ide-io.c revision c4e66c36cce3f23d68013c4112013123ffe80bdb
1/* 2 * IDE I/O functions 3 * 4 * Basic PIO and command management functionality. 5 * 6 * This code was split off from ide.c. See ide.c for history and original 7 * copyrights. 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms of the GNU General Public License as published by the 11 * Free Software Foundation; either version 2, or (at your option) any 12 * later version. 13 * 14 * This program is distributed in the hope that it will be useful, but 15 * WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 17 * General Public License for more details. 18 * 19 * For the avoidance of doubt the "preferred form" of this code is one which 20 * is in an open non patent encumbered format. Where cryptographic key signing 21 * forms part of the process of creating an executable the information 22 * including keys needed to generate an equivalently functional executable 23 * are deemed to be part of the source code. 24 */ 25 26 27#include <linux/module.h> 28#include <linux/types.h> 29#include <linux/string.h> 30#include <linux/kernel.h> 31#include <linux/timer.h> 32#include <linux/mm.h> 33#include <linux/interrupt.h> 34#include <linux/major.h> 35#include <linux/errno.h> 36#include <linux/genhd.h> 37#include <linux/blkpg.h> 38#include <linux/slab.h> 39#include <linux/init.h> 40#include <linux/pci.h> 41#include <linux/delay.h> 42#include <linux/ide.h> 43#include <linux/hdreg.h> 44#include <linux/completion.h> 45#include <linux/reboot.h> 46#include <linux/cdrom.h> 47#include <linux/seq_file.h> 48#include <linux/device.h> 49#include <linux/kmod.h> 50#include <linux/scatterlist.h> 51#include <linux/bitops.h> 52 53#include <asm/byteorder.h> 54#include <asm/irq.h> 55#include <asm/uaccess.h> 56#include <asm/io.h> 57 58static int __ide_end_request(ide_drive_t *drive, struct request *rq, 59 int uptodate, unsigned int nr_bytes, int dequeue) 60{ 61 int ret = 1; 62 int error = 0; 63 64 if (uptodate <= 0) 65 error = uptodate ? uptodate : -EIO; 66 67 /* 68 * if failfast is set on a request, override number of sectors and 69 * complete the whole request right now 70 */ 71 if (blk_noretry_request(rq) && error) 72 nr_bytes = rq->hard_nr_sectors << 9; 73 74 if (!blk_fs_request(rq) && error && !rq->errors) 75 rq->errors = -EIO; 76 77 /* 78 * decide whether to reenable DMA -- 3 is a random magic for now, 79 * if we DMA timeout more than 3 times, just stay in PIO 80 */ 81 if ((drive->dev_flags & IDE_DFLAG_DMA_PIO_RETRY) && 82 drive->retry_pio <= 3) { 83 drive->dev_flags &= ~IDE_DFLAG_DMA_PIO_RETRY; 84 ide_dma_on(drive); 85 } 86 87 if (!blk_end_request(rq, error, nr_bytes)) 88 ret = 0; 89 90 if (ret == 0 && dequeue) 91 drive->hwif->rq = NULL; 92 93 return ret; 94} 95 96/** 97 * ide_end_request - complete an IDE I/O 98 * @drive: IDE device for the I/O 99 * @uptodate: 100 * @nr_sectors: number of sectors completed 101 * 102 * This is our end_request wrapper function. We complete the I/O 103 * update random number input and dequeue the request, which if 104 * it was tagged may be out of order. 105 */ 106 107int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors) 108{ 109 unsigned int nr_bytes = nr_sectors << 9; 110 struct request *rq = drive->hwif->rq; 111 112 if (!nr_bytes) { 113 if (blk_pc_request(rq)) 114 nr_bytes = rq->data_len; 115 else 116 nr_bytes = rq->hard_cur_sectors << 9; 117 } 118 119 return __ide_end_request(drive, rq, uptodate, nr_bytes, 1); 120} 121EXPORT_SYMBOL(ide_end_request); 122 123/** 124 * ide_end_dequeued_request - complete an IDE I/O 125 * @drive: IDE device for the I/O 126 * @uptodate: 127 * @nr_sectors: number of sectors completed 128 * 129 * Complete an I/O that is no longer on the request queue. This 130 * typically occurs when we pull the request and issue a REQUEST_SENSE. 131 * We must still finish the old request but we must not tamper with the 132 * queue in the meantime. 133 * 134 * NOTE: This path does not handle barrier, but barrier is not supported 135 * on ide-cd anyway. 