ide-io.c revision c4e66c36cce3f23d68013c4112013123ffe80bdb
1/*
2 *	IDE I/O functions
3 *
4 *	Basic PIO and command management functionality.
5 *
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * General Public License for more details.
18 *
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
24 */
25
26
27#include <linux/module.h>
28#include <linux/types.h>
29#include <linux/string.h>
30#include <linux/kernel.h>
31#include <linux/timer.h>
32#include <linux/mm.h>
33#include <linux/interrupt.h>
34#include <linux/major.h>
35#include <linux/errno.h>
36#include <linux/genhd.h>
37#include <linux/blkpg.h>
38#include <linux/slab.h>
39#include <linux/init.h>
40#include <linux/pci.h>
41#include <linux/delay.h>
42#include <linux/ide.h>
43#include <linux/hdreg.h>
44#include <linux/completion.h>
45#include <linux/reboot.h>
46#include <linux/cdrom.h>
47#include <linux/seq_file.h>
48#include <linux/device.h>
49#include <linux/kmod.h>
50#include <linux/scatterlist.h>
51#include <linux/bitops.h>
52
53#include <asm/byteorder.h>
54#include <asm/irq.h>
55#include <asm/uaccess.h>
56#include <asm/io.h>
57
58static int __ide_end_request(ide_drive_t *drive, struct request *rq,
59			     int uptodate, unsigned int nr_bytes, int dequeue)
60{
61	int ret = 1;
62	int error = 0;
63
64	if (uptodate <= 0)
65		error = uptodate ? uptodate : -EIO;
66
67	/*
68	 * if failfast is set on a request, override number of sectors and
69	 * complete the whole request right now
70	 */
71	if (blk_noretry_request(rq) && error)
72		nr_bytes = rq->hard_nr_sectors << 9;
73
74	if (!blk_fs_request(rq) && error && !rq->errors)
75		rq->errors = -EIO;
76
77	/*
78	 * decide whether to reenable DMA -- 3 is a random magic for now,
79	 * if we DMA timeout more than 3 times, just stay in PIO
80	 */
81	if ((drive->dev_flags & IDE_DFLAG_DMA_PIO_RETRY) &&
82	    drive->retry_pio <= 3) {
83		drive->dev_flags &= ~IDE_DFLAG_DMA_PIO_RETRY;
84		ide_dma_on(drive);
85	}
86
87	if (!blk_end_request(rq, error, nr_bytes))
88		ret = 0;
89
90	if (ret == 0 && dequeue)
91		drive->hwif->rq = NULL;
92
93	return ret;
94}
95
96/**
97 *	ide_end_request		-	complete an IDE I/O
98 *	@drive: IDE device for the I/O
99 *	@uptodate:
100 *	@nr_sectors: number of sectors completed
101 *
102 *	This is our end_request wrapper function. We complete the I/O
103 *	update random number input and dequeue the request, which if
104 *	it was tagged may be out of order.
105 */
106
107int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
108{
109	unsigned int nr_bytes = nr_sectors << 9;
110	struct request *rq = drive->hwif->rq;
111
112	if (!nr_bytes) {
113		if (blk_pc_request(rq))
114			nr_bytes = rq->data_len;
115		else
116			nr_bytes = rq->hard_cur_sectors << 9;
117	}
118
119	return __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
120}
121EXPORT_SYMBOL(ide_end_request);
122
123/**
124 *	ide_end_dequeued_request	-	complete an IDE I/O
125 *	@drive: IDE device for the I/O
126 *	@uptodate:
127 *	@nr_sectors: number of sectors completed
128 *
129 *	Complete an I/O that is no longer on the request queue. This
130 *	typically occurs when we pull the request and issue a REQUEST_SENSE.
131 *	We must still finish the old request but we must not tamper with the
132 *	queue in the meantime.
133 *
134 *	NOTE: This path does not handle barrier, but barrier is not supported
135 *	on ide-cd anyway.
136 */
137
138int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
139			     int uptodate, int nr_sectors)
140{
141	BUG_ON(!blk_rq_started(rq));
142
143	return __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
144}
145EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
146
147/**
148 *	ide_end_drive_cmd	-	end an explicit drive command
149 *	@drive: command
150 *	@stat: status bits
151 *	@err: error bits
152 *
153 *	Clean up after success/failure of an explicit drive command.
154 *	These get thrown onto the queue so they are synchronized with
155 *	real I/O operations on the drive.
156 *
157 *	In LBA48 mode we have to read the register set twice to get
158 *	all the extra information out.
