ide-io.c revision b6a45a0b1e9a358b81201659cf87b023e3ec73e0
1/*
2 *	IDE I/O functions
3 *
4 *	Basic PIO and command management functionality.
5 *
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * General Public License for more details.
18 *
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
24 */
25
26
27#include <linux/module.h>
28#include <linux/types.h>
29#include <linux/string.h>
30#include <linux/kernel.h>
31#include <linux/timer.h>
32#include <linux/mm.h>
33#include <linux/interrupt.h>
34#include <linux/major.h>
35#include <linux/errno.h>
36#include <linux/genhd.h>
37#include <linux/blkpg.h>
38#include <linux/slab.h>
39#include <linux/init.h>
40#include <linux/pci.h>
41#include <linux/delay.h>
42#include <linux/ide.h>
43#include <linux/hdreg.h>
44#include <linux/completion.h>
45#include <linux/reboot.h>
46#include <linux/cdrom.h>
47#include <linux/seq_file.h>
48#include <linux/device.h>
49#include <linux/kmod.h>
50#include <linux/scatterlist.h>
51#include <linux/bitops.h>
52
53#include <asm/byteorder.h>
54#include <asm/irq.h>
55#include <asm/uaccess.h>
56#include <asm/io.h>
57
58static int __ide_end_request(ide_drive_t *drive, struct request *rq,
59			     int uptodate, unsigned int nr_bytes, int dequeue)
60{
61	int ret = 1;
62	int error = 0;
63
64	if (uptodate <= 0)
65		error = uptodate ? uptodate : -EIO;
66
67	/*
68	 * if failfast is set on a request, override number of sectors and
69	 * complete the whole request right now
70	 */
71	if (blk_noretry_request(rq) && error)
72		nr_bytes = rq->hard_nr_sectors << 9;
73
74	if (!blk_fs_request(rq) && error && !rq->errors)
75		rq->errors = -EIO;
76
77	/*
78	 * decide whether to reenable DMA -- 3 is a random magic for now,
79	 * if we DMA timeout more than 3 times, just stay in PIO
80	 */
81	if ((drive->dev_flags & IDE_DFLAG_DMA_PIO_RETRY) &&
82	    drive->retry_pio <= 3) {
83		drive->dev_flags &= ~IDE_DFLAG_DMA_PIO_RETRY;
84		ide_dma_on(drive);
85	}
86
87	if (!blk_end_request(rq, error, nr_bytes))
88		ret = 0;
89
90	if (ret == 0 && dequeue)
91		drive->hwif->rq = NULL;
92
93	return ret;
94}
95
96/**
97 *	ide_end_request		-	complete an IDE I/O
98 *	@drive: IDE device for the I/O
99 *	@uptodate:
100 *	@nr_sectors: number of sectors completed
101 *
102 *	This is our end_request wrapper function. We complete the I/O
103 *	update random number input and dequeue the request, which if
104 *	it was tagged may be out of order.
105 */
106
107int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
108{
109	unsigned int nr_bytes = nr_sectors << 9;
110	struct request *rq = drive->hwif->rq;
111
112	if (!nr_bytes) {
113		if (blk_pc_request(rq))
114			nr_bytes = rq->data_len;
115		else
116			nr_bytes = rq->hard_cur_sectors << 9;
117	}
118
119	return __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
120}
121EXPORT_SYMBOL(ide_end_request);
122
123/**
124 *	ide_end_dequeued_request	-	complete an IDE I/O
125 *	@drive: IDE device for the I/O
126 *	@uptodate:
127 *	@nr_sectors: number of sectors completed
128 *
129 *	Complete an I/O that is no longer on the request queue. This
130 *	typically occurs when we pull the request and issue a REQUEST_SENSE.
131 *	We must still finish the old request but we must not tamper with the
132 *	queue in the meantime.
133 *
134 *	NOTE: This path does not handle barrier, but barrier is not supported
135 *	on ide-cd anyway.
136 */
137
138int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
139			     int uptodate, int nr_sectors)
140{
141	BUG_ON(!blk_rq_started(rq));
142
143	return __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
144}
145EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
146
147/**
148 *	ide_end_drive_cmd	-	end an explicit drive command
149 *	@drive: command
150 *	@stat: status bits
151 *	@err: error bits
152 *
153 *	Clean up after success/failure of an explicit drive command.
154 *	These get thrown onto the queue so they are synchronized with
155 *	real I/O operations on the drive.
156 *
157 *	In LBA48 mode we have to read the register set twice to get
158 *	all the extra information out.