136 */ 137 138int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq, 139 int uptodate, int nr_sectors) 140{ 141 BUG_ON(!blk_rq_started(rq)); 142 143 return __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0); 144} 145EXPORT_SYMBOL_GPL(ide_end_dequeued_request); 146 147/** 148 * ide_end_drive_cmd - end an explicit drive command 149 * @drive: command 150 * @stat: status bits 151 * @err: error bits 152 * 153 * Clean up after success/failure of an explicit drive command. 154 * These get thrown onto the queue so they are synchronized with 155 * real I/O operations on the drive. 156 * 157 * In LBA48 mode we have to read the register set twice to get 158 * all the extra information out. 159 */ 160 161void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err) 162{ 163 ide_hwif_t *hwif = drive->hwif; 164 struct request *rq = hwif->rq; 165 166 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) { 167 ide_task_t *task = (ide_task_t *)rq->special; 168 169 if (task) { 170 struct ide_taskfile *tf = &task->tf; 171 172 tf->error = err; 173 tf->status = stat; 174 175 drive->hwif->tp_ops->tf_read(drive, task); 176 177 if (task->tf_flags & IDE_TFLAG_DYN) 178 kfree(task); 179 } 180 } else if (blk_pm_request(rq)) { 181 struct request_pm_state *pm = rq->data; 182 183 ide_complete_power_step(drive, rq); 184 if (pm->pm_step == IDE_PM_COMPLETED) 185 ide_complete_pm_request(drive, rq); 186 return; 187 } 188 189 hwif->rq = NULL; 190 191 rq->errors = err; 192 193 if (unlikely(blk_end_request(rq, (rq->errors ? -EIO : 0), 194 blk_rq_bytes(rq)))) 195 BUG(); 196} 197EXPORT_SYMBOL(ide_end_drive_cmd); 198 199static void ide_kill_rq(ide_drive_t *drive, struct request *rq) 200{ 201 if (rq->rq_disk) { 202 struct ide_driver *drv; 203 204 drv = *(struct ide_driver **)rq->rq_disk->private_data; 205 drv->end_request(drive, 0, 0); 206 } else 207 ide_end_request(drive, 0, 0); 208} 209 210static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err) 211{ 212 ide_hwif_t *hwif = drive->hwif; 213 214 if ((stat & ATA_BUSY) || 215 ((stat & ATA_DF) && (drive->dev_flags & IDE_DFLAG_NOWERR) == 0)) { 216 /* other bits are useless when BUSY */ 217 rq->errors |= ERROR_RESET; 218 } else if (stat & ATA_ERR) { 219 /* err has different meaning on cdrom and tape */ 220 if (err == ATA_ABORTED) { 221 if ((drive->dev_flags & IDE_DFLAG_LBA) && 222 /* some newer drives don't support ATA_CMD_INIT_DEV_PARAMS */ 223 hwif->tp_ops->read_status(hwif) == ATA_CMD_INIT_DEV_PARAMS) 224 return ide_stopped; 225 } else if ((err & BAD_CRC) == BAD_CRC) { 226 /* UDMA crc error, just retry the operation */ 227 drive->crc_count++; 228 } else if (err & (ATA_BBK | ATA_UNC)) { 229 /* retries won't help these */ 230 rq->errors = ERROR_MAX; 231 } else if (err & ATA_TRK0NF) { 232 /* help it find track zero */ 233 rq->errors |= ERROR_RECAL; 234 } 235 } 236 237 if ((stat & ATA_DRQ) && rq_data_dir(rq) == READ && 238 (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0) { 239 int nsect = drive->mult_count ? drive->mult_count : 1; 240 241 ide_pad_transfer(drive, READ, nsect * SECTOR_SIZE); 242 } 243 244 if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) { 245 ide_kill_rq(drive, rq); 246 return ide_stopped; 247 } 248 249 if (hwif->tp_ops->read_status(hwif) & (ATA_BUSY | ATA_DRQ)) 250 rq->errors |= ERROR_RESET; 251 252 if ((rq->errors & ERROR_RESET) == ERROR_RESET) { 253 ++rq->errors; 254 return ide_do_reset(drive); 255 } 256 257 if ((rq->errors & ERROR_RECAL) == ERROR_RECAL) 258 drive->special.b.recalibrate = 1; 259 260 ++rq->errors; 261 262 return ide_stopped; 263} 264 265static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err) 266{ 267 ide_hwif_t *hwif = drive->hwif; 268 269 if ((stat & ATA_BUSY) || 270 ((stat & ATA_DF) && (drive->dev_flags & IDE_DFLAG_NOWERR) == 0)) { 271 /* other bits are useless when BUSY */ 272 rq->errors |= ERROR_RESET; 273 } else { 274 /* add decoding error stuff */ 275 } 276 277 if (hwif->tp_ops->read_status(hwif) & (ATA_BUSY | ATA_DRQ)) 278 /* force an abort */ 279 hwif->tp_ops->exec_command(hwif, ATA_CMD_IDLEIMMEDIATE); 280 281 if (rq->errors >= ERROR_MAX) { 282 ide_kill_rq(drive, rq); 283 } else { 284 if ((rq->errors & ERROR_RESET) == ERROR_RESET) { 285 ++rq->errors; 286 return ide_do_reset(drive); 287 } 288 ++rq->errors; 289 } 290 291 return ide_stopped; 292} 293 294static ide_startstop_t 295__ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err) 296{ 297 if (drive->media == ide_disk) 298 return ide_ata_error(drive, rq, stat, err); 299 return ide_atapi_error(drive, rq, stat, err); 300} 301 302/** 303 * ide_error - handle an error on the IDE 304 * @drive: drive the error occurred on 305 * @msg: message to report 306 * @stat: status bits 307 * 308 * ide_error() takes action based on the error returned by the drive. 309 * For normal I/O that may well include retries. We deal with 310 * both new-style (taskfile) and old style command handling here. 311 * In the case of taskfile command handling there is work left to 312 * do 313 */ 314 315ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat) 316{ 317 struct request *rq; 318 u8 err; 319 320 err = ide_dump_status(drive, msg, stat); 321 322 rq = drive->hwif->rq; 323 if (rq == NULL) 324 return ide_stopped; 325 326 /* retry only "normal" I/O: */ 327 if (!blk_fs_request(rq)) { 328 rq->errors = 1; 329 ide_end_drive_cmd(drive, stat, err); 330 return ide_stopped; 331 } 332 333 return __ide_error(drive, rq, stat, err); 334} 335EXPORT_SYMBOL_GPL(ide_error); 336 337static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf) 338{ 339 tf->nsect = drive->sect; 340 tf->lbal = drive->sect; 341 tf->lbam = drive->cyl; 342 tf->lbah = drive->cyl >> 8; 343 tf->device = (drive->head - 1) | drive->select; 344 tf->command = ATA_CMD_INIT_DEV_PARAMS; 345} 346 347static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf) 348{ 349 tf->nsect = drive->sect; 350 tf->command = ATA_CMD_RESTORE; 351} 352 353static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf) 354{ 355 tf->nsect = drive->mult_req; 356 tf->command = ATA_CMD_SET_MULTI; 357} 358 359static ide_startstop_t ide_disk_special(ide_drive_t *drive) 360{ 361 special_t *s = &drive->special; 362 ide_task_t args; 363 364 memset(&args, 0, sizeof(ide_task_t)); 365 args.data_phase = TASKFILE_NO_DATA; 366 367 if (s->b.set_geometry) { 368 s->b.set_geometry = 0; 369 ide_tf_set_specify_cmd(drive, &args.tf); 370 } else if (s->b.recalibrate) { 371 s->b.recalibrate = 0; 372 ide_tf_set_restore_cmd(drive, &args.tf); 373 } else if (s->b.set_multmode) { 374 s->b.set_multmode = 0; 375 ide_tf_set_setmult_cmd(drive, &args.tf); 376 } else if (s->all) { 377 int special = s->all; 378 s->all = 0; 379 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special); 380 return ide_stopped; 381 } 382 383 args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE | 384 IDE_TFLAG_CUSTOM_HANDLER; 385 386 do_rw_taskfile(drive, &args); 387 388 return ide_started; 389} 390 391/** 392 * do_special - issue some special commands 393 * @drive: drive the command is for 394 * 395 * do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS, 396 * ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive. 397 * 398 * It used to do much more, but has been scaled back. 399 */ 400 401static ide_startstop_t do_special (ide_drive_t *drive) 402{ 403 special_t *s = &drive->special; 404 405#ifdef DEBUG 406 printk("%s: do_special: 0x%02x\n", drive->name, s->all); 407#endif 408 if (drive->media == ide_disk) 409 return ide_disk_special(drive); 410 411 s->all = 0; 412 drive->mult_req = 0; 413 return ide_stopped; 414} 415 416void ide_map_sg(ide_drive_t *drive, struct request *rq) 417{ 418 ide_hwif_t *hwif = drive->hwif; 419 struct scatterlist *sg = hwif->sg_table; 420 421 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) { 422 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE); 423 hwif->sg_nents = 1; 424 } else if (!rq->bio) { 425 sg_init_one(sg, rq->data, rq->data_len); 426 hwif->sg_nents = 1; 427 } else { 428 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg); 429 } 430} 431 432EXPORT_SYMBOL_GPL(ide_map_sg); 433 434void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq) 