159 */
160
161void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
162{
163	ide_hwif_t *hwif = drive->hwif;
164	struct request *rq = hwif->rq;
165
166	if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
167		ide_task_t *task = (ide_task_t *)rq->special;
168
169		if (task) {
170			struct ide_taskfile *tf = &task->tf;
171
172			tf->error = err;
173			tf->status = stat;
174
175			drive->hwif->tp_ops->tf_read(drive, task);
176
177			if (task->tf_flags & IDE_TFLAG_DYN)
178				kfree(task);
179		}
180	} else if (blk_pm_request(rq)) {
181		struct request_pm_state *pm = rq->data;
182
183		ide_complete_power_step(drive, rq);
184		if (pm->pm_step == IDE_PM_COMPLETED)
185			ide_complete_pm_request(drive, rq);
186		return;
187	}
188
189	hwif->rq = NULL;
190
191	rq->errors = err;
192
193	if (unlikely(blk_end_request(rq, (rq->errors ? -EIO : 0),
194				     blk_rq_bytes(rq))))
195		BUG();
196}
197EXPORT_SYMBOL(ide_end_drive_cmd);
198
199static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
200{
201	if (rq->rq_disk) {
202		struct ide_driver *drv;
203
204		drv = *(struct ide_driver **)rq->rq_disk->private_data;
205		drv->end_request(drive, 0, 0);
206	} else
207		ide_end_request(drive, 0, 0);
208}
209
210static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
211{
212	ide_hwif_t *hwif = drive->hwif;
213
214	if ((stat & ATA_BUSY) ||
215	    ((stat & ATA_DF) && (drive->dev_flags & IDE_DFLAG_NOWERR) == 0)) {
216		/* other bits are useless when BUSY */
217		rq->errors |= ERROR_RESET;
218	} else if (stat & ATA_ERR) {
219		/* err has different meaning on cdrom and tape */
220		if (err == ATA_ABORTED) {
221			if ((drive->dev_flags & IDE_DFLAG_LBA) &&
222			    /* some newer drives don't support ATA_CMD_INIT_DEV_PARAMS */
223			    hwif->tp_ops->read_status(hwif) == ATA_CMD_INIT_DEV_PARAMS)
224				return ide_stopped;
225		} else if ((err & BAD_CRC) == BAD_CRC) {
226			/* UDMA crc error, just retry the operation */
227			drive->crc_count++;
228		} else if (err & (ATA_BBK | ATA_UNC)) {
229			/* retries won't help these */
230			rq->errors = ERROR_MAX;
231		} else if (err & ATA_TRK0NF) {
232			/* help it find track zero */
233			rq->errors |= ERROR_RECAL;
234		}
235	}
236
237	if ((stat & ATA_DRQ) && rq_data_dir(rq) == READ &&
238	    (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0) {
239		int nsect = drive->mult_count ? drive->mult_count : 1;
240
241		ide_pad_transfer(drive, READ, nsect * SECTOR_SIZE);
242	}
243
244	if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
245		ide_kill_rq(drive, rq);
246		return ide_stopped;
247	}
248
249	if (hwif->tp_ops->read_status(hwif) & (ATA_BUSY | ATA_DRQ))
250		rq->errors |= ERROR_RESET;
251
252	if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
253		++rq->errors;
254		return ide_do_reset(drive);
255	}
256
257	if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
258		drive->special.b.recalibrate = 1;
259
260	++rq->errors;
261
262	return ide_stopped;
263}
264
265static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
266{
267	ide_hwif_t *hwif = drive->hwif;
268
269	if ((stat & ATA_BUSY) ||
270	    ((stat & ATA_DF) && (drive->dev_flags & IDE_DFLAG_NOWERR) == 0)) {
271		/* other bits are useless when BUSY */
272		rq->errors |= ERROR_RESET;
273	} else {
274		/* add decoding error stuff */
275	}
276
277	if (hwif->tp_ops->read_status(hwif) & (ATA_BUSY | ATA_DRQ))
278		/* force an abort */
279		hwif->tp_ops->exec_command(hwif, ATA_CMD_IDLEIMMEDIATE);
280
281	if (rq->errors >= ERROR_MAX) {
282		ide_kill_rq(drive, rq);
283	} else {
284		if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
285			++rq->errors;
286			return ide_do_reset(drive);
287		}
288		++rq->errors;
289	}
290
291	return ide_stopped;
292}
293
294static ide_startstop_t
295__ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
296{
297	if (drive->media == ide_disk)
298		return ide_ata_error(drive, rq, stat, err);
299	return ide_atapi_error(drive, rq, stat, err);
300}
301
302/**
303 *	ide_error	-	handle an error on the IDE
304 *	@drive: drive the error occurred on
305 *	@msg: message to report
306 *	@stat: status bits
307 *
308 *	ide_error() takes action based on the error returned by the drive.