159 */
160
161void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
162{
163	ide_hwif_t *hwif = drive->hwif;
164	struct request *rq = hwif->rq;
165
166	if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
167		ide_task_t *task = (ide_task_t *)rq->special;
168
169		if (task) {
170			struct ide_taskfile *tf = &task->tf;
171
172			tf->error = err;
173			tf->status = stat;
174
175			drive->hwif->tp_ops->tf_read(drive, task);
176
177			if (task->tf_flags & IDE_TFLAG_DYN)
178				kfree(task);
179		}
180	} else if (blk_pm_request(rq)) {
181		struct request_pm_state *pm = rq->data;
182
183		ide_complete_power_step(drive, rq);
184		if (pm->pm_step == IDE_PM_COMPLETED)
185			ide_complete_pm_request(drive, rq);
186		return;
187	}
188
189	hwif->rq = NULL;
190
191	rq->errors = err;
192
193	if (unlikely(blk_end_request(rq, (rq->errors ? -EIO : 0),
194				     blk_rq_bytes(rq))))
195		BUG();
196}
197EXPORT_SYMBOL(ide_end_drive_cmd);
198
199static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
200{
201	if (rq->rq_disk) {
202		struct ide_driver *drv;
203
204		drv = *(struct ide_driver **)rq->rq_disk->private_data;
205		drv->end_request(drive, 0, 0);
206	} else
207		ide_end_request(drive, 0, 0);
208}
209
210static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
211{
212	ide_hwif_t *hwif = drive->hwif;
213
214	if ((stat & ATA_BUSY) ||
215	    ((stat & ATA_DF) && (drive->dev_flags & IDE_DFLAG_NOWERR) == 0)) {
216		/* other bits are useless when BUSY */
217		rq->errors |= ERROR_RESET;
218	} else if (stat & ATA_ERR) {
219		/* err has different meaning on cdrom and tape */
220		if (err == ATA_ABORTED) {
221			if ((drive->dev_flags & IDE_DFLAG_LBA) &&
222			    /* some newer drives don't support ATA_CMD_INIT_DEV_PARAMS */
223			    hwif->tp_ops->read_status(hwif) == ATA_CMD_INIT_DEV_PARAMS)
224				return ide_stopped;
225		} else if ((err & BAD_CRC) == BAD_CRC) {
226			/* UDMA crc error, just retry the operation */
227			drive->crc_count++;
228		} else if (err & (ATA_BBK | ATA_UNC)) {
229			/* retries won't help these */
230			rq->errors = ERROR_MAX;
231		} else if (err & ATA_TRK0NF) {
232			/* help it find track zero */
233			rq->errors |= ERROR_RECAL;
234		}
235	}
236
237	if ((stat & ATA_DRQ) && rq_data_dir(rq) == READ &&
238	    (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0) {
239		int nsect = drive->mult_count ? drive->mult_count : 1;
240
241		ide_pad_transfer(drive, READ, nsect * SECTOR_SIZE);
242	}
243
244	if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
245		ide_kill_rq(drive, rq);
246		return ide_stopped;
247	}
248
249	if (hwif->tp_ops->read_status(hwif) & (ATA_BUSY | ATA_DRQ))
250		rq->errors |= ERROR_RESET;
251
252	if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
253		++rq->errors;
254		return ide_do_reset(drive);
255	}
256
257	if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
258		drive->special.b.recalibrate = 1;
259
260	++rq->errors;
261
262	return ide_stopped;
263}
264
265static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
266{
267	ide_hwif_t *hwif = drive->hwif;
268
269	if ((stat & ATA_BUSY) ||
270	    ((stat & ATA_DF) && (drive->dev_flags & IDE_DFLAG_NOWERR) == 0)) {
271		/* other bits are useless when BUSY */
272		rq->errors |= ERROR_RESET;
273	} else {
274		/* add decoding error stuff */
275	}
276
277	if (hwif->tp_ops->read_status(hwif) & (ATA_BUSY | ATA_DRQ))
278		/* force an abort */
279		hwif->tp_ops->exec_command(hwif, ATA_CMD_IDLEIMMEDIATE);
280
281	if (rq->errors >= ERROR_MAX) {
282		ide_kill_rq(drive, rq);
283	} else {
284		if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
285			++rq->errors;
286			return ide_do_reset(drive);
287		}
288		++rq->errors;
289	}
290
291	return ide_stopped;
292}
293
294static ide_startstop_t
295__ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
296{
297	if (drive->media == ide_disk)
298		return ide_ata_error(drive, rq, stat, err);
299	return ide_atapi_error(drive, rq, stat, err);
300}
301
302/**
303 *	ide_error	-	handle an error on the IDE
304 *	@drive: drive the error occurred on
305 *	@msg: message to report
306 *	@stat: status bits
307 *
308 *	ide_error() takes action based on the error returned by the drive.
309 *	For normal I/O that may well include retries. We deal with
310 *	both new-style (taskfile) and old style command handling here.
