ide-io.c revision bfa7d8e55f0c5ae22ef57eb22942c74fdde7b9bd
1/*
2 *	IDE I/O functions
3 *
4 *	Basic PIO and command management functionality.
5 *
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * General Public License for more details.
18 *
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
24 */
25
26
27#include <linux/module.h>
28#include <linux/types.h>
29#include <linux/string.h>
30#include <linux/kernel.h>
31#include <linux/timer.h>
32#include <linux/mm.h>
33#include <linux/interrupt.h>
34#include <linux/major.h>
35#include <linux/errno.h>
36#include <linux/genhd.h>
37#include <linux/blkpg.h>
38#include <linux/slab.h>
39#include <linux/init.h>
40#include <linux/pci.h>
41#include <linux/delay.h>
42#include <linux/ide.h>
43#include <linux/hdreg.h>
44#include <linux/completion.h>
45#include <linux/reboot.h>
46#include <linux/cdrom.h>
47#include <linux/seq_file.h>
48#include <linux/device.h>
49#include <linux/kmod.h>
50#include <linux/scatterlist.h>
51#include <linux/bitops.h>
52
53#include <asm/byteorder.h>
54#include <asm/irq.h>
55#include <asm/uaccess.h>
56#include <asm/io.h>
57
58static int __ide_end_request(ide_drive_t *drive, struct request *rq,
59			     int uptodate, unsigned int nr_bytes, int dequeue)
60{
61	int ret = 1;
62	int error = 0;
63
64	if (uptodate <= 0)
65		error = uptodate ? uptodate : -EIO;
66
67	/*
68	 * if failfast is set on a request, override number of sectors and
69	 * complete the whole request right now
70	 */
71	if (blk_noretry_request(rq) && error)
72		nr_bytes = rq->hard_nr_sectors << 9;
73
74	if (!blk_fs_request(rq) && error && !rq->errors)
75		rq->errors = -EIO;
76
77	/*
78	 * decide whether to reenable DMA -- 3 is a random magic for now,
79	 * if we DMA timeout more than 3 times, just stay in PIO
80	 */
81	if ((drive->dev_flags & IDE_DFLAG_DMA_PIO_RETRY) &&
82	    drive->retry_pio <= 3) {
83		drive->dev_flags &= ~IDE_DFLAG_DMA_PIO_RETRY;
84		ide_dma_on(drive);
85	}
86
87	if (!__blk_end_request(rq, error, nr_bytes)) {
88		if (dequeue)
89			HWGROUP(drive)->rq = NULL;
90		ret = 0;
91	}
92
93	return ret;
94}
95
96/**
97 *	ide_end_request		-	complete an IDE I/O
98 *	@drive: IDE device for the I/O
99 *	@uptodate:
100 *	@nr_sectors: number of sectors completed
101 *
102 *	This is our end_request wrapper function. We complete the I/O
103 *	update random number input and dequeue the request, which if
104 *	it was tagged may be out of order.
105 */
106
107int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
108{
109	unsigned int nr_bytes = nr_sectors << 9;
110	struct request *rq;
111	unsigned long flags;
112	int ret = 1;
113
114	/*
115	 * room for locking improvements here, the calls below don't
116	 * need the queue lock held at all
117	 */
118	spin_lock_irqsave(&ide_lock, flags);
119	rq = HWGROUP(drive)->rq;
120
121	if (!nr_bytes) {
122		if (blk_pc_request(rq))
123			nr_bytes = rq->data_len;
124		else
125			nr_bytes = rq->hard_cur_sectors << 9;
126	}
127
128	ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
129
130	spin_unlock_irqrestore(&ide_lock, flags);
131	return ret;
132}
133EXPORT_SYMBOL(ide_end_request);
134
135static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
136{
137	struct request_pm_state *pm = rq->data;
138
139	if (drive->media != ide_disk)
140		return;
141
142	switch (pm->pm_step) {
143	case IDE_PM_FLUSH_CACHE:	/* Suspend step 1 (flush cache) */
144		if (pm->pm_state == PM_EVENT_FREEZE)
145			pm->pm_step = IDE_PM_COMPLETED;
146		else
147			pm->pm_step = IDE_PM_STANDBY;
148		break;
149	case IDE_PM_STANDBY:		/* Suspend step 2 (standby) */
150		pm->pm_step = IDE_PM_COMPLETED;
151		break;
152	case IDE_PM_RESTORE_PIO:	/* Resume step 1 (restore PIO) */
153		pm->pm_step = IDE_PM_IDLE;
154		break;
155	case IDE_PM_IDLE:		/* Resume step 2 (idle)*/
156		pm->pm_step = IDE_PM_RESTORE_DMA;
157		break;
158	}
159}
160
161static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
162{
163	struct request_pm_state *pm = rq->data;
164	ide_task_t *args = rq->special;
165
166	memset(args, 0, sizeof(*args));
167
168	switch (pm->pm_step) {
169	case IDE_PM_FLUSH_CACHE:	/* Suspend step 1 (flush cache) */
170		if (drive->media != ide_disk)
171			break;
172		/* Not supported? Switch to next step now. */
173		if (ata_id_flush_enabled(drive->id) == 0 ||
174		    (drive->dev_flags & IDE_DFLAG_WCACHE) == 0) {
175			ide_complete_power_step(drive, rq, 0, 0);
176			return ide_stopped;
177		}
178		if (ata_id_flush_ext_enabled(drive->id))
179			args->tf.command = ATA_CMD_FLUSH_EXT;
180		else
181			args->tf.command = ATA_CMD_FLUSH;
182		goto out_do_tf;
183	case IDE_PM_STANDBY:		/* Suspend step 2 (standby) */
184		args->tf.command = ATA_CMD_STANDBYNOW1;
185		goto out_do_tf;
186	case IDE_PM_RESTORE_PIO:	/* Resume step 1 (restore PIO) */
187		ide_set_max_pio(drive);
188		/*
189		 * skip IDE_PM_IDLE for ATAPI devices
190		 */
191		if (drive->media != ide_disk)
192			pm->pm_step = IDE_PM_RESTORE_DMA;
193		else
194			ide_complete_power_step(drive, rq, 0, 0);
195		return ide_stopped;
196	case IDE_PM_IDLE:		/* Resume step 2 (idle) */
197		args->tf.command = ATA_CMD_IDLEIMMEDIATE;
198		goto out_do_tf;
199	case IDE_PM_RESTORE_DMA:	/* Resume step 3 (restore DMA) */
200		/*
201		 * Right now, all we do is call ide_set_dma(drive),
202		 * we could be smarter and check for current xfer_speed
203		 * in struct drive etc...
