ide-io.c revision b6a45a0b1e9a358b81201659cf87b023e3ec73e0
1/* 2 * IDE I/O functions 3 * 4 * Basic PIO and command management functionality. 5 * 6 * This code was split off from ide.c. See ide.c for history and original 7 * copyrights. 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms of the GNU General Public License as published by the 11 * Free Software Foundation; either version 2, or (at your option) any 12 * later version. 13 * 14 * This program is distributed in the hope that it will be useful, but 15 * WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 17 * General Public License for more details. 18 * 19 * For the avoidance of doubt the "preferred form" of this code is one which 20 * is in an open non patent encumbered format. Where cryptographic key signing 21 * forms part of the process of creating an executable the information 22 * including keys needed to generate an equivalently functional executable 23 * are deemed to be part of the source code. 24 */ 25 26 27#include <linux/module.h> 28#include <linux/types.h> 29#include <linux/string.h> 30#include <linux/kernel.h> 31#include <linux/timer.h> 32#include <linux/mm.h> 33#include <linux/interrupt.h> 34#include <linux/major.h> 35#include <linux/errno.h> 36#include <linux/genhd.h> 37#include <linux/blkpg.h> 38#include <linux/slab.h> 39#include <linux/init.h> 40#include <linux/pci.h> 41#include <linux/delay.h> 42#include <linux/ide.h> 43#include <linux/hdreg.h> 44#include <linux/completion.h> 45#include <linux/reboot.h> 46#include <linux/cdrom.h> 47#include <linux/seq_file.h> 48#include <linux/device.h> 49#include <linux/kmod.h> 50#include <linux/scatterlist.h> 51#include <linux/bitops.h> 52 53#include <asm/byteorder.h> 54#include <asm/irq.h> 55#include <asm/uaccess.h> 56#include <asm/io.h> 57 58static int __ide_end_request(ide_drive_t *drive, struct request *rq, 59 int uptodate, unsigned int nr_bytes, int dequeue) 60{ 61 int ret = 1; 62 int error = 0; 63 64 if (uptodate <= 0) 65 error = uptodate ? uptodate : -EIO; 66 67 /* 68 * if failfast is set on a request, override number of sectors and 69 * complete the whole request right now 70 */ 71 if (blk_noretry_request(rq) && error) 72 nr_bytes = rq->hard_nr_sectors << 9; 73 74 if (!blk_fs_request(rq) && error && !rq->errors) 75 rq->errors = -EIO; 76 77 /* 78 * decide whether to reenable DMA -- 3 is a random magic for now, 79 * if we DMA timeout more than 3 times, just stay in PIO 80 */ 81 if ((drive->dev_flags & IDE_DFLAG_DMA_PIO_RETRY) && 82 drive->retry_pio <= 3) { 83 drive->dev_flags &= ~IDE_DFLAG_DMA_PIO_RETRY; 84 ide_dma_on(drive); 85 } 86 87 if (!blk_end_request(rq, error, nr_bytes)) 88 ret = 0; 89 90 if (ret == 0 && dequeue) 91 drive->hwif->rq = NULL; 92 93 return ret; 94} 95 96/** 97 * ide_end_request - complete an IDE I/O 98 * @drive: IDE device for the I/O 99 * @uptodate: 100 * @nr_sectors: number of sectors completed 101 * 102 * This is our end_request wrapper function. We complete the I/O 103 * update random number input and dequeue the request, which if 104 * it was tagged may be out of order. 105 */ 106 107int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors) 108{ 109 unsigned int nr_bytes = nr_sectors << 9; 110 struct request *rq = drive->hwif->rq; 111 112 if (!nr_bytes) { 113 if (blk_pc_request(rq)) 114 nr_bytes = rq->data_len; 115 else 116 nr_bytes = rq->hard_cur_sectors << 9; 117 } 118 119 return __ide_end_request(drive, rq, uptodate, nr_bytes, 1); 120} 121EXPORT_SYMBOL(ide_end_request); 122 123/** 124 * ide_end_dequeued_request - complete an IDE I/O 125 * @drive: IDE device for the I/O 126 * @uptodate: 127 * @nr_sectors: number of sectors completed 128 * 129 * Complete an I/O that is no longer on the request queue. This 130 * typically occurs when we pull the request and issue a REQUEST_SENSE. 131 * We must still finish the old request but we must not tamper with the 132 * queue in the meantime. 133 * 134 * NOTE: This path does not handle barrier, but barrier is not supported 135 * on ide-cd anyway. 136 */ 137 138int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq, 139 int uptodate, int nr_sectors) 140{ 141 BUG_ON(!blk_rq_started(rq)); 142 143 return __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0); 144} 145EXPORT_SYMBOL_GPL(ide_end_dequeued_request); 146 147/** 148 * ide_end_drive_cmd - end an explicit drive command 149 * @drive: command 150 * @stat: status bits 151 * @err: error bits 152 * 153 * Clean up after success/failure of an explicit drive command. 