435{ 436 ide_hwif_t *hwif = drive->hwif; 437 438 hwif->nsect = hwif->nleft = rq->nr_sectors; 439 hwif->cursg_ofs = 0; 440 hwif->cursg = NULL; 441} 442 443EXPORT_SYMBOL_GPL(ide_init_sg_cmd); 444 445/** 446 * execute_drive_command - issue special drive command 447 * @drive: the drive to issue the command on 448 * @rq: the request structure holding the command 449 * 450 * execute_drive_cmd() issues a special drive command, usually 451 * initiated by ioctl() from the external hdparm program. The 452 * command can be a drive command, drive task or taskfile 453 * operation. Weirdly you can call it with NULL to wait for 454 * all commands to finish. Don't do this as that is due to change 455 */ 456 457static ide_startstop_t execute_drive_cmd (ide_drive_t *drive, 458 struct request *rq) 459{ 460 ide_hwif_t *hwif = drive->hwif; 461 ide_task_t *task = rq->special; 462 463 if (task) { 464 hwif->data_phase = task->data_phase; 465 466 switch (hwif->data_phase) { 467 case TASKFILE_MULTI_OUT: 468 case TASKFILE_OUT: 469 case TASKFILE_MULTI_IN: 470 case TASKFILE_IN: 471 ide_init_sg_cmd(drive, rq); 472 ide_map_sg(drive, rq); 473 default: 474 break; 475 } 476 477 return do_rw_taskfile(drive, task); 478 } 479 480 /* 481 * NULL is actually a valid way of waiting for 482 * all current requests to be flushed from the queue. 483 */ 484#ifdef DEBUG 485 printk("%s: DRIVE_CMD (null)\n", drive->name); 486#endif 487 ide_end_drive_cmd(drive, hwif->tp_ops->read_status(hwif), 488 ide_read_error(drive)); 489 490 return ide_stopped; 491} 492 493int ide_devset_execute(ide_drive_t *drive, const struct ide_devset *setting, 494 int arg) 495{ 496 struct request_queue *q = drive->queue; 497 struct request *rq; 498 int ret = 0; 499 500 if (!(setting->flags & DS_SYNC)) 501 return setting->set(drive, arg); 502 503 rq = blk_get_request(q, READ, __GFP_WAIT); 504 rq->cmd_type = REQ_TYPE_SPECIAL; 505 rq->cmd_len = 5; 506 rq->cmd[0] = REQ_DEVSET_EXEC; 507 *(int *)&rq->cmd[1] = arg; 508 rq->special = setting->set; 509 510 if (blk_execute_rq(q, NULL, rq, 0)) 511 ret = rq->errors; 512 blk_put_request(rq); 513 514 return ret; 515} 516 517static ide_startstop_t ide_do_devset(ide_drive_t *drive, struct request *rq) 518{ 519 int err, (*setfunc)(ide_drive_t *, int) = rq->special; 520 521 err = setfunc(drive, *(int *)&rq->cmd[1]); 522 if (err) 523 rq->errors = err; 524 else 525 err = 1; 526 ide_end_request(drive, err, 0); 527 return ide_stopped; 528} 529 530static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq) 531{ 532 u8 cmd = rq->cmd[0]; 533 534 switch (cmd) { 535 case REQ_PARK_HEADS: 536 case REQ_UNPARK_HEADS: 537 return ide_do_park_unpark(drive, rq); 538 case REQ_DEVSET_EXEC: 539 return ide_do_devset(drive, rq); 540 case REQ_DRIVE_RESET: 541 return ide_do_reset(drive); 542 default: 543 blk_dump_rq_flags(rq, "ide_special_rq - bad request"); 544 ide_end_request(drive, 0, 0); 545 return ide_stopped; 546 } 547} 548 549/** 550 * start_request - start of I/O and command issuing for IDE 551 * 552 * start_request() initiates handling of a new I/O request. It 553 * accepts commands and I/O (read/write) requests. 554 * 555 * FIXME: this function needs a rename 556 */ 557 558static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq) 559{ 560 ide_startstop_t startstop; 561 562 BUG_ON(!blk_rq_started(rq)); 563 564#ifdef DEBUG 565 printk("%s: start_request: current=0x%08lx\n", 566 drive->hwif->name, (unsigned long) rq); 567#endif 568 569 /* bail early if we've exceeded max_failures */ 570 if (drive->max_failures && (drive->failures > drive->max_failures)) { 571 rq->cmd_flags |= REQ_FAILED; 572 goto kill_rq; 573 } 574 575 if (blk_pm_request(rq)) 576 ide_check_pm_state(drive, rq); 577 578 SELECT_DRIVE(drive); 579 if (ide_wait_stat(&startstop, drive, drive->ready_stat, 580 ATA_BUSY | ATA_DRQ, WAIT_READY)) { 581 printk(KERN_ERR "%s: drive not ready for command\n", drive->name); 582 return startstop; 583 } 584 if (!drive->special.all) { 585 struct ide_driver *drv; 586 587 /* 588 * We reset the drive so we need to issue a SETFEATURES. 