309 *	For normal I/O that may well include retries. We deal with
310 *	both new-style (taskfile) and old style command handling here.
311 *	In the case of taskfile command handling there is work left to
312 *	do
313 */
314
315ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
316{
317	struct request *rq;
318	u8 err;
319
320	err = ide_dump_status(drive, msg, stat);
321
322	rq = drive->hwif->rq;
323	if (rq == NULL)
324		return ide_stopped;
325
326	/* retry only "normal" I/O: */
327	if (!blk_fs_request(rq)) {
328		rq->errors = 1;
329		ide_end_drive_cmd(drive, stat, err);
330		return ide_stopped;
331	}
332
333	return __ide_error(drive, rq, stat, err);
334}
335EXPORT_SYMBOL_GPL(ide_error);
336
337static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
338{
339	tf->nsect   = drive->sect;
340	tf->lbal    = drive->sect;
341	tf->lbam    = drive->cyl;
342	tf->lbah    = drive->cyl >> 8;
343	tf->device  = (drive->head - 1) | drive->select;
344	tf->command = ATA_CMD_INIT_DEV_PARAMS;
345}
346
347static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
348{
349	tf->nsect   = drive->sect;
350	tf->command = ATA_CMD_RESTORE;
351}
352
353static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
354{
355	tf->nsect   = drive->mult_req;
356	tf->command = ATA_CMD_SET_MULTI;
357}
358
359static ide_startstop_t ide_disk_special(ide_drive_t *drive)
360{
361	special_t *s = &drive->special;
362	ide_task_t args;
363
364	memset(&args, 0, sizeof(ide_task_t));
365	args.data_phase = TASKFILE_NO_DATA;
366
367	if (s->b.set_geometry) {
368		s->b.set_geometry = 0;
369		ide_tf_set_specify_cmd(drive, &args.tf);
370	} else if (s->b.recalibrate) {
371		s->b.recalibrate = 0;
372		ide_tf_set_restore_cmd(drive, &args.tf);
373	} else if (s->b.set_multmode) {
374		s->b.set_multmode = 0;
375		ide_tf_set_setmult_cmd(drive, &args.tf);
376	} else if (s->all) {
377		int special = s->all;
378		s->all = 0;
379		printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
380		return ide_stopped;
381	}
382
383	args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
384			IDE_TFLAG_CUSTOM_HANDLER;
385
386	do_rw_taskfile(drive, &args);
387
388	return ide_started;
389}
390
391/**
392 *	do_special		-	issue some special commands
393 *	@drive: drive the command is for
394 *
395 *	do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
396 *	ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
397 *
398 *	It used to do much more, but has been scaled back.
399 */
400
401static ide_startstop_t do_special (ide_drive_t *drive)
402{
403	special_t *s = &drive->special;
404
405#ifdef DEBUG
406	printk("%s: do_special: 0x%02x\n", drive->name, s->all);
407#endif
408	if (drive->media == ide_disk)
409		return ide_disk_special(drive);
410
411	s->all = 0;
412	drive->mult_req = 0;
413	return ide_stopped;
414}
415
416void ide_map_sg(ide_drive_t *drive, struct request *rq)
417{
418	ide_hwif_t *hwif = drive->hwif;
419	struct scatterlist *sg = hwif->sg_table;
420
421	if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
422		sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
423		hwif->sg_nents = 1;
424	} else if (!rq->bio) {
425		sg_init_one(sg, rq->data, rq->data_len);
426		hwif->sg_nents = 1;
427	} else {
428		hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
429	}
430}
431
432EXPORT_SYMBOL_GPL(ide_map_sg);
433
434void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
435{
436	ide_hwif_t *hwif = drive->hwif;
437
438	hwif->nsect = hwif->nleft = rq->nr_sectors;
439	hwif->cursg_ofs = 0;
440	hwif->cursg = NULL;
441}
442
443EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
444
445/**
446 *	execute_drive_command	-	issue special drive command
447 *	@drive: the drive to issue the command on
448 *	@rq: the request structure holding the command
449 *
450 *	execute_drive_cmd() issues a special drive command,  usually
451 *	initiated by ioctl() from the external hdparm program. The
452 *	command can be a drive command, drive task or taskfile
453 *	operation. Weirdly you can call it with NULL to wait for
454 *	all commands to finish. Don't do this as that is due to change
455 */
456
457static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
458		struct request *rq)
459{
460	ide_hwif_t *hwif = drive->hwif;
461	ide_task_t *task = rq->special;
462
463	if (task) {
464		hwif->data_phase = task->data_phase;
465
466		switch (hwif->data_phase) {
467		case TASKFILE_MULTI_OUT:
468		case TASKFILE_OUT:
469		case TASKFILE_MULTI_IN:
470		case TASKFILE_IN:
471			ide_init_sg_cmd(drive, rq);
472			ide_map_sg(drive, rq);
473		default:
474			break;
475		}
476
477		return do_rw_taskfile(drive, task);
478	}
479
480 	/*
481 	 * NULL is actually a valid way of waiting for
482 	 * all current requests to be flushed from the queue.