204		 */
205		if (drive->hwif->dma_ops == NULL)
206			break;
207		/*
208		 * TODO: respect IDE_DFLAG_USING_DMA
209		 */
210		ide_set_dma(drive);
211		break;
212	}
213
214	pm->pm_step = IDE_PM_COMPLETED;
215	return ide_stopped;
216
217out_do_tf:
218	args->tf_flags	 = IDE_TFLAG_TF | IDE_TFLAG_DEVICE;
219	args->data_phase = TASKFILE_NO_DATA;
220	return do_rw_taskfile(drive, args);
221}
222
223/**
224 *	ide_end_dequeued_request	-	complete an IDE I/O
225 *	@drive: IDE device for the I/O
226 *	@uptodate:
227 *	@nr_sectors: number of sectors completed
228 *
229 *	Complete an I/O that is no longer on the request queue. This
230 *	typically occurs when we pull the request and issue a REQUEST_SENSE.
231 *	We must still finish the old request but we must not tamper with the
232 *	queue in the meantime.
233 *
234 *	NOTE: This path does not handle barrier, but barrier is not supported
235 *	on ide-cd anyway.
236 */
237
238int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
239			     int uptodate, int nr_sectors)
240{
241	unsigned long flags;
242	int ret;
243
244	spin_lock_irqsave(&ide_lock, flags);
245	BUG_ON(!blk_rq_started(rq));
246	ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
247	spin_unlock_irqrestore(&ide_lock, flags);
248
249	return ret;
250}
251EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
252
253
254/**
255 *	ide_complete_pm_request - end the current Power Management request
256 *	@drive: target drive
257 *	@rq: request
258 *
259 *	This function cleans up the current PM request and stops the queue
260 *	if necessary.
261 */
262static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
263{
264	unsigned long flags;
265
266#ifdef DEBUG_PM
267	printk("%s: completing PM request, %s\n", drive->name,
268	       blk_pm_suspend_request(rq) ? "suspend" : "resume");
269#endif
270	spin_lock_irqsave(&ide_lock, flags);
271	if (blk_pm_suspend_request(rq)) {
272		blk_stop_queue(drive->queue);
273	} else {
274		drive->dev_flags &= ~IDE_DFLAG_BLOCKED;
275		blk_start_queue(drive->queue);
276	}
277	HWGROUP(drive)->rq = NULL;
278	if (__blk_end_request(rq, 0, 0))
279		BUG();
280	spin_unlock_irqrestore(&ide_lock, flags);
281}
282
283/**
284 *	ide_end_drive_cmd	-	end an explicit drive command
285 *	@drive: command
286 *	@stat: status bits
287 *	@err: error bits
288 *
289 *	Clean up after success/failure of an explicit drive command.
290 *	These get thrown onto the queue so they are synchronized with
291 *	real I/O operations on the drive.
292 *
293 *	In LBA48 mode we have to read the register set twice to get
294 *	all the extra information out.
295 */
296
297void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
298{
299	unsigned long flags;
300	struct request *rq;
301
302	spin_lock_irqsave(&ide_lock, flags);
303	rq = HWGROUP(drive)->rq;
304	spin_unlock_irqrestore(&ide_lock, flags);
305
306	if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
307		ide_task_t *task = (ide_task_t *)rq->special;
308
309		if (rq->errors == 0)
310			rq->errors = !OK_STAT(stat, ATA_DRDY, BAD_STAT);
311
312		if (task) {
313			struct ide_taskfile *tf = &task->tf;
314
315			tf->error = err;
316			tf->status = stat;
317
318			drive->hwif->tp_ops->tf_read(drive, task);
319
320			if (task->tf_flags & IDE_TFLAG_DYN)
321				kfree(task);
322		}
323	} else if (blk_pm_request(rq)) {
324		struct request_pm_state *pm = rq->data;
325#ifdef DEBUG_PM
326		printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
327			drive->name, rq->pm->pm_step, stat, err);
328#endif
329		ide_complete_power_step(drive, rq, stat, err);
330		if (pm->pm_step == IDE_PM_COMPLETED)
331			ide_complete_pm_request(drive, rq);
332		return;
333	}
334
335	spin_lock_irqsave(&ide_lock, flags);
336	HWGROUP(drive)->rq = NULL;
337	rq->errors = err;
338	if (unlikely(__blk_end_request(rq, (rq->errors ? -EIO : 0),
339				       blk_rq_bytes(rq))))
340		BUG();
341	spin_unlock_irqrestore(&ide_lock, flags);
342}
343
344EXPORT_SYMBOL(ide_end_drive_cmd);
345
346static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
347{
348	if (rq->rq_disk) {
349		ide_driver_t *drv;
350
351		drv = *(ide_driver_t **)rq->rq_disk->private_data;
352		drv->end_request(drive, 0, 0);
353	} else
354		ide_end_request(drive, 0, 0);
355}
356
357static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
358{
359	ide_hwif_t *hwif = drive->hwif;
360
361	if ((stat & ATA_BUSY) ||
362	    ((stat & ATA_DF) && (drive->dev_flags & IDE_DFLAG_NOWERR) == 0)) {
363		/* other bits are useless when BUSY */
364		rq->errors |= ERROR_RESET;
365	} else if (stat & ATA_ERR) {
366		/* err has different meaning on cdrom and tape */
367		if (err == ATA_ABORTED) {
368			if ((drive->dev_flags & IDE_DFLAG_LBA) &&
369			    /* some newer drives don't support ATA_CMD_INIT_DEV_PARAMS */
370			    hwif->tp_ops->read_status(hwif) == ATA_CMD_INIT_DEV_PARAMS)
371				return ide_stopped;
372		} else if ((err & BAD_CRC) == BAD_CRC) {
373			/* UDMA crc error, just retry the operation */
374			drive->crc_count++;
375		} else if (err & (ATA_BBK | ATA_UNC)) {
376			/* retries won't help these */
377			rq->errors = ERROR_MAX;
378		} else if (err & ATA_TRK0NF) {
379			/* help it find track zero */
380			rq->errors |= ERROR_RECAL;
381		}
382	}
383
384	if ((stat & ATA_DRQ) && rq_data_dir(rq) == READ &&
385	    (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0) {
386		int nsect = drive->mult_count ? drive->mult_count : 1;
387
388		ide_pad_transfer(drive, READ, nsect * SECTOR_SIZE);
389	}
390
391	if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
392		ide_kill_rq(drive, rq);
393		return ide_stopped;
394	}
395
396	if (hwif->tp_ops->read_status(hwif) & (ATA_BUSY | ATA_DRQ))
397		rq->errors |= ERROR_RESET;
398
399	if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
400		++rq->errors;
401		return ide_do_reset(drive);
402	}
403
404	if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
405		drive->special.b.recalibrate = 1;
406
407	++rq->errors;
408
409	return ide_stopped;
410}
411
412static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
413{
414	ide_hwif_t *hwif = drive->hwif;
415
416	if ((stat & ATA_BUSY) ||
417	    ((stat & ATA_DF) && (drive->dev_flags & IDE_DFLAG_NOWERR) == 0)) {
418		/* other bits are useless when BUSY */
419		rq->errors |= ERROR_RESET;
420	} else {
421		/* add decoding error stuff */
422	}
423
424	if (hwif->tp_ops->read_status(hwif) & (ATA_BUSY | ATA_DRQ))
425		/* force an abort */
426		hwif->tp_ops->exec_command(hwif, ATA_CMD_IDLEIMMEDIATE);
427
428	if (rq->errors >= ERROR_MAX) {
429		ide_kill_rq(drive, rq);
430	} else {
431		if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
432			++rq->errors;
433			return ide_do_reset(drive);
434		}
435		++rq->errors;
436	}
437
438	return ide_stopped;
439}
440
441ide_startstop_t
442__ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
443{
444	if (drive->media == ide_disk)
445		return ide_ata_error(drive, rq, stat, err);
446	return ide_atapi_error(drive, rq, stat, err);
447}
448
449EXPORT_SYMBOL_GPL(__ide_error);
450
451/**
452 *	ide_error	-	handle an error on the IDE
453 *	@drive: drive the error occurred on
454 *	@msg: message to report
455 *	@stat: status bits
456 *
457 *	ide_error() takes action based on the error returned by the drive.