311 *	In the case of taskfile command handling there is work left to
312 *	do
313 */
314
315ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
316{
317	struct request *rq;
318	u8 err;
319
320	err = ide_dump_status(drive, msg, stat);
321
322	rq = drive->hwif->rq;
323	if (rq == NULL)
324		return ide_stopped;
325
326	/* retry only "normal" I/O: */
327	if (!blk_fs_request(rq)) {
328		rq->errors = 1;
329		ide_end_drive_cmd(drive, stat, err);
330		return ide_stopped;
331	}
332
333	return __ide_error(drive, rq, stat, err);
334}
335EXPORT_SYMBOL_GPL(ide_error);
336
337static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
338{
339	tf->nsect   = drive->sect;
340	tf->lbal    = drive->sect;
341	tf->lbam    = drive->cyl;
342	tf->lbah    = drive->cyl >> 8;
343	tf->device  = (drive->head - 1) | drive->select;
344	tf->command = ATA_CMD_INIT_DEV_PARAMS;
345}
346
347static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
348{
349	tf->nsect   = drive->sect;
350	tf->command = ATA_CMD_RESTORE;
351}
352
353static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
354{
355	tf->nsect   = drive->mult_req;
356	tf->command = ATA_CMD_SET_MULTI;
357}
358
359static ide_startstop_t ide_disk_special(ide_drive_t *drive)
360{
361	special_t *s = &drive->special;
362	ide_task_t args;
363
364	memset(&args, 0, sizeof(ide_task_t));
365	args.data_phase = TASKFILE_NO_DATA;
366
367	if (s->b.set_geometry) {
368		s->b.set_geometry = 0;
369		ide_tf_set_specify_cmd(drive, &args.tf);
370	} else if (s->b.recalibrate) {
371		s->b.recalibrate = 0;
372		ide_tf_set_restore_cmd(drive, &args.tf);
373	} else if (s->b.set_multmode) {
374		s->b.set_multmode = 0;
375		ide_tf_set_setmult_cmd(drive, &args.tf);
376	} else if (s->all) {
377		int special = s->all;
378		s->all = 0;
379		printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
380		return ide_stopped;
381	}
382
383	args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
384			IDE_TFLAG_CUSTOM_HANDLER;
385
386	do_rw_taskfile(drive, &args);
387
388	return ide_started;
389}
390
391/**
392 *	do_special		-	issue some special commands
393 *	@drive: drive the command is for
394 *
395 *	do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
396 *	ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
397 *
398 *	It used to do much more, but has been scaled back.
399 */
400
401static ide_startstop_t do_special (ide_drive_t *drive)
402{
403	special_t *s = &drive->special;
404
405#ifdef DEBUG
406	printk("%s: do_special: 0x%02x\n", drive->name, s->all);
407#endif
408	if (drive->media == ide_disk)
409		return ide_disk_special(drive);
410
411	s->all = 0;
412	drive->mult_req = 0;
413	return ide_stopped;
414}
415
416void ide_map_sg(ide_drive_t *drive, struct request *rq)
417{
418	ide_hwif_t *hwif = drive->hwif;
419	struct scatterlist *sg = hwif->sg_table;
420
421	if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
422		sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
423		hwif->sg_nents = 1;
424	} else if (!rq->bio) {
425		sg_init_one(sg, rq->data, rq->data_len);
426		hwif->sg_nents = 1;
427	} else {
428		hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
429	}
430}
431
432EXPORT_SYMBOL_GPL(ide_map_sg);
433
434void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
435{
436	ide_hwif_t *hwif = drive->hwif;
437
438	hwif->nsect = hwif->nleft = rq->nr_sectors;
439	hwif->cursg_ofs = 0;
440	hwif->cursg = NULL;
441}
442
443EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
444
445/**
446 *	execute_drive_command	-	issue special drive command
447 *	@drive: the drive to issue the command on
448 *	@rq: the request structure holding the command
449 *
450 *	execute_drive_cmd() issues a special drive command,  usually
451 *	initiated by ioctl() from the external hdparm program. The
452 *	command can be a drive command, drive task or taskfile
453 *	operation. Weirdly you can call it with NULL to wait for
454 *	all commands to finish. Don't do this as that is due to change
455 */
456
457static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
458		struct request *rq)
459{
460	ide_hwif_t *hwif = drive->hwif;
461	ide_task_t *task = rq->special;
462
463	if (task) {
464		hwif->data_phase = task->data_phase;
465
466		switch (hwif->data_phase) {
467		case TASKFILE_MULTI_OUT:
468		case TASKFILE_OUT:
469		case TASKFILE_MULTI_IN:
470		case TASKFILE_IN:
471			ide_init_sg_cmd(drive, rq);
472			ide_map_sg(drive, rq);
473		default:
474			break;
475		}
476
477		return do_rw_taskfile(drive, task);
478	}
479
480 	/*
481 	 * NULL is actually a valid way of waiting for
482 	 * all current requests to be flushed from the queue.