483 	 */
484#ifdef DEBUG
485 	printk("%s: DRIVE_CMD (null)\n", drive->name);
486#endif
487	ide_end_drive_cmd(drive, hwif->tp_ops->read_status(hwif),
488			  ide_read_error(drive));
489
490 	return ide_stopped;
491}
492
493int ide_devset_execute(ide_drive_t *drive, const struct ide_devset *setting,
494		       int arg)
495{
496	struct request_queue *q = drive->queue;
497	struct request *rq;
498	int ret = 0;
499
500	if (!(setting->flags & DS_SYNC))
501		return setting->set(drive, arg);
502
503	rq = blk_get_request(q, READ, __GFP_WAIT);
504	rq->cmd_type = REQ_TYPE_SPECIAL;
505	rq->cmd_len = 5;
506	rq->cmd[0] = REQ_DEVSET_EXEC;
507	*(int *)&rq->cmd[1] = arg;
508	rq->special = setting->set;
509
510	if (blk_execute_rq(q, NULL, rq, 0))
511		ret = rq->errors;
512	blk_put_request(rq);
513
514	return ret;
515}
516
517static ide_startstop_t ide_do_devset(ide_drive_t *drive, struct request *rq)
518{
519	int err, (*setfunc)(ide_drive_t *, int) = rq->special;
520
521	err = setfunc(drive, *(int *)&rq->cmd[1]);
522	if (err)
523		rq->errors = err;
524	else
525		err = 1;
526	ide_end_request(drive, err, 0);
527	return ide_stopped;
528}
529
530static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
531{
532	u8 cmd = rq->cmd[0];
533
534	switch (cmd) {
535	case REQ_PARK_HEADS:
536	case REQ_UNPARK_HEADS:
537		return ide_do_park_unpark(drive, rq);
538	case REQ_DEVSET_EXEC:
539		return ide_do_devset(drive, rq);
540	case REQ_DRIVE_RESET:
541		return ide_do_reset(drive);
542	default:
543		blk_dump_rq_flags(rq, "ide_special_rq - bad request");
544		ide_end_request(drive, 0, 0);
545		return ide_stopped;
546	}
547}
548
549/**
550 *	start_request	-	start of I/O and command issuing for IDE
551 *
552 *	start_request() initiates handling of a new I/O request. It
553 *	accepts commands and I/O (read/write) requests.
554 *
555 *	FIXME: this function needs a rename
556 */
557
558static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
559{
560	ide_startstop_t startstop;
561
562	BUG_ON(!blk_rq_started(rq));
563
564#ifdef DEBUG
565	printk("%s: start_request: current=0x%08lx\n",
566		drive->hwif->name, (unsigned long) rq);
567#endif
568
569	/* bail early if we've exceeded max_failures */
570	if (drive->max_failures && (drive->failures > drive->max_failures)) {
571		rq->cmd_flags |= REQ_FAILED;
572		goto kill_rq;
573	}
574
575	if (blk_pm_request(rq))
576		ide_check_pm_state(drive, rq);
577
578	SELECT_DRIVE(drive);
579	if (ide_wait_stat(&startstop, drive, drive->ready_stat,
580			  ATA_BUSY | ATA_DRQ, WAIT_READY)) {
581		printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
582		return startstop;
583	}
584	if (!drive->special.all) {
585		struct ide_driver *drv;
586
587		/*
588		 * We reset the drive so we need to issue a SETFEATURES.
589		 * Do it _after_ do_special() restored device parameters.
590		 */
591		if (drive->current_speed == 0xff)
592			ide_config_drive_speed(drive, drive->desired_speed);
593
594		if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
595			return execute_drive_cmd(drive, rq);
596		else if (blk_pm_request(rq)) {
597			struct request_pm_state *pm = rq->data;
598#ifdef DEBUG_PM
599			printk("%s: start_power_step(step: %d)\n",
600				drive->name, pm->pm_step);
601#endif
602			startstop = ide_start_power_step(drive, rq);
603			if (startstop == ide_stopped &&
604			    pm->pm_step == IDE_PM_COMPLETED)
605				ide_complete_pm_request(drive, rq);
606			return startstop;
607		} else if (!rq->rq_disk && blk_special_request(rq))
608			/*
609			 * TODO: Once all ULDs have been modified to
610			 * check for specific op codes rather than
611			 * blindly accepting any special request, the
612			 * check for ->rq_disk above may be replaced
613			 * by a more suitable mechanism or even
614			 * dropped entirely.