458 *	For normal I/O that may well include retries. We deal with
459 *	both new-style (taskfile) and old style command handling here.
460 *	In the case of taskfile command handling there is work left to
461 *	do
462 */
463
464ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
465{
466	struct request *rq;
467	u8 err;
468
469	err = ide_dump_status(drive, msg, stat);
470
471	if ((rq = HWGROUP(drive)->rq) == NULL)
472		return ide_stopped;
473
474	/* retry only "normal" I/O: */
475	if (!blk_fs_request(rq)) {
476		rq->errors = 1;
477		ide_end_drive_cmd(drive, stat, err);
478		return ide_stopped;
479	}
480
481	if (rq->rq_disk) {
482		ide_driver_t *drv;
483
484		drv = *(ide_driver_t **)rq->rq_disk->private_data;
485		return drv->error(drive, rq, stat, err);
486	} else
487		return __ide_error(drive, rq, stat, err);
488}
489
490EXPORT_SYMBOL_GPL(ide_error);
491
492static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
493{
494	tf->nsect   = drive->sect;
495	tf->lbal    = drive->sect;
496	tf->lbam    = drive->cyl;
497	tf->lbah    = drive->cyl >> 8;
498	tf->device  = (drive->head - 1) | drive->select;
499	tf->command = ATA_CMD_INIT_DEV_PARAMS;
500}
501
502static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
503{
504	tf->nsect   = drive->sect;
505	tf->command = ATA_CMD_RESTORE;
506}
507
508static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
509{
510	tf->nsect   = drive->mult_req;
511	tf->command = ATA_CMD_SET_MULTI;
512}
513
514static ide_startstop_t ide_disk_special(ide_drive_t *drive)
515{
516	special_t *s = &drive->special;
517	ide_task_t args;
518
519	memset(&args, 0, sizeof(ide_task_t));
520	args.data_phase = TASKFILE_NO_DATA;
521
522	if (s->b.set_geometry) {
523		s->b.set_geometry = 0;
524		ide_tf_set_specify_cmd(drive, &args.tf);
525	} else if (s->b.recalibrate) {
526		s->b.recalibrate = 0;
527		ide_tf_set_restore_cmd(drive, &args.tf);
528	} else if (s->b.set_multmode) {
529		s->b.set_multmode = 0;
530		ide_tf_set_setmult_cmd(drive, &args.tf);
531	} else if (s->all) {
532		int special = s->all;
533		s->all = 0;
534		printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
535		return ide_stopped;
536	}
537
538	args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
539			IDE_TFLAG_CUSTOM_HANDLER;
540
541	do_rw_taskfile(drive, &args);
542
543	return ide_started;
544}
545
546/**
547 *	do_special		-	issue some special commands
548 *	@drive: drive the command is for
549 *
550 *	do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
551 *	ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
552 *
553 *	It used to do much more, but has been scaled back.
554 */
555
556static ide_startstop_t do_special (ide_drive_t *drive)
557{
558	special_t *s = &drive->special;
559
560#ifdef DEBUG
561	printk("%s: do_special: 0x%02x\n", drive->name, s->all);
562#endif
563	if (drive->media == ide_disk)
564		return ide_disk_special(drive);
565
566	s->all = 0;
567	drive->mult_req = 0;
568	return ide_stopped;
569}
570
571void ide_map_sg(ide_drive_t *drive, struct request *rq)
572{
573	ide_hwif_t *hwif = drive->hwif;
574	struct scatterlist *sg = hwif->sg_table;
575
576	if (hwif->sg_mapped)	/* needed by ide-scsi */
577		return;
578
579	if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
580		hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
581	} else {
582		sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
583		hwif->sg_nents = 1;
584	}
585}
586
587EXPORT_SYMBOL_GPL(ide_map_sg);
588
589void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
590{
591	ide_hwif_t *hwif = drive->hwif;
592
593	hwif->nsect = hwif->nleft = rq->nr_sectors;
594	hwif->cursg_ofs = 0;
595	hwif->cursg = NULL;
596}
597
598EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
599
600/**
601 *	execute_drive_command	-	issue special drive command
602 *	@drive: the drive to issue the command on
603 *	@rq: the request structure holding the command
604 *
605 *	execute_drive_cmd() issues a special drive command,  usually
606 *	initiated by ioctl() from the external hdparm program. The
607 *	command can be a drive command, drive task or taskfile
608 *	operation. Weirdly you can call it with NULL to wait for
609 *	all commands to finish. Don't do this as that is due to change
610 */
611
612static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
613		struct request *rq)
614{
615	ide_hwif_t *hwif = HWIF(drive);
616	ide_task_t *task = rq->special;
617
618	if (task) {
619		hwif->data_phase = task->data_phase;
620
621		switch (hwif->data_phase) {
622		case TASKFILE_MULTI_OUT:
623		case TASKFILE_OUT:
624		case TASKFILE_MULTI_IN:
625		case TASKFILE_IN:
626			ide_init_sg_cmd(drive, rq);
627			ide_map_sg(drive, rq);
628		default:
629			break;
630		}
631
632		return do_rw_taskfile(drive, task);
633	}
634
635 	/*
636 	 * NULL is actually a valid way of waiting for
637 	 * all current requests to be flushed from the queue.
