_request(rq);
510
511	return ret;
512}
513EXPORT_SYMBOL_GPL(ide_devset_execute);
514
515static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
516{
517	u8 cmd = rq->cmd[0];
518
519	if (cmd == REQ_PARK_HEADS || cmd == REQ_UNPARK_HEADS) {
520		ide_task_t task;
521		struct ide_taskfile *tf = &task.tf;
522
523		memset(&task, 0, sizeof(task));
524		if (cmd == REQ_PARK_HEADS) {
525			drive->sleep = *(unsigned long *)rq->special;
526			drive->dev_flags |= IDE_DFLAG_SLEEPING;
527			tf->command = ATA_CMD_IDLEIMMEDIATE;
528			tf->feature = 0x44;
529			tf->lbal = 0x4c;
530			tf->lbam = 0x4e;
531			tf->lbah = 0x55;
532			task.tf_flags |= IDE_TFLAG_CUSTOM_HANDLER;
533		} else		/* cmd == REQ_UNPARK_HEADS */
534			tf->command = ATA_CMD_CHK_POWER;
535
536		task.tf_flags |= IDE_TFLAG_TF | IDE_TFLAG_DEVICE;
537		task.rq = rq;
538		drive->hwif->data_phase = task.data_phase = TASKFILE_NO_DATA;
539		return do_rw_taskfile(drive, &task);
540	}
541
542	switch (cmd) {
543	case REQ_DEVSET_EXEC:
544	{
545		int err, (*setfunc)(ide_drive_t *, int) = rq->special;
546
547		err = setfunc(drive, *(int *)&rq->cmd[1]);
548		if (err)
549			rq->errors = err;
550		else
551			err = 1;
552		ide_end_request(drive, err, 0);
553		return ide_stopped;
554	}
555	case REQ_DRIVE_RESET:
556		return ide_do_reset(drive);
557	default:
558		blk_dump_rq_flags(rq, "ide_special_rq - bad request");
559		ide_end_request(drive, 0, 0);
560		return ide_stopped;
561	}
562}
563
564/**
565 *	start_request	-	start of I/O and command issuing for IDE
566 *
567 *	start_request() initiates handling of a new I/O request. It
568 *	accepts commands and I/O (read/write) requests.
569 *
570 *	FIXME: this function needs a rename
571 */
572
573static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
574{
575	ide_startstop_t startstop;
576
577	BUG_ON(!blk_rq_started(rq));
578
579#ifdef DEBUG
580	printk("%s: start_request: current=0x%08lx\n",
581		drive->hwif->name, (unsigned long) rq);
582#endif
583
584	/* bail early if we've exceeded max_failures */
585	if (drive->max_failures && (drive->failures > drive->max_failures)) {
586		rq->cmd_flags |= REQ_FAILED;
587		goto kill_rq;
588	}
589
590	if (blk_pm_request(rq))
591		ide_check_pm_state(drive, rq);
592
593	SELECT_DRIVE(drive);
594	if (ide_wait_stat(&startstop, drive, drive->ready_stat,
595			  ATA_BUSY | ATA_DRQ, WAIT_READY)) {
596		printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
597		return startstop;
598	}
599	if (!drive->special.all) {
600		struct ide_driver *drv;
601
602		/*
603		 * We reset the drive so we need to issue a SETFEATURES.
604		 * Do it _after_ do_special() restored device parameters.
605		 */
606		if (drive->current_speed == 0xff)
607			ide_config_drive_speed(drive, drive->desired_speed);
608
609		if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
610			return execute_drive_cmd(drive, rq);
611		else if (blk_pm_request(rq)) {
612			struct request_pm_state *pm = rq->data;
613#ifdef DEBUG_PM
614			printk("%s: start_power_step(step: %d)\n",
615				drive->name, pm->pm_step);
616#endif
617			startstop = ide_start_power_step(drive, rq);
618			if (startstop == ide_stopped &&
619			    pm->pm_step == IDE_PM_COMPLETED)
620				ide_complete_pm_request(drive, rq);
621			return startstop;
622		} else if (!rq->rq_disk && blk_special_request(rq))
623			/*
624			 * TODO: Once all ULDs have been modified to
625			 * check for specific op codes rather than
626			 * blindly accepting any special request, the
627			 * check for ->rq_disk above may be replaced
628			 * by a more suitable mechanism or even
629			 * dropped entirely.