615			 */
616			return ide_special_rq(drive, rq);
617
618		drv = *(struct ide_driver **)rq->rq_disk->private_data;
619
620		return drv->do_request(drive, rq, rq->sector);
621	}
622	return do_special(drive);
623kill_rq:
624	ide_kill_rq(drive, rq);
625	return ide_stopped;
626}
627
628/**
629 *	ide_stall_queue		-	pause an IDE device
630 *	@drive: drive to stall
631 *	@timeout: time to stall for (jiffies)
632 *
633 *	ide_stall_queue() can be used by a drive to give excess bandwidth back
634 *	to the port by sleeping for timeout jiffies.
635 */
636
637void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
638{
639	if (timeout > WAIT_WORSTCASE)
640		timeout = WAIT_WORSTCASE;
641	drive->sleep = timeout + jiffies;
642	drive->dev_flags |= IDE_DFLAG_SLEEPING;
643}
644EXPORT_SYMBOL(ide_stall_queue);
645
646static inline int ide_lock_port(ide_hwif_t *hwif)
647{
648	if (hwif->busy)
649		return 1;
650
651	hwif->busy = 1;
652
653	return 0;
654}
655
656static inline void ide_unlock_port(ide_hwif_t *hwif)
657{
658	hwif->busy = 0;
659}
660
661static inline int ide_lock_host(struct ide_host *host, ide_hwif_t *hwif)
662{
663	int rc = 0;
664
665	if (host->host_flags & IDE_HFLAG_SERIALIZE) {
666		rc = test_and_set_bit_lock(IDE_HOST_BUSY, &host->host_busy);
667		if (rc == 0) {
668			/* for atari only */
669			ide_get_lock(ide_intr, hwif);
670		}
671	}
672	return rc;
673}
674
675static inline void ide_unlock_host(struct ide_host *host)
676{
677	if (host->host_flags & IDE_HFLAG_SERIALIZE) {
678		/* for atari only */
679		ide_release_lock();
680		clear_bit_unlock(IDE_HOST_BUSY, &host->host_busy);
681	}
682}
683
684/*
685 * Issue a new request to a device.
686 */
687void do_ide_request(struct request_queue *q)
688{
689	ide_drive_t	*drive = q->queuedata;
690	ide_hwif_t	*hwif = drive->hwif;
691	struct ide_host *host = hwif->host;
692	struct request	*rq = NULL;
693	ide_startstop_t	startstop;
694
695	/*
696	 * drive is doing pre-flush, ordered write, post-flush sequence. even
697	 * though that is 3 requests, it must be seen as a single transaction.
698	 * we must not preempt this drive until that is complete
699	 */
700	if (blk_queue_flushing(q))
701		/*
702		 * small race where queue could get replugged during
703		 * the 3-request flush cycle, just yank the plug since
704		 * we want it to finish asap
705		 */
706		blk_remove_plug(q);
707
708	spin_unlock_irq(q->queue_lock);
709
710	if (ide_lock_host(host, hwif))
711		goto plug_device_2;
712
713	spin_lock_irq(&hwif->lock);
714
715	if (!ide_lock_port(hwif)) {
716		ide_hwif_t *prev_port;
717repeat:
718		prev_port = hwif->host->cur_port;
719		hwif->rq = NULL;
720
721		if (drive->dev_flags & IDE_DFLAG_SLEEPING) {
722			if (time_before(drive->sleep, jiffies)) {
723				ide_unlock_port(hwif);
724				goto plug_device;
725			}
726		}
727
728		if ((hwif->host->host_flags & IDE_HFLAG_SERIALIZE) &&
729		    hwif != prev_port) {
730			/*
731			 * set nIEN for previous port, drives in the
732			 * quirk_list may not like intr setups/cleanups
733			 */
734			if (prev_port && prev_port->cur_dev->quirk_list == 0)
735				prev_port->tp_ops->set_irq(prev_port, 0);
736
737			hwif->host->cur_port = hwif;
738		}
739		hwif->cur_dev = drive;
740		drive->dev_flags &= ~(IDE_DFLAG_SLEEPING | IDE_DFLAG_PARKED);
741
742		spin_unlock_irq(&hwif->lock);
743		spin_lock_irq(q->queue_lock);
744		/*
745		 * we know that the queue isn't empty, but this can happen
746		 * if the q->prep_rq_fn() decides to kill a request
747		 */
748		rq = elv_next_request(drive->queue);
749		spin_unlock_irq(q->queue_lock);
750		spin_lock_irq(&hwif->lock);
751
752		if (!rq) {
753			ide_unlock_port(hwif);
754			goto out;
755		}
756
757		/*
758		 * Sanity: don't accept a request that isn't a PM request
759		 * if we are currently power managed. This is very important as
760		 * blk_stop_queue() doesn't prevent the elv_next_request()
761		 * above to return us whatever is in the queue. Since we call
762		 * ide_do_request() ourselves, we end up taking requests while
763		 * the queue is blocked...