154 * These get thrown onto the queue so they are synchronized with 155 * real I/O operations on the drive. 156 * 157 * In LBA48 mode we have to read the register set twice to get 158 * all the extra information out. 159 */ 160 161void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err) 162{ 163 ide_hwif_t *hwif = drive->hwif; 164 struct request *rq = hwif->rq; 165 166 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) { 167 ide_task_t *task = (ide_task_t *)rq->special; 168 169 if (task) { 170 struct ide_taskfile *tf = &task->tf; 171 172 tf->error = err; 173 tf->status = stat; 174 175 drive->hwif->tp_ops->tf_read(drive, task); 176 177 if (task->tf_flags & IDE_TFLAG_DYN) 178 kfree(task); 179 } 180 } else if (blk_pm_request(rq)) { 181 struct request_pm_state *pm = rq->data; 182 183 ide_complete_power_step(drive, rq); 184 if (pm->pm_step == IDE_PM_COMPLETED) 185 ide_complete_pm_request(drive, rq); 186 return; 187 } 188 189 hwif->rq = NULL; 190 191 rq->errors = err; 192 193 if (unlikely(blk_end_request(rq, (rq->errors ? -EIO : 0), 194 blk_rq_bytes(rq)))) 195 BUG(); 196} 197EXPORT_SYMBOL(ide_end_drive_cmd); 198 199static void ide_kill_rq(ide_drive_t *drive, struct request *rq) 200{ 201 if (rq->rq_disk) { 202 struct ide_driver *drv; 203 204 drv = *(struct ide_driver **)rq->rq_disk->private_data; 205 drv->end_request(drive, 0, 0); 206 } else 207 ide_end_request(drive, 0, 0); 208} 209 210static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err) 211{ 212 ide_hwif_t *hwif = drive->hwif; 213 214 if ((stat & ATA_BUSY) || 215 ((stat & ATA_DF) && (drive->dev_flags & IDE_DFLAG_NOWERR) == 0)) { 216 /* other bits are useless when BUSY */ 217 rq->errors |= ERROR_RESET; 218 } else if (stat & ATA_ERR) { 219 /* err has different meaning on cdrom and tape */ 220 if (err == ATA_ABORTED) { 221 if ((drive->dev_flags & IDE_DFLAG_LBA) && 222 /* some newer drives don't support ATA_CMD_INIT_DEV_PARAMS */ 223 hwif->tp_ops->read_status(hwif) == ATA_CMD_INIT_DEV_PARAMS) 224 return ide_stopped; 225 } else if ((err & BAD_CRC) == BAD_CRC) { 226 /* UDMA crc error, just retry the operation */ 227 drive->crc_count++; 228 } else if (err & (ATA_BBK | ATA_UNC)) { 229 /* retries won't help these */ 230 rq->errors = ERROR_MAX; 231 } else if (err & ATA_TRK0NF) { 232 /* help it find track zero */ 233 rq->errors |= ERROR_RECAL; 234 } 235 } 236 237 if ((stat & ATA_DRQ) && rq_data_dir(rq) == READ && 238 (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0) { 239 int nsect = drive->mult_count ? drive->mult_count : 1; 240 241 ide_pad_transfer(drive, READ, nsect * SECTOR_SIZE); 242 } 243 244 if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) { 245 ide_kill_rq(drive, rq); 246 return ide_stopped; 247 } 248 249 if (hwif->tp_ops->read_status(hwif) & (ATA_BUSY | ATA_DRQ)) 250 rq->errors |= ERROR_RESET; 251 252 if ((rq->errors & ERROR_RESET) == ERROR_RESET) { 253 ++rq->errors; 254 return ide_do_reset(drive); 255 } 256 257 if ((rq->errors & ERROR_RECAL) == ERROR_RECAL) 258 drive->special.b.recalibrate = 1; 259 260 ++rq->errors; 261 262 return ide_stopped; 263} 264 265static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err) 266{ 267 ide_hwif_t *hwif = drive->hwif; 268 269 if ((stat & ATA_BUSY) || 270 ((stat & ATA_DF) && (drive->dev_flags & IDE_DFLAG_NOWERR) == 0)) { 271 /* other bits are useless when BUSY */ 272 rq->errors |= ERROR_RESET; 273 } else { 274 /* add decoding error stuff */ 275 } 276 277 if (hwif->tp_ops->read_status(hwif) & (ATA_BUSY | ATA_DRQ)) 278 /* force an abort */ 279 hwif->tp_ops->exec_command(hwif, ATA_CMD_IDLEIMMEDIATE); 280 281 if (rq->errors >= ERROR_MAX) { 282 ide_kill_rq(drive, rq); 283 } else { 284 if ((rq->errors & ERROR_RESET) == ERROR_RESET) { 285 ++rq->errors; 286 return ide_do_reset(drive); 287 } 288 ++rq->errors; 289 } 290 291 return ide_stopped; 292} 293 294static ide_startstop_t 295__ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err) 296{ 297 if (drive->media == ide_disk) 298 return ide_ata_error(drive, rq, stat, err); 299 return ide_atapi_error(drive, rq, stat, err); 300} 301 302/** 303 * ide_error - handle an error on the IDE 304 * @drive: drive the error occurred on 305 * @msg: message to report 306 * @stat: status bits 307 * 308 * ide_error() takes action based on the error returned by the drive. 