483 	 */
484#ifdef DEBUG
485 	printk("%s: DRIVE_CMD (null)\n", drive->name);
486#endif
487	ide_end_drive_cmd(drive, hwif->tp_ops->read_status(hwif),
488			  ide_read_error(drive));
489
490 	return ide_stopped;
491}
492
493int ide_devset_execute(ide_drive_t *drive, const struct ide_devset *setting,
494		       int arg)
495{
496	struct request_queue *q = drive->queue;
497	struct request *rq;
498	int ret = 0;
499
500	if (!(setting->flags & DS_SYNC))
501		return setting->set(drive, arg);
502
503	rq = blk_get_request(q, READ, __GFP_WAIT);
504	rq->cmd_type = REQ_TYPE_SPECIAL;
505	rq->cmd_len = 5;
506	rq->cmd[0] = REQ_DEVSET_EXEC;
507	*(int *)&rq->cmd[1] = arg;
508	rq->special = setting->set;
509
510	if (blk_execute_rq(q, NULL, rq, 0))
511		ret = rq->errors;
512	blk_put_request(rq);
513
514	return ret;
515}
516
517static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
518{
519	u8 cmd = rq->cmd[0];
520
521	if (cmd == REQ_PARK_HEADS || cmd == REQ_UNPARK_HEADS) {
522		ide_task_t task;
523		struct ide_taskfile *tf = &task.tf;
524
525		memset(&task, 0, sizeof(task));
526		if (cmd == REQ_PARK_HEADS) {
527			drive->sleep = *(unsigned long *)rq->special;
528			drive->dev_flags |= IDE_DFLAG_SLEEPING;
529			tf->command = ATA_CMD_IDLEIMMEDIATE;
530			tf->feature = 0x44;
531			tf->lbal = 0x4c;
532			tf->lbam = 0x4e;
533			tf->lbah = 0x55;
534			task.tf_flags |= IDE_TFLAG_CUSTOM_HANDLER;
535		} else		/* cmd == REQ_UNPARK_HEADS */
536			tf->command = ATA_CMD_CHK_POWER;
537
538		task.tf_flags |= IDE_TFLAG_TF | IDE_TFLAG_DEVICE;
539		task.rq = rq;
540		drive->hwif->data_phase = task.data_phase = TASKFILE_NO_DATA;
541		return do_rw_taskfile(drive, &task);
542	}
543
544	switch (cmd) {
545	case REQ_DEVSET_EXEC:
546	{
547		int err, (*setfunc)(ide_drive_t *, int) = rq->special;
548
549		err = setfunc(drive, *(int *)&rq->cmd[1]);
550		if (err)
551			rq->errors = err;
552		else
553			err = 1;
554		ide_end_request(drive, err, 0);
555		return ide_stopped;
556	}
557	case REQ_DRIVE_RESET:
558		return ide_do_reset(drive);
559	default:
560		blk_dump_rq_flags(rq, "ide_special_rq - bad request");
561		ide_end_request(drive, 0, 0);
562		return ide_stopped;
563	}
564}
565
566/**
567 *	start_request	-	start of I/O and command issuing for IDE
568 *
569 *	start_request() initiates handling of a new I/O request. It
570 *	accepts commands and I/O (read/write) requests.
571 *
572 *	FIXME: this function needs a rename
573 */
574
575static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
576{
577	ide_startstop_t startstop;
578
579	BUG_ON(!blk_rq_started(rq));
580
581#ifdef DEBUG
582	printk("%s: start_request: current=0x%08lx\n",
583		drive->hwif->name, (unsigned long) rq);
584#endif
585
586	/* bail early if we've exceeded max_failures */
587	if (drive->max_failures && (drive->failures > drive->max_failures)) {
588		rq->cmd_flags |= REQ_FAILED;
589		goto kill_rq;
590	}
591
592	if (blk_pm_request(rq))
593		ide_check_pm_state(drive, rq);
594
595	SELECT_DRIVE(drive);
596	if (ide_wait_stat(&startstop, drive, drive->ready_stat,
597			  ATA_BUSY | ATA_DRQ, WAIT_READY)) {
598		printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
599		return startstop;
600	}
601	if (!drive->special.all) {
602		struct ide_driver *drv;
603
604		/*
605		 * We reset the drive so we need to issue a SETFEATURES.
606		 * Do it _after_ do_special() restored device parameters.
607		 */
608		if (drive->current_speed == 0xff)
609			ide_config_drive_speed(drive, drive->desired_speed);
610
611		if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
612			return execute_drive_cmd(drive, rq);
613		else if (blk_pm_request(rq)) {
614			struct request_pm_state *pm = rq->data;
615#ifdef DEBUG_PM
616			printk("%s: start_power_step(step: %d)\n",
617				drive->name, pm->pm_step);
618#endif
619			startstop = ide_start_power_step(drive, rq);
620			if (startstop == ide_stopped &&
621			    pm->pm_step == IDE_PM_COMPLETED)
622				ide_complete_pm_request(drive, rq);
623			return startstop;
624		} else if (!rq->rq_disk && blk_special_request(rq))
625			/*
626			 * TODO: Once all ULDs have been modified to
627			 * check for specific op codes rather than
628			 * blindly accepting any special request, the
629			 * check for ->rq_disk above may be replaced
630			 * by a more suitable mechanism or even
631			 * dropped entirely.
632			 */
633			return ide_special_rq(drive, rq);
634
635		drv = *(struct ide_driver **)rq->rq_disk->private_data;
636
637		return drv->do_request(drive, rq, rq->sector);
638	}
639	return do_special(drive);
640kill_rq:
641	ide_kill_rq(drive, rq);
642	return ide_stopped;
643}
644
645/**
646 *	ide_stall_queue		-	pause an IDE device
647 *	@drive: drive to stall
648 *	@timeout: time to stall for (jiffies)
649 *
650 *	ide_stall_queue() can be used by a drive to give excess bandwidth back
651 *	to the port by sleeping for timeout jiffies.