630			 */
631			return ide_special_rq(drive, rq);
632
633		drv = *(struct ide_driver **)rq->rq_disk->private_data;
634
635		return drv->do_request(drive, rq, rq->sector);
636	}
637	return do_special(drive);
638kill_rq:
639	ide_kill_rq(drive, rq);
640	return ide_stopped;
641}
642
643/**
644 *	ide_stall_queue		-	pause an IDE device
645 *	@drive: drive to stall
646 *	@timeout: time to stall for (jiffies)
647 *
648 *	ide_stall_queue() can be used by a drive to give excess bandwidth back
649 *	to the port by sleeping for timeout jiffies.
650 */
651
652void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
653{
654	if (timeout > WAIT_WORSTCASE)
655		timeout = WAIT_WORSTCASE;
656	drive->sleep = timeout + jiffies;
657	drive->dev_flags |= IDE_DFLAG_SLEEPING;
658}
659EXPORT_SYMBOL(ide_stall_queue);
660
661static inline int ide_lock_port(ide_hwif_t *hwif)
662{
663	if (hwif->busy)
664		return 1;
665
666	hwif->busy = 1;
667
668	return 0;
669}
670
671static inline void ide_unlock_port(ide_hwif_t *hwif)
672{
673	hwif->busy = 0;
674}
675
676static inline int ide_lock_host(struct ide_host *host, ide_hwif_t *hwif)
677{
678	int rc = 0;
679
680	if (host->host_flags & IDE_HFLAG_SERIALIZE) {
681		rc = test_and_set_bit_lock(IDE_HOST_BUSY, &host->host_busy);
682		if (rc == 0) {
683			/* for atari only */
684			ide_get_lock(ide_intr, hwif);
685		}
686	}
687	return rc;
688}
689
690static inline void ide_unlock_host(struct ide_host *host)
691{
692	if (host->host_flags & IDE_HFLAG_SERIALIZE) {
693		/* for atari only */
694		ide_release_lock();
695		clear_bit_unlock(IDE_HOST_BUSY, &host->host_busy);
696	}
697}
698
699/*
700 * Issue a new request to a device.
701 */
702void do_ide_request(struct request_queue *q)
703{
704	ide_drive_t	*drive = q->queuedata;
705	ide_hwif_t	*hwif = drive->hwif;
706	struct ide_host *host = hwif->host;
707	struct request	*rq = NULL;
708	ide_startstop_t	startstop;
709
710	/*
711	 * drive is doing pre-flush, ordered write, post-flush sequence. even
712	 * though that is 3 requests, it must be seen as a single transaction.
713	 * we must not preempt this drive until that is complete
714	 */
715	if (blk_queue_flushing(q))
716		/*
717		 * small race where queue could get replugged during
718		 * the 3-request flush cycle, just yank the plug since
719		 * we want it to finish asap
720		 */
721		blk_remove_plug(q);
722
723	spin_unlock_irq(q->queue_lock);
724
725	if (ide_lock_host(host, hwif))
726		goto plug_device_2;
727
728	spin_lock_irq(&hwif->lock);
729
730	if (!ide_lock_port(hwif)) {
731		ide_hwif_t *prev_port;
732repeat:
733		prev_port = hwif->host->cur_port;
734		hwif->rq = NULL;
735
736		if (drive->dev_flags & IDE_DFLAG_SLEEPING) {
737			if (time_before(drive->sleep, jiffies)) {
738				ide_unlock_port(hwif);
739				goto plug_device;
740			}
741		}
742
743		if ((hwif->host->host_flags & IDE_HFLAG_SERIALIZE) &&
744		    hwif != prev_port) {
745			/*
746			 * set nIEN for previous port, drives in the
747			 * quirk_list may not like intr setups/cleanups
748			 */
749			if (prev_port && prev_port->cur_dev->quirk_list == 0)
750				prev_port->tp_ops->set_irq(prev_port, 0);
751
752			hwif->host->cur_port = hwif;
753		}
754		hwif->cur_dev = drive;
755		drive->dev_flags &= ~(IDE_DFLAG_SLEEPING | IDE_DFLAG_PARKED);
756
757		spin_unlock_irq(&hwif->lock);
758		spin_lock_irq(q->queue_lock);
759		/*
760		 * we know that the queue isn't empty, but this can happen
761		 * if the q->prep_rq_fn() decides to kill a request
762		 */
763		rq = elv_next_request(drive->queue);
764		spin_unlock_irq(q->queue_lock);
765		spin_lock_irq(&hwif->lock);
766
767		if (!rq) {
768			ide_unlock_port(hwif);
769			goto out;
770		}
771
772		/*
773		 * Sanity: don't accept a request that isn't a PM request
774		 * if we are currently power managed. This is very important as
775		 * blk_stop_queue() doesn't prevent the elv_next_request()
776		 * above to return us whatever is in the queue. Since we call
777		 * ide_do_request() ourselves, we end up taking requests while
778		 * the queue is blocked...