589 * Do it _after_ do_special() restored device parameters. 590 */ 591 if (drive->current_speed == 0xff) 592 ide_config_drive_speed(drive, drive->desired_speed); 593 594 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) 595 return execute_drive_cmd(drive, rq); 596 else if (blk_pm_request(rq)) { 597 struct request_pm_state *pm = rq->data; 598#ifdef DEBUG_PM 599 printk("%s: start_power_step(step: %d)\n", 600 drive->name, pm->pm_step); 601#endif 602 startstop = ide_start_power_step(drive, rq); 603 if (startstop == ide_stopped && 604 pm->pm_step == IDE_PM_COMPLETED) 605 ide_complete_pm_request(drive, rq); 606 return startstop; 607 } else if (!rq->rq_disk && blk_special_request(rq)) 608 /* 609 * TODO: Once all ULDs have been modified to 610 * check for specific op codes rather than 611 * blindly accepting any special request, the 612 * check for ->rq_disk above may be replaced 613 * by a more suitable mechanism or even 614 * dropped entirely. 615 */ 616 return ide_special_rq(drive, rq); 617 618 drv = *(struct ide_driver **)rq->rq_disk->private_data; 619 620 return drv->do_request(drive, rq, rq->sector); 621 } 622 return do_special(drive); 623kill_rq: 624 ide_kill_rq(drive, rq); 625 return ide_stopped; 626} 627 628/** 629 * ide_stall_queue - pause an IDE device 630 * @drive: drive to stall 631 * @timeout: time to stall for (jiffies) 632 * 633 * ide_stall_queue() can be used by a drive to give excess bandwidth back 634 * to the port by sleeping for timeout jiffies. 635 */ 636 637void ide_stall_queue (ide_drive_t *drive, unsigned long timeout) 638{ 639 if (timeout > WAIT_WORSTCASE) 640 timeout = WAIT_WORSTCASE; 641 drive->sleep = timeout + jiffies; 642 drive->dev_flags |= IDE_DFLAG_SLEEPING; 643} 644EXPORT_SYMBOL(ide_stall_queue); 645 646static inline int ide_lock_port(ide_hwif_t *hwif) 647{ 648 if (hwif->busy) 649 return 1; 650 651 hwif->busy = 1; 652 653 return 0; 654} 655 656static inline void ide_unlock_port(ide_hwif_t *hwif) 657{ 658 hwif->busy = 0; 659} 660 661static inline int ide_lock_host(struct ide_host *host, ide_hwif_t *hwif) 662{ 663 int rc = 0; 664 665 if (host->host_flags & IDE_HFLAG_SERIALIZE) { 666 rc = test_and_set_bit_lock(IDE_HOST_BUSY, &host->host_busy); 667 if (rc == 0) { 668 /* for atari only */ 669 ide_get_lock(ide_intr, hwif); 670 } 671 } 672 return rc; 673} 674 675static inline void ide_unlock_host(struct ide_host *host) 676{ 677 if (host->host_flags & IDE_HFLAG_SERIALIZE) { 678 /* for atari only */ 679 ide_release_lock(); 680 clear_bit_unlock(IDE_HOST_BUSY, &host->host_busy); 681 } 682} 683 684/* 685 * Issue a new request to a device. 686 */ 687void do_ide_request(struct request_queue *q) 688{ 689 ide_drive_t *drive = q->queuedata; 690 ide_hwif_t *hwif = drive->hwif; 691 struct ide_host *host = hwif->host; 692 struct request *rq = NULL; 693 ide_startstop_t startstop; 694 695 /* 696 * drive is doing pre-flush, ordered write, post-flush sequence. even 697 * though that is 3 requests, it must be seen as a single transaction. 698 * we must not preempt this drive until that is complete 699 */ 700 if (blk_queue_flushing(q)) 701 /* 702 * small race where queue could get replugged during 703 * the 3-request flush cycle, just yank the plug since 704 * we want it to finish asap 705 */ 706 blk_remove_plug(q); 707 708 spin_unlock_irq(q->queue_lock); 709 710 if (ide_lock_host(host, hwif)) 711 goto plug_device_2; 712 713 spin_lock_irq(&hwif->lock); 714 715 if (!ide_lock_port(hwif)) { 716 ide_hwif_t *prev_port; 717repeat: 718 prev_port = hwif->host->cur_port; 719 hwif->rq = NULL; 720 721 if (drive->dev_flags & IDE_DFLAG_SLEEPING) { 722 if (time_before(drive->sleep, jiffies)) { 723 ide_unlock_port(hwif); 724 goto plug_device; 725 } 726 } 727 728 if ((hwif->host->host_flags & IDE_HFLAG_SERIALIZE) && 729 hwif != prev_port) { 730 /* 731 * set nIEN for previous port, drives in the 732 * quirk_list may not like intr setups/cleanups 733 */ 734 if (prev_port && prev_port->cur_dev->quirk_list == 0) 735 prev_port->tp_ops->set_irq(prev_port, 0); 736 737 hwif->host->cur_port = hwif; 738 } 739 hwif->cur_dev = drive; 740 drive->dev_flags &= ~(IDE_DFLAG_SLEEPING | IDE_DFLAG_PARKED); 741 742 spin_unlock_irq(&hwif->lock); 743 spin_lock_irq(q->queue_lock); 744 /* 745 * we know that the queue isn't empty, but this can happen 746 * if the q->prep_rq_fn() decides to kill a request 747 */ 748 rq = elv_next_request(drive->queue); 749 spin_unlock_irq(q->queue_lock); 750 spin_lock_irq(&hwif->lock); 751 752 if (!rq) { 753 ide_unlock_port(hwif); 754 goto out; 755 } 756 757 /* 758 * Sanity: don't accept a request that isn't a PM request 759 * if we are currently power managed. This is very important as 760 * blk_stop_queue() doesn't prevent the elv_next_request() 761 * above to return us whatever is in the queue. Since we call 762 * ide_do_request() ourselves, we end up taking requests while 763 * the queue is blocked... 764 * 765 * We let requests forced at head of queue with ide-preempt 766 * though. I hope that doesn't happen too much, hopefully not 767 * unless the subdriver triggers such a thing in its own PM 768 * state machine. 769 */ 770 if ((drive->dev_flags & IDE_DFLAG_BLOCKED) && 771 blk_pm_request(rq) == 0 && 772 (rq->cmd_flags & REQ_PREEMPT) == 0) { 773 /* there should be no pending command at this point */ 774 ide_unlock_port(hwif); 775 goto plug_device; 776 } 777 778 hwif->rq = rq; 779 780 spin_unlock_irq(&hwif->lock); 781 startstop = start_request(drive, rq); 782 spin_lock_irq(&hwif->lock); 783 784 if (startstop == ide_stopped) 785 goto repeat; 786 } else 787 goto plug_device; 788out: 789 spin_unlock_irq(&hwif->lock); 790 if (rq == NULL) 791 ide_unlock_host(host); 792 spin_lock_irq(q->queue_lock); 793 return; 794 795plug_device: 796 spin_unlock_irq(&hwif->lock); 797 ide_unlock_host(host); 798plug_device_2: 799 spin_lock_irq(q->queue_lock); 800 801 if (!elv_queue_empty(q)) 802 blk_plug_device(q); 803} 804 805static void ide_plug_device(ide_drive_t *drive) 806{ 807 struct request_queue *q = drive->queue; 808 unsigned long flags; 809 810 spin_lock_irqsave(q->queue_lock, flags); 811 if (!elv_queue_empty(q)) 812 blk_plug_device(q); 813 spin_unlock_irqrestore(q->queue_lock, flags); 814} 815 816static int drive_is_ready(ide_drive_t *drive) 817{ 818 ide_hwif_t *hwif = drive->hwif; 819 u8 stat = 0; 820 821 if (drive->waiting_for_dma) 822 return hwif->dma_ops->dma_test_irq(drive); 823 824 if (hwif->io_ports.ctl_addr && 825 (hwif->host_flags & IDE_HFLAG_BROKEN_ALTSTATUS) == 0) 826 stat = hwif->tp_ops->read_altstatus(hwif); 827 else 828 /* Note: this may clear a pending IRQ!! */ 829 stat = hwif->tp_ops->read_status(hwif); 830 831 if (stat & ATA_BUSY) 832 /* drive busy: definitely not interrupting */ 833 return 0; 834 835 /* drive ready: *might* be interrupting */ 836 return 1; 837} 838 839/** 840 * ide_timer_expiry - handle lack of an IDE interrupt 841 * @data: timer callback magic (hwif) 842 * 843 * An IDE command has timed out before the expected drive return 844 * occurred. At this point we attempt to clean up the current 845 * mess. If the current handler includes an expiry handler then 846 * we invoke the expiry handler, and providing it is happy the 847 * work is done. If that fails we apply generic recovery rules 848 * invoking the handler and checking the drive DMA status. We 849 * have an excessively incestuous relationship with the DMA 850 * logic that wants cleaning up. 851 */ 852 853void ide_timer_expiry (unsigned long data) 854{ 855 ide_hwif_t *hwif = (ide_hwif_t *)data; 856 ide_drive_t *uninitialized_var(drive); 857 ide_handler_t *handler; 858 unsigned long flags; 859 int wait = -1; 860 int plug_device = 0; 861 862 spin_lock_irqsave(&hwif->lock, flags); 863 864 handler = hwif->handler; 865 866 if (handler == NULL || hwif->req_gen != hwif->req_gen_timer) { 867 /* 868 * Either a marginal timeout occurred 869 * (got the interrupt just as timer expired), 870 * or we were "sleeping" to give other devices a chance. 871 * Either way, we don't really want to complain about anything. 