652 */
653
654void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
655{
656	if (timeout > WAIT_WORSTCASE)
657		timeout = WAIT_WORSTCASE;
658	drive->sleep = timeout + jiffies;
659	drive->dev_flags |= IDE_DFLAG_SLEEPING;
660}
661EXPORT_SYMBOL(ide_stall_queue);
662
663static inline int ide_lock_port(ide_hwif_t *hwif)
664{
665	if (hwif->busy)
666		return 1;
667
668	hwif->busy = 1;
669
670	return 0;
671}
672
673static inline void ide_unlock_port(ide_hwif_t *hwif)
674{
675	hwif->busy = 0;
676}
677
678static inline int ide_lock_host(struct ide_host *host, ide_hwif_t *hwif)
679{
680	int rc = 0;
681
682	if (host->host_flags & IDE_HFLAG_SERIALIZE) {
683		rc = test_and_set_bit_lock(IDE_HOST_BUSY, &host->host_busy);
684		if (rc == 0) {
685			/* for atari only */
686			ide_get_lock(ide_intr, hwif);
687		}
688	}
689	return rc;
690}
691
692static inline void ide_unlock_host(struct ide_host *host)
693{
694	if (host->host_flags & IDE_HFLAG_SERIALIZE) {
695		/* for atari only */
696		ide_release_lock();
697		clear_bit_unlock(IDE_HOST_BUSY, &host->host_busy);
698	}
699}
700
701/*
702 * Issue a new request to a device.
703 */
704void do_ide_request(struct request_queue *q)
705{
706	ide_drive_t	*drive = q->queuedata;
707	ide_hwif_t	*hwif = drive->hwif;
708	struct ide_host *host = hwif->host;
709	struct request	*rq = NULL;
710	ide_startstop_t	startstop;
711
712	/*
713	 * drive is doing pre-flush, ordered write, post-flush sequence. even
714	 * though that is 3 requests, it must be seen as a single transaction.
715	 * we must not preempt this drive until that is complete
716	 */
717	if (blk_queue_flushing(q))
718		/*
719		 * small race where queue could get replugged during
720		 * the 3-request flush cycle, just yank the plug since
721		 * we want it to finish asap
722		 */
723		blk_remove_plug(q);
724
725	spin_unlock_irq(q->queue_lock);
726
727	if (ide_lock_host(host, hwif))
728		goto plug_device_2;
729
730	spin_lock_irq(&hwif->lock);
731
732	if (!ide_lock_port(hwif)) {
733		ide_hwif_t *prev_port;
734repeat:
735		prev_port = hwif->host->cur_port;
736		hwif->rq = NULL;
737
738		if (drive->dev_flags & IDE_DFLAG_SLEEPING) {
739			if (time_before(drive->sleep, jiffies)) {
740				ide_unlock_port(hwif);
741				goto plug_device;
742			}
743		}
744
745		if ((hwif->host->host_flags & IDE_HFLAG_SERIALIZE) &&
746		    hwif != prev_port) {
747			/*
748			 * set nIEN for previous port, drives in the
749			 * quirk_list may not like intr setups/cleanups
750			 */
751			if (prev_port && prev_port->cur_dev->quirk_list == 0)
752				prev_port->tp_ops->set_irq(prev_port, 0);
753
754			hwif->host->cur_port = hwif;
755		}
756		hwif->cur_dev = drive;
757		drive->dev_flags &= ~(IDE_DFLAG_SLEEPING | IDE_DFLAG_PARKED);
758
759		spin_unlock_irq(&hwif->lock);
760		spin_lock_irq(q->queue_lock);
761		/*
762		 * we know that the queue isn't empty, but this can happen
763		 * if the q->prep_rq_fn() decides to kill a request
764		 */
765		rq = elv_next_request(drive->queue);
766		spin_unlock_irq(q->queue_lock);
767		spin_lock_irq(&hwif->lock);
768
769		if (!rq) {
770			ide_unlock_port(hwif);
771			goto out;
772		}
773
774		/*
775		 * Sanity: don't accept a request that isn't a PM request
776		 * if we are currently power managed. This is very important as
777		 * blk_stop_queue() doesn't prevent the elv_next_request()
778		 * above to return us whatever is in the queue. Since we call
779		 * ide_do_request() ourselves, we end up taking requests while
780		 * the queue is blocked...
781		 *
782		 * We let requests forced at head of queue with ide-preempt
783		 * though. I hope that doesn't happen too much, hopefully not
784		 * unless the subdriver triggers such a thing in its own PM
785		 * state machine.