764		 *
765		 * We let requests forced at head of queue with ide-preempt
766		 * though. I hope that doesn't happen too much, hopefully not
767		 * unless the subdriver triggers such a thing in its own PM
768		 * state machine.
769		 */
770		if ((drive->dev_flags & IDE_DFLAG_BLOCKED) &&
771		    blk_pm_request(rq) == 0 &&
772		    (rq->cmd_flags & REQ_PREEMPT) == 0) {
773			/* there should be no pending command at this point */
774			ide_unlock_port(hwif);
775			goto plug_device;
776		}
777
778		hwif->rq = rq;
779
780		spin_unlock_irq(&hwif->lock);
781		startstop = start_request(drive, rq);
782		spin_lock_irq(&hwif->lock);
783
784		if (startstop == ide_stopped)
785			goto repeat;
786	} else
787		goto plug_device;
788out:
789	spin_unlock_irq(&hwif->lock);
790	if (rq == NULL)
791		ide_unlock_host(host);
792	spin_lock_irq(q->queue_lock);
793	return;
794
795plug_device:
796	spin_unlock_irq(&hwif->lock);
797	ide_unlock_host(host);
798plug_device_2:
799	spin_lock_irq(q->queue_lock);
800
801	if (!elv_queue_empty(q))
802		blk_plug_device(q);
803}
804
805static void ide_plug_device(ide_drive_t *drive)
806{
807	struct request_queue *q = drive->queue;
808	unsigned long flags;
809
810	spin_lock_irqsave(q->queue_lock, flags);
811	if (!elv_queue_empty(q))
812		blk_plug_device(q);
813	spin_unlock_irqrestore(q->queue_lock, flags);
814}
815
816static int drive_is_ready(ide_drive_t *drive)
817{
818	ide_hwif_t *hwif = drive->hwif;
819	u8 stat = 0;
820
821	if (drive->waiting_for_dma)
822		return hwif->dma_ops->dma_test_irq(drive);
823
824	if (hwif->io_ports.ctl_addr &&
825	    (hwif->host_flags & IDE_HFLAG_BROKEN_ALTSTATUS) == 0)
826		stat = hwif->tp_ops->read_altstatus(hwif);
827	else
828		/* Note: this may clear a pending IRQ!! */
829		stat = hwif->tp_ops->read_status(hwif);
830
831	if (stat & ATA_BUSY)
832		/* drive busy: definitely not interrupting */
833		return 0;
834
835	/* drive ready: *might* be interrupting */
836	return 1;
837}
838
839/**
840 *	ide_timer_expiry	-	handle lack of an IDE interrupt
841 *	@data: timer callback magic (hwif)
842 *
843 *	An IDE command has timed out before the expected drive return
844 *	occurred. At this point we attempt to clean up the current
845 *	mess. If the current handler includes an expiry handler then
846 *	we invoke the expiry handler, and providing it is happy the
847 *	work is done. If that fails we apply generic recovery rules
848 *	invoking the handler and checking the drive DMA status. We
849 *	have an excessively incestuous relationship with the DMA
850 *	logic that wants cleaning up.
851 */
852
853void ide_timer_expiry (unsigned long data)
854{
855	ide_hwif_t	*hwif = (ide_hwif_t *)data;
856	ide_drive_t	*uninitialized_var(drive);
857	ide_handler_t	*handler;
858	unsigned long	flags;
859	int		wait = -1;
860	int		plug_device = 0;
861
862	spin_lock_irqsave(&hwif->lock, flags);
863
864	handler = hwif->handler;
865
866	if (handler == NULL || hwif->req_gen != hwif->req_gen_timer) {
867		/*
868		 * Either a marginal timeout occurred
869		 * (got the interrupt just as timer expired),
870		 * or we were "sleeping" to give other devices a chance.
871		 * Either way, we don't really want to complain about anything.