638 	 */
639#ifdef DEBUG
640 	printk("%s: DRIVE_CMD (null)\n", drive->name);
641#endif
642	ide_end_drive_cmd(drive, hwif->tp_ops->read_status(hwif),
643			  ide_read_error(drive));
644
645 	return ide_stopped;
646}
647
648int ide_devset_execute(ide_drive_t *drive, const struct ide_devset *setting,
649		       int arg)
650{
651	struct request_queue *q = drive->queue;
652	struct request *rq;
653	int ret = 0;
654
655	if (!(setting->flags & DS_SYNC))
656		return setting->set(drive, arg);
657
658	rq = blk_get_request(q, READ, GFP_KERNEL);
659	if (!rq)
660		return -ENOMEM;
661
662	rq->cmd_type = REQ_TYPE_SPECIAL;
663	rq->cmd_len = 5;
664	rq->cmd[0] = REQ_DEVSET_EXEC;
665	*(int *)&rq->cmd[1] = arg;
666	rq->special = setting->set;
667
668	if (blk_execute_rq(q, NULL, rq, 0))
669		ret = rq->errors;
670	blk_put_request(rq);
671
672	return ret;
673}
674EXPORT_SYMBOL_GPL(ide_devset_execute);
675
676static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
677{
678	switch (rq->cmd[0]) {
679	case REQ_DEVSET_EXEC:
680	{
681		int err, (*setfunc)(ide_drive_t *, int) = rq->special;
682
683		err = setfunc(drive, *(int *)&rq->cmd[1]);
684		if (err)
685			rq->errors = err;
686		else
687			err = 1;
688		ide_end_request(drive, err, 0);
689		return ide_stopped;
690	}
691	case REQ_DRIVE_RESET:
692		return ide_do_reset(drive);
693	default:
694		blk_dump_rq_flags(rq, "ide_special_rq - bad request");
695		ide_end_request(drive, 0, 0);
696		return ide_stopped;
697	}
698}
699
700static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
701{
702	struct request_pm_state *pm = rq->data;
703
704	if (blk_pm_suspend_request(rq) &&
705	    pm->pm_step == IDE_PM_START_SUSPEND)
706		/* Mark drive blocked when starting the suspend sequence. */
707		drive->dev_flags |= IDE_DFLAG_BLOCKED;
708	else if (blk_pm_resume_request(rq) &&
709		 pm->pm_step == IDE_PM_START_RESUME) {
710		/*
711		 * The first thing we do on wakeup is to wait for BSY bit to
712		 * go away (with a looong timeout) as a drive on this hwif may
713		 * just be POSTing itself.
714		 * We do that before even selecting as the "other" device on
715		 * the bus may be broken enough to walk on our toes at this
716		 * point.
717		 */
718		ide_hwif_t *hwif = drive->hwif;
719		int rc;
720#ifdef DEBUG_PM
721		printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
722#endif
723		rc = ide_wait_not_busy(hwif, 35000);
724		if (rc)
725			printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
726		SELECT_DRIVE(drive);
727		hwif->tp_ops->set_irq(hwif, 1);
728		rc = ide_wait_not_busy(hwif, 100000);
729		if (rc)
730			printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
731	}
732}
733
734/**
735 *	start_request	-	start of I/O and command issuing for IDE
736 *
737 *	start_request() initiates handling of a new I/O request. It
738 *	accepts commands and I/O (read/write) requests.
739 *
740 *	FIXME: this function needs a rename
741 */
742
743static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
744{
745	ide_startstop_t startstop;
746
747	BUG_ON(!blk_rq_started(rq));
748
749#ifdef DEBUG
750	printk("%s: start_request: current=0x%08lx\n",
751		HWIF(drive)->name, (unsigned long) rq);
752#endif
753
754	/* bail early if we've exceeded max_failures */
755	if (drive->max_failures && (drive->failures > drive->max_failures)) {
756		rq->cmd_flags |= REQ_FAILED;
757		goto kill_rq;
758	}
759
760	if (blk_pm_request(rq))
761		ide_check_pm_state(drive, rq);
762
763	SELECT_DRIVE(drive);
764	if (ide_wait_stat(&startstop, drive, drive->ready_stat,
765			  ATA_BUSY | ATA_DRQ, WAIT_READY)) {
766		printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
767		return startstop;
768	}
769	if (!drive->special.all) {
770		ide_driver_t *drv;
771
772		/*
773		 * We reset the drive so we need to issue a SETFEATURES.
774		 * Do it _after_ do_special() restored device parameters.
775		 */
776		if (drive->current_speed == 0xff)
777			ide_config_drive_speed(drive, drive->desired_speed);
778
779		if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
780			return execute_drive_cmd(drive, rq);
781		else if (blk_pm_request(rq)) {
782			struct request_pm_state *pm = rq->data;
783#ifdef DEBUG_PM
784			printk("%s: start_power_step(step: %d)\n",
785				drive->name, rq->pm->pm_step);
786#endif
787			startstop = ide_start_power_step(drive, rq);
788			if (startstop == ide_stopped &&
789			    pm->pm_step == IDE_PM_COMPLETED)
790				ide_complete_pm_request(drive, rq);
791			return startstop;
792		} else if (!rq->rq_disk && blk_special_request(rq))
793			/*
794			 * TODO: Once all ULDs have been modified to
795			 * check for specific op codes rather than
796			 * blindly accepting any special request, the
797			 * check for ->rq_disk above may be replaced
798			 * by a more suitable mechanism or even
799			 * dropped entirely.
800			 */
801			return ide_special_rq(drive, rq);
802
803		drv = *(ide_driver_t **)rq->rq_disk->private_data;
804
805		return drv->do_request(drive, rq, rq->sector);
806	}
807	return do_special(drive);
808kill_rq:
809	ide_kill_rq(drive, rq);
810	return ide_stopped;
811}
812
813/**
814 *	ide_stall_queue		-	pause an IDE device
815 *	@drive: drive to stall
816 *	@timeout: time to stall for (jiffies)
817 *
818 *	ide_stall_queue() can be used by a drive to give excess bandwidth back
819 *	to the hwgroup by sleeping for timeout jiffies.