786		 */
787		if ((drive->dev_flags & IDE_DFLAG_BLOCKED) &&
788		    blk_pm_request(rq) == 0 &&
789		    (rq->cmd_flags & REQ_PREEMPT) == 0) {
790			/* there should be no pending command at this point */
791			ide_unlock_port(hwif);
792			goto plug_device;
793		}
794
795		hwif->rq = rq;
796
797		spin_unlock_irq(&hwif->lock);
798		startstop = start_request(drive, rq);
799		spin_lock_irq(&hwif->lock);
800
801		if (startstop == ide_stopped)
802			goto repeat;
803	} else
804		goto plug_device;
805out:
806	spin_unlock_irq(&hwif->lock);
807	if (rq == NULL)
808		ide_unlock_host(host);
809	spin_lock_irq(q->queue_lock);
810	return;
811
812plug_device:
813	spin_unlock_irq(&hwif->lock);
814	ide_unlock_host(host);
815plug_device_2:
816	spin_lock_irq(q->queue_lock);
817
818	if (!elv_queue_empty(q))
819		blk_plug_device(q);
820}
821
822/*
823 * un-busy the port etc, and clear any pending DMA status. we want to
824 * retry the current request in pio mode instead of risking tossing it
825 * all away
826 */
827static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
828{
829	ide_hwif_t *hwif = drive->hwif;
830	struct request *rq;
831	ide_startstop_t ret = ide_stopped;
832
833	/*
834	 * end current dma transaction
835	 */
836
837	if (error < 0) {
838		printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
839		(void)hwif->dma_ops->dma_end(drive);
840		ret = ide_error(drive, "dma timeout error",
841				hwif->tp_ops->read_status(hwif));
842	} else {
843		printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
844		hwif->dma_ops->dma_timeout(drive);
845	}
846
847	/*
848	 * disable dma for now, but remember that we did so because of
849	 * a timeout -- we'll reenable after we finish this next request
850	 * (or rather the first chunk of it) in pio.
851	 */
852	drive->dev_flags |= IDE_DFLAG_DMA_PIO_RETRY;
853	drive->retry_pio++;
854	ide_dma_off_quietly(drive);
855
856	/*
857	 * un-busy drive etc and make sure request is sane
858	 */
859
860	rq = hwif->rq;
861	if (!rq)
862		goto out;
863
864	hwif->rq = NULL;
865
866	rq->errors = 0;
867
868	if (!rq->bio)
869		goto out;
870
871	rq->sector = rq->bio->bi_sector;
872	rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
873	rq->hard_cur_sectors = rq->current_nr_sectors;
874	rq->buffer = bio_data(rq->bio);
875out:
876	return ret;
877}
878
879static void ide_plug_device(ide_drive_t *drive)
880{
881	struct request_queue *q = drive->queue;
882	unsigned long flags;
883
884	spin_lock_irqsave(q->queue_lock, flags);
885	if (!elv_queue_empty(q))
886		blk_plug_device(q);
887	spin_unlock_irqrestore(q->queue_lock, flags);
888}
889
890static int drive_is_ready(ide_drive_t *drive)
891{
892	ide_hwif_t *hwif = drive->hwif;
893	u8 stat = 0;
894
895	if (drive->waiting_for_dma)
896		return hwif->dma_ops->dma_test_irq(drive);
897
898	if (hwif->io_ports.ctl_addr &&
899	    (hwif->host_flags & IDE_HFLAG_BROKEN_ALTSTATUS) == 0)
900		stat = hwif->tp_ops->read_altstatus(hwif);
901	else
902		/* Note: this may clear a pending IRQ!! */
903		stat = hwif->tp_ops->read_status(hwif);
904
905	if (stat & ATA_BUSY)
906		/* drive busy: definitely not interrupting */
907		return 0;
908
909	/* drive ready: *might* be interrupting */
910	return 1;
911}
912
913/**
914 *	ide_timer_expiry	-	handle lack of an IDE interrupt
915 *	@data: timer callback magic (hwif)
916 *
917 *	An IDE command has timed out before the expected drive return
918 *	occurred. At this point we attempt to clean up the current
919 *	mess. If the current handler includes an expiry handler then
920 *	we invoke the expiry handler, and providing it is happy the
921 *	work is done. If that fails we apply generic recovery rules
922 *	invoking the handler and checking the drive DMA status. We
923 *	have an excessively incestuous relationship with the DMA
924 *	logic that wants cleaning up.
925 */
926
927void ide_timer_expiry (unsigned long data)
928{
929	ide_hwif_t	*hwif = (ide_hwif_t *)data;
930	ide_drive_t	*uninitialized_var(drive);
931	ide_handler_t	*handler;
932	unsigned long	flags;
933	int		wait = -1;
934	int		plug_device = 0;
935
936	spin_lock_irqsave(&hwif->lock, flags);
937
938	handler = hwif->handler;
939
940	if (handler == NULL || hwif->req_gen != hwif->req_gen_timer) {
941		/*
942		 * Either a marginal timeout occurred
943		 * (got the interrupt just as timer expired),
944		 * or we were "sleeping" to give other devices a chance.
945		 * Either way, we don't really want to complain about anything.