309 * For normal I/O that may well include retries. We deal with 310 * both new-style (taskfile) and old style command handling here. 311 * In the case of taskfile command handling there is work left to 312 * do 313 */ 314 315ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat) 316{ 317 struct request *rq; 318 u8 err; 319 320 err = ide_dump_status(drive, msg, stat); 321 322 rq = drive->hwif->rq; 323 if (rq == NULL) 324 return ide_stopped; 325 326 /* retry only "normal" I/O: */ 327 if (!blk_fs_request(rq)) { 328 rq->errors = 1; 329 ide_end_drive_cmd(drive, stat, err); 330 return ide_stopped; 331 } 332 333 return __ide_error(drive, rq, stat, err); 334} 335EXPORT_SYMBOL_GPL(ide_error); 336 337static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf) 338{ 339 tf->nsect = drive->sect; 340 tf->lbal = drive->sect; 341 tf->lbam = drive->cyl; 342 tf->lbah = drive->cyl >> 8; 343 tf->device = (drive->head - 1) | drive->select; 344 tf->command = ATA_CMD_INIT_DEV_PARAMS; 345} 346 347static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf) 348{ 349 tf->nsect = drive->sect; 350 tf->command = ATA_CMD_RESTORE; 351} 352 353static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf) 354{ 355 tf->nsect = drive->mult_req; 356 tf->command = ATA_CMD_SET_MULTI; 357} 358 359static ide_startstop_t ide_disk_special(ide_drive_t *drive) 360{ 361 special_t *s = &drive->special; 362 ide_task_t args; 363 364 memset(&args, 0, sizeof(ide_task_t)); 365 args.data_phase = TASKFILE_NO_DATA; 366 367 if (s->b.set_geometry) { 368 s->b.set_geometry = 0; 369 ide_tf_set_specify_cmd(drive, &args.tf); 370 } else if (s->b.recalibrate) { 371 s->b.recalibrate = 0; 372 ide_tf_set_restore_cmd(drive, &args.tf); 373 } else if (s->b.set_multmode) { 374 s->b.set_multmode = 0; 375 ide_tf_set_setmult_cmd(drive, &args.tf); 376 } else if (s->all) { 377 int special = s->all; 378 s->all = 0; 379 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special); 380 return ide_stopped; 381 } 382 383 args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE | 384 IDE_TFLAG_CUSTOM_HANDLER; 385 386 do_rw_taskfile(drive, &args); 387 388 return ide_started; 389} 390 391/** 392 * do_special - issue some special commands 393 * @drive: drive the command is for 394 * 395 * do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS, 396 * ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive. 397 * 398 * It used to do much more, but has been scaled back. 399 */ 400 401static ide_startstop_t do_special (ide_drive_t *drive) 402{ 403 special_t *s = &drive->special; 404 405#ifdef DEBUG 406 printk("%s: do_special: 0x%02x\n", drive->name, s->all); 407#endif 408 if (drive->media == ide_disk) 409 return ide_disk_special(drive); 410 411 s->all = 0; 412 drive->mult_req = 0; 413 return ide_stopped; 414} 415 416void ide_map_sg(ide_drive_t *drive, struct request *rq) 417{ 418 ide_hwif_t *hwif = drive->hwif; 419 struct scatterlist *sg = hwif->sg_table; 420 421 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) { 422 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE); 423 hwif->sg_nents = 1; 424 } else if (!rq->bio) { 425 sg_init_one(sg, rq->data, rq->data_len); 426 hwif->sg_nents = 1; 427 } else { 428 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg); 429 } 430} 431 432EXPORT_SYMBOL_GPL(ide_map_sg); 433 434void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq) 435{ 436 ide_hwif_t *hwif = drive->hwif; 437 438 hwif->nsect = hwif->nleft = rq->nr_sectors; 439 hwif->cursg_ofs = 0; 440 hwif->cursg = NULL; 441} 442 443EXPORT_SYMBOL_GPL(ide_init_sg_cmd); 444 445/** 446 * execute_drive_command - issue special drive command 447 * @drive: the drive to issue the command on 448 * @rq: the request structure holding the command 449 * 450 * execute_drive_cmd() issues a special drive command, usually 451 * initiated by ioctl() from the external hdparm program. The 452 * command can be a drive command, drive task or taskfile 453 * operation. Weirdly you can call it with NULL to wait for 454 * all commands to finish. Don't do this as that is due to change 455 */ 456 457static ide_startstop_t execute_drive_cmd (ide_drive_t *drive, 458 struct request *rq) 459{ 460 ide_hwif_t *hwif = drive->hwif; 461 ide_task_t *task = rq->special; 462 463 if (task) { 464 hwif->data_phase = task->data_phase; 465 466 switch (hwif->data_phase) { 467 case TASKFILE_MULTI_OUT: 468 case TASKFILE_OUT: 469 case TASKFILE_MULTI_IN: 470 case TASKFILE_IN: 471 ide_init_sg_cmd(drive, rq); 472 ide_map_sg(drive, rq); 473 default: 474 break; 475 } 476 477 return do_rw_taskfile(drive, task); 478 } 479 480 /* 481 * NULL is actually a valid way of waiting for 482 * all current requests to be flushed from the queue. 