820 */
821
822void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
823{
824	if (timeout > WAIT_WORSTCASE)
825		timeout = WAIT_WORSTCASE;
826	drive->sleep = timeout + jiffies;
827	drive->dev_flags |= IDE_DFLAG_SLEEPING;
828}
829
830EXPORT_SYMBOL(ide_stall_queue);
831
832#define WAKEUP(drive)	((drive)->service_start + 2 * (drive)->service_time)
833
834/**
835 *	choose_drive		-	select a drive to service
836 *	@hwgroup: hardware group to select on
837 *
838 *	choose_drive() selects the next drive which will be serviced.
839 *	This is necessary because the IDE layer can't issue commands
840 *	to both drives on the same cable, unlike SCSI.
841 */
842
843static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
844{
845	ide_drive_t *drive, *best;
846
847repeat:
848	best = NULL;
849	drive = hwgroup->drive;
850
851	/*
852	 * drive is doing pre-flush, ordered write, post-flush sequence. even
853	 * though that is 3 requests, it must be seen as a single transaction.
854	 * we must not preempt this drive until that is complete
855	 */
856	if (blk_queue_flushing(drive->queue)) {
857		/*
858		 * small race where queue could get replugged during
859		 * the 3-request flush cycle, just yank the plug since
860		 * we want it to finish asap
861		 */
862		blk_remove_plug(drive->queue);
863		return drive;
864	}
865
866	do {
867		u8 dev_s = !!(drive->dev_flags & IDE_DFLAG_SLEEPING);
868		u8 best_s = (best && !!(best->dev_flags & IDE_DFLAG_SLEEPING));
869
870		if ((dev_s == 0 || time_after_eq(jiffies, drive->sleep)) &&
871		    !elv_queue_empty(drive->queue)) {
872			if (best == NULL ||
873			    (dev_s && (best_s == 0 || time_before(drive->sleep, best->sleep))) ||
874			    (best_s == 0 && time_before(WAKEUP(drive), WAKEUP(best)))) {
875				if (!blk_queue_plugged(drive->queue))
876					best = drive;
877			}
878		}
879	} while ((drive = drive->next) != hwgroup->drive);
880
881	if (best && (best->dev_flags & IDE_DFLAG_NICE1) &&
882	    (best->dev_flags & IDE_DFLAG_SLEEPING) == 0 &&
883	    best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
884		long t = (signed long)(WAKEUP(best) - jiffies);
885		if (t >= WAIT_MIN_SLEEP) {
886		/*
887		 * We *may* have some time to spare, but first let's see if
888		 * someone can potentially benefit from our nice mood today..
889		 */
890			drive = best->next;
891			do {
892				if ((drive->dev_flags & IDE_DFLAG_SLEEPING) == 0
893				 && time_before(jiffies - best->service_time, WAKEUP(drive))
894				 && time_before(WAKEUP(drive), jiffies + t))
895				{
896					ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
897					goto repeat;
898				}
899			} while ((drive = drive->next) != best);
900		}
901	}
902	return best;
903}
904
905/*
906 * Issue a new request to a drive from hwgroup
907 * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
908 *
909 * A hwgroup is a serialized group of IDE interfaces.  Usually there is
910 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
911 * may have both interfaces in a single hwgroup to "serialize" access.
912 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
913 * together into one hwgroup for serialized access.
914 *
915 * Note also that several hwgroups can end up sharing a single IRQ,
916 * possibly along with many other devices.  This is especially common in
917 * PCI-based systems with off-board IDE controller cards.
918 *
919 * The IDE driver uses the single global ide_lock spinlock to protect
920 * access to the request queues, and to protect the hwgroup->busy flag.
921 *
922 * The first thread into the driver for a particular hwgroup sets the
923 * hwgroup->busy flag to indicate that this hwgroup is now active,
924 * and then initiates processing of the top request from the request queue.
925 *
926 * Other threads attempting entry notice the busy setting, and will simply
927 * queue their new requests and exit immediately.  Note that hwgroup->busy
928 * remains set even when the driver is merely awaiting the next interrupt.
929 * Thus, the meaning is "this hwgroup is busy processing a request".
930 *
931 * When processing of a request completes, the completing thread or IRQ-handler
932 * will start the next request from the queue.  If no more work remains,
933 * the driver will clear the hwgroup->busy flag and exit.
934 *
935 * The ide_lock (spinlock) is used to protect all access to the
936 * hwgroup->busy flag, but is otherwise not needed for most processing in
937 * the driver.  This makes the driver much more friendlier to shared IRQs
938 * than previous designs, while remaining 100% (?) SMP safe and capable.
939 */
940static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
941{
942	ide_drive_t	*drive;
943	ide_hwif_t	*hwif;
944	struct request	*rq;
945	ide_startstop_t	startstop;
946	int             loops = 0;
947
948	/* for atari only: POSSIBLY BROKEN HERE(?) */
949	ide_get_lock(ide_intr, hwgroup);
950
951	/* caller must own ide_lock */
952	BUG_ON(!irqs_disabled());
953
954	while (!hwgroup->busy) {
955		hwgroup->busy = 1;
956		drive = choose_drive(hwgroup);
957		if (drive == NULL) {
958			int sleeping = 0;
959			unsigned long sleep = 0; /* shut up, gcc */
960			hwgroup->rq = NULL;
961			drive = hwgroup->drive;
962			do {
963				if ((drive->dev_flags & IDE_DFLAG_SLEEPING) &&
964				    (sleeping == 0 ||
965				     time_before(drive->sleep, sleep))) {
966					sleeping = 1;
967					sleep = drive->sleep;
968				}
969			} while ((drive = drive->next) != hwgroup->drive);
970			if (sleeping) {
971		/*
972		 * Take a short snooze, and then wake up this hwgroup again.
973		 * This gives other hwgroups on the same a chance to
974		 * play fairly with us, just in case there are big differences
975		 * in relative throughputs.. don't want to hog the cpu too much.
976		 */
977				if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
978					sleep = jiffies + WAIT_MIN_SLEEP;
979#if 1
980				if (timer_pending(&hwgroup->timer))
981					printk(KERN_CRIT "ide_set_handler: timer already active\n");
982#endif
983				/* so that ide_timer_expiry knows what to do */
984				hwgroup->sleeping = 1;
985				hwgroup->req_gen_timer = hwgroup->req_gen;
986				mod_timer(&hwgroup->timer, sleep);
987				/* we purposely leave hwgroup->busy==1
988				 * while sleeping */
989			} else {
990				/* Ugly, but how can we sleep for the lock
991				 * otherwise? perhaps from tq_disk?