946		 */
947	} else {
948		ide_expiry_t *expiry = hwif->expiry;
949		ide_startstop_t startstop = ide_stopped;
950
951		drive = hwif->cur_dev;
952
953		if (expiry) {
954			wait = expiry(drive);
955			if (wait > 0) { /* continue */
956				/* reset timer */
957				hwif->timer.expires = jiffies + wait;
958				hwif->req_gen_timer = hwif->req_gen;
959				add_timer(&hwif->timer);
960				spin_unlock_irqrestore(&hwif->lock, flags);
961				return;
962			}
963		}
964		hwif->handler = NULL;
965		/*
966		 * We need to simulate a real interrupt when invoking
967		 * the handler() function, which means we need to
968		 * globally mask the specific IRQ:
969		 */
970		spin_unlock(&hwif->lock);
971		/* disable_irq_nosync ?? */
972		disable_irq(hwif->irq);
973		/* local CPU only, as if we were handling an interrupt */
974		local_irq_disable();
975		if (hwif->polling) {
976			startstop = handler(drive);
977		} else if (drive_is_ready(drive)) {
978			if (drive->waiting_for_dma)
979				hwif->dma_ops->dma_lost_irq(drive);
980			(void)ide_ack_intr(hwif);
981			printk(KERN_WARNING "%s: lost interrupt\n",
982				drive->name);
983			startstop = handler(drive);
984		} else {
985			if (drive->waiting_for_dma)
986				startstop = ide_dma_timeout_retry(drive, wait);
987			else
988				startstop = ide_error(drive, "irq timeout",
989					hwif->tp_ops->read_status(hwif));
990		}
991		spin_lock_irq(&hwif->lock);
992		enable_irq(hwif->irq);
993		if (startstop == ide_stopped) {
994			ide_unlock_port(hwif);
995			plug_device = 1;
996		}
997	}
998	spin_unlock_irqrestore(&hwif->lock, flags);
999
1000	if (plug_device) {
1001		ide_unlock_host(hwif->host);
1002		ide_plug_device(drive);
1003	}
1004}
1005
1006/**
1007 *	unexpected_intr		-	handle an unexpected IDE interrupt
1008 *	@irq: interrupt line
1009 *	@hwif: port being processed
1010 *
1011 *	There's nothing really useful we can do with an unexpected interrupt,
1012 *	other than reading the status register (to clear it), and logging it.
1013 *	There should be no way that an irq can happen before we're ready for it,
1014 *	so we needn't worry much about losing an "important" interrupt here.
1015 *
1016 *	On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1017 *	the drive enters "idle", "standby", or "sleep" mode, so if the status
1018 *	looks "good", we just ignore the interrupt completely.
1019 *
1020 *	This routine assumes __cli() is in effect when called.
1021 *
1022 *	If an unexpected interrupt happens on irq15 while we are handling irq14
1023 *	and if the two interfaces are "serialized" (CMD640), then it looks like
1024 *	we could screw up by interfering with a new request being set up for
1025 *	irq15.
1026 *
1027 *	In reality, this is a non-issue.  The new command is not sent unless
1028 *	the drive is ready to accept one, in which case we know the drive is
1029 *	not trying to interrupt us.  And ide_set_handler() is always invoked
1030 *	before completing the issuance of any new drive command, so we will not
1031 *	be accidentally invoked as a result of any valid command completion
1032 *	interrupt.
1033 */
1034
1035static void unexpected_intr(int irq, ide_hwif_t *hwif)
1036{
1037	u8 stat = hwif->tp_ops->read_status(hwif);
1038
1039	if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) {
1040		/* Try to not flood the console with msgs */
1041		static unsigned long last_msgtime, count;
1042		++count;
1043
1044		if (time_after(jiffies, last_msgtime + HZ)) {
1045			last_msgtime = jiffies;
1046			printk(KERN_ERR "%s: unexpected interrupt, "
1047				"status=0x%02x, count=%ld\n",
1048				hwif->name, stat, count);
1049		}
1050	}
1051}
1052
1053/**
1054 *	ide_intr	-	default IDE interrupt handler
1055 *	@irq: interrupt number
1056 *	@dev_id: hwif
1057 *	@regs: unused weirdness from the kernel irq layer
1058 *
1059 *	This is the default IRQ handler for the IDE layer. You should
1060 *	not need to override it. If you do be aware it is subtle in
1061 *	places
1062 *
1063 *	hwif is the interface in the group currently performing
1064 *	a command. hwif->cur_dev is the drive and hwif->handler is
1065 *	the IRQ handler to call. As we issue a command the handlers
1066 *	step through multiple states, reassigning the handler to the
1067 *	next step in the process. Unlike a smart SCSI controller IDE
1068 *	expects the main processor to sequence the various transfer
1069 *	stages. We also manage a poll timer to catch up with most
1070 *	timeout situations. There are still a few where the handlers
1071 *	don't ever decide to give up.
1072 *
1073 *	The handler eventually returns ide_stopped to indicate the
1074 *	request completed. At this point we issue the next request
1075 *	on the port and the process begins again.
1076 */
1077
1078irqreturn_t ide_intr (int irq, void *dev_id)
1079{
1080	ide_hwif_t *hwif = (ide_hwif_t *)dev_id;
1081	ide_drive_t *uninitialized_var(drive);
1082	ide_handler_t *handler;
1083	unsigned long flags;
1084	ide_startstop_t startstop;
1085	irqreturn_t irq_ret = IRQ_NONE;
1086	int plug_device = 0;
1087
1088	if (hwif->host->host_flags & IDE_HFLAG_SERIALIZE) {
1089		if (hwif != hwif->host->cur_port)
1090			goto out_early;
1091	}
1092
1093	spin_lock_irqsave(&hwif->lock, flags);
1094
1095	if (!ide_ack_intr(hwif))
1096		goto out;
1097
1098	handler = hwif->handler;
1099
1100	if (handler == NULL || hwif->polling) {
1101		/*
1102		 * Not expecting an interrupt from this drive.