872 */ 873 } else { 874 ide_expiry_t *expiry = hwif->expiry; 875 ide_startstop_t startstop = ide_stopped; 876 877 drive = hwif->cur_dev; 878 879 if (expiry) { 880 wait = expiry(drive); 881 if (wait > 0) { /* continue */ 882 /* reset timer */ 883 hwif->timer.expires = jiffies + wait; 884 hwif->req_gen_timer = hwif->req_gen; 885 add_timer(&hwif->timer); 886 spin_unlock_irqrestore(&hwif->lock, flags); 887 return; 888 } 889 } 890 hwif->handler = NULL; 891 /* 892 * We need to simulate a real interrupt when invoking 893 * the handler() function, which means we need to 894 * globally mask the specific IRQ: 895 */ 896 spin_unlock(&hwif->lock); 897 /* disable_irq_nosync ?? */ 898 disable_irq(hwif->irq); 899 /* local CPU only, as if we were handling an interrupt */ 900 local_irq_disable(); 901 if (hwif->polling) { 902 startstop = handler(drive); 903 } else if (drive_is_ready(drive)) { 904 if (drive->waiting_for_dma) 905 hwif->dma_ops->dma_lost_irq(drive); 906 (void)ide_ack_intr(hwif); 907 printk(KERN_WARNING "%s: lost interrupt\n", 908 drive->name); 909 startstop = handler(drive); 910 } else { 911 if (drive->waiting_for_dma) 912 startstop = ide_dma_timeout_retry(drive, wait); 913 else 914 startstop = ide_error(drive, "irq timeout", 915 hwif->tp_ops->read_status(hwif)); 916 } 917 spin_lock_irq(&hwif->lock); 918 enable_irq(hwif->irq); 919 if (startstop == ide_stopped) { 920 ide_unlock_port(hwif); 921 plug_device = 1; 922 } 923 } 924 spin_unlock_irqrestore(&hwif->lock, flags); 925 926 if (plug_device) { 927 ide_unlock_host(hwif->host); 928 ide_plug_device(drive); 929 } 930} 931 932/** 933 * unexpected_intr - handle an unexpected IDE interrupt 934 * @irq: interrupt line 935 * @hwif: port being processed 936 * 937 * There's nothing really useful we can do with an unexpected interrupt, 938 * other than reading the status register (to clear it), and logging it. 939 * There should be no way that an irq can happen before we're ready for it, 940 * so we needn't worry much about losing an "important" interrupt here. 941 * 942 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever 943 * the drive enters "idle", "standby", or "sleep" mode, so if the status 944 * looks "good", we just ignore the interrupt completely. 945 * 946 * This routine assumes __cli() is in effect when called. 947 * 948 * If an unexpected interrupt happens on irq15 while we are handling irq14 949 * and if the two interfaces are "serialized" (CMD640), then it looks like 950 * we could screw up by interfering with a new request being set up for 951 * irq15. 952 * 953 * In reality, this is a non-issue. The new command is not sent unless 954 * the drive is ready to accept one, in which case we know the drive is 955 * not trying to interrupt us. And ide_set_handler() is always invoked 956 * before completing the issuance of any new drive command, so we will not 957 * be accidentally invoked as a result of any valid command completion 958 * interrupt. 959 */ 960 961static void unexpected_intr(int irq, ide_hwif_t *hwif) 962{ 963 u8 stat = hwif->tp_ops->read_status(hwif); 964 965 if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) { 966 /* Try to not flood the console with msgs */ 967 static unsigned long last_msgtime, count; 968 ++count; 969 970 if (time_after(jiffies, last_msgtime + HZ)) { 971 last_msgtime = jiffies; 972 printk(KERN_ERR "%s: unexpected interrupt, " 973 "status=0x%02x, count=%ld\n", 974 hwif->name, stat, count); 975 } 976 } 977} 978 979/** 980 * ide_intr - default IDE interrupt handler 981 * @irq: interrupt number 982 * @dev_id: hwif 983 * @regs: unused weirdness from the kernel irq layer 984 * 985 * This is the default IRQ handler for the IDE layer. You should 986 * not need to override it. If you do be aware it is subtle in 987 * places 988 * 989 * hwif is the interface in the group currently performing 990 * a command. hwif->cur_dev is the drive and hwif->handler is 991 * the IRQ handler to call. As we issue a command the handlers 992 * step through multiple states, reassigning the handler to the 993 * next step in the process. Unlike a smart SCSI controller IDE 994 * expects the main processor to sequence the various transfer 995 * stages. We also manage a poll timer to catch up with most 996 * timeout situations. There are still a few where the handlers 997 * don't ever decide to give up. 998 * 999 * The handler eventually returns ide_stopped to indicate the 1000 * request completed. At this point we issue the next request 1001 * on the port and the process begins again. 