483 */ 484#ifdef DEBUG 485 printk("%s: DRIVE_CMD (null)\n", drive->name); 486#endif 487 ide_end_drive_cmd(drive, hwif->tp_ops->read_status(hwif), 488 ide_read_error(drive)); 489 490 return ide_stopped; 491} 492 493int ide_devset_execute(ide_drive_t *drive, const struct ide_devset *setting, 494 int arg) 495{ 496 struct request_queue *q = drive->queue; 497 struct request *rq; 498 int ret = 0; 499 500 if (!(setting->flags & DS_SYNC)) 501 return setting->set(drive, arg); 502 503 rq = blk_get_request(q, READ, __GFP_WAIT); 504 rq->cmd_type = REQ_TYPE_SPECIAL; 505 rq->cmd_len = 5; 506 rq->cmd[0] = REQ_DEVSET_EXEC; 507 *(int *)&rq->cmd[1] = arg; 508 rq->special = setting->set; 509 510 if (blk_execute_rq(q, NULL, rq, 0)) 511 ret = rq->errors; 512 blk_put_request(rq); 513 514 return ret; 515} 516 517static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq) 518{ 519 u8 cmd = rq->cmd[0]; 520 521 if (cmd == REQ_PARK_HEADS || cmd == REQ_UNPARK_HEADS) { 522 ide_task_t task; 523 struct ide_taskfile *tf = &task.tf; 524 525 memset(&task, 0, sizeof(task)); 526 if (cmd == REQ_PARK_HEADS) { 527 drive->sleep = *(unsigned long *)rq->special; 528 drive->dev_flags |= IDE_DFLAG_SLEEPING; 529 tf->command = ATA_CMD_IDLEIMMEDIATE; 530 tf->feature = 0x44; 531 tf->lbal = 0x4c; 532 tf->lbam = 0x4e; 533 tf->lbah = 0x55; 534 task.tf_flags |= IDE_TFLAG_CUSTOM_HANDLER; 535 } else /* cmd == REQ_UNPARK_HEADS */ 536 tf->command = ATA_CMD_CHK_POWER; 537 538 task.tf_flags |= IDE_TFLAG_TF | IDE_TFLAG_DEVICE; 539 task.rq = rq; 540 drive->hwif->data_phase = task.data_phase = TASKFILE_NO_DATA; 541 return do_rw_taskfile(drive, &task); 542 } 543 544 switch (cmd) { 545 case REQ_DEVSET_EXEC: 546 { 547 int err, (*setfunc)(ide_drive_t *, int) = rq->special; 548 549 err = setfunc(drive, *(int *)&rq->cmd[1]); 550 if (err) 551 rq->errors = err; 552 else 553 err = 1; 554 ide_end_request(drive, err, 0); 555 return ide_stopped; 556 } 557 case REQ_DRIVE_RESET: 558 return ide_do_reset(drive); 559 default: 560 blk_dump_rq_flags(rq, "ide_special_rq - bad request"); 561 ide_end_request(drive, 0, 0); 562 return ide_stopped; 563 } 564} 565 566/** 567 * start_request - start of I/O and command issuing for IDE 568 * 569 * start_request() initiates handling of a new I/O request. It 570 * accepts commands and I/O (read/write) requests. 571 * 572 * FIXME: this function needs a rename 573 */ 574 575static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq) 576{ 577 ide_startstop_t startstop; 578 579 BUG_ON(!blk_rq_started(rq)); 580 581#ifdef DEBUG 582 printk("%s: start_request: current=0x%08lx\n", 583 drive->hwif->name, (unsigned long) rq); 584#endif 585 586 /* bail early if we've exceeded max_failures */ 587 if (drive->max_failures && (drive->failures > drive->max_failures)) { 588 rq->cmd_flags |= REQ_FAILED; 589 goto kill_rq; 590 } 591 592 if (blk_pm_request(rq)) 593 ide_check_pm_state(drive, rq); 594 595 SELECT_DRIVE(drive); 596 if (ide_wait_stat(&startstop, drive, drive->ready_stat, 597 ATA_BUSY | ATA_DRQ, WAIT_READY)) { 598 printk(KERN_ERR "%s: drive not ready for command\n", drive->name); 599 return startstop; 600 } 601 if (!drive->special.all) { 602 struct ide_driver *drv; 603 604 /* 605 * We reset the drive so we need to issue a SETFEATURES. 606 * Do it _after_ do_special() restored device parameters. 607 */ 608 if (drive->current_speed == 0xff) 609 ide_config_drive_speed(drive, drive->desired_speed); 610 611 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) 612 return execute_drive_cmd(drive, rq); 613 else if (blk_pm_request(rq)) { 614 struct request_pm_state *pm = rq->data; 615#ifdef DEBUG_PM 616 printk("%s: start_power_step(step: %d)\n", 617 drive->name, pm->pm_step); 618#endif 619 startstop = ide_start_power_step(drive, rq); 620 if (startstop == ide_stopped && 621 pm->pm_step == IDE_PM_COMPLETED) 622 ide_complete_pm_request(drive, rq); 623 return startstop; 624 } else if (!rq->rq_disk && blk_special_request(rq)) 625 /* 626 * TODO: Once all ULDs have been modified to 627 * check for specific op codes rather than 628 * blindly accepting any special request, the 629 * check for ->rq_disk above may be replaced 630 * by a more suitable mechanism or even 631 * dropped entirely. 