1103		 * That means this could be:
1104		 *	(1) an interrupt from another PCI device
1105		 *	sharing the same PCI INT# as us.
1106		 * or	(2) a drive just entered sleep or standby mode,
1107		 *	and is interrupting to let us know.
1108		 * or	(3) a spurious interrupt of unknown origin.
1109		 *
1110		 * For PCI, we cannot tell the difference,
1111		 * so in that case we just ignore it and hope it goes away.
1112		 *
1113		 * FIXME: unexpected_intr should be hwif-> then we can
1114		 * remove all the ifdef PCI crap
1115		 */
1116#ifdef CONFIG_BLK_DEV_IDEPCI
1117		if (hwif->chipset != ide_pci)
1118#endif	/* CONFIG_BLK_DEV_IDEPCI */
1119		{
1120			/*
1121			 * Probably not a shared PCI interrupt,
1122			 * so we can safely try to do something about it:
1123			 */
1124			unexpected_intr(irq, hwif);
1125#ifdef CONFIG_BLK_DEV_IDEPCI
1126		} else {
1127			/*
1128			 * Whack the status register, just in case
1129			 * we have a leftover pending IRQ.
1130			 */
1131			(void)hwif->tp_ops->read_status(hwif);
1132#endif /* CONFIG_BLK_DEV_IDEPCI */
1133		}
1134		goto out;
1135	}
1136
1137	drive = hwif->cur_dev;
1138
1139	if (!drive_is_ready(drive))
1140		/*
1141		 * This happens regularly when we share a PCI IRQ with
1142		 * another device.  Unfortunately, it can also happen
1143		 * with some buggy drives that trigger the IRQ before
1144		 * their status register is up to date.  Hopefully we have
1145		 * enough advance overhead that the latter isn't a problem.
1146		 */
1147		goto out;
1148
1149	hwif->handler = NULL;
1150	hwif->req_gen++;
1151	del_timer(&hwif->timer);
1152	spin_unlock(&hwif->lock);
1153
1154	if (hwif->port_ops && hwif->port_ops->clear_irq)
1155		hwif->port_ops->clear_irq(drive);
1156
1157	if (drive->dev_flags & IDE_DFLAG_UNMASK)
1158		local_irq_enable_in_hardirq();
1159
1160	/* service this interrupt, may set handler for next interrupt */
1161	startstop = handler(drive);
1162
1163	spin_lock_irq(&hwif->lock);
1164	/*
1165	 * Note that handler() may have set things up for another
1166	 * interrupt to occur soon, but it cannot happen until
1167	 * we exit from this routine, because it will be the
1168	 * same irq as is currently being serviced here, and Linux
1169	 * won't allow another of the same (on any CPU) until we return.
1170	 */
1171	if (startstop == ide_stopped) {
1172		BUG_ON(hwif->handler);
1173		ide_unlock_port(hwif);
1174		plug_device = 1;
1175	}
1176	irq_ret = IRQ_HANDLED;
1177out:
1178	spin_unlock_irqrestore(&hwif->lock, flags);
1179out_early:
1180	if (plug_device) {
1181		ide_unlock_host(hwif->host);
1182		ide_plug_device(drive);
1183	}
1184
1185	return irq_ret;
1186}
1187EXPORT_SYMBOL_GPL(ide_intr);
1188
1189/**
1190 *	ide_do_drive_cmd	-	issue IDE special command
1191 *	@drive: device to issue command
1192 *	@rq: request to issue
1193 *
1194 *	This function issues a special IDE device request
1195 *	onto the request queue.
1196 *
1197 *	the rq is queued at the head of the request queue, displacing
1198 *	the currently-being-processed request and this function
1199 *	returns immediately without waiting for the new rq to be
1200 *	completed.  This is VERY DANGEROUS, and is intended for
1201 *	careful use by the ATAPI tape/cdrom driver code.
1202 */
1203
1204void ide_do_drive_cmd(ide_drive_t *drive, struct request *rq)
1205{
1206	struct request_queue *q = drive->queue;
1207	unsigned long flags;
1208
1209	drive->hwif->rq = NULL;
1210
1211	spin_lock_irqsave(q->queue_lock, flags);
1212	__elv_add_request(q, rq, ELEVATOR_INSERT_FRONT, 0);
1213	spin_unlock_irqrestore(q->queue_lock, flags);
1214}
1215EXPORT_SYMBOL(ide_do_drive_cmd);
1216
1217void ide_pad_transfer(ide_drive_t *drive, int write, int len)
1218{
1219	ide_hwif_t *hwif = drive->hwif;
1220	u8 buf[4] = { 0 };
1221
1222	while (len > 0) {
1223		if (write)
1224			hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
1225		else
1226			hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
1227		len -= 4;
1228	}
1229}
1230EXPORT_SYMBOL_GPL(ide_pad_transfer);
1231