779		 *
780		 * We let requests forced at head of queue with ide-preempt
781		 * though. I hope that doesn't happen too much, hopefully not
782		 * unless the subdriver triggers such a thing in its own PM
783		 * state machine.
784		 */
785		if ((drive->dev_flags & IDE_DFLAG_BLOCKED) &&
786		    blk_pm_request(rq) == 0 &&
787		    (rq->cmd_flags & REQ_PREEMPT) == 0) {
788			/* there should be no pending command at this point */
789			ide_unlock_port(hwif);
790			goto plug_device;
791		}
792
793		hwif->rq = rq;
794
795		spin_unlock_irq(&hwif->lock);
796		startstop = start_request(drive, rq);
797		spin_lock_irq(&hwif->lock);
798
799		if (startstop == ide_stopped)
800			goto repeat;
801	} else
802		goto plug_device;
803out:
804	spin_unlock_irq(&hwif->lock);
805	if (rq == NULL)
806		ide_unlock_host(host);
807	spin_lock_irq(q->queue_lock);
808	return;
809
810plug_device:
811	spin_unlock_irq(&hwif->lock);
812	ide_unlock_host(host);
813plug_device_2:
814	spin_lock_irq(q->queue_lock);
815
816	if (!elv_queue_empty(q))
817		blk_plug_device(q);
818}
819
820/*
821 * un-busy the port etc, and clear any pending DMA status. we want to
822 * retry the current request in pio mode instead of risking tossing it
823 * all away
824 */
825static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
826{
827	ide_hwif_t *hwif = drive->hwif;
828	struct request *rq;
829	ide_startstop_t ret = ide_stopped;
830
831	/*
832	 * end current dma transaction
833	 */
834
835	if (error < 0) {
836		printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
837		(void)hwif->dma_ops->dma_end(drive);
838		ret = ide_error(drive, "dma timeout error",
839				hwif->tp_ops->read_status(hwif));
840	} else {
841		printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
842		hwif->dma_ops->dma_timeout(drive);
843	}
844
845	/*
846	 * disable dma for now, but remember that we did so because of
847	 * a timeout -- we'll reenable after we finish this next request
848	 * (or rather the first chunk of it) in pio.
849	 */
850	drive->dev_flags |= IDE_DFLAG_DMA_PIO_RETRY;
851	drive->retry_pio++;
852	ide_dma_off_quietly(drive);
853
854	/*
855	 * un-busy drive etc and make sure request is sane
856	 */
857
858	rq = hwif->rq;
859	if (!rq)
860		goto out;
861
862	hwif->rq = NULL;
863
864	rq->errors = 0;
865
866	if (!rq->bio)
867		goto out;
868
869	rq->sector = rq->bio->bi_sector;
870	rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
871	rq->hard_cur_sectors = rq->current_nr_sectors;
872	rq->buffer = bio_data(rq->bio);
873out:
874	return ret;
875}
876
877static void ide_plug_device(ide_drive_t *drive)
878{
879	struct request_queue *q = drive->queue;
880	unsigned long flags;
881
882	spin_lock_irqsave(q->queue_lock, flags);
883	if (!elv_queue_empty(q))
884		blk_plug_device(q);
885	spin_unlock_irqrestore(q->queue_lock, flags);
886}
887
888/**
889 *	ide_timer_expiry	-	handle lack of an IDE interrupt
890 *	@data: timer callback magic (hwif)
891 *
892 *	An IDE command has timed out before the expected drive return
893 *	occurred. At this point we attempt to clean up the current
894 *	mess. If the current handler includes an expiry handler then
895 *	we invoke the expiry handler, and providing it is happy the
896 *	work is done. If that fails we apply generic recovery rules
897 *	invoking the handler and checking the drive DMA status. We
898 *	have an excessively incestuous relationship with the DMA
899 *	logic that wants cleaning up.