872		 */
873	} else {
874		ide_expiry_t *expiry = hwif->expiry;
875		ide_startstop_t startstop = ide_stopped;
876
877		drive = hwif->cur_dev;
878
879		if (expiry) {
880			wait = expiry(drive);
881			if (wait > 0) { /* continue */
882				/* reset timer */
883				hwif->timer.expires = jiffies + wait;
884				hwif->req_gen_timer = hwif->req_gen;
885				add_timer(&hwif->timer);
886				spin_unlock_irqrestore(&hwif->lock, flags);
887				return;
888			}
889		}
890		hwif->handler = NULL;
891		/*
892		 * We need to simulate a real interrupt when invoking
893		 * the handler() function, which means we need to
894		 * globally mask the specific IRQ:
895		 */
896		spin_unlock(&hwif->lock);
897		/* disable_irq_nosync ?? */
898		disable_irq(hwif->irq);
899		/* local CPU only, as if we were handling an interrupt */
900		local_irq_disable();
901		if (hwif->polling) {
902			startstop = handler(drive);
903		} else if (drive_is_ready(drive)) {
904			if (drive->waiting_for_dma)
905				hwif->dma_ops->dma_lost_irq(drive);
906			(void)ide_ack_intr(hwif);
907			printk(KERN_WARNING "%s: lost interrupt\n",
908				drive->name);
909			startstop = handler(drive);
910		} else {
911			if (drive->waiting_for_dma)
912				startstop = ide_dma_timeout_retry(drive, wait);
913			else
914				startstop = ide_error(drive, "irq timeout",
915					hwif->tp_ops->read_status(hwif));
916		}
917		spin_lock_irq(&hwif->lock);
918		enable_irq(hwif->irq);
919		if (startstop == ide_stopped) {
920			ide_unlock_port(hwif);
921			plug_device = 1;
922		}
923	}
924	spin_unlock_irqrestore(&hwif->lock, flags);
925
926	if (plug_device) {
927		ide_unlock_host(hwif->host);
928		ide_plug_device(drive);
929	}
930}
931
932/**
933 *	unexpected_intr		-	handle an unexpected IDE interrupt
934 *	@irq: interrupt line
935 *	@hwif: port being processed
936 *
937 *	There's nothing really useful we can do with an unexpected interrupt,
938 *	other than reading the status register (to clear it), and logging it.
939 *	There should be no way that an irq can happen before we're ready for it,
940 *	so we needn't worry much about losing an "important" interrupt here.
941 *
942 *	On laptops (and "green" PCs), an unexpected interrupt occurs whenever
943 *	the drive enters "idle", "standby", or "sleep" mode, so if the status
944 *	looks "good", we just ignore the interrupt completely.
945 *
946 *	This routine assumes __cli() is in effect when called.
947 *
948 *	If an unexpected interrupt happens on irq15 while we are handling irq14
949 *	and if the two interfaces are "serialized" (CMD640), then it looks like
950 *	we could screw up by interfering with a new request being set up for
951 *	irq15.
952 *
953 *	In reality, this is a non-issue.  The new command is not sent unless
954 *	the drive is ready to accept one, in which case we know the drive is
955 *	not trying to interrupt us.  And ide_set_handler() is always invoked
956 *	before completing the issuance of any new drive command, so we will not
957 *	be accidentally invoked as a result of any valid command completion
958 *	interrupt.
959 */
960
961static void unexpected_intr(int irq, ide_hwif_t *hwif)
962{
963	u8 stat = hwif->tp_ops->read_status(hwif);
964
965	if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) {
966		/* Try to not flood the console with msgs */
967		static unsigned long last_msgtime, count;
968		++count;
969
970		if (time_after(jiffies, last_msgtime + HZ)) {
971			last_msgtime = jiffies;
972			printk(KERN_ERR "%s: unexpected interrupt, "
973				"status=0x%02x, count=%ld\n",
974				hwif->name, stat, count);
975		}
976	}
977}
978
979/**
980 *	ide_intr	-	default IDE interrupt handler
981 *	@irq: interrupt number
982 *	@dev_id: hwif
983 *	@regs: unused weirdness from the kernel irq layer
984 *
985 *	This is the default IRQ handler for the IDE layer. You should
986 *	not need to override it. If you do be aware it is subtle in
987 *	places
988 *
989 *	hwif is the interface in the group currently performing
990 *	a command. hwif->cur_dev is the drive and hwif->handler is
991 *	the IRQ handler to call. As we issue a command the handlers
992 *	step through multiple states, reassigning the handler to the
993 *	next step in the process. Unlike a smart SCSI controller IDE
994 *	expects the main processor to sequence the various transfer
995 *	stages. We also manage a poll timer to catch up with most
996 *	timeout situations. There are still a few where the handlers
997 *	don't ever decide to give up.
998 *
999 *	The handler eventually returns ide_stopped to indicate the
1000 *	request completed. At this point we issue the next request
1001 *	on the port and the process begins again.