992				 */
993
994				/* for atari only */
995				ide_release_lock();
996				hwgroup->busy = 0;
997			}
998
999			/* no more work for this hwgroup (for now) */
1000			return;
1001		}
1002	again:
1003		hwif = HWIF(drive);
1004		if (hwgroup->hwif->sharing_irq && hwif != hwgroup->hwif) {
1005			/*
1006			 * set nIEN for previous hwif, drives in the
1007			 * quirk_list may not like intr setups/cleanups
1008			 */
1009			if (drive->quirk_list != 1)
1010				hwif->tp_ops->set_irq(hwif, 0);
1011		}
1012		hwgroup->hwif = hwif;
1013		hwgroup->drive = drive;
1014		drive->dev_flags &= ~IDE_DFLAG_SLEEPING;
1015		drive->service_start = jiffies;
1016
1017		if (blk_queue_plugged(drive->queue)) {
1018			printk(KERN_ERR "ide: huh? queue was plugged!\n");
1019			break;
1020		}
1021
1022		/*
1023		 * we know that the queue isn't empty, but this can happen
1024		 * if the q->prep_rq_fn() decides to kill a request
1025		 */
1026		rq = elv_next_request(drive->queue);
1027		if (!rq) {
1028			hwgroup->busy = 0;
1029			break;
1030		}
1031
1032		/*
1033		 * Sanity: don't accept a request that isn't a PM request
1034		 * if we are currently power managed. This is very important as
1035		 * blk_stop_queue() doesn't prevent the elv_next_request()
1036		 * above to return us whatever is in the queue. Since we call
1037		 * ide_do_request() ourselves, we end up taking requests while
1038		 * the queue is blocked...
1039		 *
1040		 * We let requests forced at head of queue with ide-preempt
1041		 * though. I hope that doesn't happen too much, hopefully not
1042		 * unless the subdriver triggers such a thing in its own PM
1043		 * state machine.
1044		 *
1045		 * We count how many times we loop here to make sure we service
1046		 * all drives in the hwgroup without looping for ever
1047		 */
1048		if ((drive->dev_flags & IDE_DFLAG_BLOCKED) &&
1049		    blk_pm_request(rq) == 0 &&
1050		    (rq->cmd_flags & REQ_PREEMPT) == 0) {
1051			drive = drive->next ? drive->next : hwgroup->drive;
1052			if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1053				goto again;
1054			/* We clear busy, there should be no pending ATA command at this point. */
1055			hwgroup->busy = 0;
1056			break;
1057		}
1058
1059		hwgroup->rq = rq;
1060
1061		/*
1062		 * Some systems have trouble with IDE IRQs arriving while
1063		 * the driver is still setting things up.  So, here we disable
1064		 * the IRQ used by this interface while the request is being started.
1065		 * This may look bad at first, but pretty much the same thing
1066		 * happens anyway when any interrupt comes in, IDE or otherwise
1067		 *  -- the kernel masks the IRQ while it is being handled.
1068		 */
1069		if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1070			disable_irq_nosync(hwif->irq);
1071		spin_unlock(&ide_lock);
1072		local_irq_enable_in_hardirq();
1073			/* allow other IRQs while we start this request */
1074		startstop = start_request(drive, rq);
1075		spin_lock_irq(&ide_lock);
1076		if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1077			enable_irq(hwif->irq);
1078		if (startstop == ide_stopped)
1079			hwgroup->busy = 0;
1080	}
1081}
1082
1083/*
1084 * Passes the stuff to ide_do_request
1085 */
1086void do_ide_request(struct request_queue *q)
1087{
1088	ide_drive_t *drive = q->queuedata;
1089
1090	ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1091}
1092
1093/*
1094 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1095 * retry the current request in pio mode instead of risking tossing it
1096 * all away
1097 */
1098static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1099{
1100	ide_hwif_t *hwif = HWIF(drive);
1101	struct request *rq;
1102	ide_startstop_t ret = ide_stopped;
1103
1104	/*
1105	 * end current dma transaction
1106	 */
1107
1108	if (error < 0) {
1109		printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1110		(void)hwif->dma_ops->dma_end(drive);
1111		ret = ide_error(drive, "dma timeout error",
1112				hwif->tp_ops->read_status(hwif));
1113	} else {
1114		printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1115		hwif->dma_ops->dma_timeout(drive);
1116	}
1117
1118	/*
1119	 * disable dma for now, but remember that we did so because of
1120	 * a timeout -- we'll reenable after we finish this next request
1121	 * (or rather the first chunk of it) in pio.
1122	 */
1123	drive->dev_flags |= IDE_DFLAG_DMA_PIO_RETRY;
1124	drive->retry_pio++;
1125	ide_dma_off_quietly(drive);
1126
1127	/*
1128	 * un-busy drive etc (hwgroup->busy is cleared on return) and
1129	 * make sure request is sane
1130	 */
1131	rq = HWGROUP(drive)->rq;
1132
1133	if (!rq)
1134		goto out;
1135
1136	HWGROUP(drive)->rq = NULL;
1137
1138	rq->errors = 0;
1139
1140	if (!rq->bio)
1141		goto out;
1142
1143	rq->sector = rq->bio->bi_sector;
1144	rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1145	rq->hard_cur_sectors = rq->current_nr_sectors;
1146	rq->buffer = bio_data(rq->bio);
1147out:
1148	return ret;
1149}
1150
1151/**
1152 *	ide_timer_expiry	-	handle lack of an IDE interrupt
1153 *	@data: timer callback magic (hwgroup)
1154 *
1155 *	An IDE command has timed out before the expected drive return
1156 *	occurred. At this point we attempt to clean up the current
1157 *	mess. If the current handler includes an expiry handler then
1158 *	we invoke the expiry handler, and providing it is happy the
1159 *	work is done. If that fails we apply generic recovery rules
1160 *	invoking the handler and checking the drive DMA status. We
1161 *	have an excessively incestuous relationship with the DMA
1162 *	logic that wants cleaning up.
1163 */
1164
1165void ide_timer_expiry (unsigned long data)
1166{
1167	ide_hwgroup_t	*hwgroup = (ide_hwgroup_t *) data;
1168	ide_handler_t	*handler;
1169	ide_expiry_t	*expiry;
1170	unsigned long	flags;
1171	unsigned long	wait = -1;
1172
1173	spin_lock_irqsave(&ide_lock, flags);
1174
1175	if (((handler = hwgroup->handler) == NULL) ||
1176	    (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1177		/*
1178		 * Either a marginal timeout occurred
1179		 * (got the interrupt just as timer expired),
1180		 * or we were "sleeping" to give other devices a chance.