900 */
901
902void ide_timer_expiry (unsigned long data)
903{
904	ide_hwif_t	*hwif = (ide_hwif_t *)data;
905	ide_drive_t	*uninitialized_var(drive);
906	ide_handler_t	*handler;
907	unsigned long	flags;
908	unsigned long	wait = -1;
909	int		plug_device = 0;
910
911	spin_lock_irqsave(&hwif->lock, flags);
912
913	handler = hwif->handler;
914
915	if (handler == NULL || hwif->req_gen != hwif->req_gen_timer) {
916		/*
917		 * Either a marginal timeout occurred
918		 * (got the interrupt just as timer expired),
919		 * or we were "sleeping" to give other devices a chance.
920		 * Either way, we don't really want to complain about anything.
921		 */
922	} else {
923		drive = hwif->cur_dev;
924		if (!drive) {
925			printk(KERN_ERR "%s: ->cur_dev was NULL\n", __func__);
926			hwif->handler = NULL;
927		} else {
928			ide_expiry_t *expiry = hwif->expiry;
929			ide_startstop_t startstop = ide_stopped;
930
931			if (expiry) {
932				/* continue */
933				if ((wait = expiry(drive)) > 0) {
934					/* reset timer */
935					hwif->timer.expires  = jiffies + wait;
936					hwif->req_gen_timer = hwif->req_gen;
937					add_timer(&hwif->timer);
938					spin_unlock_irqrestore(&hwif->lock, flags);
939					return;
940				}
941			}
942			hwif->handler = NULL;
943			/*
944			 * We need to simulate a real interrupt when invoking
945			 * the handler() function, which means we need to
946			 * globally mask the specific IRQ:
947			 */
948			spin_unlock(&hwif->lock);
949			hwif = drive->hwif;
950			/* disable_irq_nosync ?? */
951			disable_irq(hwif->irq);
952			/* local CPU only,
953			 * as if we were handling an interrupt */
954			local_irq_disable();
955			if (hwif->polling) {
956				startstop = handler(drive);
957			} else if (drive_is_ready(drive)) {
958				if (drive->waiting_for_dma)
959					hwif->dma_ops->dma_lost_irq(drive);
960				(void)ide_ack_intr(hwif);
961				printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
962				startstop = handler(drive);
963			} else {
964				if (drive->waiting_for_dma) {
965					startstop = ide_dma_timeout_retry(drive, wait);
966				} else
967					startstop =
968					ide_error(drive, "irq timeout",
969						  hwif->tp_ops->read_status(hwif));
970			}
971			spin_lock_irq(&hwif->lock);
972			enable_irq(hwif->irq);
973			if (startstop == ide_stopped) {
974				ide_unlock_port(hwif);
975				plug_device = 1;
976			}
977		}
978	}
979	spin_unlock_irqrestore(&hwif->lock, flags);
980
981	if (plug_device) {
982		ide_unlock_host(hwif->host);
983		ide_plug_device(drive);
984	}
985}
986
987/**
988 *	unexpected_intr		-	handle an unexpected IDE interrupt
989 *	@irq: interrupt line
990 *	@hwif: port being processed
991 *
992 *	There's nothing really useful we can do with an unexpected interrupt,
993 *	other than reading the status register (to clear it), and logging it.
994 *	There should be no way that an irq can happen before we're ready for it,
995 *	so we needn't worry much about losing an "important" interrupt here.
996 *
997 *	On laptops (and "green" PCs), an unexpected interrupt occurs whenever
998 *	the drive enters "idle", "standby", or "sleep" mode, so if the status
999 *	looks "good", we just ignore the interrupt completely.
1000 *
1001 *	This routine assumes __cli() is in effect when called.
1002 *
1003 *	If an unexpected interrupt happens on irq15 while we are handling irq14
1004 *	and if the two interfaces are "serialized" (CMD640), then it looks like
1005 *	we could screw up by interfering with a new request being set up for
1006 *	irq15.
1007 *
1008 *	In reality, this is a non-issue.  The new command is not sent unless
1009 *	the drive is ready to accept one, in which case we know the drive is
1010 *	not trying to interrupt us.  And ide_set_handler() is always invoked
1011 *	before completing the issuance of any new drive command, so we will not
1012 *	be accidentally invoked as a result of any valid command completion
1013 *	interrupt.