632 */ 633 return ide_special_rq(drive, rq); 634 635 drv = *(struct ide_driver **)rq->rq_disk->private_data; 636 637 return drv->do_request(drive, rq, rq->sector); 638 } 639 return do_special(drive); 640kill_rq: 641 ide_kill_rq(drive, rq); 642 return ide_stopped; 643} 644 645/** 646 * ide_stall_queue - pause an IDE device 647 * @drive: drive to stall 648 * @timeout: time to stall for (jiffies) 649 * 650 * ide_stall_queue() can be used by a drive to give excess bandwidth back 651 * to the port by sleeping for timeout jiffies. 652 */ 653 654void ide_stall_queue (ide_drive_t *drive, unsigned long timeout) 655{ 656 if (timeout > WAIT_WORSTCASE) 657 timeout = WAIT_WORSTCASE; 658 drive->sleep = timeout + jiffies; 659 drive->dev_flags |= IDE_DFLAG_SLEEPING; 660} 661EXPORT_SYMBOL(ide_stall_queue); 662 663static inline int ide_lock_port(ide_hwif_t *hwif) 664{ 665 if (hwif->busy) 666 return 1; 667 668 hwif->busy = 1; 669 670 return 0; 671} 672 673static inline void ide_unlock_port(ide_hwif_t *hwif) 674{ 675 hwif->busy = 0; 676} 677 678static inline int ide_lock_host(struct ide_host *host, ide_hwif_t *hwif) 679{ 680 int rc = 0; 681 682 if (host->host_flags & IDE_HFLAG_SERIALIZE) { 683 rc = test_and_set_bit_lock(IDE_HOST_BUSY, &host->host_busy); 684 if (rc == 0) { 685 /* for atari only */ 686 ide_get_lock(ide_intr, hwif); 687 } 688 } 689 return rc; 690} 691 692static inline void ide_unlock_host(struct ide_host *host) 693{ 694 if (host->host_flags & IDE_HFLAG_SERIALIZE) { 695 /* for atari only */ 696 ide_release_lock(); 697 clear_bit_unlock(IDE_HOST_BUSY, &host->host_busy); 698 } 699} 700 701/* 702 * Issue a new request to a device. 703 */ 704void do_ide_request(struct request_queue *q) 705{ 706 ide_drive_t *drive = q->queuedata; 707 ide_hwif_t *hwif = drive->hwif; 708 struct ide_host *host = hwif->host; 709 struct request *rq = NULL; 710 ide_startstop_t startstop; 711 712 /* 713 * drive is doing pre-flush, ordered write, post-flush sequence. even 714 * though that is 3 requests, it must be seen as a single transaction. 715 * we must not preempt this drive until that is complete 716 */ 717 if (blk_queue_flushing(q)) 718 /* 719 * small race where queue could get replugged during 720 * the 3-request flush cycle, just yank the plug since 721 * we want it to finish asap 722 */ 723 blk_remove_plug(q); 724 725 spin_unlock_irq(q->queue_lock); 726 727 if (ide_lock_host(host, hwif)) 728 goto plug_device_2; 729 730 spin_lock_irq(&hwif->lock); 731 732 if (!ide_lock_port(hwif)) { 733 ide_hwif_t *prev_port; 734repeat: 735 prev_port = hwif->host->cur_port; 736 hwif->rq = NULL; 737 738 if (drive->dev_flags & IDE_DFLAG_SLEEPING) { 739 if (time_before(drive->sleep, jiffies)) { 740 ide_unlock_port(hwif); 741 goto plug_device; 742 } 743 } 744 745 if ((hwif->host->host_flags & IDE_HFLAG_SERIALIZE) && 746 hwif != prev_port) { 747 /* 748 * set nIEN for previous port, drives in the 749 * quirk_list may not like intr setups/cleanups 750 */ 751 if (prev_port && prev_port->cur_dev->quirk_list == 0) 752 prev_port->tp_ops->set_irq(prev_port, 0); 753 754 hwif->host->cur_port = hwif; 755 } 756 hwif->cur_dev = drive; 757 drive->dev_flags &= ~(IDE_DFLAG_SLEEPING | IDE_DFLAG_PARKED); 758 759 spin_unlock_irq(&hwif->lock); 760 spin_lock_irq(q->queue_lock); 761 /* 762 * we know that the queue isn't empty, but this can happen 763 * if the q->prep_rq_fn() decides to kill a request 764 */ 765 rq = elv_next_request(drive->queue); 766 spin_unlock_irq(q->queue_lock); 767 spin_lock_irq(&hwif->lock); 768 769 if (!rq) { 770 ide_unlock_port(hwif); 771 goto out; 772 } 773 774 /* 775 * Sanity: don't accept a request that isn't a PM request 776 * if we are currently power managed. This is very important as 777 * blk_stop_queue() doesn't prevent the elv_next_request() 778 * above to return us whatever is in the queue. Since we call 779 * ide_do_request() ourselves, we end up taking requests while 780 * the queue is blocked... 781 * 782 * We let requests forced at head of queue with ide-preempt 783 * though. I hope that doesn't happen too much, hopefully not 784 * unless the subdriver triggers such a thing in its own PM 785 * state machine. 