1181		 * Either way, we don't really want to complain about anything.
1182		 */
1183		if (hwgroup->sleeping) {
1184			hwgroup->sleeping = 0;
1185			hwgroup->busy = 0;
1186		}
1187	} else {
1188		ide_drive_t *drive = hwgroup->drive;
1189		if (!drive) {
1190			printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1191			hwgroup->handler = NULL;
1192		} else {
1193			ide_hwif_t *hwif;
1194			ide_startstop_t startstop = ide_stopped;
1195			if (!hwgroup->busy) {
1196				hwgroup->busy = 1;	/* paranoia */
1197				printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1198			}
1199			if ((expiry = hwgroup->expiry) != NULL) {
1200				/* continue */
1201				if ((wait = expiry(drive)) > 0) {
1202					/* reset timer */
1203					hwgroup->timer.expires  = jiffies + wait;
1204					hwgroup->req_gen_timer = hwgroup->req_gen;
1205					add_timer(&hwgroup->timer);
1206					spin_unlock_irqrestore(&ide_lock, flags);
1207					return;
1208				}
1209			}
1210			hwgroup->handler = NULL;
1211			/*
1212			 * We need to simulate a real interrupt when invoking
1213			 * the handler() function, which means we need to
1214			 * globally mask the specific IRQ:
1215			 */
1216			spin_unlock(&ide_lock);
1217			hwif  = HWIF(drive);
1218			/* disable_irq_nosync ?? */
1219			disable_irq(hwif->irq);
1220			/* local CPU only,
1221			 * as if we were handling an interrupt */
1222			local_irq_disable();
1223			if (hwgroup->polling) {
1224				startstop = handler(drive);
1225			} else if (drive_is_ready(drive)) {
1226				if (drive->waiting_for_dma)
1227					hwif->dma_ops->dma_lost_irq(drive);
1228				(void)ide_ack_intr(hwif);
1229				printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1230				startstop = handler(drive);
1231			} else {
1232				if (drive->waiting_for_dma) {
1233					startstop = ide_dma_timeout_retry(drive, wait);
1234				} else
1235					startstop =
1236					ide_error(drive, "irq timeout",
1237						  hwif->tp_ops->read_status(hwif));
1238			}
1239			drive->service_time = jiffies - drive->service_start;
1240			spin_lock_irq(&ide_lock);
1241			enable_irq(hwif->irq);
1242			if (startstop == ide_stopped)
1243				hwgroup->busy = 0;
1244		}
1245	}
1246	ide_do_request(hwgroup, IDE_NO_IRQ);
1247	spin_unlock_irqrestore(&ide_lock, flags);
1248}
1249
1250/**
1251 *	unexpected_intr		-	handle an unexpected IDE interrupt
1252 *	@irq: interrupt line
1253 *	@hwgroup: hwgroup being processed
1254 *
1255 *	There's nothing really useful we can do with an unexpected interrupt,
1256 *	other than reading the status register (to clear it), and logging it.
1257 *	There should be no way that an irq can happen before we're ready for it,
1258 *	so we needn't worry much about losing an "important" interrupt here.
1259 *
1260 *	On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1261 *	the drive enters "idle", "standby", or "sleep" mode, so if the status
1262 *	looks "good", we just ignore the interrupt completely.
1263 *
1264 *	This routine assumes __cli() is in effect when called.
1265 *
1266 *	If an unexpected interrupt happens on irq15 while we are handling irq14
1267 *	and if the two interfaces are "serialized" (CMD640), then it looks like
1268 *	we could screw up by interfering with a new request being set up for
1269 *	irq15.
1270 *
1271 *	In reality, this is a non-issue.  The new command is not sent unless
1272 *	the drive is ready to accept one, in which case we know the drive is
1273 *	not trying to interrupt us.  And ide_set_handler() is always invoked
1274 *	before completing the issuance of any new drive command, so we will not
1275 *	be accidentally invoked as a result of any valid command completion
1276 *	interrupt.
1277 *
1278 *	Note that we must walk the entire hwgroup here. We know which hwif
1279 *	is doing the current command, but we don't know which hwif burped
1280 *	mysteriously.
1281 */
1282
1283static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1284{
1285	u8 stat;
1286	ide_hwif_t *hwif = hwgroup->hwif;
1287
1288	/*
1289	 * handle the unexpected interrupt
1290	 */
1291	do {
1292		if (hwif->irq == irq) {
1293			stat = hwif->tp_ops->read_status(hwif);
1294
1295			if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) {
1296				/* Try to not flood the console with msgs */
1297				static unsigned long last_msgtime, count;
1298				++count;
1299				if (time_after(jiffies, last_msgtime + HZ)) {
1300					last_msgtime = jiffies;
1301					printk(KERN_ERR "%s%s: unexpected interrupt, "
1302						"status=0x%02x, count=%ld\n",
1303						hwif->name,
1304						(hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1305				}
1306			}
1307		}
1308	} while ((hwif = hwif->next) != hwgroup->hwif);
1309}
1310
1311/**
1312 *	ide_intr	-	default IDE interrupt handler
1313 *	@irq: interrupt number
1314 *	@dev_id: hwif group
1315 *	@regs: unused weirdness from the kernel irq layer
1316 *
1317 *	This is the default IRQ handler for the IDE layer. You should
1318 *	not need to override it. If you do be aware it is subtle in
1319 *	places
1320 *
1321 *	hwgroup->hwif is the interface in the group currently performing
1322 *	a command. hwgroup->drive is the drive and hwgroup->handler is
1323 *	the IRQ handler to call. As we issue a command the handlers
1324 *	step through multiple states, reassigning the handler to the
1325 *	next step in the process. Unlike a smart SCSI controller IDE
1326 *	expects the main processor to sequence the various transfer
1327 *	stages. We also manage a poll timer to catch up with most
1328 *	timeout situations. There are still a few where the handlers
1329 *	don't ever decide to give up.
1330 *
1331 *	The handler eventually returns ide_stopped to indicate the
1332 *	request completed. At this point we issue the next request
1333 *	on the hwgroup and the process begins again.