1014 */
1015
1016static void unexpected_intr(int irq, ide_hwif_t *hwif)
1017{
1018	u8 stat = hwif->tp_ops->read_status(hwif);
1019
1020	if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) {
1021		/* Try to not flood the console with msgs */
1022		static unsigned long last_msgtime, count;
1023		++count;
1024
1025		if (time_after(jiffies, last_msgtime + HZ)) {
1026			last_msgtime = jiffies;
1027			printk(KERN_ERR "%s: unexpected interrupt, "
1028				"status=0x%02x, count=%ld\n",
1029				hwif->name, stat, count);
1030		}
1031	}
1032}
1033
1034/**
1035 *	ide_intr	-	default IDE interrupt handler
1036 *	@irq: interrupt number
1037 *	@dev_id: hwif
1038 *	@regs: unused weirdness from the kernel irq layer
1039 *
1040 *	This is the default IRQ handler for the IDE layer. You should
1041 *	not need to override it. If you do be aware it is subtle in
1042 *	places
1043 *
1044 *	hwif is the interface in the group currently performing
1045 *	a command. hwif->cur_dev is the drive and hwif->handler is
1046 *	the IRQ handler to call. As we issue a command the handlers
1047 *	step through multiple states, reassigning the handler to the
1048 *	next step in the process. Unlike a smart SCSI controller IDE
1049 *	expects the main processor to sequence the various transfer
1050 *	stages. We also manage a poll timer to catch up with most
1051 *	timeout situations. There are still a few where the handlers
1052 *	don't ever decide to give up.
1053 *
1054 *	The handler eventually returns ide_stopped to indicate the
1055 *	request completed. At this point we issue the next request
1056 *	on the port and the process begins again.
1057 */
1058
1059irqreturn_t ide_intr (int irq, void *dev_id)
1060{
1061	ide_hwif_t *hwif = (ide_hwif_t *)dev_id;
1062	ide_drive_t *uninitialized_var(drive);
1063	ide_handler_t *handler;
1064	unsigned long flags;
1065	ide_startstop_t startstop;
1066	irqreturn_t irq_ret = IRQ_NONE;
1067	int plug_device = 0;
1068
1069	if (hwif->host->host_flags & IDE_HFLAG_SERIALIZE) {
1070		if (hwif != hwif->host->cur_port)
1071			goto out_early;
1072	}
1073
1074	spin_lock_irqsave(&hwif->lock, flags);
1075
1076	if (!ide_ack_intr(hwif))
1077		goto out;
1078
1079	handler = hwif->handler;
1080
1081	if (handler == NULL || hwif->polling) {
1082		/*
1083		 * Not expecting an interrupt from this drive.
1084		 * That means this could be:
1085		 *	(1) an interrupt from another PCI device
1086		 *	sharing the same PCI INT# as us.
1087		 * or	(2) a drive just entered sleep or standby mode,
1088		 *	and is interrupting to let us know.
1089		 * or	(3) a spurious interrupt of unknown origin.
1090		 *
1091		 * For PCI, we cannot tell the difference,
1092		 * so in that case we just ignore it and hope it goes away.
1093		 *
1094		 * FIXME: unexpected_intr should be hwif-> then we can
1095		 * remove all the ifdef PCI crap
1096		 */
1097#ifdef CONFIG_BLK_DEV_IDEPCI
1098		if (hwif->chipset != ide_pci)
1099#endif	/* CONFIG_BLK_DEV_IDEPCI */
1100		{
1101			/*
1102			 * Probably not a shared PCI interrupt,
1103			 * so we can safely try to do something about it:
1104			 */
1105			unexpected_intr(irq, hwif);
1106#ifdef CONFIG_BLK_DEV_IDEPCI
1107		} else {
1108			/*
1109			 * Whack the status register, just in case
1110			 * we have a leftover pending IRQ.
1111			 */
1112			(void)hwif->tp_ops->read_status(hwif);
1113#endif /* CONFIG_BLK_DEV_IDEPCI */
1114		}
1115		goto out;
1116	}
1117
1118	drive = hwif->cur_dev;
1119	if (!drive) {
1120		/*
1121		 * This should NEVER happen, and there isn't much
1122		 * we could do about it here.