786 */ 787 if ((drive->dev_flags & IDE_DFLAG_BLOCKED) && 788 blk_pm_request(rq) == 0 && 789 (rq->cmd_flags & REQ_PREEMPT) == 0) { 790 /* there should be no pending command at this point */ 791 ide_unlock_port(hwif); 792 goto plug_device; 793 } 794 795 hwif->rq = rq; 796 797 spin_unlock_irq(&hwif->lock); 798 startstop = start_request(drive, rq); 799 spin_lock_irq(&hwif->lock); 800 801 if (startstop == ide_stopped) 802 goto repeat; 803 } else 804 goto plug_device; 805out: 806 spin_unlock_irq(&hwif->lock); 807 if (rq == NULL) 808 ide_unlock_host(host); 809 spin_lock_irq(q->queue_lock); 810 return; 811 812plug_device: 813 spin_unlock_irq(&hwif->lock); 814 ide_unlock_host(host); 815plug_device_2: 816 spin_lock_irq(q->queue_lock); 817 818 if (!elv_queue_empty(q)) 819 blk_plug_device(q); 820} 821 822/* 823 * un-busy the port etc, and clear any pending DMA status. we want to 824 * retry the current request in pio mode instead of risking tossing it 825 * all away 826 */ 827static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error) 828{ 829 ide_hwif_t *hwif = drive->hwif; 830 struct request *rq; 831 ide_startstop_t ret = ide_stopped; 832 833 /* 834 * end current dma transaction 835 */ 836 837 if (error < 0) { 838 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name); 839 (void)hwif->dma_ops->dma_end(drive); 840 ret = ide_error(drive, "dma timeout error", 841 hwif->tp_ops->read_status(hwif)); 842 } else { 843 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name); 844 hwif->dma_ops->dma_timeout(drive); 845 } 846 847 /* 848 * disable dma for now, but remember that we did so because of 849 * a timeout -- we'll reenable after we finish this next request 850 * (or rather the first chunk of it) in pio. 851 */ 852 drive->dev_flags |= IDE_DFLAG_DMA_PIO_RETRY; 853 drive->retry_pio++; 854 ide_dma_off_quietly(drive); 855 856 /* 857 * un-busy drive etc and make sure request is sane 858 */ 859 860 rq = hwif->rq; 861 if (!rq) 862 goto out; 863 864 hwif->rq = NULL; 865 866 rq->errors = 0; 867 868 if (!rq->bio) 869 goto out; 870 871 rq->sector = rq->bio->bi_sector; 872 rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9; 873 rq->hard_cur_sectors = rq->current_nr_sectors; 874 rq->buffer = bio_data(rq->bio); 875out: 876 return ret; 877} 878 879static void ide_plug_device(ide_drive_t *drive) 880{ 881 struct request_queue *q = drive->queue; 882 unsigned long flags; 883 884 spin_lock_irqsave(q->queue_lock, flags); 885 if (!elv_queue_empty(q)) 886 blk_plug_device(q); 887 spin_unlock_irqrestore(q->queue_lock, flags); 888} 889 890static int drive_is_ready(ide_drive_t *drive) 891{ 892 ide_hwif_t *hwif = drive->hwif; 893 u8 stat = 0; 894 895 if (drive->waiting_for_dma) 896 return hwif->dma_ops->dma_test_irq(drive); 897 898 if (hwif->io_ports.ctl_addr && 899 (hwif->host_flags & IDE_HFLAG_BROKEN_ALTSTATUS) == 0) 900 stat = hwif->tp_ops->read_altstatus(hwif); 901 else 902 /* Note: this may clear a pending IRQ!! */ 903 stat = hwif->tp_ops->read_status(hwif); 904 905 if (stat & ATA_BUSY) 906 /* drive busy: definitely not interrupting */ 907 return 0; 908 909 /* drive ready: *might* be interrupting */ 910 return 1; 911} 912 913/** 914 * ide_timer_expiry - handle lack of an IDE interrupt 915 * @data: timer callback magic (hwif) 916 * 917 * An IDE command has timed out before the expected drive return 918 * occurred. At this point we attempt to clean up the current 919 * mess. If the current handler includes an expiry handler then 920 * we invoke the expiry handler, and providing it is happy the 921 * work is done. If that fails we apply generic recovery rules 922 * invoking the handler and checking the drive DMA status. We 923 * have an excessively incestuous relationship with the DMA 924 * logic that wants cleaning up. 925 */ 926 927void ide_timer_expiry (unsigned long data) 928{ 929 ide_hwif_t *hwif = (ide_hwif_t *)data; 930 ide_drive_t *uninitialized_var(drive); 931 ide_handler_t *handler; 932 unsigned long flags; 933 int wait = -1; 934 int plug_device = 0; 935 936 spin_lock_irqsave(&hwif->lock, flags); 937 938 handler = hwif->handler; 939 940 if (handler == NULL || hwif->req_gen != hwif->req_gen_timer) { 941 /* 942 * Either a marginal timeout occurred 943 * (got the interrupt just as timer expired), 944 * or we were "sleeping" to give other devices a chance. 945 * Either way, we don't really want to complain about anything. 