1002 */ 1003 1004irqreturn_t ide_intr (int irq, void *dev_id) 1005{ 1006 ide_hwif_t *hwif = (ide_hwif_t *)dev_id; 1007 ide_drive_t *uninitialized_var(drive); 1008 ide_handler_t *handler; 1009 unsigned long flags; 1010 ide_startstop_t startstop; 1011 irqreturn_t irq_ret = IRQ_NONE; 1012 int plug_device = 0; 1013 1014 if (hwif->host->host_flags & IDE_HFLAG_SERIALIZE) { 1015 if (hwif != hwif->host->cur_port) 1016 goto out_early; 1017 } 1018 1019 spin_lock_irqsave(&hwif->lock, flags); 1020 1021 if (!ide_ack_intr(hwif)) 1022 goto out; 1023 1024 handler = hwif->handler; 1025 1026 if (handler == NULL || hwif->polling) { 1027 /* 1028 * Not expecting an interrupt from this drive. 1029 * That means this could be: 1030 * (1) an interrupt from another PCI device 1031 * sharing the same PCI INT# as us. 1032 * or (2) a drive just entered sleep or standby mode, 1033 * and is interrupting to let us know. 1034 * or (3) a spurious interrupt of unknown origin. 1035 * 1036 * For PCI, we cannot tell the difference, 1037 * so in that case we just ignore it and hope it goes away. 1038 * 1039 * FIXME: unexpected_intr should be hwif-> then we can 1040 * remove all the ifdef PCI crap 1041 */ 1042#ifdef CONFIG_BLK_DEV_IDEPCI 1043 if (hwif->chipset != ide_pci) 1044#endif /* CONFIG_BLK_DEV_IDEPCI */ 1045 { 1046 /* 1047 * Probably not a shared PCI interrupt, 1048 * so we can safely try to do something about it: 1049 */ 1050 unexpected_intr(irq, hwif); 1051#ifdef CONFIG_BLK_DEV_IDEPCI 1052 } else { 1053 /* 1054 * Whack the status register, just in case 1055 * we have a leftover pending IRQ. 1056 */ 1057 (void)hwif->tp_ops->read_status(hwif); 1058#endif /* CONFIG_BLK_DEV_IDEPCI */ 1059 } 1060 goto out; 1061 } 1062 1063 drive = hwif->cur_dev; 1064 1065 if (!drive_is_ready(drive)) 1066 /* 1067 * This happens regularly when we share a PCI IRQ with 1068 * another device. Unfortunately, it can also happen 1069 * with some buggy drives that trigger the IRQ before 1070 * their status register is up to date. Hopefully we have 1071 * enough advance overhead that the latter isn't a problem. 1072 */ 1073 goto out; 1074 1075 hwif->handler = NULL; 1076 hwif->req_gen++; 1077 del_timer(&hwif->timer); 1078 spin_unlock(&hwif->lock); 1079 1080 if (hwif->port_ops && hwif->port_ops->clear_irq) 1081 hwif->port_ops->clear_irq(drive); 1082 1083 if (drive->dev_flags & IDE_DFLAG_UNMASK) 1084 local_irq_enable_in_hardirq(); 1085 1086 /* service this interrupt, may set handler for next interrupt */ 1087 startstop = handler(drive); 1088 1089 spin_lock_irq(&hwif->lock); 1090 /* 1091 * Note that handler() may have set things up for another 1092 * interrupt to occur soon, but it cannot happen until 1093 * we exit from this routine, because it will be the 1094 * same irq as is currently being serviced here, and Linux 1095 * won't allow another of the same (on any CPU) until we return. 1096 */ 1097 if (startstop == ide_stopped) { 1098 BUG_ON(hwif->handler); 1099 ide_unlock_port(hwif); 1100 plug_device = 1; 1101 } 1102 irq_ret = IRQ_HANDLED; 1103out: 1104 spin_unlock_irqrestore(&hwif->lock, flags); 1105out_early: 1106 if (plug_device) { 1107 ide_unlock_host(hwif->host); 1108 ide_plug_device(drive); 1109 } 1110 1111 return irq_ret; 1112} 1113EXPORT_SYMBOL_GPL(ide_intr); 1114 1115void ide_pad_transfer(ide_drive_t *drive, int write, int len) 1116{ 1117 ide_hwif_t *hwif = drive->hwif; 1118 u8 buf[4] = { 0 }; 1119 1120 while (len > 0) { 1121 if (write) 1122 hwif->tp_ops->output_data(drive, NULL, buf, min(4, len)); 1123 else 1124 hwif->tp_ops->input_data(drive, NULL, buf, min(4, len)); 1125 len -= 4; 1126 } 1127} 1128EXPORT_SYMBOL_GPL(ide_pad_transfer); 1129