1123		 *
1124		 * [Note - this can occur if the drive is hot unplugged]
1125		 */
1126		goto out_handled;
1127	}
1128
1129	if (!drive_is_ready(drive))
1130		/*
1131		 * This happens regularly when we share a PCI IRQ with
1132		 * another device.  Unfortunately, it can also happen
1133		 * with some buggy drives that trigger the IRQ before
1134		 * their status register is up to date.  Hopefully we have
1135		 * enough advance overhead that the latter isn't a problem.
1136		 */
1137		goto out;
1138
1139	hwif->handler = NULL;
1140	hwif->req_gen++;
1141	del_timer(&hwif->timer);
1142	spin_unlock(&hwif->lock);
1143
1144	if (hwif->port_ops && hwif->port_ops->clear_irq)
1145		hwif->port_ops->clear_irq(drive);
1146
1147	if (drive->dev_flags & IDE_DFLAG_UNMASK)
1148		local_irq_enable_in_hardirq();
1149
1150	/* service this interrupt, may set handler for next interrupt */
1151	startstop = handler(drive);
1152
1153	spin_lock_irq(&hwif->lock);
1154	/*
1155	 * Note that handler() may have set things up for another
1156	 * interrupt to occur soon, but it cannot happen until
1157	 * we exit from this routine, because it will be the
1158	 * same irq as is currently being serviced here, and Linux
1159	 * won't allow another of the same (on any CPU) until we return.
1160	 */
1161	if (startstop == ide_stopped) {
1162		BUG_ON(hwif->handler);
1163		ide_unlock_port(hwif);
1164		plug_device = 1;
1165	}
1166out_handled:
1167	irq_ret = IRQ_HANDLED;
1168out:
1169	spin_unlock_irqrestore(&hwif->lock, flags);
1170out_early:
1171	if (plug_device) {
1172		ide_unlock_host(hwif->host);
1173		ide_plug_device(drive);
1174	}
1175
1176	return irq_ret;
1177}
1178
1179/**
1180 *	ide_do_drive_cmd	-	issue IDE special command
1181 *	@drive: device to issue command
1182 *	@rq: request to issue
1183 *
1184 *	This function issues a special IDE device request
1185 *	onto the request queue.
1186 *
1187 *	the rq is queued at the head of the request queue, displacing
1188 *	the currently-being-processed request and this function
1189 *	returns immediately without waiting for the new rq to be
1190 *	completed.  This is VERY DANGEROUS, and is intended for
1191 *	careful use by the ATAPI tape/cdrom driver code.
1192 */
1193
1194void ide_do_drive_cmd(ide_drive_t *drive, struct request *rq)
1195{
1196	struct request_queue *q = drive->queue;
1197	unsigned long flags;
1198
1199	drive->hwif->rq = NULL;
1200
1201	spin_lock_irqsave(q->queue_lock, flags);
1202	__elv_add_request(q, rq, ELEVATOR_INSERT_FRONT, 0);
1203	spin_unlock_irqrestore(q->queue_lock, flags);
1204}
1205EXPORT_SYMBOL(ide_do_drive_cmd);
1206
1207void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma)
1208{
1209	ide_hwif_t *hwif = drive->hwif;
1210	ide_task_t task;
1211
1212	memset(&task, 0, sizeof(task));
1213	task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM |
1214			IDE_TFLAG_OUT_FEATURE | tf_flags;
1215	task.tf.feature = dma;		/* Use PIO/DMA */
1216	task.tf.lbam    = bcount & 0xff;
1217	task.tf.lbah    = (bcount >> 8) & 0xff;
1218
1219	ide_tf_dump(drive->name, &task.tf);
1220	hwif->tp_ops->set_irq(hwif, 1);
1221	SELECT_MASK(drive, 0);
1222	hwif->tp_ops->tf_load(drive, &task);
1223}
1224
1225EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load);
1226
1227void ide_pad_transfer(ide_drive_t *drive, int write, int len)
1228{
1229	ide_hwif_t *hwif = drive->hwif;
1230	u8 buf[4] = { 0 };
1231
1232	while (len > 0) {
1233		if (write)
1234			hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
1235		else
1236			hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
1237		len -= 4;
1238	}
1239}
1240EXPORT_SYMBOL_GPL(ide_pad_transfer);
1241