946 */ 947 } else { 948 ide_expiry_t *expiry = hwif->expiry; 949 ide_startstop_t startstop = ide_stopped; 950 951 drive = hwif->cur_dev; 952 953 if (expiry) { 954 wait = expiry(drive); 955 if (wait > 0) { /* continue */ 956 /* reset timer */ 957 hwif->timer.expires = jiffies + wait; 958 hwif->req_gen_timer = hwif->req_gen; 959 add_timer(&hwif->timer); 960 spin_unlock_irqrestore(&hwif->lock, flags); 961 return; 962 } 963 } 964 hwif->handler = NULL; 965 /* 966 * We need to simulate a real interrupt when invoking 967 * the handler() function, which means we need to 968 * globally mask the specific IRQ: 969 */ 970 spin_unlock(&hwif->lock); 971 /* disable_irq_nosync ?? */ 972 disable_irq(hwif->irq); 973 /* local CPU only, as if we were handling an interrupt */ 974 local_irq_disable(); 975 if (hwif->polling) { 976 startstop = handler(drive); 977 } else if (drive_is_ready(drive)) { 978 if (drive->waiting_for_dma) 979 hwif->dma_ops->dma_lost_irq(drive); 980 (void)ide_ack_intr(hwif); 981 printk(KERN_WARNING "%s: lost interrupt\n", 982 drive->name); 983 startstop = handler(drive); 984 } else { 985 if (drive->waiting_for_dma) 986 startstop = ide_dma_timeout_retry(drive, wait); 987 else 988 startstop = ide_error(drive, "irq timeout", 989 hwif->tp_ops->read_status(hwif)); 990 } 991 spin_lock_irq(&hwif->lock); 992 enable_irq(hwif->irq); 993 if (startstop == ide_stopped) { 994 ide_unlock_port(hwif); 995 plug_device = 1; 996 } 997 } 998 spin_unlock_irqrestore(&hwif->lock, flags); 999 1000 if (plug_device) { 1001 ide_unlock_host(hwif->host); 1002 ide_plug_device(drive); 1003 } 1004} 1005 1006/** 1007 * unexpected_intr - handle an unexpected IDE interrupt 1008 * @irq: interrupt line 1009 * @hwif: port being processed 1010 * 1011 * There's nothing really useful we can do with an unexpected interrupt, 1012 * other than reading the status register (to clear it), and logging it. 1013 * There should be no way that an irq can happen before we're ready for it, 1014 * so we needn't worry much about losing an "important" interrupt here. 1015 * 1016 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever 1017 * the drive enters "idle", "standby", or "sleep" mode, so if the status 1018 * looks "good", we just ignore the interrupt completely. 1019 * 1020 * This routine assumes __cli() is in effect when called. 1021 * 1022 * If an unexpected interrupt happens on irq15 while we are handling irq14 1023 * and if the two interfaces are "serialized" (CMD640), then it looks like 1024 * we could screw up by interfering with a new request being set up for 1025 * irq15. 1026 * 1027 * In reality, this is a non-issue. The new command is not sent unless 1028 * the drive is ready to accept one, in which case we know the drive is 1029 * not trying to interrupt us. And ide_set_handler() is always invoked 1030 * before completing the issuance of any new drive command, so we will not 1031 * be accidentally invoked as a result of any valid command completion 1032 * interrupt. 1033 */ 1034 1035static void unexpected_intr(int irq, ide_hwif_t *hwif) 1036{ 1037 u8 stat = hwif->tp_ops->read_status(hwif); 1038 1039 if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) { 1040 /* Try to not flood the console with msgs */ 1041 static unsigned long last_msgtime, count; 1042 ++count; 1043 1044 if (time_after(jiffies, last_msgtime + HZ)) { 1045 last_msgtime = jiffies; 1046 printk(KERN_ERR "%s: unexpected interrupt, " 1047 "status=0x%02x, count=%ld\n", 1048 hwif->name, stat, count); 1049 } 1050 } 1051} 1052 1053/** 1054 * ide_intr - default IDE interrupt handler 1055 * @irq: interrupt number 1056 * @dev_id: hwif 1057 * @regs: unused weirdness from the kernel irq layer 1058 * 1059 * This is the default IRQ handler for the IDE layer. You should 1060 * not need to override it. If you do be aware it is subtle in 1061 * places 1062 * 1063 * hwif is the interface in the group currently performing 1064 * a command. hwif->cur_dev is the drive and hwif->handler is 1065 * the IRQ handler to call. As we issue a command the handlers 1066 * step through multiple states, reassigning the handler to the 1067 * next step in the process. Unlike a smart SCSI controller IDE 1068 * expects the main processor to sequence the various transfer 1069 * stages. We also manage a poll timer to catch up with most 1070 * timeout situations. There are still a few where the handlers 1071 * don't ever decide to give up. 1072 * 1073 * The handler eventually returns ide_stopped to indicate the 1074 * request completed. At this point we issue the next request 1075 * on the port and the process begins again. 