1002 */
1003
1004irqreturn_t ide_intr (int irq, void *dev_id)
1005{
1006	ide_hwif_t *hwif = (ide_hwif_t *)dev_id;
1007	ide_drive_t *uninitialized_var(drive);
1008	ide_handler_t *handler;
1009	unsigned long flags;
1010	ide_startstop_t startstop;
1011	irqreturn_t irq_ret = IRQ_NONE;
1012	int plug_device = 0;
1013
1014	if (hwif->host->host_flags & IDE_HFLAG_SERIALIZE) {
1015		if (hwif != hwif->host->cur_port)
1016			goto out_early;
1017	}
1018
1019	spin_lock_irqsave(&hwif->lock, flags);
1020
1021	if (!ide_ack_intr(hwif))
1022		goto out;
1023
1024	handler = hwif->handler;
1025
1026	if (handler == NULL || hwif->polling) {
1027		/*
1028		 * Not expecting an interrupt from this drive.
1029		 * That means this could be:
1030		 *	(1) an interrupt from another PCI device
1031		 *	sharing the same PCI INT# as us.
1032		 * or	(2) a drive just entered sleep or standby mode,
1033		 *	and is interrupting to let us know.
1034		 * or	(3) a spurious interrupt of unknown origin.
1035		 *
1036		 * For PCI, we cannot tell the difference,
1037		 * so in that case we just ignore it and hope it goes away.
1038		 *
1039		 * FIXME: unexpected_intr should be hwif-> then we can
1040		 * remove all the ifdef PCI crap
1041		 */
1042#ifdef CONFIG_BLK_DEV_IDEPCI
1043		if (hwif->chipset != ide_pci)
1044#endif	/* CONFIG_BLK_DEV_IDEPCI */
1045		{
1046			/*
1047			 * Probably not a shared PCI interrupt,
1048			 * so we can safely try to do something about it:
1049			 */
1050			unexpected_intr(irq, hwif);
1051#ifdef CONFIG_BLK_DEV_IDEPCI
1052		} else {
1053			/*
1054			 * Whack the status register, just in case
1055			 * we have a leftover pending IRQ.
1056			 */
1057			(void)hwif->tp_ops->read_status(hwif);
1058#endif /* CONFIG_BLK_DEV_IDEPCI */
1059		}
1060		goto out;
1061	}
1062
1063	drive = hwif->cur_dev;
1064
1065	if (!drive_is_ready(drive))
1066		/*
1067		 * This happens regularly when we share a PCI IRQ with
1068		 * another device.  Unfortunately, it can also happen
1069		 * with some buggy drives that trigger the IRQ before
1070		 * their status register is up to date.  Hopefully we have
1071		 * enough advance overhead that the latter isn't a problem.
1072		 */
1073		goto out;
1074
1075	hwif->handler = NULL;
1076	hwif->req_gen++;
1077	del_timer(&hwif->timer);
1078	spin_unlock(&hwif->lock);
1079
1080	if (hwif->port_ops && hwif->port_ops->clear_irq)
1081		hwif->port_ops->clear_irq(drive);
1082
1083	if (drive->dev_flags & IDE_DFLAG_UNMASK)
1084		local_irq_enable_in_hardirq();
1085
1086	/* service this interrupt, may set handler for next interrupt */
1087	startstop = handler(drive);
1088
1089	spin_lock_irq(&hwif->lock);
1090	/*
1091	 * Note that handler() may have set things up for another
1092	 * interrupt to occur soon, but it cannot happen until
1093	 * we exit from this routine, because it will be the
1094	 * same irq as is currently being serviced here, and Linux
1095	 * won't allow another of the same (on any CPU) until we return.
1096	 */
1097	if (startstop == ide_stopped) {
1098		BUG_ON(hwif->handler);
1099		ide_unlock_port(hwif);
1100		plug_device = 1;
1101	}
1102	irq_ret = IRQ_HANDLED;
1103out:
1104	spin_unlock_irqrestore(&hwif->lock, flags);
1105out_early:
1106	if (plug_device) {
1107		ide_unlock_host(hwif->host);
1108		ide_plug_device(drive);
1109	}
1110
1111	return irq_ret;
1112}
1113EXPORT_SYMBOL_GPL(ide_intr);
1114
1115void ide_pad_transfer(ide_drive_t *drive, int write, int len)
1116{
1117	ide_hwif_t *hwif = drive->hwif;
1118	u8 buf[4] = { 0 };
1119
1120	while (len > 0) {
1121		if (write)
1122			hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
1123		else
1124			hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
1125		len -= 4;
1126	}
1127}
1128EXPORT_SYMBOL_GPL(ide_pad_transfer);
1129