1334 */
1335
1336irqreturn_t ide_intr (int irq, void *dev_id)
1337{
1338	unsigned long flags;
1339	ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1340	ide_hwif_t *hwif;
1341	ide_drive_t *drive;
1342	ide_handler_t *handler;
1343	ide_startstop_t startstop;
1344
1345	spin_lock_irqsave(&ide_lock, flags);
1346	hwif = hwgroup->hwif;
1347
1348	if (!ide_ack_intr(hwif)) {
1349		spin_unlock_irqrestore(&ide_lock, flags);
1350		return IRQ_NONE;
1351	}
1352
1353	if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1354		/*
1355		 * Not expecting an interrupt from this drive.
1356		 * That means this could be:
1357		 *	(1) an interrupt from another PCI device
1358		 *	sharing the same PCI INT# as us.
1359		 * or	(2) a drive just entered sleep or standby mode,
1360		 *	and is interrupting to let us know.
1361		 * or	(3) a spurious interrupt of unknown origin.
1362		 *
1363		 * For PCI, we cannot tell the difference,
1364		 * so in that case we just ignore it and hope it goes away.
1365		 *
1366		 * FIXME: unexpected_intr should be hwif-> then we can
1367		 * remove all the ifdef PCI crap
1368		 */
1369#ifdef CONFIG_BLK_DEV_IDEPCI
1370		if (hwif->chipset != ide_pci)
1371#endif	/* CONFIG_BLK_DEV_IDEPCI */
1372		{
1373			/*
1374			 * Probably not a shared PCI interrupt,
1375			 * so we can safely try to do something about it:
1376			 */
1377			unexpected_intr(irq, hwgroup);
1378#ifdef CONFIG_BLK_DEV_IDEPCI
1379		} else {
1380			/*
1381			 * Whack the status register, just in case
1382			 * we have a leftover pending IRQ.
1383			 */
1384			(void)hwif->tp_ops->read_status(hwif);
1385#endif /* CONFIG_BLK_DEV_IDEPCI */
1386		}
1387		spin_unlock_irqrestore(&ide_lock, flags);
1388		return IRQ_NONE;
1389	}
1390	drive = hwgroup->drive;
1391	if (!drive) {
1392		/*
1393		 * This should NEVER happen, and there isn't much
1394		 * we could do about it here.
1395		 *
1396		 * [Note - this can occur if the drive is hot unplugged]
1397		 */
1398		spin_unlock_irqrestore(&ide_lock, flags);
1399		return IRQ_HANDLED;
1400	}
1401	if (!drive_is_ready(drive)) {
1402		/*
1403		 * This happens regularly when we share a PCI IRQ with
1404		 * another device.  Unfortunately, it can also happen
1405		 * with some buggy drives that trigger the IRQ before
1406		 * their status register is up to date.  Hopefully we have
1407		 * enough advance overhead that the latter isn't a problem.
1408		 */
1409		spin_unlock_irqrestore(&ide_lock, flags);
1410		return IRQ_NONE;
1411	}
1412	if (!hwgroup->busy) {
1413		hwgroup->busy = 1;	/* paranoia */
1414		printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1415	}
1416	hwgroup->handler = NULL;
1417	hwgroup->req_gen++;
1418	del_timer(&hwgroup->timer);
1419	spin_unlock(&ide_lock);
1420
1421	if (hwif->port_ops && hwif->port_ops->clear_irq)
1422		hwif->port_ops->clear_irq(drive);
1423
1424	if (drive->dev_flags & IDE_DFLAG_UNMASK)
1425		local_irq_enable_in_hardirq();
1426
1427	/* service this interrupt, may set handler for next interrupt */
1428	startstop = handler(drive);
1429
1430	spin_lock_irq(&ide_lock);
1431	/*
1432	 * Note that handler() may have set things up for another
1433	 * interrupt to occur soon, but it cannot happen until
1434	 * we exit from this routine, because it will be the
1435	 * same irq as is currently being serviced here, and Linux
1436	 * won't allow another of the same (on any CPU) until we return.
1437	 */
1438	drive->service_time = jiffies - drive->service_start;
1439	if (startstop == ide_stopped) {
1440		if (hwgroup->handler == NULL) {	/* paranoia */
1441			hwgroup->busy = 0;
1442			ide_do_request(hwgroup, hwif->irq);
1443		} else {
1444			printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1445				"on exit\n", drive->name);
1446		}
1447	}
1448	spin_unlock_irqrestore(&ide_lock, flags);
1449	return IRQ_HANDLED;
1450}
1451
1452/**
1453 *	ide_do_drive_cmd	-	issue IDE special command
1454 *	@drive: device to issue command
1455 *	@rq: request to issue
1456 *
1457 *	This function issues a special IDE device request
1458 *	onto the request queue.
1459 *
1460 *	the rq is queued at the head of the request queue, displacing
1461 *	the currently-being-processed request and this function
1462 *	returns immediately without waiting for the new rq to be
1463 *	completed.  This is VERY DANGEROUS, and is intended for
1464 *	careful use by the ATAPI tape/cdrom driver code.
1465 */
1466
1467void ide_do_drive_cmd(ide_drive_t *drive, struct request *rq)
1468{
1469	unsigned long flags;
1470	ide_hwgroup_t *hwgroup = HWGROUP(drive);
1471
1472	spin_lock_irqsave(&ide_lock, flags);
1473	hwgroup->rq = NULL;
1474	__elv_add_request(drive->queue, rq, ELEVATOR_INSERT_FRONT, 1);
1475	__generic_unplug_device(drive->queue);
1476	spin_unlock_irqrestore(&ide_lock, flags);
1477}
1478
1479EXPORT_SYMBOL(ide_do_drive_cmd);
1480
1481void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma)
1482{
1483	ide_hwif_t *hwif = drive->hwif;
1484	ide_task_t task;
1485
1486	memset(&task, 0, sizeof(task));
1487	task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM |
1488			IDE_TFLAG_OUT_FEATURE | tf_flags;
1489	task.tf.feature = dma;		/* Use PIO/DMA */
1490	task.tf.lbam    = bcount & 0xff;
1491	task.tf.lbah    = (bcount >> 8) & 0xff;
1492
1493	ide_tf_dump(drive->name, &task.tf);
1494	hwif->tp_ops->set_irq(hwif, 1);
1495	SELECT_MASK(drive, 0);
1496	hwif->tp_ops->tf_load(drive, &task);
1497}
1498
1499EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load);
1500
1501void ide_pad_transfer(ide_drive_t *drive, int write, int len)
1502{
1503	ide_hwif_t *hwif = drive->hwif;
1504	u8 buf[4] = { 0 };
1505
1506	while (len > 0) {
1507		if (write)
1508			hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
1509		else
1510			hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
1511		len -= 4;
1512	}
1513}
1514EXPORT_SYMBOL_GPL(ide_pad_transfer);
1515