1076 */ 1077 1078irqreturn_t ide_intr (int irq, void *dev_id) 1079{ 1080 ide_hwif_t *hwif = (ide_hwif_t *)dev_id; 1081 ide_drive_t *uninitialized_var(drive); 1082 ide_handler_t *handler; 1083 unsigned long flags; 1084 ide_startstop_t startstop; 1085 irqreturn_t irq_ret = IRQ_NONE; 1086 int plug_device = 0; 1087 1088 if (hwif->host->host_flags & IDE_HFLAG_SERIALIZE) { 1089 if (hwif != hwif->host->cur_port) 1090 goto out_early; 1091 } 1092 1093 spin_lock_irqsave(&hwif->lock, flags); 1094 1095 if (!ide_ack_intr(hwif)) 1096 goto out; 1097 1098 handler = hwif->handler; 1099 1100 if (handler == NULL || hwif->polling) { 1101 /* 1102 * Not expecting an interrupt from this drive. 1103 * That means this could be: 1104 * (1) an interrupt from another PCI device 1105 * sharing the same PCI INT# as us. 1106 * or (2) a drive just entered sleep or standby mode, 1107 * and is interrupting to let us know. 1108 * or (3) a spurious interrupt of unknown origin. 1109 * 1110 * For PCI, we cannot tell the difference, 1111 * so in that case we just ignore it and hope it goes away. 1112 * 1113 * FIXME: unexpected_intr should be hwif-> then we can 1114 * remove all the ifdef PCI crap 1115 */ 1116#ifdef CONFIG_BLK_DEV_IDEPCI 1117 if (hwif->chipset != ide_pci) 1118#endif /* CONFIG_BLK_DEV_IDEPCI */ 1119 { 1120 /* 1121 * Probably not a shared PCI interrupt, 1122 * so we can safely try to do something about it: 1123 */ 1124 unexpected_intr(irq, hwif); 1125#ifdef CONFIG_BLK_DEV_IDEPCI 1126 } else { 1127 /* 1128 * Whack the status register, just in case 1129 * we have a leftover pending IRQ. 1130 */ 1131 (void)hwif->tp_ops->read_status(hwif); 1132#endif /* CONFIG_BLK_DEV_IDEPCI */ 1133 } 1134 goto out; 1135 } 1136 1137 drive = hwif->cur_dev; 1138 1139 if (!drive_is_ready(drive)) 1140 /* 1141 * This happens regularly when we share a PCI IRQ with 1142 * another device. Unfortunately, it can also happen 1143 * with some buggy drives that trigger the IRQ before 1144 * their status register is up to date. Hopefully we have 1145 * enough advance overhead that the latter isn't a problem. 1146 */ 1147 goto out; 1148 1149 hwif->handler = NULL; 1150 hwif->req_gen++; 1151 del_timer(&hwif->timer); 1152 spin_unlock(&hwif->lock); 1153 1154 if (hwif->port_ops && hwif->port_ops->clear_irq) 1155 hwif->port_ops->clear_irq(drive); 1156 1157 if (drive->dev_flags & IDE_DFLAG_UNMASK) 1158 local_irq_enable_in_hardirq(); 1159 1160 /* service this interrupt, may set handler for next interrupt */ 1161 startstop = handler(drive); 1162 1163 spin_lock_irq(&hwif->lock); 1164 /* 1165 * Note that handler() may have set things up for another 1166 * interrupt to occur soon, but it cannot happen until 1167 * we exit from this routine, because it will be the 1168 * same irq as is currently being serviced here, and Linux 1169 * won't allow another of the same (on any CPU) until we return. 1170 */ 1171 if (startstop == ide_stopped) { 1172 BUG_ON(hwif->handler); 1173 ide_unlock_port(hwif); 1174 plug_device = 1; 1175 } 1176 irq_ret = IRQ_HANDLED; 1177out: 1178 spin_unlock_irqrestore(&hwif->lock, flags); 1179out_early: 1180 if (plug_device) { 1181 ide_unlock_host(hwif->host); 1182 ide_plug_device(drive); 1183 } 1184 1185 return irq_ret; 1186} 1187EXPORT_SYMBOL_GPL(ide_intr); 1188 1189/** 1190 * ide_do_drive_cmd - issue IDE special command 1191 * @drive: device to issue command 1192 * @rq: request to issue 1193 * 1194 * This function issues a special IDE device request 1195 * onto the request queue. 1196 * 1197 * the rq is queued at the head of the request queue, displacing 1198 * the currently-being-processed request and this function 1199 * returns immediately without waiting for the new rq to be 1200 * completed. This is VERY DANGEROUS, and is intended for 1201 * careful use by the ATAPI tape/cdrom driver code. 1202 */ 1203 1204void ide_do_drive_cmd(ide_drive_t *drive, struct request *rq) 1205{ 1206 struct request_queue *q = drive->queue; 1207 unsigned long flags; 1208 1209 drive->hwif->rq = NULL; 1210 1211 spin_lock_irqsave(q->queue_lock, flags); 1212 __elv_add_request(q, rq, ELEVATOR_INSERT_FRONT, 0); 1213 spin_unlock_irqrestore(q->queue_lock, flags); 1214} 1215EXPORT_SYMBOL(ide_do_drive_cmd); 1216 1217void ide_pad_transfer(ide_drive_t *drive, int write, int len) 1218{ 1219 ide_hwif_t *hwif = drive->hwif; 1220 u8 buf[4] = { 0 }; 1221 1222 while (len > 0) { 1223 if (write) 1224 hwif->tp_ops->output_data(drive, NULL, buf, min(4, len)); 1225 else 1226 hwif->tp_ops->input_data(drive, NULL, buf, min(4, len)); 1227 len -= 4; 1228 } 1229} 1230EXPORT_SYMBOL_GPL(ide_pad_transfer); 1231